WorldWideScience

Sample records for restricts hiv-1 genome

  1. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    Keywords. genome signature; DRAP; HIV-1; chaos game representation. Abstract. Dinucleotide usage is known to vary in the genomes of organisms. The dinucleotide usage profiles or genome signatures are similar for sequence samples taken from the same genome, but are different for taxonomically distant species.

  2. Factors of intermittent HIV-1 excretion in semen and efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes.

    Science.gov (United States)

    Bujan, Louis; Daudin, Myriam; Matsuda, Tomohiro; Righi, Laurence; Thauvin, Laurence; Berges, Laetitia; Izopet, Jacques; Berrebi, Alain; Massip, Patrice; Pasquier, Christophe

    2004-03-26

    To study the risk factors for HIV-1 in semen according to the localization of HIV-1 in sperm cell fractions and to assess the efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes. Ninety-four HIV-infected patients provided 281 paired blood and semen samples. Sperm cell separation was performed using two successive methods. HIV-1 RNA was quantified in blood and seminal plasma. HIV-1 RNA and DNA were detected in cell fractions. HIV-1 RNA was found in 14% of seminal plasma samples and up to 8.7% of native semen cells were positive for HIV-1 RNA and DNA. Ten seminal plasma samples had detectable RNA although blood viral load was undetectable. Antiretroviral treatment reduced the likelihood of RNA detection in seminal plasma. For semen with polynuclear cells and HIV-1 RNA in seminal plasma, the likelihood of detecting HIV-1 genomes in semen cells was increased fourfold and sixfold, respectively. In 25% of patients, HIV-1 excretion was intermittent. In the group of patients with systematic negative seminal plasma, HIV-1 genomes were detected in up to 10% of sperm cell samples. Our method of sperm processing always enabled us to obtain spermatozoa without detectable HIV-1 genomes. Polynuclear cells in semen are a risk factor for seminal HIV-1 excretion. Blood viral load was the only predictive factor for the intermittence of HIV-1 excretion in semen over time. Sperm processing using two successive methods was effective in obtaining spermatozoa without detectable HIV-1 genomes regardless of the viral load level in native semen.

  3. Tetherin restricts productive HIV-1 cell-to-cell transmission.

    Directory of Open Access Journals (Sweden)

    Nicoletta Casartelli

    2010-06-01

    Full Text Available The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24 impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or DeltaVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of DeltaVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.

  4. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease.

    Science.gov (United States)

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2016-12-27

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

  5. Contribution of MxB oligomerization to HIV-1 capsid binding and restriction.

    Science.gov (United States)

    Buffone, Cindy; Schulte, Bianca; Opp, Silvana; Diaz-Griffero, Felipe

    2015-03-01

    The alpha interferon (IFN-α)-inducible restriction factor myxovirus B (MxB) blocks HIV-1 infection after reverse transcription but prior to integration. MxB binds to the HIV-1 core, which is composed of capsid protein, and this interaction leads to inhibition of the uncoating process of HIV-1. Previous studies suggested that HIV-1 restriction by MxB requires binding to capsid. This work tests the hypothesis that MxB oligomerization is important for the ability of MxB to bind to the HIV-1 core. For this purpose, we modeled the structure of MxB using the published tertiary structure of MxA. The modeled structure of MxB guided our mutagenic studies and led to the discovery of several MxB variants that lose the capacity to oligomerize. In agreement with our hypothesis, MxB variants that lost the oligomerization capacity also lost the ability to bind to the HIV-1 core. MxB variants deficient for oligomerization were not able to block HIV-1 infection. Overall, our work showed that oligomerization is required for the ability of MxB to bind to the HIV-1 core and block HIV-1 infection. MxB is a novel restriction factor that blocks infection of HIV-1. MxB is inducible by IFN-α, particularly in T cells. The current work studies the oligomerization determinants of MxB and carefully explores the contribution of oligomerization to capsid binding and restriction. This work takes advantage of the current structure of MxA and models the structure of MxB, which is used to guide structure-function studies. This work leads to the conclusion that MxB oligomerization is important for HIV-1 capsid binding and restriction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  7. Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag

    Directory of Open Access Journals (Sweden)

    Woods Matthew W

    2011-11-01

    Full Text Available Abstract Background The identification and characterization of several interferon (IFN-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5 that blocks a unique late stage of the HIV-1 life cycle. Results HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus. Conclusions HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.

  8. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Science.gov (United States)

    Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda

    2014-01-01

    The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352

  9. Expression profile of host restriction factors in HIV-1 elite controllers

    Science.gov (United States)

    2013-01-01

    Background Several host-encoded antiviral factors suppress HIV-1 replication in a cell-autonomous fashion in vitro. The relevance of these defenses to the control of HIV-1 in vivo remains to be elucidated. We hypothesized that cellular restriction of HIV-1 replication plays a significant role in the observed suppression of HIV-1 in "elite controllers", individuals who maintain undetectable levels of viremia in the absence of antiretroviral therapy (ART). We comprehensively compared the expression levels of 34 host restriction factors and cellular activation levels in CD4+ T cells and sorted T cell subsets between elite controllers, HIV-1-infected (untreated) non-controllers, ART-suppressed, and uninfected individuals. Results Expression of schlafen 11, a codon usage-based inhibitor of HIV-1 protein synthesis, was significantly elevated in CD4+ T cells from elite controllers as compared to both non-controllers (p = 0.048) and ART-suppressed individuals (p = 0.024), with this effect most apparent in central memory CD4+ T cells. Schlafen 11 expression levels were comparable between controllers and uninfected individuals. Cumulative restriction factor expression was positively correlated with CD4+ T cell activation (r2 = 0.597, p elite controllers with respect to ART-suppressed individuals, while levels were comparable to uninfected individuals and non-controllers. Conclusions Host restriction factor expression typically scales with cellular activation levels. However, the elevated mRNA and protein expression of schlafen 11, despite low activation and viral load, violates the global pattern and may be a signature characteristic of HIV-1 elite control. PMID:24131498

  10. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line.

    Directory of Open Access Journals (Sweden)

    Yanxing Han

    2008-07-01

    Full Text Available Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s. Further characterization of this novel gene product(s will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1.

  11. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral...

  12. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...... into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral...

  13. RNA interactions in the 5' region of the HIV-1 genome

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Andersen, Ebbe Sloth; Knudsen, Bjarne

    2004-01-01

    The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using a combin......The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using...... region and we demonstrate that this feature is highly conserved in distantly related human and animal retroviruses. To obtain information about tertiary interactions we applied an intramolecular UV-crosslinking strategy and identified a novel tertiary interaction within the PBS hairpin structure....

  14. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways.IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4+ T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  15. Gene Therapy Strategies to Exploit TRIM Derived Restriction Factors against HIV-1

    Directory of Open Access Journals (Sweden)

    Emma Chan

    2014-01-01

    Full Text Available Restriction factors are a collection of antiviral proteins that form an important aspect of the innate immune system. Their constitutive expression allows immediate response to viral infection, ahead of other innate or adaptive immune responses. We review the molecular mechanism of restriction for four categories of restriction factors; TRIM5, tetherin, APOBEC3G and SAMHD1 and go on to consider how the TRIM5 and TRIMCyp proteins in particular, show promise for exploitation using gene therapy strategies. Such approaches could form an important alternative to current anti-HIV-1 drug regimens, especially if combined with strategies to eradicate HIV reservoirs. Autologous CD4+ T cells or their haematopoietic stem cell precursors engineered to express TRIMCyp restriction factors, and provided in a single therapeutic intervention could then be used to restore functional immunity with a pool of cells protected against HIV. We consider the challenges ahead and consider how early clinical phase testing may best be achieved.

  16. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    Abstract. Dinucleotide usage is known to vary in the genomes of organisms. The dinucleotide usage profiles or genome signatures are similar for sequence samples taken from the same genome, but are different for taxonomically distant species. This concept of genome signatures has been used to study several organisms ...

  17. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    Science.gov (United States)

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  18. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission

    NARCIS (Netherlands)

    Sarrami-Forooshani, Ramin; Mesman, Annelies W.; van Teijlingen, Nienke H.; Sprokholt, Joris K.; van der Vlist, Michiel; Ribeiro, Carla M. S.; Geijtenbeek, Teunis B. H.

    2014-01-01

    Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the

  19. HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Sutas Suttiprapa

    2016-10-01

    Full Text Available Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate.

  20. Tetherin restricts direct cell-to-cell infection of HIV-1

    Directory of Open Access Journals (Sweden)

    Bar-Magen Tamara

    2010-12-01

    Full Text Available Abstract Background Tetherin (BST-2/CD317/HM1.24 is an interferon (IFN-inducible factor of the innate immune system, recently shown to exert antiviral activity against HIV-1 and other enveloped viruses by tethering nascent viral particles to the cell surface, thereby inhibiting viral release. In HIV-1 infection, the viral protein U (Vpu counteracts this antiviral action by down-modulating tetherin from the cell surface. Viral dissemination between T-cells can occur via cell-free transmission or the more efficient direct cell-to-cell route through lipid raft-rich virological synapses, to which tetherin localizes. Results We established a flow cytometry-based co-culture assay to distinguish viral transfer from viral transmission and investigated the influence of tetherin on cell-to-cell spread of HIV-1. Sup-T1 cells inducible for tetherin expression were used to examine the impact of effector and target cell tetherin expression on virus transfer and transmission. Using this assay, we showed that tetherin inhibits direct cell-to-cell virus transfer and transmission. Viral Vpu promoted viral transmission from tetherin-expressing cells by down-modulating tetherin from the effector cell surface. Further, we showed that tetherin on the target cell promotes viral transfer and transmission. Viral infectivity in itself was not affected by tetherin. Conclusion In addition to inhibiting viral release, tetherin also inhibits direct cell-to-cell spread. Viral protein Vpu counteracts this restriction, outweighing its possible cost of fitness in cell-to-cell transmission. The differential role of tetherin in effector and target cells suggest a role for tetherin in cell-cell contacts and virological synapses.

  1. p53-Derived Host Restriction of HIV-1 Replication by Protein Kinase R-Mediated Tat Phosphorylation and Inactivation

    Science.gov (United States)

    Yoon, Cheol-Hee; Kim, Sang-Yoon; Byeon, Se Eun; Jeong, Yideul; Lee, Jinjoo; Kim, Kwang Pyo; Park, Jinseu

    2015-01-01

    ABSTRACT Tumor suppressor p53 has been suggested to be a host restriction factor against HIV-1 replication, but the detailed molecular mechanism has remained elusive for decades. Here, we demonstrate that p53-mediated HIV-1 suppression is attributed to double-stranded RNA (dsRNA)-dependent protein kinase (PKR)-mediated HIV-1 trans-activator (Tat) phosphorylation and inactivation. p53 silencing significantly enhanced HIV-1 replication in infected cells. Ectopic expression of p53 suppressed Tat activity, which was rescued by PKR silencing. In addition, ectopic expression of PKR abolished Tat activity in p53−/− and eIF2αCA cells. Finally, we found that HIV-1 infection activates p53, followed by the induction and activation of PKR. PKR directly interacted with HIV-1 Tat and phosphorylates the first exon of Tat exclusively at five Ser/Thr residues (T23, T40, S46, S62, and S68), which inhibits Tat-mediated provirus transcription in three critical steps: (i) phosphorylation near the arginine-rich motif (ARM) inhibits Tat translocation into the nucleus, (ii) accumulation of Tat phosphorylation abolishes Tat–Tat-responsive region (TAR) binding, and (iii) Tat phosphorylation at T23 and/or T40 obliterates the Tat-cyclin T1 interaction. These five Ser/Thr sites on Tat were highly conserved in HIV-1 strains prevalent in Europe and the United States. Taken together, our findings indicate that p53-derived host restriction of HIV-1 replication is likely attributable, at least in part, to a noncanonical p53/PKR/Tat phosphorylation and inactivation pathway in HIV-1 infection and AIDS pathogenesis. IMPORTANCE HIV-1-mediated disease progression to AIDS lasts for years to decades after primary infection. Host restriction and associated viral latency have been studied for several decades. p53 has been suggested as an important host restriction factor against HIV-1 replication. However, the detailed molecular mechanism is still unclear. In the present study, we found that the p53

  2. Human TRIM5α mediated restriction of different HIV-1 subtypes and Lv2 sensitive and insensitive HIV-2 variants

    Directory of Open Access Journals (Sweden)

    Hagmann Isabel

    2006-11-01

    Full Text Available Abstract In order to characterize the antiviral activity of human TRIM5α in more detail human derived indicator cell lines over expressing wild type human TRIM5α were generated and challenged with HIV-1 and HIV-2 viruses pseudotyped with HIV envelope proteins in comparison to VSV-G pseudotyped particles. HIV envelope protein pseudotyped particles (HIV-1[NL4.3], HIV-1[BaL] showed a similar restriction to infection (12 fold inhibition compared to VSV-G pseudotyped viruses after challenging TZM-huTRIM5α cells. For HIV-2 a stronger restriction to infection was observed when the homologous envelope protein Env42S was pseudotyped onto these particles compared to VSV-G pseudotyped HIV-2 particles (8.6 fold inhibition versus 3.4 fold inhibition. It has been shown that HIV-2 is restricted by the restriction factor Lv2, acting on capsid like TRIM5α. A mutation of amino acid 73 (I73V of HIV-2 capsid renders this virus Lv2-insensitive. Lv2-insensitive VSV-G pseudotyped HIV-2/I73V particles showed a similar restriction to infection as did HIV-2[VSV-G] particles (4 fold inhibition. HIV-2 envelope protein (Env42S-pseudotyped HIV-2/I73V particles revealed a 9.3 fold increase in infection in TZM cells but remained restricted in TZM-huTRIM5α cells (80.6 fold inhibition clearly indicating that at least two restriction factors, TRIM5α and Lv2, act on incoming HIV-2 particles. Further challenge experiments using primary isolates from different HIV-1 subtypes and from HIV-1 group O showed that wild type human TRIM5α restricted infection independent of coreceptor use of the infecting particle but to variable degrees (between 1.2 and 19.6 fold restriction.

  3. Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly.

    Science.gov (United States)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea; Burdick, Ryan C; Levine, Louis; Li, Kelvin; Rein, Alan; Pathak, Vinay K; Hu, Wei-Shau

    2017-08-15

    Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly

  4. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...... production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions...... between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged...

  5. Identification of SERINC5-001 as the Predominant Spliced Isoform for HIV-1 Restriction.

    Science.gov (United States)

    Zhang, Xianfeng; Zhou, Tao; Yang, Jie; Lin, Yumei; Shi, Jing; Zhang, Xihe; Frabutt, Dylan A; Zeng, Xiangwei; Li, Sunan; Venta, Patrick J; Zheng, Yong-Hui

    2017-05-15

    Among the five serine incorporator (SERINC) family members, SERINC5 (Ser5) was reported to strongly inhibit HIV-1 replication, which is counteracted by Nef. Ser5 produces 5 alternatively spliced isoforms: Ser5-001 has 10 putative transmembrane domains, whereas Ser5-004, -005, -008a, and -008b do not have the last one. Here, we confirmed the strong Ser5 anti-HIV-1 activity and investigated its isoforms' expression and antiviral activities. It was found that Ser5-001 transcripts were detected at least 10-fold more than the other isoforms by real-time quantitative PCR. When Ser5-001 and its two isoforms Ser5-005 and Ser5-008a were expressed from the same mammalian expression vector, only Ser5-001 was stably expressed, whereas the others were poorly expressed due to rapid degradation. In addition, unlike the other isoforms, which are located mainly in the cytoplasm, Ser5-001 is localized primarily to the plasma membrane. To map the critical determinant, Ser5 mutants bearing C-terminal deletions were created. It was found that the 10th transmembrane domain is required for Ser5 stable expression and plasma membrane localization. As expected, only Ser5-001 strongly inhibits HIV-1 infectivity, whereas the other Ser5 isoforms and mutants that do not have the 10th transmembrane domain show very poor activity. It was also observed that the Nef counteractive activity could be easily saturated by Ser5 overexpression. Thus, we conclude that Ser5-001 is the predominant antiviral isoform that restricts HIV-1, and the 10th transmembrane domain plays a critical role in this process by regulating its protein stability and plasma membrane targeting.IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express a small protein, Nef, to enhance viral pathogenesis in vivo Nef has an important in vitro function, which is to make virus particles more infectious, but the mechanism has been unclear. Recently, Nef was reported to counteract a novel anti-HIV host

  6. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  7. Cooperative and specific binding of Vif to the 5' region of HIV-1 genomic RNA.

    Science.gov (United States)

    Henriet, Simon; Richer, Delphine; Bernacchi, Serena; Decroly, Etienne; Vigne, Robert; Ehresmann, Bernard; Ehresmann, Chantal; Paillart, Jean-Christophe; Marquet, Roland

    2005-11-18

    The viral infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication in vivo. Packaging of Vif into viral particles is mediated by an interaction with viral genomic RNA and association with viral nucleoprotein complexes. Despite recent findings on the RNA-binding properties of Vif suggesting that Vif could be involved in retroviral assembly, no RNA sequence or structure specificity has been determined so far. To gain further insight into the mechanisms by which Vif might regulate viral replication, we studied the interactions of Vif with HIV-1 genomic RNA in vitro. Using extensive biochemical analysis, we have measured the affinity of recombinant Vif proteins for synthetic RNAs corresponding to various regions of the HIV-1 genome. We found that recombinant Vif proteins bind specifically to HIV-1 viral RNA fragments corresponding to the 5'-untranslated region (5'-UTR), gag and the 5' part of pol (K(d) between 45 nM and 65 nM). RNA encompassing nucleotides 1-497 or 499-996 of the HIV-1 genomic RNA bind 9+/-2 and 21+/-3 Vif molecules, respectively, and at least some of these proteins bind in a cooperative manner (Hill constant alpha(H) = 2.3). In contrast, RNAs corresponding to other parts of the HIV-1 genome or heterologous RNAs showed poor binding capacity and weak cooperativity (K(d) > 200 nM). Moreover, RNase T1 footprinting revealed a hierarchical binding of Vif, pointing to TAR and the poly(A) stem-loop structures as primary strong affinity targets, and downstream structures as secondary sites with moderate affinity. Taken together, our findings suggest that Vif may assist other proteins to maintain a correct folding of the genomic RNA in order to facilitate its packaging and further steps such as reverse transcription. Interestingly, our results suggest also that Vif could bind the viral RNA in order to protect it from the action of the antiviral factor APOBEC-3G/3F.

  8. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...... protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential...

  9. Variability of HIV-1 genomes among children and adolescents from Sao Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Sabri Saeed Sanabani

    Full Text Available BACKGROUND: Genetic variability is a major feature of the human immunodeficiency virus type 1 (HIV-1 and considered the key factor to frustrating efforts to halt the virus epidemic. In this study, we aimed to investigate the genetic variability of HIV-1 strains among children and adolescents born from 1992 to 2009 in the state of Sao Paulo, Brazil. METHODOLOGY: Plasma and peripheral blood mononuclear cells (PBMC were collected from 51 HIV-1-positive children and adolescents on ART followed between September 1992 and July 2009. After extraction, the genetic materials were used in a polymerase chain reaction (PCR to amplify the viral near full length genomes (NFLGs from 5 overlapped fragments. NFLGs and partial amplicons were directly sequenced and data were phylogenetically inferred. RESULTS: Of the 51 samples studied, the NFLGs and partial fragments of HIV-1 from 42 PBMCs and 25 plasma were successfully subtyped. Results based on proviral DNA revealed that 22 (52.4% patients were infected with subtype B, 16 (38.1% were infected with BF1 mosaic variants and 4 (9.5% were infected with sub-subtype F1. All the BF1 recombinants were unique and distinct from any previously identified unique or circulating recombinant forms in South America. Evidence of dual infections was detected in 3 patients coinfected with the same or distinct HIV-1 subtypes. Ten of the 31 (32.2% and 12 of the 21 (57.1% subjects with recovered proviral and plasma, respectively, protease sequences were infected with major mutants resistant to protease inhibitors. The V3 sequences of 14 patients with available sequences from PBMC/or plasma were predicted to be R5-tropic virus except for two patients who harbored an X4 strain. CONCLUSIONS: The high proportion of HIV-1 BF1 recombinant, coinfection rate and vertical transmission in Brazil merits urgent attention and effective measures to reduce the transmission of HIV among spouses and sex partners.

  10. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome

    Directory of Open Access Journals (Sweden)

    Song Hongshuo

    2012-10-01

    Full Text Available Abstract Background A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL on viral fitness in the context of the cognate transmitted/founder (T/F genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS method. Results The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K in Env and a reversion mutation in the Tat/Rev overlapping region. Conclusions These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.

  11. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants

    Science.gov (United States)

    2014-01-01

    Background Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers relatively short reads. Results We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes. Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies. Conclusions Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual immune escapes. PMID:24996694

  12. NMR detection of intermolecular interaction sites in the dimeric 5'-leader of the HIV-1 genome.

    Science.gov (United States)

    Keane, Sarah C; Van, Verna; Frank, Heather M; Sciandra, Carly A; McCowin, Sayo; Santos, Justin; Heng, Xiao; Summers, Michael F

    2016-11-15

    HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5'-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have applied a 2H-edited NMR approach to directly probe for intermolecular interactions in the full-length, dimeric HIV-1 5'-leader (688 nucleotides; 230 kDa). The interface is extensive and includes DIS:DIS base pairing in an extended duplex state as well as intermolecular pairing between elements of the upstream Unique-5' (U5) sequence and those near the gag start site (AUG). Other pseudopalindromic regions of the leader, including the transcription activation (TAR), polyadenylation (PolyA), and primer binding (PBS) elements, do not participate in intermolecular base pairing. Using a 2H-edited one-dimensional NMR approach, we also show that the extended interface structure forms on a time scale similar to that of overall RNA dimerization. Our studies indicate that a kissing dimer-mediated structure, if formed, exists only transiently and readily converts to the extended interface structure, even in the absence of the HIV-1 nucleocapsid protein or other RNA chaperones.

  13. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging

    Directory of Open Access Journals (Sweden)

    Das Atze T

    2012-07-01

    Full Text Available Abstract Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.

  14. [Application progress of CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection].

    Science.gov (United States)

    Han, Ying-lun; Li, Qing-wei

    2016-01-01

    The goal of gene therapy is to introduce foreign genes into human target cells in a certain way to correct or compensate diseases caused by defective or abnormal genes. Therefore, gene therapy has great practical significance in studying the treatment of persistent or latent HIV-1 infection. At present, the existing methods of gene therapy have some major defects such as limited target site recognition and high frequency of off-targets. The latest research showed that the clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea has been successfully reformed to a targeted genome editing tool. Thus, how to achieve the goal of treating HIV-1 infection by modifying targeted HIV-1 virus genome effectively using the CRISPR/Cas9 system has become a current research focus. Here we review the latest achievements worldwide and briefly introduce applications of the CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection, including CCR5 gene editing, removal of HIV-1 virus and activation of HIV-1 virus, in order to provide reference for the prevention and treatment of HIV-1 infection.

  15. Enhanced Recognition of HIV-1 Cryptic Epitopes Restricted by HLA Class I Alleles Associated With a Favorable Clinical Outcome.

    Science.gov (United States)

    Bansal, Anju; Mann, Tiffanie; Sterrett, Sarah; Peng, Binghao J; Bet, Anne; Carlson, Jonathan M; Goepfert, Paul A

    2015-09-01

    Cryptic epitopes (CEs) are peptides derived from the translation of 1 or more of the 5 alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1-specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. Peptides (9mer to 11mer) were designed based on HLA-I-binding algorithms for B*27, B*57, or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (nonprotective allele) in all 5 ARFs of the 9 HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n = 231) were tested for T-cell responses in an IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay. Peripheral blood mononuclear cell samples from HIV-1 seronegative donors (n = 42) and HIV-1 seropositive patients with chronic clade B infections (n = 129) were used. Overall, 16%, 2%, and 2% of chronic HIV infected patients had CE responses by IFN-γ ELISpot in the protective, nonprotective, and seronegative groups, respectively (P = 0.009, Fischer exact test). Twenty novel CE-specific responses were mapped (median magnitude of 95 spot forming cells/10 peripheral blood mononuclear cells), and most were both antisense derived (90%) and represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection, suggesting that they may contribute to viral control in this group of patients.

  16. Use of Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes

    Directory of Open Access Journals (Sweden)

    Jesus F. Salazar-Gonzalez

    2016-07-01

    Full Text Available Background: Identification of HIV-1 genomes responsible for establishing clinical infection in newly infected individuals is fundamental to prevention and pathogenesis research. Processing, storage, and transportation of the clinical samples required to perform these virologic assays in resource-limited settings requires challenging venipuncture and cold chain logistics. Here, we validate the use of dried-blood spots (DBS as a simple and convenient alternative to collecting and storing frozen plasma. Methods: We performed parallel nucleic acid extraction, single genome amplification (SGA, next generation sequencing (NGS, and phylogenetic analyses on plasma and DBS. Results: We demonstrated the capacity to extract viral RNA from DBS and perform SGA to infer the complete nucleotide sequence of the transmitted/founder (TF HIV-1 envelope gene and full-length genome in two acutely infected individuals. Using both SGA and NGS methodologies, we showed that sequences generated from DBS and plasma display comparable phylogenetic patterns in both acute and chronic infection. SGA was successful on samples with a range of plasma viremia, including samples as low as 1,700 copies/ml and an estimated ~50 viral copies per blood spot. Further, we demonstrated reproducible efficiency in gp160 env sequencing in DBS stored at ambient temperature for up to three weeks or at -20ºC for up to five months. Conclusions: These findings support the use of DBS as a practical and cost-effective alternative to frozen plasma for clinical trials and translational research conducted in resource-limited settings.

  17. Use of Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes

    Science.gov (United States)

    Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Tully, Damien C.; Ogilvie, Colin B.; Learn, Gerald H.; Allen, Todd M.; Heath, Sonya L.; Goepfert, Paul; Bar, Katharine J.

    2016-01-01

    Background Identification of HIV-1 genomes responsible for establishing clinical infection in newly infected individuals is fundamental to prevention and pathogenesis research. Processing, storage, and transportation of the clinical samples required to perform these virologic assays in resource-limited settings requires challenging venipuncture and cold chain logistics. Here, we validate the use of dried-blood spots (DBS) as a simple and convenient alternative to collecting and storing frozen plasma. Methods We performed parallel nucleic acid extraction, single genome amplification (SGA), next generation sequencing (NGS), and phylogenetic analyses on plasma and DBS. Results We demonstrated the capacity to extract viral RNA from DBS and perform SGA to infer the complete nucleotide sequence of the transmitted/founder (TF) HIV-1 envelope gene and full-length genome in two acutely infected individuals. Using both SGA and NGS methodologies, we showed that sequences generated from DBS and plasma display comparable phylogenetic patterns in both acute and chronic infection. SGA was successful on samples with a range of plasma viremia, including samples as low as 1,700 copies/ml and an estimated ∼50 viral copies per blood spot. Further, we demonstrated reproducible efficiency in gp160 env sequencing in DBS stored at ambient temperature for up to three weeks or at -20°C for up to five months. Conclusions These findings support the use of DBS as a practical and cost-effective alternative to frozen plasma for clinical trials and translational research conducted in resource-limited settings. PMID:27819061

  18. Selective in vitro expansion of HLA class I-restricted HIV-1 gag-specific CD8+ T cells: cytotoxic T-lymphocyte epitopes and precursor frequencies.

    NARCIS (Netherlands)

    C.A. van Baalen (Carel); M.R. Klein (Michèl); A.M. Geretti (Anna Maria); R.I.P.M. Keet; F. Miedema (Frank); C.A.C.M. van Els (Cécile); A.D.M.E. Osterhaus (Albert)

    1993-01-01

    textabstractOBJECTIVE: To identify HIV-1 Gag cytotoxic T-lymphocyte (CTL) epitopes and HLA restriction of their recognition, and to define precursor frequencies of HIV-1 Gag-specific CTL in the blood of seropositive individuals. METHODS: B-lymphoblastoid cell lines (B-LCL) infected with recombinant

  19. p27(SJ), a novel protein in St John's Wort, that suppresses expression of HIV-1 genome.

    Science.gov (United States)

    Darbinian-Sarkissian, N; Darbinyan, A; Otte, J; Radhakrishnan, S; Sawaya, B E; Arzumanyan, A; Chipitsyna, G; Popov, Y; Rappaport, J; Amini, S; Khalili, K

    2006-02-01

    Transcription of the HIV-1 genome is controlled by the cooperation of viral regulatory proteins and several host factors which bind to specific DNA sequences within the viral promoter spanning the long terminal repeat, (LTR). Here, we describe the identification of a novel protein, p27(SJ), present in a laboratory callus culture of Hypericum perforatum (St John's Wort) that suppresses transcription of the HIV-1 genome in several human cell types including primary culture of microglia and astrocytes. p27(SJ) associates with C/EBPbeta, a transcription factor that regulates expression of the HIV-1 genome in macrophages and monocytic cells, and the viral transactivator, Tat. The association of p27(SJ) with C/EBPbeta and Tat alters their subcellular localization, causing their accumulation in the perinuclear cytoplasmic compartment of the cells. Fusion of a nuclear localization signal to p27(SJ) forces its entry into the nucleus and diminishes the capacity of p27(SJ) to suppress Tat activity, but does not alter its ability to suppress C/EBPbeta activation of the LTR. Results from binding assays showed the inhibitory effect of p27(SJ) on C/EBPbeta interaction with DNA. Finally, our results demonstrate that expression of p27(SJ) decreases the level of viral replication in HIV-1-infected cells. These observations suggest the potential for the development of a therapeutic advance based on p27(SJ) protein to control HIV-1 transcription and replication in cells associated with HIV-1 infection in the brain.

  20. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells.

    Science.gov (United States)

    Chan, Chi N; Trinité, Benjamin; Lee, Caroline S; Mahajan, Saurabh; Anand, Akanksha; Wodarz, Dominik; Sabbaj, Steffanie; Bansal, Anju; Goepfert, Paul A; Levy, David N

    2016-01-05

    HIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection. Here, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells. These studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses

  1. Recombination Enhances HIV-1 Envelope Diversity by Facilitating the Survival of Latent Genomic Fragments in the Plasma Virus Population.

    Directory of Open Access Journals (Sweden)

    Taina T Immonen

    2015-12-01

    Full Text Available HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted

  2. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants

    NARCIS (Netherlands)

    Pandit, Aridaman; de Boer, Rob J|info:eu-repo/dai/nl/074214152

    2014-01-01

    BACKGROUND: Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers

  3. Sequence conservation, HLA-E-Restricted peptide, and best-defined CTL/CD8+ epitopes in gag P24 (capsid) of HIV-1 subtype B

    Science.gov (United States)

    Prasetyo, Afiono Agung; Dharmawan, Ruben; Sari, Yulia; Sariyatun, Ratna

    2017-02-01

    Human immunodeficiency virus type 1 (HIV-1) remains a cause of global health problem. Continuous studies of HIV-1 genetic and immunological profiles are important to find strategies against the virus. This study aimed to conduct analysis of sequence conservation, HLA-E-restricted peptide, and best-defined CTL/CD8+ epitopes in p24 (capsid) of HIV-1 subtype B worldwide. The p24-coding sequences from 3,557 HIV subtype B isolates were aligned using MUSCLE and analysed. Some highly conserved regions (sequence conservation ≥95%) were observed. Two considerably long series of sequences with conservation of 100% was observed at base 349-356 and 550-557 of p24 (HXB2 numbering). The consensus from all aligned isolates was precisely the same as consensus B in the Los Alamos HIV Database. The HLA-E-restricted peptide in amino acid (aa) 14-22 of HIV-1 p24 (AISPRTLNA) was found in 55.9% (1,987/3,557) of HIV-1 subtype B worldwide. Forty-four best-defined CTL/CD8+ epitopes were observed, in which VKNWMTETL epitope (aa 181-189 of p24) restricted by B*4801 was the most frequent, as found in 94.9% of isolates. The results of this study would contribute information about HIV-1 subtype B and benefits for further works willing to develop diagnostic and therapeutic strategies against the virus.

  4. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1.

    Directory of Open Access Journals (Sweden)

    Hendrik Huthoff

    2009-03-01

    Full Text Available The human cytidine deaminase APOBEC3G (A3G is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs, of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2 protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.

  5. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  6. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome

    NARCIS (Netherlands)

    Westerhout, Ellen M.; Ooms, Marcel; Vink, Monique; Das, Atze T.; Berkhout, Ben

    2005-01-01

    HIV-1 replication can be efficiently inhibited by intracellular expression of an siRNA targeting the viral RNA. However, HIV-1 escape variants emerged after prolonged culturing. These RNAi-resistant viruses contain nucleotide substitutions or deletions in or near the targeted sequence. We observed

  7. Endosomal Trafficking of HIV-1 Gag and Genomic RNAs Regulates Viral Egress

    DEFF Research Database (Denmark)

    Molle, Dorothée; Segura-Morales, Carollna; Camus, Gregory

    2009-01-01

    HIV-1 Gag can assemble and generate virions at the plasma membrane, but it is also present in endosomes where its role remains incompletely characterized. Here, we show that HIV-1 RNAs and Gag are transported on endosomal vesicles positive for TiVamp, a v-SNARE involved in fusion events with the ...

  8. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse

    Directory of Open Access Journals (Sweden)

    Blanchet Fabien P

    2013-01-01

    Full Text Available Abstract Background Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24 potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. Results We now report that BST-2/tetherin expression in myeloid (myDC and monocyte-derived dendritic cells (DC can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α–matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs in both immature DC and IFN-α–matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. Conclusions In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.

  9. Mechanisms of HIV-1 Control.

    Science.gov (United States)

    Soliman, Mary; Srikrishna, Geetha; Balagopal, Ashwin

    2017-06-01

    HIV-1 infection is of global importance, and still incurs substantial morbidity and mortality. Although major pharmacologic advances over the past two decades have resulted in remarkable HIV-1 control, a cure is still forthcoming. One approach to a cure is to exploit natural mechanisms by which the host restricts HIV-1. Herein, we review past and recent discoveries of HIV-1 restriction factors, a diverse set of host proteins that limit HIV-1 replication at multiple levels, including entry, reverse transcription, integration, translation of viral proteins, and packaging and release of virions. Recent studies of intracellular HIV-1 restriction have offered unique molecular insights into HIV-1 replication and biology. Studies have revealed insights of how restriction factors drive HIV-1 evolution. Although HIV-1 restriction factors only partially control the virus, their importance is underscored by their effect on HIV-1 evolution and adaptation. The list of host restriction factors that control HIV-1 infection is likely to expand with future discoveries. A deeper understanding of the molecular mechanisms of regulation by these factors will uncover new targets for therapeutic control of HIV-1 infection.

  10. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Brandt, Lea; Vinner, Lasse

    2013-01-01

    We investigated the potential of inducing additional T-cell immunity during chronic HIV-1 infection directed to subdominant HIV-1 epitopes from common HLA-supertypes. Ten treatment-naïve HIV-1-infected individuals were immunized with peptides in the adjuvant CAF01. One individual received placebo...... responses specific for one or more vaccine epitopes were induced in 10/10 vaccinees. The responses were dominated by CD107a and MIP1β expression. There were no significant changes in HIV-1 viral load or CD4 T-cell counts. Our study demonstrates that the peptide/CAF01 vaccine is safe and that it is possible...... to generate new HIV-1 T-cell responses to defined epitopes in treatment-naïve HIV-1-infected individuals....

  11. Broadly Immunogenic HLA Class I Supertype-Restricted Elite CTL Epitopes Recognized in a Diverse Population Infected with Different HIV-1 Subtypes

    DEFF Research Database (Denmark)

    Pérez, Carina L; Larsen, Mette Voldby; Gustafsson, Rasmus

    2008-01-01

    predicted epitopes representing seven different HLA class I supertypes that together constitute a broad coverage of the different HIV-1 strains as well as the human HLA alleles. Of the tested 184 HLA class I-restricted epitopes, 114 were recognized by at least one study subject, and 45 were novel epitopes...

  12. Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses.

    Directory of Open Access Journals (Sweden)

    Michael D Moore

    2009-10-01

    Full Text Available Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.

  13. Rapid progressing allele HLA-B35 Px restricted anti-HIV-1 CD8+ T cells recognize vestigial CTL epitopes.

    Directory of Open Access Journals (Sweden)

    Christian B Willberg

    Full Text Available The HLA-B*35-Px allele has been associated with rapid disease progression in HIV-1 infection, in contrast to the HLA-B*35-Py allele.Immune responses to two HLA-B*35 restricted HIV-1 specific CTL epitopes and their variants were followed longitudinally during early HIV-1 infection in 16 HLA-B*35+ individuals. Subjects expressing HLA-B*35-Px alleles showed no difference in response to the consensus epitopes compared to individuals with HLA-B*35-Py alleles. Surprisingly, all the HLA-B*35-Px+ individuals responded to epitope-variants even in the absence of a consensus response. Sequencing of the viral population revealed no evidence of variant virus in any of the individuals.This demonstrates a novel phenomenon that distinguishes individuals with the HLA-B*35-Px rapid progressing allele and those with the HLA-B*35-Py slower progressing allele.

  14. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome.

    Science.gov (United States)

    De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân

    2016-07-27

    The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Revisiting HIV-1 uncoating

    Directory of Open Access Journals (Sweden)

    Arhel Nathalie

    2010-11-01

    Full Text Available Abstract HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs, in which reverse transcription occurs, and pre-integration complexes (PICs, which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered.

  16. Gene expression analysis of a panel of cell lines that differentially restrict HIV-1 CA mutants infection in a cyclophilin a-dependent manner.

    Directory of Open Access Journals (Sweden)

    Vaibhav B Shah

    Full Text Available HIV-1 replication is dependent on binding of the viral capsid to the host protein cyclophilin A (CypA. Interference with cyclophilin A binding, either by mutations in the HIV-1 capsid protein (CA or by the drug cyclosporine A (CsA, inhibits HIV-1 replication in cell culture. Resistance to CsA is conferred by A92E or G94D substitutions in CA. The mutant viruses are also dependent on CsA for their replication. Interestingly, infection of some cell lines by these mutants is enhanced by CsA, while infection of others is not affected by the drug. The cells are thus termed nonpermissive and permissive, respectively, for infection by CsA-dependent mutants. The mechanistic basis for the cell type dependence is not well understood, but has been hypothesized to result from a dominant-acting host factor that blocks HIV-1 infection by a mechanism that requires CypA binding to the viral capsid. In an effort to identify a CypA-dependent host restriction factor, we adopted a strategy involving comparative gene expression analysis in three permissive and three non-permissive cell types. We ranked the genes based on their relative overexpression in non-permissive cell types compared to the permissive cell types. Based on specific selection criteria, 26 candidate genes were selected and targeted using siRNA in nonpermissive (HeLa cells. Depletion of none of the selected candidate genes led to the reversal of CsA-dependent phenotype of the A92E mutant. Our data suggest that none of the 26 genes tested is responsible for the dependence of the A92E mutant on CsA. Our study provides gene expression data that may be useful for future efforts to identify the putative CypA-dependent HIV-1 restriction factor and in studies of other cell-specific phenotypes.

  17. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA

    Science.gov (United States)

    Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E.; Gehring, Niels H.; Mouland, Andrew J.

    2015-01-01

    Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking. PMID:26492277

  18. Solitary restriction endonucleases in prokaryotic genomes.

    Science.gov (United States)

    Ershova, Anna S; Karyagina, Anna S; Vasiliev, Mikhail O; Lyashchuk, Alexander M; Lunin, Vladimir G; Spirin, Sergey A; Alexeevski, Andrei V

    2012-11-01

    Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed.

  19. Role of the primer activation signal in tRNA annealing onto the HIV-1 genome studied by single-molecule FRET microscopy

    NARCIS (Netherlands)

    N. Beerens (Nancy); M.D.E. Jepsen (Mette); V. Nechyporuk-Zloy (Volodymyr); A.C. Krüger (Asger); J.-L. Darlix (Jean-Luc); J. Kjems (Jørgen); V. Birkedal (Victoria)

    2013-01-01

    textabstractHIV-1 reverse transcription is primed by a cellular tRNAlys3 molecule that binds to the primer binding site (PBS) in the genomic RNA. An additional interaction between the tRNA molecule and the primer activation signal (PAS) is thought to regulate the initiation of reverse transcription.

  20. A Short Sequence Motif in the 5 ' Leader of the HIV-1 Genome Modulates Extended RNA Dimer Formation and Virus Replication

    NARCIS (Netherlands)

    van Bel, N.; Das, A.T.; Cornelissen, M.; Abbink, G.E.M.; Berkhout, B.

    2014-01-01

    The 5' leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via

  1. A short sequence motif in the 5' leader of the HIV-1 genome modulates extended RNA dimer formation and virus replication

    NARCIS (Netherlands)

    van Bel, Nikki; Das, Atze T.; Cornelissen, Marion; Abbink, Truus E. M.; Berkhout, Ben

    2014-01-01

    The 5' leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via

  2. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the kinase

  3. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  4. HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation.

    Science.gov (United States)

    Tsang, Jhen; Chain, Benjamin M; Miller, Robert F; Webb, Benjamin L J; Barclay, Wendy; Towers, Greg J; Katz, David R; Noursadeghi, Mahdad

    2009-11-13

    The cellular innate immune response to HIV-1 is poorly characterized. In view of HIV-1 tropism for macrophages, which can be activated via pattern recognition receptors to trigger antimicrobial defences, we investigated innate immune responses to HIV-1 by monocyte-derived macrophages. In a model of productive HIV-1 infection, cellular innate immune responses to HIV-1 were investigated, at the level of transcription factor activation, specific gene expression and genome-wide transcriptional profiling. In addition, the viral determinants of macrophage responses and the physiological effect of innate immune cellular activation on HIV-1 replication were assessed. Productive HIV-1 infection did not activate nuclear factor-kappaB and interferon regulatory factor 3 transcription factors or interferon gene expression (IFN) and caused remarkably small changes to the host-cell transcriptome, with no evidence of inflammatory or IFN signatures. Evasion of IFN induction was not dependent on HIV-1 envelope-mediated cellular entry, inhibition by accessory proteins or reverse transcription of ssRNA that may reduce innate immune cellular activation by viral RNA. Furthermore, IFNbeta priming did not sensitize responses to HIV-1. Importantly, exogenous IFNbeta or stimulation with the RNA analogue poly I:C to simulate innate immune activation invoked HIV-1 restriction. We conclude that macrophages lack functional pattern recognition receptors for this virus and that HIV-1 tropism for macrophages helps to establish a foothold in the host without triggering innate immune cellular activation, which would otherwise block viral infection effectively.

  5. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin.

    Directory of Open Access Journals (Sweden)

    Claire Pardieu

    2010-04-01

    Full Text Available Tetherin (CD317/BST2 is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18 in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.

  6. Cell-Associated HIV-1 DNA and RNA Decay Dynamics During Early Combination Antiretroviral Therapy in HIV-1-Infected Infants.

    Science.gov (United States)

    Uprety, Priyanka; Chadwick, Ellen G; Rainwater-Lovett, Kaitlin; Ziemniak, Carrie; Luzuriaga, Katherine; Capparelli, Edmund V; Yenokyan, Gayane; Persaud, Deborah

    2015-12-15

    The decay of human immunodeficiency virus type 1 (HIV-1)-infected cells during early combination antiretroviral therapy (cART) in infected infants is not defined. HIV-1 DNA, including 2-long terminal repeat (2-LTR) circles, and multiply spliced (ms-) and unspliced (us-) HIV-1 RNA concentrations were measured at 0, 24, 48, and 96 weeks of cART in infants from the IMPAACT P1030 trial receiving lopinavir-ritonavir-based cART. The ratio of HIV-1 DNA concentrations to replication-competent genomes was also estimated. Linear mixed effects models with random intercept and linear splines were used to estimate patient-specific decay kinetics of HIV-1 DNA. The median HIV-1 DNA concentration before cART at a median age of 2 months was 3.2 log10 copies per million PBMC. With cART, the average estimated patient-specific change in HIV-1 DNA concentrations was -0.040 log10/week (95% confidence interval [CI], -.05, -.03) between 0 and 24 weeks and -0.017 log10/week between 24 and 48 weeks (95% CI, -.024, -.01). 2-LTR circles decreased with cART but remained detectable through 96 weeks. Pre-cART HIV-1 DNA concentration was correlated with time to undetectable plasma viral load and post-cART HIV-1 DNA at 96 weeks; although HIV-1 DNA concentrations exceeded replication-competent HIV-1 genomes by 148-fold. Almost all infants had ms- and usRNA detected pre-cART, with 75% having usRNA through 96 weeks of cART. By 2 months of age, a large pool of HIV-1-infected cells is established in perinatal infection, which influences time to undetectable viral load and reservoir size. This has implications for informing novel approaches aimed at early restriction of HIV-1 reservoirs to enable virologic remission and cure. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9.

    Science.gov (United States)

    Li, Zhihui; Wu, Shuwen; Wang, Jingjing; Li, Wenjuan; Lin, Yun; Ji, Chaoneng; Xue, Jinglun; Chen, Jinzhong

    2012-11-01

    Human immunodeficiency virus type 1 (HIV-1) integrase mediates the integration of reverse-transcribed viral cDNA into the genome of the host for the stable maintenance of the viral genome and the persistence of HIV-1 infection. In this study, the relationships between HIV-1 integrase (HIV-1 IN) and three SUMO conjugation pathway proteins, as well as the effects of these associations, were investigated. The overexpression of SUMO1/SUMO2 and Ubc9 changed the intracellular localization of HIV-1 IN from a diffuse distribution to a punctate localization. SUMO1, SUMO2 and Ubc9 were shown to interact with HIV-1 IN. The SUMOylation of HIV-1 IN was verified. In addition, SUMO1, SUMO2 and Ubc9 were shown to influence the integration of both lentivirus and HIV-1. The overexpression of Ubc9 inhibited viral genome integration, and the upregulation of SUMO1 or SUMO2 enhanced the inhibitory effect of Ubc9. Knockdown of the endogenous levels of SUMO1, SUMO2 and Ubc9 increased the level of viral integration, while reverse transcription and the nuclear import of preintegration complex (PIC) were not affected. Our findings suggest that SUMO conjugation pathway proteins may act as cellular restriction factors and be detrimental to HIV-1 infection. These findings merit further investigation because of their potentially significant implications for the cellular antiviral response to HIV-1 infection.

  8. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  9. Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques

    Directory of Open Access Journals (Sweden)

    Krishnakumar Devadas

    2016-05-01

    Full Text Available While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2 share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.

  10. Frequent associations between CTL and T-Helper epitopes in HIV-1 genomes and implications for multi-epitope vaccine designs.

    Science.gov (United States)

    Paul, Sinu; Piontkivska, Helen

    2010-08-09

    Epitope vaccines have been suggested as a strategy to counteract viral escape and development of drug resistance. Multiple studies have shown that Cytotoxic T-Lymphocyte (CTL) and T-Helper (Th) epitopes can generate strong immune responses in Human Immunodeficiency Virus (HIV-1). However, not much is known about the relationship among different types of HIV epitopes, particularly those epitopes that can be considered potential candidates for inclusion in the multi-epitope vaccines. In this study we used association rule mining to examine relationship between different types of epitopes (CTL, Th and antibody epitopes) from nine protein-coding HIV-1 genes to identify strong associations as potent multi-epitope vaccine candidates. Our results revealed 137 association rules that were consistently present in the majority of reference and non-reference HIV-1 genomes and included epitopes of two different types (CTL and Th) from three different genes (Gag, Pol and Nef). These rules involved 14 non-overlapping epitope regions that frequently co-occurred despite high mutation and recombination rates, including in genomes of circulating recombinant forms. These epitope regions were also highly conserved at both the amino acid and nucleotide levels indicating strong purifying selection driven by functional and/or structural constraints and hence, the diminished likelihood of successful escape mutations. Our results provide a comprehensive systematic survey of CTL, Th and Ab epitopes that are both highly conserved and co-occur together among all subtypes of HIV-1, including circulating recombinant forms. Several co-occurring epitope combinations were identified as potent candidates for inclusion in multi-epitope vaccines, including epitopes that are immuno-responsive to different arms of the host immune machinery and can enable stronger and more efficient immune responses, similar to responses achieved with adjuvant therapies. Signature of strong purifying selection acting at

  11. APOBEC3G-mediated G-to-A hypermutation of the HIV-1 genome: the missing link in antiviral molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ayaka Okada

    2016-12-01

    Full Text Available APOBEC3G (A3G is a member of the cellular polynucleotide cytidine deaminases, which catalyze the deamination of cytosine (dC to uracil (dU in single-stranded DNA. These enzymes potently inhibit the replication of a variety of retroviruses and retrotransposons, including HIV-1. A3G is incorporated into vif-deficient HIV-1 virions and targets viral reverse transcripts, particularly minus-stranded DNA products, in newly infected cells. It is well established that the enzymatic activity of A3G is closely correlated with the potential to greatly inhibit HIV-1 replication in the absence of Vif. However, the details of the underlying molecular mechanisms are not fully understood. One potential mechanism of A3G antiviral activity is that the A3G-dependent deamination may trigger degradation of the dU-containing reverse transcripts by cellular uracil DNA glycosylases (UDGs. More recently, another mechanism has been suggested, in which the virion-incorporated A3G generates lethal levels of the G-to-A hypermutation in the viral DNA genome, thus potentially driving the viruses into error catastrophe mode. In this mini review article, we summarize the deaminase-dependent and deaminase-independent molecular mechanisms of A3G and discuss how A3G-mediated deamination is linked to antiviral mechanisms.

  12. miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP.

    Science.gov (United States)

    Ma, Li; Shen, Chan-Juan; Cohen, Éric A; Xiong, Si-Dong; Wang, Jian-Hua

    2014-01-01

    Primary monocytes are refractory to HIV-1 infection and become permissive upon differentiation into monocyte-derived dendritic cells (MDDCs) or macrophages. Multiple mechanisms have been proposed to interpret HIV-1 restriction in monocytes. Human cellular miRNAs can modulate HIV-1 infection by targeting either conserved regions of the HIV-1 genome or host gene transcripts. We have recently reported that the translation of host protein pur-alpha is repressed by abundant cellular miRNAs to inhibit HIV-1 infection in monocytes. Here, we report that the transcript of another cellular factor, VprBP [Vpr (HIV-1)-binding protein], was repressed by cellular miRNA-1236, which contributes to HIV-1 restriction in monocytes. Transfection of miR-1236 inhibitors enhanced translation of VprBP in monocytes and significantly promoted viral infection; exogenous input of synthesized miR-1236 mimics into MDDCs suppressed translation of VprBP, and, accordingly, significantly impaired viral infection. Our data emphasize the role of miRNA in modulating differentiation-dependent susceptibility of the host cell to HIV-1 infection. Understanding the modulation of HIV-1 infection by cellular miRNAs may provide key small RNAs or the identification of new important protein targets regulated by miRNAs for the development of antiviral strategies.

  13. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy

    Directory of Open Access Journals (Sweden)

    Brunna M. Alves

    2017-12-01

    Full Text Available Increased access to highly active antiretroviral therapy (HAART by human immunodeficiency virus postive (HIV+ individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23. Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.

  14. Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: Inherent potential for biosynthetic versus live recombinant microbicides

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2008-08-01

    Full Text Available Abstract Background Herpes Simplex virus types 1 and 2 are enveloped viruses with a linear dsDNA genome of ~120–200 kb. Genital infection with HSV-2 has been denoted as a major risk factor for acquisition and transmission of HIV-1. Developing biomedical strategies for HSV-2 prevention is thus a central strategy in reducing global HIV-1 prevalence. This paper details the protocol for the isolation of restriction endunucleases (REases with potent activity against the HSV-2 genome and models two biomedical interventions for preventing HSV-2. Methods and Results Using the whole genome of HSV-2, 289 REases and the bioinformatics software Webcutter2; we searched for potential recognition sites by way of genome wide palindromics. REase application in HSV-2 biomedical therapy was modeled concomitantly. Of the 289 enzymes analyzed; 77(26.6% had potential to cleave the HSV-2 genome in > 100 but 400 but Conclusion Viral genome slicing by way of these bacterially- derived R-M enzymatic peptides may have therapeutic potential in HSV-2 infection; a cofactor for HIV-1 acquisition and transmission.

  15. HIV-1, human interaction database: current status and new features.

    Science.gov (United States)

    Ako-Adjei, Danso; Fu, William; Wallin, Craig; Katz, Kenneth S; Song, Guangfeng; Darji, Dakshesh; Brister, J Rodney; Ptak, Roger G; Pruitt, Kim D

    2015-01-01

    The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database', available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein-human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12,786 protein-protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14,102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Frequency and site mapping of HIV-1/SIVcpz, HIV- 2/SIVsmm and ...

    African Journals Online (AJOL)

    Administrator

    African Journal of Biotechnology Vol. 6 (10), pp. 1225-1232, 16 May 2007 ... out to analyze the effects of various restriction enzymes on the HIV genome. A computer simulated ... A background in vitro cytogenetic control analysis using HIV-1/SIVcpz GAG, POL and ENV genes was done. Of the 339 enzymes used, 238 ...

  17. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  18. HIV-1 as RNA evolution machine

    NARCIS (Netherlands)

    Berkhout, Ben

    2011-01-01

    We have over the years studied several sequence or structural elements within the HIV-1 RNA genome. Molecular mechanisms have been proposed for the role of these RNA motifs in virus replication. We have developed HIV-1 evolution as a powerful research method to study different aspects of the viral

  19. Selective microbial genomic DNA isolation using restriction endonucleases.

    Science.gov (United States)

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  20. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available Despite the effectiveness of combination antiretroviral treatment (cART against HIV-1, evidence indicates that residual infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have low-level viremia. More than 60% of treated individuals also develop minor HIV-1 -associated neurocognitive deficits (HAND due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and VSV-pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription. Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that luteolin confers anti-HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain barrier, luteolin may serve as a base flavonoid to develop potent anti-HIV-1 derivatives to complement cART.

  1. APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model

    Science.gov (United States)

    Misawa, Naoko; Izumi, Taisuke; Kobayashi, Tomoko; Kimura, Yuichi; Iwami, Shingo; Takaori-Kondo, Akifumi; Hu, Wei-Shau; Aihara, Kazuyuki; Ito, Mamoru; An, Dong Sung; Pathak, Vinay K.; Koyanagi, Yoshio

    2014-01-01

    Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo. PMID:25330146

  2. Revised selection criteria for candidate restriction enzymes in genome walking.

    Science.gov (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y

    2012-01-01

    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  3. Does antiretroviral treatment change HIV-1 codon usage patterns in its genes: a preliminary bioinformatics study.

    Science.gov (United States)

    Palanisamy, Navaneethan; Osman, Nathan; Ohnona, Frédéric; Xu, Hong-Tao; Brenner, Bluma; Mesplède, Thibault; Wainberg, Mark A

    2017-01-07

    Codon usage bias has been described for various organisms and is thought to contribute to the regulation of numerous biological processes including viral infections. HIV-1 codon usage has been previously shown to be different from that of other viruses and man. It is evident that the antiretroviral drugs used to restrict HIV-1 replication also select for resistance variants. We wanted to test whether codon frequencies in HIV-1 sequences from treatment-experienced patients differ from those of treatment-naive individuals due to drug pressure affecting codon usage bias. We developed a JavaScript to determine the codon frequencies of aligned nucleotide sequences. Irrespective of subtypes, using HIV-1 pol sequences from 532 treatment-naive and 52 treatment-experienced individuals, we found that pol sequences from treatment-experienced patients had significantly increased AGA (arginine; p = 0.0002***) and GGU (glycine; p = 0.0001***), and decreased AGG (arginine; p = 0.0001***) codon frequencies. The same pattern was not observed when subtypes B and C sequences were analyzed separately. Additionally, irrespective of subtypes, using HIV-1 gag sequences from 524 treatment-naive and 54 treatment-experienced individuals, gag sequences from treatment-experienced patients had significantly increased CUA (leucine; p HIV-1 genome, we show that antiretroviral therapy changed certain HIV-1 codon frequencies in a subtype specific way.

  4. HIV-1 Vpu Blocks Recycling and Biosynthetic Transport of the Intrinsic Immunity Factor CD317/Tetherin To Overcome the Virion Release Restriction

    Science.gov (United States)

    Schmidt, Sarah; Fritz, Joëlle V.; Bitzegeio, Julia; Fackler, Oliver T.; Keppler, Oliver T.

    2011-01-01

    ABSTRACT The intrinsic immunity factor CD317 (BST-2/HM1.24/tetherin) imposes a barrier to HIV-1 release at the cell surface that can be overcome by the viral protein Vpu. Expression of Vpu results in a reduction of CD317 surface levels; however, the mechanism of this Vpu activity and its contribution to the virological antagonism are incompletely understood. Here, we characterized the influence of Vpu on major CD317 trafficking pathways using quantitative antibody-based endocytosis and recycling assays as well as a microinjection/microscopy-based kinetic de novo expression approach. We report that HIV-1 Vpu inhibited both the anterograde transport of newly synthesized CD317 and the recycling of CD317 to the cell surface, while the kinetics of CD317 endocytosis remained unaffected. Vpu trapped trafficking CD317 molecules at the trans-Golgi network, where the two molecules colocalized. The subversion of both CD317 transport pathways was dependent on the highly conserved diserine S52/S56 motif of Vpu; however, it did not require recruitment of the diserine motif interactor and substrate adaptor of the SCF-E3 ubiquitin ligase complex, β-TrCP. Treatment of cells with the malaria drug primaquine resulted in a CD317 trafficking defect that mirrored that induced by Vpu. Importantly, primaquine could functionally replace Vpu as a CD317 antagonist and rescue HIV-1 particle release. PMID:21610122

  5. SNP-RFLPing: restriction enzyme mining for SNPs in genomes

    Directory of Open Access Journals (Sweden)

    Cheng Yu-Huei

    2006-02-01

    Full Text Available Abstract Background The restriction fragment length polymorphism (RFLP is a common laboratory method for the genotyping of single nucleotide polymorphisms (SNPs. Here, we describe a web-based software, named SNP-RFLPing, which provides the restriction enzyme for RFLP assays on a batch of SNPs and genes from the human, rat, and mouse genomes. Results Three user-friendly inputs are included: 1 NCBI dbSNP "rs" or "ss" IDs; 2 NCBI Entrez gene ID and HUGO gene name; 3 any formats of SNP-in-sequence, are allowed to perform the SNP-RFLPing assay. These inputs are auto-programmed to SNP-containing sequences and their complementary sequences for the selection of restriction enzymes. All SNPs with available RFLP restriction enzymes of each input genes are provided even if many SNPs exist. The SNP-RFLPing analysis provides the SNP contig position, heterozygosity, function, protein residue, and amino acid position for cSNPs, as well as commercial and non-commercial restriction enzymes. Conclusion This web-based software solves the input format problems in similar softwares and greatly simplifies the procedure for providing the RFLP enzyme. Mixed free forms of input data are friendly to users who perform the SNP-RFLPing assay. SNP-RFLPing offers a time-saving application for association studies in personalized medicine and is freely available at http://bio.kuas.edu.tw/snp-rflp/.

  6. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    NARCIS (Netherlands)

    Bol, S.M.; Moerland, P.D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; Manen, D.; Herbeck, J.T.; Fellay, J.; Sieberer, M.; Sietzema, J.G.; van 't Slot, R.; Martinson, J.; Zagury, J.F.; Schuitemaker, H.; van 't Wout, A.B.

    2011-01-01

    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue

  7. Psychoneuroimmunology and HIV-1.

    Science.gov (United States)

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  8. HIV-1 envelope glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  9. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  10. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells

    Directory of Open Access Journals (Sweden)

    Masaru eYokoyama

    2016-02-01

    Full Text Available Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1 envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.

  11. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach.

    Science.gov (United States)

    Cleret-Buhot, Aurélie; Zhang, Yuwei; Planas, Delphine; Goulet, Jean-Philippe; Monteiro, Patricia; Gosselin, Annie; Wacleche, Vanessa Sue; Tremblay, Cécile L; Jenabian, Mohammad-Ali; Routy, Jean-Pierre; El-Far, Mohamed; Chomont, Nicolas; Haddad, Elias K; Sekaly, Rafick-Pierre; Ancuta, Petronela

    2015-12-10

    The HIV-1 infection is characterized by profound CD4(+) T cell destruction and a marked Th17 dysfunction at the mucosal level. Viral suppressive antiretroviral therapy restores Th1 but not Th17 cells. Although several key HIV dependency factors (HDF) were identified in the past years via genome-wide siRNA screens in cell lines, molecular determinants of HIV permissiveness in primary Th17 cells remain to be elucidated. In an effort to orient Th17-targeted reconstitution strategies, we investigated molecular mechanisms of HIV permissiveness in Th17 cells. Genome-wide transcriptional profiling in memory CD4(+) T-cell subsets enriched in cells exhibiting Th17 (CCR4(+)CCR6(+)), Th1 (CXCR3(+)CCR6(-)), Th2 (CCR4(+)CCR6(-)), and Th1Th17 (CXCR3(+)CCR6(+)) features revealed remarkable transcriptional differences between Th17 and Th1 subsets. The HIV-DNA integration was superior in Th17 versus Th1 upon exposure to both wild-type and VSV-G-pseudotyped HIV; this indicates that post-entry mechanisms contribute to viral replication in Th17. Transcripts significantly enriched in Th17 versus Th1 were previously associated with the regulation of TCR signaling (ZAP-70, Lck, and CD96) and Th17 polarization (RORγt, ARNTL, PTPN13, and RUNX1). A meta-analysis using the NCBI HIV Interaction Database revealed a set of Th17-specific HIV dependency factors (HDFs): PARG, PAK2, KLF2, ITGB7, PTEN, ATG16L1, Alix/AIP1/PDCD6IP, LGALS3, JAK1, TRIM8, MALT1, FOXO3, ARNTL/BMAL1, ABCB1/MDR1, TNFSF13B/BAFF, and CDKN1B. Functional studies demonstrated an increased ability of Th17 versus Th1 cells to respond to TCR triggering in terms of NF-κB nuclear translocation/DNA-binding activity and proliferation. Finally, RNA interference studies identified MAP3K4 and PTPN13 as two novel Th17-specific HDFs. The transcriptional program of Th17 cells includes molecules regulating HIV replication at multiple post-entry steps that may represent potential targets for novel therapies aimed at protecting Th17 cells

  12. Exosomes: Implications in HIV-1 Pathogenesis

    Science.gov (United States)

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  13. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome

    NARCIS (Netherlands)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T.; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to

  14. Detection of Hepatitis B Virus (HBV) Genomes and HBV Drug Resistant Variants by Deep Sequencing Analysis of HBV Genomes in Immune Cell Subsets of HBV Mono-Infected and/or Human Immunodeficiency Virus Type-1 (HIV-1) and HBV Co-Infected Individuals

    Science.gov (United States)

    Lee, Z.; Nishikawa, S.; Gao, S.; Eksteen, J. B.; Czub, M.; Gill, M. J.; Osiowy, C.; van der Meer, F.; van Marle, G.; Coffin, C. S.

    2015-01-01

    The hepatitis B virus (HBV) and the human immunodeficiency virus type 1 (HIV-1) can infect cells of the lymphatic system. It is unknown whether HIV-1 co-infection impacts infection of peripheral blood mononuclear cell (PBMC) subsets by the HBV. Aims To compare the detection of HBV genomes and HBV sequences in unsorted PBMCs and subsets (i.e., CD4+ T, CD8+ T, CD14+ monocytes, CD19+ B, CD56+ NK cells) in HBV mono-infected vs. HBV/HIV-1 co-infected individuals. Methods Total PBMC and subsets isolated from 14 HBV mono-infected (4/14 before and after anti-HBV therapy) and 6 HBV/HIV-1 co-infected individuals (5/6 consistently on dual active anti-HBV/HIV therapy) were tested for HBV genomes, including replication indicative HBV covalently closed circular (ccc)-DNA, by nested PCR/nucleic hybridization and/or quantitative PCR. In CD4+, and/or CD56+ subsets from two HBV monoinfected cases, the HBV polymerase/overlapping surface region was analyzed by next generation sequencing. Results All analyzed whole PBMC from HBV monoinfected and HBV/HIV coinfected individuals were HBV genome positive. Similarly, HBV DNA was detected in all target PBMC subsets regardless of antiviral therapy, but was absent from the CD4+ T cell subset from all HBV/HIV-1 positive cases (PHBV monoinfected cases on tenofovir therapy, mutations at residues associated with drug resistance and/or immune escape (i.e., G145R) were detected in a minor percentage of the population. Summary HBV genomes and drug resistant variants were detectable in PBMC subsets from HBV mono-infected individuals. The HBV replicates in PBMC subsets of HBV/HIV-1 patients except the CD4+ T cell subpopulation. PMID:26390290

  15. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  16. Probing the sequence space available for HIV-1 evolution

    NARCIS (Netherlands)

    ter Brake, Olivier; Von Eije, Karin J.; Berkhout, Ben

    2008-01-01

    We designed a novel experimental approach to probe the sequence space available for HIV-1 evolution. Selective pressure was put on conserved HIV-1 genomic sequences by means of RNA interference (RNAi). Virus escape was monitored in many parallel cultures, and we scored the mutations selected in the

  17. HLA-G DNA sequence variants and risk of perinatal HIV-1 transmission

    Directory of Open Access Journals (Sweden)

    Shamsa Falah

    2006-10-01

    Full Text Available Abstract Background HLA-G gene is a non-classical MHC class 1 molecule that is highly expressed in the trophoblast at the maternal-fetal interface. In an attempt to elucidate possible immunological mechanisms facilitating protection of infants born to human immunodeficiency virus type (HIV-1 infected mothers, we have been studying genetic variations in the coding and untranslated regions of HLA-G antigen between HIV-1-infected mothers and their infected or uninfected infants. This study investigated whether HLA-G DNA sequence variants are associated with perinatal HIV-1 transmission. Results Genomic DNA samples were obtained from a nested case-control study of 34 mother-child pairs co-enrolled in a cohort of the Perinatal AIDS Collaborative Transmission Study in New York. The samples were from two groups predominantly of African-American and Hispanic origin: In the first group, both mother and child were HIV-1-infected; in the second group, only the mother was infected while the child remained uninfected. Genotyping of HLA-G gene were performed on the extracted DNA from peripheral blood mononuclear cells using PCR based sequencing and restriction fragment-length polymorphism analyses. Among the studied HLA-G exons, dissimilarities in HLA-G DNA sequence variants between the HIV-1 non-transmitting mother child pairs were mostly observed in exon 8-3'-untranslated region at nucleotide positions T3742A, C3743T, G3777C (P = 0.001. Non-transmitting HIV-1 mother child pairs exhibited dissimilarities at nucleotide position C3743T allele with decreased risk of perinatal HIV-1 transmission, compared with HIV-1 transmitting mother-child pairs carrying this allele (odds ratio 0.02 [95% confidence interval 0.00–0.15] P = 0.00001. In addition, heterozygous dissimilarities at nucleotide positions C634G and 714 insT/G in the 5'-upstream regulatory region were observed between the mother child pairs of the HIV-1-non-transmitting group while homozygous

  18. Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes.

    Science.gov (United States)

    Herbeck, Joshua T; Rolland, Morgane; Liu, Yi; McLaughlin, Sherry; McNevin, John; Zhao, Hong; Wong, Kim; Stoddard, Julia N; Raugi, Dana; Sorensen, Stephanie; Genowati, Indira; Birditt, Brian; McKay, Angela; Diem, Kurt; Maust, Brandon S; Deng, Wenjie; Collier, Ann C; Stekler, Joanne D; McElrath, M Juliana; Mullins, James I

    2011-08-01

    HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for

  19. IFN-α induces APOBEC3G, F, and A in immature dendritic cells and limits HIV-1 spread to CD4+ T cells.

    Science.gov (United States)

    Mohanram, Venkatramanan; Sköld, Annette E; Bächle, Susanna M; Pathak, Sushil Kumar; Spetz, Anna-Lena

    2013-04-01

    Cytokines and IFNs, such as TNF-α and IFN-α, upregulate costimulatory molecules in monocyte-derived dendritic cells (MDDCs), enabling effective Ag presentation to T cells. This activation of MDDCs is often accompanied by upregulation of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) (A3) family proteins that are able to restrict HIV-1 replication in MDDCs by inducing hypermutations in the viral genome. In this study, we show that TNF-α upregulates costimulatory molecules and are able to restrict HIV-1BaL replication in MDDCs without significant induction of A3G, A3A, or A3F. Conversely, low quantities of IFN-α failed to upregulate costimulatory molecules, did not induce IL-12p40 or migration, but significantly induced A3G, A3A, and A3F mRNA expression and restricted viral replication in MDDCs. We also showed that transmission of HIV-1 from MDDCs to autologous T cells was significantly reduced in the presence of IFN-α. Sequence analyses detected the induction of high frequency of G-to-A hypermutations in the env genes from HIV-1BaL-infected MDDCs treated with low quantities of IFN-α2b. These findings show that low quantities of IFN-α can induce functional A3 family proteins and restrict HIV-1 replication in MDDCs while keeping an immature nonmigratory phenotype, supporting further investigations of modalities that enhance retroviral restriction factors. In addition, the findings highlight the role of IFN-α as a double-edged sword in HIV-1 infection, and we show that IFN-α can be powerful in reducing HIV-1 infection both in MDDCs and T cells.

  20. Assessment of HIV-1 entry inhibitors by MLV/HIV-1 pseudotyped vectors

    Directory of Open Access Journals (Sweden)

    Thaler Sonja

    2005-09-01

    Full Text Available Abstract Background Murine leukemia virus (MLV vector particles can be pseudotyped with a truncated variant of the human immunodeficiency virus type 1 (HIV-1 envelope protein (Env and selectively target gene transfer to human cells expressing both CD4 and an appropriate co-receptor. Vector transduction mimics the HIV-1 entry process and is therefore a safe tool to study HIV-1 entry. Results Using FLY cells, which express the MLV gag and pol genes, we generated stable producer cell lines that express the HIV-1 envelope gene and a retroviral vector genome encoding the green fluorescent protein (GFP. The BH10 or 89.6 P HIV-1 Env was expressed from a bicistronic vector which allowed the rapid selection of stable cell lines. A codon-usage-optimized synthetic env gene permitted high, Rev-independent Env expression. Vectors generated by these producer cells displayed different sensitivity to entry inhibitors. Conclusion These data illustrate that MLV/HIV-1 vectors are a valuable screening system for entry inhibitors or neutralizing antisera generated by vaccines.

  1. Chronic HIV-1 infection frequently fails to protect against superinfection.

    Directory of Open Access Journals (Sweden)

    Anne Piantadosi

    2007-11-01

    Full Text Available Reports of HIV-1 superinfection (re-infection have demonstrated that the immune response generated against one strain of HIV-1 does not always protect against other strains. However, studies to determine the incidence of HIV-1 superinfection have yielded conflicting results. Furthermore, few studies have attempted to identify superinfection cases occurring more than a year after initial infection, a time when HIV-1-specific immune responses would be most likely to have developed. We screened a cohort of high-risk Kenyan women for HIV-1 superinfection by comparing partial gag and envelope sequences over a 5-y period beginning at primary infection. Among 36 individuals, we detected seven cases of superinfection, including cases in which both viruses belonged to the same HIV-1 subtype, subtype A. In five of these cases, the superinfecting strain was detected in only one of the two genome regions examined, suggesting that recombination frequently occurs following HIV-1 superinfection. In addition, we found that superinfection occurred throughout the course of the first infection: during acute infection in two cases, between 1-2 y after infection in three cases, and as late as 5 y after infection in two cases. Our results indicate that superinfection commonly occurs after the immune response against the initial infection has had time to develop and mature. Implications from HIV-1 superinfection cases, in which natural re-exposure leads to re-infection, will need to be considered in developing strategies for eliciting protective immunity to HIV-1.

  2. RESTseq - Efficient Benchtop Population Genomics with RESTriction Fragment SEQuencing

    OpenAIRE

    Eckart Stolle; Moritz, Robin F.A.

    2013-01-01

    We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population genomics and population genetics also in non-model organisms. We demonstrate the validity of our approach ...

  3. The cell biology of HIV-1 and other retroviruses

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2006-11-01

    Full Text Available Abstract In recognition of the growing influence of cell biology in retrovirus research, we recently organized a Summer conference sponsored by the American Society for Cell Biology (ASCB on the Cell Biology of HIV-1 and other Retroviruses (July 20–23, 2006, Emory University, Atlanta, Georgia. The meeting brought together a number of leading investigators interested in the interplay between cell biology and retrovirology with an emphasis on presentation of new and unpublished data. The conference was arranged from early to late events in the virus replication cycle, with sessions on viral fusion, entry, and transmission; post-entry restrictions to retroviral infection; nuclear import and integration; gene expression/regulation of retroviral Gag and genomic RNA; and assembly/release. In this review, we will attempt to touch briefly on some of the highlights of the conference, and will emphasize themes and trends that emerged at the meeting. Meeting report The conference began with a keynote address from W. Sundquist on the biochemistry of HIV-1 budding. This presentation will be described in the section on Assembly and Release of Retroviruses.

  4. RESTseq--efficient benchtop population genomics with RESTriction Fragment SEQuencing.

    Directory of Open Access Journals (Sweden)

    Eckart Stolle

    Full Text Available We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population genomics and population genetics also in non-model organisms. We demonstrate the validity of our approach by comparing two honeybee and several stingless bee samples.

  5. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction.

    Directory of Open Access Journals (Sweden)

    Martin Lehmann

    2011-12-01

    Full Text Available Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24 inhibits the release of human immunodeficiency virus 1 (HIV-1 through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions.

  6. Sexual transmission of HIV-1.

    Science.gov (United States)

    Fox, Julie; Fidler, Sarah

    2010-01-01

    HIV-1 transmission occurs in a limited number of ways all of which are preventable. Overall, the risk of HIV-1 transmission following a single sexual exposure is low especially in comparison with other sexually transmitted infections (STIs); with estimates of the average probability of male to female HIV-1 transmission only 0.0005-0.0026 per coital act. The risk of acquiring HIV-1 from a single contact varies enormously and is dependant upon the infectiousness of the HIV-1 positive individual and the susceptibility to HIV-1 of their sexual partner. An understanding of the determinants of HIV-1 transmission is important not only to assess the infection risk to an individual when exposed to the virus (e.g. to determine the provision of post exposure prophylaxis), but also to make accurate predictions on the potential spread of HIV-1 infection in a population and to direct appropriate targeted prevention strategies. In this review article we summarise the current literature on the major worldwide source of HIV-1 acquisition, sexual transmission. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    Science.gov (United States)

    2015-08-01

    mapping is a technology in which a genome is linearized on a surface and digested with specific restriction enzymes , giving an arrangement of the genome... enzyme . Finally, we demonstrated that optical restriction maps were successfully obtained and the correct organism identified within a clinical matrix...is a technology in which a genome is linearized on a surface and digested with specific restriction enzymes , giving an arrangement of the genome

  8. Dendritic Cell Immune Responses in HIV-1 Controllers.

    Science.gov (United States)

    Martin-Gayo, Enrique; Yu, Xu G

    2017-02-01

    Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.

  9. Sensitive non-radioactive detection of HIV-1

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Nielsen, C; Hansen, J E

    1992-01-01

    to standard PCR for the detection of HIV-1 DNA. The assay described features the use of a simple and inexpensive sample preparation technique and a non-radioactive hybridization procedure for confirmation of results. To test the suitability of the assay for clinical purposes, we tested cell samples from 76......This report describes the use of the polymerase chain reaction (PCR) for the non-radioactive detection of HIV-1 proviral genomic sequences in HIV-1 infected cells. We have developed a sensitive assay, using three different sets of nested primers and our results show that this method is superior...

  10. Intracellular immunity to HIV-1: newly defined retroviral battles inside infected cells

    Directory of Open Access Journals (Sweden)

    Peterlin B Matija

    2005-04-01

    Full Text Available Abstract Studies of the human immunodeficiency virus type 1 (HIV-1 continue to enrich eukaryotic biology and immunology. Recent advances have defined factors that function after viral entry and prevent the replication of proviruses in the infected cell. Some of these attack directly viral structures whereas others edit viral genetic material during reverse transcription. Together, they provide strong and immediate intracellular immunity against incoming pathogens. These processes also offer a tantalizing glimpse at basic cellular mechanisms that might restrict the movement of mobile genetic elements and protect the genome.

  11. HIV-1 replication in macrophages

    NARCIS (Netherlands)

    Kootstra, N.A.

    1999-01-01

    Lentiviruses such as the human immunodeficiency virus type 1 (HIV-1) are considered to be unique amongst the retroviruses due to their ability to replicate in macrophages, which are often referred to as non-dividing cells. The studies described in this thesis focus on the ability of HIV-1 to

  12. RestrictionDigest: A powerful Perl module for simulating genomic restriction digests

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-05-01

    Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings. With the help of the information produced by the module, researchers can easily determine the most appropriate enzymes to construct the reduced-representation libraries to meet their experimental requirements.

  13. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels

    Directory of Open Access Journals (Sweden)

    da Silva Poly H

    2012-12-01

    Full Text Available Abstract Background The double-cut-and-join (DCJ is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome. We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open.

  14. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels.

    Science.gov (United States)

    da Silva, Poly H; Machado, Raphael; Dantas, Simone; Braga, Marília D V

    2012-01-01

    The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open.

  15. DBR1 siRNA inhibition of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Naidu Yathi

    2005-10-01

    Full Text Available Abstract Background HIV-1 and all retroviruses are related to retroelements of simpler organisms such as the yeast Ty elements. Recent work has suggested that the yeast retroelement Ty1 replicates via an unexpected RNA lariat intermediate in cDNA synthesis. The putative genomic RNA lariat intermediate is formed by a 2'-5' phosphodiester bond, like that found in pre-mRNA intron lariats and it facilitates the minus-strand template switch during cDNA synthesis. We hypothesized that HIV-1 might also form a genomic RNA lariat and therefore that siRNA-mediated inhibition of expression of the human RNA lariat de-branching enzyme (DBR1 expression would specifically inhibit HIV-1 replication. Results We designed three short interfering RNA (siRNA molecules targeting DBR1, which were capable of reducing DBR1 mRNA expression by 80% and did not significantly affect cell viability. We assessed HIV-1 replication in the presence of DBR1 siRNA and found that DBR1 knockdown led to decreases in viral cDNA and protein production. These effects could be reversed by cotransfection of a DBR1 cDNA indicating that the inhibition of HIV-1 replication was a specific effect of DBR1 underexpression. Conclusion These data suggest that DBR1 function may be needed to debranch a putative HIV-1 genomic RNA lariat prior to completion of reverse transcription.

  16. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection.To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication.HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic

  17. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    Science.gov (United States)

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  18. Insertion of vaccinia virus C7L host range gene into NYVAC-B genome potentiates immune responses against HIV-1 antigens

    National Research Council Canada - National Science Library

    Nájera, José Luis; Gómez, Carmen Elena; García-Arriaza, Juan; Sorzano, Carlos Oscar; Esteban, Mariano

    2010-01-01

    ... while maintaining an attenuated phenotype in mice. In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses...

  19. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes

    National Research Council Canada - National Science Library

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-01-01

    .... Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set...

  20. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes

    OpenAIRE

    Yong-Bi Fu; Gregory W. Peterson; Yibo Dong

    2016-01-01

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and ...

  1. Different Expression of Interferon-Stimulated Genes in Response to HIV-1 Infection in Dendritic Cells Based on Their Maturation State.

    Science.gov (United States)

    Calonge, Esther; Bermejo, Mercedes; Diez-Fuertes, Francisco; Mangeot, Isabelle; González, Nuria; Coiras, Mayte; Jiménez Tormo, Laura; García-Perez, Javier; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Alcamí, José

    2017-04-15

    Dendritic cells (DCs) are professional antigen-presenting cells whose functions are dependent on their degree of differentiation. In their immature state, DCs capture pathogens and migrate to the lymph nodes. During this process, DCs become resident mature cells specialized in antigen presentation. DCs are characterized by a highly limiting environment for human immunodeficiency virus type 1 (HIV-1) replication due to the expression of restriction factors such as SAMHD1 and APOBEC3G. However, uninfected DCs capture and transfer viral particles to CD4 lymphocytes through a trans -enhancement mechanism in which chemokines are involved. We analyzed changes in gene expression with whole-genome microarrays when immature DCs (IDCs) or mature DCs (MDCs) were productively infected using Vpx-loaded HIV-1 particles. Whereas productive HIV infection of IDCs induced expression of interferon-stimulated genes (ISGs), such induction was not produced in MDCs, in which a sharp decrease in ISG- and CXCR3-binding chemokines was observed, lessening trans -infection of CD4 lymphocytes. Similar patterns of gene expression were found when DCs were infected with HIV-2 that naturally expresses Vpx. Differences were also observed under conditions of restrictive HIV-1 infection, in the absence of Vpx. ISG expression was not modified in IDCs, whereas an increase of ISG- and CXCR3-binding chemokines was observed in MDCs. Overall these results suggest that sensing and restriction of HIV-1 infection are different in IDCs and MDCs. We propose that restrictive infection results in increased virulence through different mechanisms. In IDCs avoidance of sensing and induction of ISGs, whereas in MDCs increased production of CXCR3-binding chemokines, would result in lymphocyte attraction and enhanced infection at the immune synapse. IMPORTANCE In this work we describe for the first time the activation of a different genetic program during HIV-1 infection depending on the state of maturation of DCs

  2. Rigidity analysis of HIV-1 protease

    Science.gov (United States)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  3. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls.

    Directory of Open Access Journals (Sweden)

    Paul J McLaren

    Full Text Available Multiple genome-wide association studies (GWAS have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1. After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6 × 10⁻¹¹. However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity. Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.

  4. Cyclin F/FBXO1 Interacts with HIV-1 Viral Infectivity Factor (Vif) and Restricts Progeny Virion Infectivity by Ubiquitination and Proteasomal Degradation of Vif Protein through SCF(cyclin F) E3 Ligase Machinery.

    Science.gov (United States)

    Augustine, Tracy; Chaudhary, Priyanka; Gupta, Kailash; Islam, Sehbanul; Ghosh, Payel; Santra, Manas Kumar; Mitra, Debashis

    2017-03-31

    Cyclin F protein, also known as FBXO1, is the largest among all cyclins and oscillates in the cell cycle like other cyclins. Apart from being a G2/M cyclin, cyclin F functions as the substrate-binding subunit of SCF(cyclin F) E3 ubiquitin ligase. In a gene expression analysis performed to identify novel gene modulations associated with cell cycle dysregulation during HIV-1 infection in CD4(+) T cells, we observed down-regulation of the cyclin F gene (CCNF). Later, using gene overexpression and knockdown studies, we identified cyclin F as negatively influencing HIV-1 viral infectivity without any significant impact on virus production. Subsequently, we found that cyclin F negatively regulates the expression of viral protein Vif (viral infectivity factor) at the protein level. We also identified a novel host-pathogen interaction between cyclin F and Vif protein in T cells during HIV-1 infection. Mutational analysis of a cyclin F-specific amino acid motif in the C-terminal region of Vif indicated rescue of the protein from cyclin F-mediated down-regulation. Subsequently, we showed that Vif is a novel substrate of the SCF(cyclin F) E3 ligase, where cyclin F mediates the ubiquitination and proteasomal degradation of Vif through physical interaction. Finally, we showed that cyclin F augments APOBEC3G expression through degradation of Vif to regulate infectivity of progeny virions. Taken together, our results demonstrate that cyclin F is a novel F-box protein that functions as an intrinsic cellular regulator of HIV-1 Vif and has a negative regulatory effect on the maintenance of viral infectivity by restoring APOBEC3G expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    Science.gov (United States)

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  6. Likely role of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance.

    Directory of Open Access Journals (Sweden)

    Patric Jern

    2009-04-01

    Full Text Available The role of APOBEC3 (A3 protein family members in inhibiting retrovirus infection and mobile element retrotransposition is well established. However, the evolutionary effects these restriction factors may have had on active retroviruses such as HIV-1 are less well understood. An HIV-1 variant that has been highly G-to-A mutated is unlikely to be transmitted due to accumulation of deleterious mutations. However, G-to-A mutated hA3G target sequences within which the mutations are the least deleterious are more likely to survive selection pressure. Thus, among hA3G targets in HIV-1, the ratio of nonsynonymous to synonymous changes will increase with virus generations, leaving a footprint of past activity. To study such footprints in HIV-1 evolution, we developed an in silico model based on calculated hA3G target probabilities derived from G-to-A mutation sequence contexts in the literature. We simulated G-to-A changes iteratively in independent sequential HIV-1 infections until a stop codon was introduced into any gene. In addition to our simulation results, we observed higher ratios of nonsynonymous to synonymous mutation at hA3G targets in extant HIV-1 genomes than in their putative ancestral genomes, compared to random controls, implying that moderate levels of A3G-mediated G-to-A mutation have been a factor in HIV-1 evolution. Results from in vitro passaging experiments of HIV-1 modified to be highly susceptible to hA3G mutagenesis verified our simulation accuracy. We also used our simulation to examine the possible role of A3G-induced mutations in the origin of drug resistance. We found that hA3G activity could have been responsible for only a small increase in mutations at known drug resistance sites and propose that concerns for increased resistance to other antiviral drugs should not prevent Vif from being considered a suitable target for development of new drugs.

  7. Site-selective scission of human genome using PNA-based artificial restriction DNA cutter.

    Science.gov (United States)

    Ito, Kenichiro; Komiyama, Makoto

    2014-01-01

    Site-selective scission of genomes is quite important for future biotechnology. However, naturally occurring restriction enzymes cut these huge DNAs at too many sites and cannot be used for this purpose. Recently, we have developed a completely chemistry-based artificial restriction DNA cutter (ARCUT) by combining a pair of pseudo-complementary PNA (pcPNA) strands (sequence recognition moiety) and Ce(IV)/EDTA complex (molecular scissors). The scission site of ARCUT and its scission specificity can be freely modulated in terms of the sequences and lengths of the pcPNA strands so that even huge genomes can be selectively cut at only one predetermined site. In this chapter, the method of site-selective scission of human genomic DNA using ARCUT is described in detail.

  8. In vivo functions of CPSF6 for HIV-1 as revealed by HIV-1 capsid evolution in HLA-B27-positive subjects.

    Directory of Open Access Journals (Sweden)

    Matthew S Henning

    2014-01-01

    Full Text Available The host protein CPSF6 possesses a domain that can interact with the HIV-1 capsid (CA protein. CPSF6 has been implicated in regulating HIV-1 nuclear entry. However, its functional significance for HIV-1 replication has yet to be firmly established. Here we provide evidence for two divergent functions of CPSF6 for HIV-1 replication in vivo. We demonstrate that endogenous CPSF6 exerts an inhibitory effect on naturally occurring HIV-1 variants in individuals carrying the HLA-B27 allele. Conversely, we find a strong selective pressure in these individuals to preserve CPSF6 binding, while escaping from the restrictive activity by CPSF6. This active maintenance of CPSF6 binding during HIV-1 CA evolution in vivo contrasts with the in vitro viral evolution, which can reduce CPSF6 binding to evade from CPSF6-mediated restriction. Thus, these observations argue for a beneficial role of CPSF6 for HIV-1 in vivo. CPSF6-mediated restriction renders HIV-1 less dependent or independent from TNPO3, RanBP2 and Nup153, host factors implicated in HIV-1 nuclear entry. However, viral evolution that maintains CPSF6 binding in HLA-B27+ subjects invariably restores the ability to utilize these host factors, which may be the major selective pressure for CPSF6 binding in vivo. Our study uncovers two opposing CA-dependent functions of CPSF6 in HIV-1 replication in vivo; however, the benefit for binding CPSF6 appears to outweigh the cost, providing support for a vital function of CPSF6 during HIV-1 replication in vivo.

  9. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa

    Science.gov (United States)

    Jimenez Cruz, Camilo A.; Garcia-Beltran, Wilfredo F.; Carlson, Jonathan M.; van Teijlingen, Nienke H.; Mann, Jaclyn K.; Jaggernath, Manjeetha; Kang, Seung-gu; Körner, Christian; Chung, Amy W.; Schafer, Jamie L.; Evans, David T.; Alter, Galit; Walker, Bruce D.; Goulder, Philip J.; Carrington, Mary; Hartmann, Pia; Pertel, Thomas; Zhou, Ruhong; Ndung’u, Thumbi; Altfeld, Marcus

    2015-01-01

    Background Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. Methods and Findings Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. Conclusions These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades

  10. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

    OpenAIRE

    Keele, Brandon F.; Giorgi, Elena E.; Salazar-Gonzalez, Jesus F.; Decker, Julie M.; Pham, Kimmy T.; Salazar, Maria G.; Sun, Chuanxi; Grayson, Truman; Wang, Shuyi; Li, Hui; Wei, Xiping; Jiang, Chunlai; Kirchherr, Jennifer L; Gao, Feng; Anderson, Jeffery A.

    2008-01-01

    The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral e...

  11. Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly.

    Science.gov (United States)

    Rankovic, Sanela; Varadarajan, Janani; Ramalho, Ruben; Aiken, Christopher; Rousso, Itay

    2017-06-15

    The HIV-1 core consists of the viral genomic RNA and several viral proteins encased within a conical capsid. After cell entry, the core disassembles in a process termed uncoating. Although HIV-1 uncoating has been linked to reverse transcription of the viral genome in target cells, the mechanism by which uncoating is initiated is unknown. Using time-lapse atomic force microscopy, we analyzed the morphology and physical properties of isolated HIV-1 cores during the course of reverse transcription in vitro We found that, during an early stage of reverse transcription the pressure inside the capsid increases, reaching a maximum after 7 h. High-resolution mechanical mapping reveals the formation of a stiff coiled filamentous structure underneath the capsid surface. Subsequently, this coiled structure disappears, the stiffness of the capsid drops precipitously to a value below that of a pre-reverse transcription core, and the capsid undergoes partial or complete rupture near the narrow end of the conical structure. We propose that the transcription of the relatively flexible single-stranded RNA into a more rigid filamentous structure elevates the pressure within the core, which triggers the initiation of capsid disassembly.IMPORTANCE For successful infection, the HIV-1 genome, which is in the form of a single-stranded RNA enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism that triggers uncoating is a pivotal question of long standing. By using atomic force microscopy, we found that during reverse transcription the pressure inside the capsid increases until the internal stress exceeds the strength of the capsid structure and the capsid breaks open. The application of AFM technologies to study purified HIV-1 cores represents a new experimental platform for elucidating additional aspects of capsid

  12. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Paul T Edlefsen

    2015-02-01

    Full Text Available The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients. A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro. The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021. In particular, site 317 in the third variable loop (V3 overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1 more than did non-signature sites (mean = 0.9 (p < 0.0001, suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine

  13. Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome.

    Science.gov (United States)

    Havey, M J

    1991-06-01

    The genus Allium contains many economically important species, including the bulb onion, chive, garlic, Japanese bunching onion, and leek. Phylogenetic relationships among the cultivated alliums are not well understood, and taxonomic classifications are based on relatively few morphological characters. Chloroplast DNA is highly conserved and useful in determining phylogenetic relationships. The size of the chloroplast genome of Allium cepa was estimated at 140 kb and restriction enzyme sites were mapped for KpnI, PstI, PvuII, SalI, XbaI, and XhoI. Variability at restriction enzyme sites in the chloroplast DNA was studied for at least three accessions of each of six cultivated, old-world Allium species. Of 189 restriction enzyme sites detected with 12 enzymes, 15 mutations were identified and used to estimate phylogenetic relationships. Cladistic analysis based on Wagner and Dollo parsimony resulted in a single, most-parsimonious tree of 16 steps and supported division of the species into sections. Allium species in section Porrum were distinguished from species in sections Cepa and Phyllodolon. Two species in section Rhiziridium, A. schoenoprasum and A. tuberosum, differed by five mutations and were placed in separate lineages. Allium cepa and A. fistulosum shared the loss of a restriction enzyme site and were phylogenetically closer to each other than to A. schoenoprasum. This study demonstrates the usefulness of restriction enzyme site analysis of the chloroplast genome in the elucidation of phylogenetic relationships in Allium.

  14. The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency.

    Science.gov (United States)

    De Crignis, E; Mahmoudi, T

    2017-01-01

    The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs

    NARCIS (Netherlands)

    Schopman, N.C.T.; ter Brake, O.; Berkhout, B.

    2010-01-01

    ABSTRACT: BACKGROUND: RNA interference (RNAi) is an evolutionary conserved gene silencing mechanism that mediates the sequence-specific breakdown of target mRNAs. RNAi can be used to inhibit HIV-1 replication by targeting the viral RNA genome. However, the error-prone replication machinery of HIV-1

  16. HIV-1 Nef control of cell signalling molecules: multiple strategies to ...

    Indian Academy of Sciences (India)

    Unknown

    HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle.

  17. Analysis of the Campylobacter jejuni genome by SMRT DNA sequencing identifies restriction-modification motifs.

    Directory of Open Access Journals (Sweden)

    Jason L O'Loughlin

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni.

  18. HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24

    DEFF Research Database (Denmark)

    Borghans, José A M; Mølgaard, Anne; de Boer, Rob J

    2007-01-01

    BACKGROUND: The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1 disease progression is still poorly understood. Recent data suggest that "protective" HLA molecules, i.e. those associated with a low HIV-1 viral load and relatively slow disease...... and effect, we predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant negative correlation between the predicted...... affinity of the best-binding p24 epitopes and the relative hazard of HIV-1 disease progression for a large number of HLA molecules. When the epitopes targeted by protective HLA alleles were mapped to the known p24 structure, we found that mutations in these epitopes are likely to disturb the p24 dimer...

  19. Factors Associated With the Control of Viral Replication and Virologic Breakthrough in a Recently Infected HIV-1 Controller.

    Science.gov (United States)

    Walker-Sperling, Victoria E; Pohlmeyer, Christopher W; Veenhuis, Rebecca T; May, Megan; Luna, Krystle A; Kirkpatrick, Allison R; Laeyendecker, Oliver; Cox, Andrea L; Carrington, Mary; Bailey, Justin R; Arduino, Roberto C; Blankson, Joel N

    2017-02-01

    HIV-1 controllers are patients who control HIV-1 viral replication without antiretroviral therapy. Control is achieved very early in the course of infection, but the mechanisms through which viral replication is restricted are not fully understood. We describe a patient who presented with acute HIV-1 infection and was found to have an HIV-1 RNA level of HIV-1 infection in some patients without protective HLA alleles and that NK cell responses may contribute to this early control of viral replication. © 2016.

  20. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3...... amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection....

  1. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    Science.gov (United States)

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W

    2009-09-01

    Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Approximately 50% of the CSF specimens exceeded the IC(95) levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  2. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Aylin Yilmaz

    Full Text Available INTRODUCTION: Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF and plasma in subjects receiving antiretroviral treatment regimens containing this drug. METHODS: Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. RESULTS: Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0. The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180. CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. CONCLUSIONS: Approximately 50% of the CSF specimens exceeded the IC(95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  3. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Science.gov (United States)

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  4. Innate immune sensing of HIV-1 infection.

    Science.gov (United States)

    Jakobsen, Martin R; Olagnier, David; Hiscott, John

    2015-03-01

    The innate immune system plays a critical role in the control of viral infections. Although the mechanisms involved in sensing and response to viral pathogens has progressed tremendously in the last decade, an understanding of the innate antiviral response to human retroviruses lagged behind. Recent studies now demonstrate that human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus 1 (HTLV-1) trigger a type I interferon antiviral response through novel cytosolic sensors that detect DNA intermediates of reverse transcription; in addition, these early host-pathogen interactions may trigger cell death pathways depending on the activation state of the target cell. The purpose of this review is to summarize the recent progress in the understanding of innate immune sensing of human retroviruses. Innate immune sensing of HIV-1 and HTLV-1 is influenced by the target cell phenotype, viral replicative intermediates, and host restriction factors that limit retroviral replication. Macrophages and dendritic cells detect HIV-DNA intermediates, whereas CD4 T cells differentially sense HIV DNA depending on the level of T-cell activation. Furthermore, the structure of the viral capsid and interplay between innate DNA sensors and host restriction factors all contribute to the magnitude of the ensuing innate immune response. The interplay between HIV infection and the innate immune system has emerged as an important component of HIV pathogenesis, linked to both induction of innate immunity and stimulation of cell death mechanisms. Ultimately, an in-depth knowledge of the mechanisms of innate immune control of human retrovirus infection may facilitate the development of novel treatment strategies to control retrovirus-induced immunopathology.

  5. HIV-1 RNAs: sense and antisense, large mRNAs and small siRNAs and miRNAs

    NARCIS (Netherlands)

    Harwig, Alex; Das, Atze T.; Berkhout, Ben

    2015-01-01

    Purpose of review This review summarizes recent findings concerning the ever-growing HIV-1 RNA population. Recent findings The retrovirus HIV-1 has an RNA genome that is converted into DNA and is integrated into the genome of the infected host cell. Transcription from the long terminal

  6. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  7. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  8. Genome modifications in plant cells by custom-made restriction enzymes.

    Science.gov (United States)

    Tzfira, Tzvi; Weinthal, Dan; Marton, Ira; Zeevi, Vardit; Zuker, Amir; Vainstein, Alexander

    2012-05-01

    Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  10. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients

    Science.gov (United States)

    Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu

    2015-01-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383

  11. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    Science.gov (United States)

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A macaque model of HIV-1 infection

    OpenAIRE

    Hatziioannou, Theodora; Ambrose, Zandrea; Chung, Nancy P. Y.; Piatak, Michael; Yuan, Fang; Trubey, Charles M.; Coalter, Vicky; Kiser, Rebecca; Schneider, Doug; Smedley, Jeremy; Pung, Rhonda; Gathuka, Mercy; Estes, Jacob D.; Veazey, Ronald S.; KewalRamani, Vineet N.

    2009-01-01

    The lack of a primate model that utilizes HIV-1 as the challenge virus is an impediment to AIDS research; existing models generally employ simian viruses that are divergent from HIV-1, reducing their usefulness in preclinical investigations. Based on an understanding of species-specific variation in primate TRIM5 and APOBEC3 antiretroviral genes, we constructed simian-tropic (st)HIV-1 strains that differ from HIV-1 only in the vif gene. We demonstrate that such minimally modified stHIV-1 stra...

  13. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Dynamic Interplay between HIV-1, SAMHD1, and the Innate Antiviral Response

    Directory of Open Access Journals (Sweden)

    Jenna M. Antonucci

    2017-11-01

    Full Text Available The innate immune response constitutes the first cellular line of defense against initial HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades that induce antiviral defenses to control or eliminate infection. Professional antigen-presenting cells located in mucosal tissues, including dendritic cells and macrophages, are critical for recognizing HIV-1 at the site of initial exposure. These cells are less permissive to HIV-1 infection compared to activated CD4+ T-cells, which is mainly due to host restriction factors that serve an immediate role in controlling the establishment or spread of viral infection. However, HIV-1 can exploit innate immune cells and their cellular factors to avoid detection and clearance by the host immune system. Sterile alpha motif and HD-domain containing protein 1 (SAMHD1 is the mammalian deoxynucleoside triphosphate triphosphohydrolase responsible for regulating intracellular dNTP pools and restricting the replication of HIV-1 in non-dividing myeloid cells and quiescent CD4+ T-cells. Here, we review and analyze the latest literature on the antiviral function of SAMHD1, including the mechanism of HIV-1 restriction and the ability of SAMHD1 to regulate the innate immune response to viral infection. We also provide an overview of the dynamic interplay between HIV-1, SAMHD1, and the cell-intrinsic antiviral response to elucidate how SAMHD1 modulates HIV-1 infection in non-dividing immune cells. A more complete understanding of SAMHD1’s role in the innate immune response to HIV-1 infection may help develop stratagems to enhance its antiviral effects and to more efficiently block HIV-1 replication and avoid the pathogenic result of viral infection.

  15. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein

    DEFF Research Database (Denmark)

    Chen, Jianbo; Grunwald, David; Sardo, Luca

    2014-01-01

    Full-length HIV-1 RNA plays a central role in viral replication by serving as the mRNA for essential viral proteins and as the genome packaged into infectious virions. Proper RNA trafficking is required for the functions of RNA and its encoded proteins; however, the mechanism by which HIV-1 RNA...... is transported within the cytoplasm remains undefined. Full-length HIV-1 RNA transport is further complicated when group-specific antigen (Gag) protein is expressed, because a significant portion of HIV-1 RNA may be transported as Gag-RNA complexes, whose properties could differ greatly from Gag-free RNA...... protein on HIV-1 RNA transport, we analyzed the cytoplasmic HIV-1 RNA movement in the presence of sufficient Gag for virion assembly and found that HIV-1 RNA is still transported by diffusion with mobility similar to the mobility of RNAs unable to express functional Gag. These studies define a major...

  16. Restriction landmark genomic scanning of mouse liver tumors for gene amplification: overexpression of cyclin A2.

    Science.gov (United States)

    Haddad, R; Morrow, A D; Plass, C; Held, W A

    2000-07-21

    SV40 T/t antigen-induced liver tumors from transgenic mice were analyzed by Restriction Landmark Genomic Scanning (RLGS). Using NotI as the restriction landmark, RLGS targets CpG islands found in gene-rich regions of the genome. Since many RLGS landmarks are mapped, the candidate gene approach can be used to help determine which genes are altered in tumors. RLGS analysis revealed one tumor-specific amplification mapping close to CcnA2 (cyclin A2) and Fgf2 (fibroblast growth factor 2). Southern analysis confirmed that both oncogenes are amplified in this tumor and in a second, independent liver tumor. Whereas Fgf2 RNA is undetectable in tumors, CcnA2 RNA and cyclin A2 protein was overexpressed in 25 and 50% of tumors, respectively. Combining RLGS with the candidate gene approach indicates that cyclin A2 amplification and overexpression is a likely selected event in transgenic mouse liver tumors. Our results also indicate that our mouse model for liver tumorigenesis in mice accurately recapitulates events observed in human hepatocellular carcinoma. Copyright 2000 Academic Press.

  17. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth

    Science.gov (United States)

    Kiselinova, Maja; De Spiegelaere, Ward; Buzon, Maria Jose; Malatinkova, Eva; Lichterfeld, Mathias; Vandekerckhove, Linos

    2016-01-01

    The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (pHIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. PMID:26938995

  19. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Directory of Open Access Journals (Sweden)

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  20. Structural basis and distal effects of Gag substrate coevolution in drug resistance to HIV-1 protease.

    Science.gov (United States)

    Özen, Ayşegül; Lin, Kuan-Hung; Kurt Yilmaz, Nese; Schiffer, Celia A

    2014-11-11

    Drug resistance mutations in response to HIV-1 protease inhibitors are selected not only in the drug target but elsewhere in the viral genome, especially at the protease cleavage sites in the precursor protein Gag. To understand the molecular basis of this protease-substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease-substrate interactions reveal that compensatory coevolved mutations in the substrate do not restore interactions lost due to protease mutations, but instead establish other interactions that are not restricted to the site of mutation. Mutation of a substrate residue has distal effects on other residues' interactions as well, including through the induction of a conformational change in the protease. Additionally, molecular dynamics simulations suggest that restoration of active site dynamics is an additional constraint in the selection of coevolved mutations. Hence, protease-substrate coevolution permits mutational, structural, and dynamic changes via molecular mechanisms that involve distal effects contributing to drug resistance.

  1. Genome Filtering Using Methylation- Sensitive Restriction Enzymes with Six Base Pair Recognition Sites

    Directory of Open Access Journals (Sweden)

    John P. Fellers

    2008-11-01

    Full Text Available The large fraction of repetitive DNA in many plant genomes has complicated all aspects of DNA sequencing and assembly, and thus techniques that enrich for genes and low-copy sequences have been employed to isolate gene space. Methyl-sensitive restriction enzymes, with six base pair recognition sites, were evaluated on genomic DNA of the bread wheat ‘Chinese Spring’ as a different approach to enrich for genes. I, I, I, and II were used to digest wheat genomic DNA and fragments ranging from 400 bp to 2.0 kb were cloned and unidirectionally sequenced. All four enzymes provided some level of enrichment for gene space; however, II and I reduced the number of clones with repeat elements to just 16.2 and 19.1%, respectively. II and I were also effective in enrichment in corn and tobacco. Corn libraries made with II and I had 58.7 and 71.2%, respectively, of the clones with significant expressed sequence tag (EST alignments, while tobacco libraries made with the same enzymes had 51.7 and 65.3%, respectively. With the development of ultra-throughput sequencing technologies, this technique provides an opportunity to rapidly and efficiently obtain sequencing from gene-rich regions.

  2. Molecular mechanisms by which HERV-K Gag interferes with HIV-1 Gag assembly and particle infectivity.

    Science.gov (United States)

    Monde, Kazuaki; Terasawa, Hiromi; Nakano, Yusuke; Soheilian, Ferri; Nagashima, Kunio; Maeda, Yosuke; Ono, Akira

    2017-04-26

    Human endogenous retroviruses (HERVs), the remnants of ancient retroviral infections, constitute approximately 8% of human genomic DNA. Since HERV-K Gag expression is induced by HIV-1 Tat in T cells, induced HERV-K proteins could affect HIV-1 replication. Indeed, previously we showed that HERV-K Gag and HIV-1 Gag coassemble and that this appears to correlate with the effect of HERV-K Gag expression on HIV-1 particle release and its infectivity. We further showed that coassembly requires both MA and NC domains, which presumably serve as scaffolding for Gag via their abilities to bind membrane and RNA, respectively. Notably, however, despite possessing these abilities, MLV Gag failed to coassemble with HIV-1 Gag and did not affect assembly and infectivity of HIV-1 particles. It is unclear how the specificity of coassembly is determined. Here, we showed that coexpression of HERV-K Gag with HIV-1 Gag changed size and morphology of progeny HIV-1 particles and severely diminished infectivity of such progeny viruses. We further compared HERV-K-MLV chimeric constructs to identify molecular determinants for coassembly specificity and for inhibition of HIV-1 release efficiency and infectivity. We found that the CA N-terminal domain (NTD) of HERV-K Gag is important for the reduction of the HIV-1 release efficiency, whereas both CA-NTD and major homology region of HERV-K Gag contribute to colocalization with HIV-1 Gag. Interestingly, these regions of HERV-K Gag were not required for reduction of progeny HIV-1 infectivity. Our results showed that HERV-K Gag CA is important for reduction of HIV-1 release and infectivity but the different regions within CA are involved in the effects on the HIV-1 release and infectivity. Altogether, these findings revealed that HERV-K Gag interferes the HIV-1 replication by two distinct molecular mechanisms.

  3. Random Tagging Genotyping by Sequencing (rtGBS, an Unbiased Approach to Locate Restriction Enzyme Sites across the Target Genome.

    Directory of Open Access Journals (Sweden)

    Elena Hilario

    Full Text Available Genotyping by sequencing (GBS is a restriction enzyme based targeted approach developed to reduce the genome complexity and discover genetic markers when a priori sequence information is unavailable. Sufficient coverage at each locus is essential to distinguish heterozygous from homozygous sites accurately. The number of GBS samples able to be pooled in one sequencing lane is limited by the number of restriction sites present in the genome and the read depth required at each site per sample for accurate calling of single-nucleotide polymorphisms. Loci bias was observed using a slight modification of the Elshire et al.some restriction enzyme sites were represented in higher proportions while others were poorly represented or absent. This bias could be due to the quality of genomic DNA, the endonuclease and ligase reaction efficiency, the distance between restriction sites, the preferential amplification of small library restriction fragments, or bias towards cluster formation of small amplicons during the sequencing process. To overcome these issues, we have developed a GBS method based on randomly tagging genomic DNA (rtGBS. By randomly landing on the genome, we can, with less bias, find restriction sites that are far apart, and undetected by the standard GBS (stdGBS method. The study comprises two types of biological replicates: six different kiwifruit plants and two independent DNA extractions per plant; and three types of technical replicates: four samples of each DNA extraction, stdGBS vs. rtGBS methods, and two independent library amplifications, each sequenced in separate lanes. A statistically significant unbiased distribution of restriction fragment size by rtGBS showed that this method targeted 49% (39,145 of BamH I sites shared with the reference genome, compared to only 14% (11,513 by stdGBS.

  4. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States); Knowlton, Caitlin; Kim, Baek [Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Sawyer, Sara L. [Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 (United States); Diaz-Griffero, Felipe, E-mail: Felipe.Diaz-Griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States)

    2014-07-15

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.

  5. APOBEC3G inhibits elongation of HIV-1 reverse transcripts.

    Directory of Open Access Journals (Sweden)

    Kate N Bishop

    2008-12-01

    Full Text Available APOBEC3G (A3G is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.

  6. Stepping toward a Macaque Model of HIV-1 Induced AIDS

    Directory of Open Access Journals (Sweden)

    Jason T. Kimata

    2014-09-01

    Full Text Available HIV-1 exhibits a narrow host range, hindering the development of a robust animal model of pathogenesis. Past studies have demonstrated that the restricted host range of HIV-1 may be largely due to the inability of the virus to antagonize and evade effector molecules of the interferon response in other species. They have also guided the engineering of HIV-1 clones that can replicate in CD4 T-cells of Asian macaque species. However, while replication of these viruses in macaque hosts is persistent, it has been limited and without progression to AIDS. In a new study, Hatziioannou et al., demonstrate for the first time that adapted macaque-tropic HIV-1 can persistently replicate at high levels in pigtailed macaques (Macaca nemestrina, but only if CD8 T-cells are depleted at the time of inoculation. The infection causes rapid disease and recapitulates several aspects of AIDS in humans. Additionally, the virus undergoes genetic changes to further escape innate immunity in association with disease progression. Here, the importance of these findings is discussed, as they relate to pathogenesis and model development.

  7. Regulation of HIV-1 latency by chromatin structure and nuclear architecture.

    Science.gov (United States)

    Lusic, Marina; Giacca, Mauro

    2015-02-13

    Current antiretroviral therapies fail to cure HIV-1 (human immunodeficiency virus type 1) infection because HIV-1 persists as a transcriptionally inactive provirus in resting memory CD4(+) T cells. Multiple molecular events are known to regulate HIV-1 gene expression, yet the mechanisms governing the establishment and maintenance of latency remain incompletely understood. Here we summarize different molecular aspects of viral latency, from its establishment in resting CD4(+) T cells to the mechanisms involved in the reactivation of latent viral reservoirs. We focus on the relevance of chromatin structure and nuclear architecture in determining the transcriptional fate of integrated HIV-1 genomes, in light of recent findings indicating that proximity to specific subnuclear neighborhoods regulates HIV-1 gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24

    DEFF Research Database (Denmark)

    Borghans, J. A.; Molgaard, A.; Boer, R. J. de

    2007-01-01

    and effect, we predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant negative correlation between the predicted......BACKGROUND: The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1 disease progression is still poorly understood. Recent data suggest that "protective" HLA molecules, i.e. those associated with a low HIV-1 viral load and relatively slow disease...... progression, tend to present epitopes from the Gag capsid protein. Although this suggests that preferential targeting of Gag delays disease progression, the apparent preference for Gag could also be a side-effect of the relatively high immunogenicity of the protein. METHODS AND FINDINGS: To separate cause...

  9. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mondal Debasis

    2011-01-01

    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  10. Single-Cell and Single-Cycle Analysis of HIV-1 Replication

    Science.gov (United States)

    Holmes, Mowgli; Zhang, Fengwen; Bieniasz, Paul D.

    2015-01-01

    The dynamics of the late stages of the HIV-1 life cycle are poorly documented. Viral replication dynamics are typically measured in populations of infected cells, but asynchrony that is introduced during the early steps of HIV-1 replication complicates the measurement of the progression of subsequent steps and can mask replication dynamics and their variation in individual infected cells. We established microscopy-based methods to dynamically measure HIV-1-encoded reporter gene and antiviral gene expression in individual infected cells. We coupled these measurements with conventional analyses to quantify delays in the HIV-1 replication cycle imposed by the biphasic nature of HIV-1 gene expression and by the assembly-inhibiting property of the matrix domain of Gag. We further related the dynamics of restriction factor (APOBEC3G) removal to the dynamics of HIV-1 replication in individual cells. These studies provide a timeline for key events in the HIV-1 replication cycle, and reveal that the interval between the onset of early and late HIV-1 gene expression is only ~3h, but matrix causes a ~6–12h delay in the generation of extracellular virions. Interestingly, matrix delays particle assembly to a time at which APOBEC3G has largely been removed from the cell. Thus, a need to prepare infected cells to be efficient producers of infectious HIV-1 may provide an impetus for programmed delays in HIV-1 virion genesis. Our findings also emphasize the significant heterogeneity in the length of the HIV-1 replication cycle in homogenous cell populations and suggest that a typical infected cell generates new virions for only a few hours at the end of a 48h lifespan. Therefore, small changes in the lifespan of infected cells might have a large effect on viral yield in a single cycle and the overall clinical course in infected individuals. PMID:26086614

  11. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    Science.gov (United States)

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  12. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2016-04-01

    Full Text Available Genotyping-by-sequencing (GBS has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV in 12 plant species showed 1.7–6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0–16.7% missing observations than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications.

  13. Diagnostik af HIV-1 infektionen

    DEFF Research Database (Denmark)

    Christiansen, C B; Dickmeiss, E; Bygbjerg, Ib Christian

    1991-01-01

    Different methods have been developed for the diagnosis of HIV infection, i.e. detection of antibodies, antigen and proviral DNA. ELISA methods for detecting HIV-1 antibodies are widely used as screening assays. A sample which is repeatedly positive with ELISA is re-tested with a confirmatory test...... in a proportion of patients. Detection and quantitation of HIV antigen are used as indicators of disease progression and for monitoring the antiviral efficacy of therapeutic interventions. When no antibodies or antigens can be detected in persons suspected of having HIV infection, culture of HIV can be performed....... For research purposes, detection of small amounts of proviral DNA can be made with polymerase chain reaction (PCR). The method is not yet applicable in routine diagnosis of HIV infection....

  14. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Directory of Open Access Journals (Sweden)

    Ireen E Kiwelu

    Full Text Available The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR of 38 (28-50 sequences per subject. Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84% subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60% subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69% to 36 (82% over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  15. Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA protein in a human immunodeficiency virus type 1 (HIV-1 derivative that has simian immunodeficiency virus (SIVmac239 vif and CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells

    Directory of Open Access Journals (Sweden)

    Adachi Akio

    2009-08-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 productively infects only humans and chimpanzees but not cynomolgus or rhesus monkeys while simian immunodeficiency virus isolated from macaque (SIVmac readily establishes infection in those monkeys. Several HIV-1 and SIVmac chimeric viruses have been constructed in order to develop an animal model for HIV-1 infection. Construction of an HIV-1 derivative which contains sequences of a SIVmac239 loop between α-helices 4 and 5 (L4/5 of capsid protein (CA and the entire SIVmac239 vif gene was previously reported. Although this chimeric virus could grow in cynomolgus monkey cells, it did so much more slowly than did SIVmac. It was also reported that intrinsic TRIM5α restricts the post-entry step of HIV-1 replication in rhesus and cynomolgus monkey cells, and we previously demonstrated that a single amino acid in a loop between α-helices 6 and 7 (L6/7 of HIV type 2 (HIV-2 CA determines the susceptibility of HIV-2 to cynomolgus monkey TRIM5α. Results In the study presented here, we replaced L6/7 of HIV-1 CA in addition to L4/5 and vif with the corresponding segments of SIVmac. The resultant HIV-1 derivatives showed enhanced replication capability in established T cell lines as well as in CD8+ cell-depleted primary peripheral blood mononuclear cells from cynomolgus monkey. Compared with the wild type HIV-1 particles, the viral particles produced from a chimeric HIV-1 genome with those two SIVmac loops were less able to saturate the intrinsic restriction in rhesus monkey cells. Conclusion We have succeeded in making the replication of simian-tropic HIV-1 in cynomolgus monkey cells more efficient by introducing into HIV-1 the L6/7 CA loop from SIVmac. It would be of interest to determine whether HIV-1 derivatives with SIVmac CA L4/5 and L6/7 can establish infection of cynomolgus monkeys in vivo.

  16. Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells

    OpenAIRE

    Kamada, Kazuya; IGARASHI, Tatsuhiko; Martin, Malcolm A.; KHAMSRI, BOONRUANG; Hatcho, Kazuki; Yamashita, Tomoki; Fujita, Mikako; Uchiyama, Tsuneo; Adachi, Akio

    2006-01-01

    The narrow host range of human immunodeficiency virus type 1 (HIV-1) is caused in part by innate cellular factors such as apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) and TRIM5α, which restrict virus replication in monkey cells. Variant HIV-1 molecular clones containing both a 21-nucleotide simian immunodeficiency virus (SIV) Gag CA element, corresponding to the HIV-1 cyclophilin A-binding site, and the entire SIV vif gene were constructed. Long-term passage i...

  17. Restoration of Anti-Human Immunodeficiency Virus Type 1 (HIV-1) Responses in CD8+ T Cells from Late-Stage Patients on Prolonged Antiretroviral Therapy by Stimulation In Vitro with HIV-1 Protein-Loaded Dendritic Cells

    OpenAIRE

    Fan, Zheng; Huang, Xiao-Li; Borowski, LuAnn; John W. Mellors; Rinaldo, Charles R.

    2001-01-01

    We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-γ) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-γ-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can b...

  18. A prospective study of the effect of pregnancy on CD4 counts and plasma HIV-1 RNA concentrations of antiretroviral-naive HIV-1 infected women

    Science.gov (United States)

    Heffron, Renee; Donnell, Deborah; Kiarie, James; Rees, Helen; Ngure, Kenneth; Mugo, Nelly; Were, Edwin; Celum, Connie; Baeten, Jared M.

    2014-01-01

    Background In HIV-1 infected women, CD4 count declines occur during pregnancy, which has been attributed to hemodilution. However, for women who have not initiated antiretroviral therapy (ART), it is unclear if CD4 declines are sustained beyond pregnancy and accompanied by increased viral levels, which could indicate an effect of pregnancy on accelerating HIV-1 disease progression. Methods In a prospective study among 2269 HIV-1 infected ART-naïve women from 7 African countries, we examined the effect of pregnancy on HIV-1 disease progression. We used linear mixed models to compare CD4 counts and plasma HIV-1 RNA concentrations between pregnant, postpartum and non-pregnant periods. Results Women contributed 3270 person-years of follow-up, during which time 476 women became pregnant. In adjusted analysis, CD4 counts were an average of 56 (95% CI 39-73) cells/mm3 lower during pregnant compared to non-pregnant periods and 70 (95% CI 53-88) cells/mm3 lower during pregnant compared to postpartum periods; these results were consistent when restricted to the subgroup of women who became pregnant. Plasma HIV-1 RNA concentrations were not different between pregnant and non-pregnant periods (p=0.9) or pregnant and postpartum periods (p=0.3). Neither CD4 counts nor plasma HIV-1 RNA levels were significantly different in postpartum compared to non-pregnant periods. Conclusion CD4 count declines among HIV-1 infected women during pregnancy are temporary and not sustained in postpartum periods. Pregnancy does not have a short term impact on plasma HIV-1 RNA concentrations. PMID:24442226

  19. A prospective study of the effect of pregnancy on CD4 counts and plasma HIV-1 RNA concentrations of antiretroviral-naive HIV-1-infected women.

    Science.gov (United States)

    Heffron, Renee; Donnell, Deborah; Kiarie, James; Rees, Helen; Ngure, Kenneth; Mugo, Nelly; Were, Edwin; Celum, Connie; Baeten, Jared M

    2014-02-01

    In HIV-1-infected women, CD4 count declines occur during pregnancy, which has been attributed to hemodilution. However, for women who have not initiated antiretroviral therapy, it is unclear if CD4 declines are sustained beyond pregnancy and accompanied by increased viral levels, which could indicate an effect of pregnancy on accelerating HIV-1 disease progression. In a prospective study among 2269 HIV-1-infected antiretroviral therapy-naive women from 7 African countries, we examined the effect of pregnancy on HIV-1 disease progression. We used linear mixed models to compare CD4 counts and plasma HIV-1 RNA concentrations between pregnant, postpartum, and nonpregnant periods. Women contributed 3270 person-years of follow-up, during which time 476 women became pregnant. In adjusted analysis, CD4 counts were an average of 56 (95% confidence interval: 39 to 73) cells/mm lower during pregnant compared with nonpregnant periods and 70 (95% confidence interval: 53 to 88) cells/mm lower during pregnant compared with postpartum periods; these results were consistent when restricted to the subgroup of women who became pregnant. Plasma HIV-1 RNA concentrations were not different between pregnant and nonpregnant periods (P = 0.9) or pregnant and postpartum periods (P = 0.3). Neither CD4 counts nor plasma HIV-1 RNA levels were significantly different in postpartum compared with nonpregnant periods. CD4 count declines among HIV-1-infected women during pregnancy are temporary and not sustained in postpartum periods. Pregnancy does not have a short-term impact on plasma HIV-1 RNA concentrations.

  20. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy

    NARCIS (Netherlands)

    Herrera-Carrillo, E.; Berkhout, B.

    2015-01-01

    A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short

  1. Quantifying Ongoing HIV-1 Exposure in HIV-1–Serodiscordant Couples to Identify Individuals With Potential Host Resistance to HIV-1

    Science.gov (United States)

    Mackelprang, Romel D.; Baeten, Jared M.; Donnell, Deborah; Celum, Connie; Farquhar, Carey; de Bruyn, Guy; Essex, Max; McElrath, M. Juliana; Nakku-Joloba, Edith; Lingappa, Jairam R.

    2012-01-01

    Background. Immunogenetic correlates of resistance to HIV-1 in HIV-1–exposed seronegative (HESN) individuals with consistently high exposure may inform HIV-1 prevention strategies. We developed a novel approach for quantifying HIV-1 exposure to identify individuals remaining HIV-1 uninfected despite persistent high exposure. Methods. We used longitudinal predictors of HIV-1 transmission in HIV-1 serodiscordant couples to score HIV-1 exposure and define HESN clusters with persistently high, low, and decreasing risk trajectories. The model was validated in an independent cohort of serodiscordant couples. We describe a statistical tool that can be applied to other HESN cohorts to identify individuals with high exposure to HIV-1. Results. HIV-1 exposure was best quantified by frequency of unprotected sex with, plasma HIV-1 RNA levels among, and presence of genital ulcer disease among HIV-1–infected partners and by age, pregnancy status, herpes simplex virus 2 serostatus, and male circumcision status among HESN participants. Overall, 14% of HESN individuals persistently had high HIV-1 exposure and exhibited a declining incidence of HIV-1 infection over time. Conclusions. A minority of HESN individuals from HIV-1–discordant couples had persistent high HIV-1 exposure over time. Decreasing incidence of infection in this group suggests these individuals were selected for resistance to HIV-1 and may be most appropriate for identifying biological correlates of natural host resistance to HIV-1 infection. PMID:22926009

  2. T cell dynamics in HIV-1 infection

    NARCIS (Netherlands)

    Clark, D.R.; Boer, R.J. de; Wolthers, K.C.; Miedema, F.

    1999-01-01

    One of the most prominent features of HIV-1 infection is CD4⁺ T cell depletion. This statement is widely used in papers on HIV-1 research; however, while true, it is deceptively simplistic in that it fails to describe what is actually a complex change in the representation of T cell

  3. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  4. Extremely High Mutation Rate of HIV-1 In Vivo.

    Directory of Open Access Journals (Sweden)

    José M Cuevas

    Full Text Available Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7 × 10-3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis.

  5. Characterizing HIV-1 Splicing by Using Next-Generation Sequencing.

    Science.gov (United States)

    Emery, Ann; Zhou, Shuntai; Pollom, Elizabeth; Swanstrom, Ronald

    2017-03-15

    Full-length human immunodeficiency virus type 1 (HIV-1) RNA serves as the genome or as an mRNA, or this RNA undergoes splicing using four donors and 10 acceptors to create over 50 physiologically relevant transcripts in two size classes (1.8 kb and 4 kb). We developed an assay using Primer ID-tagged deep sequencing to quantify HIV-1 splicing. Using the lab strain NL4-3, we found that A5 (env/nef) is the most commonly used acceptor (about 50%) and A3 (tat) the least used (about 3%). Two small exons are made when a splice to acceptor A1 or A2 is followed by activation of donor D2 or D3, and the high-level use of D2 and D3 dramatically reduces the amount of vif and vpr transcripts. We observed distinct patterns of temperature sensitivity of splicing to acceptors A1 and A2. In addition, disruption of a conserved structure proximal to A1 caused a 10-fold reduction in all transcripts that utilized A1. Analysis of a panel of subtype B transmitted/founder viruses showed that splicing patterns are conserved, but with surprising variability of usage. A subtype C isolate was similar, while a simian immunodeficiency virus (SIV) isolate showed significant differences. We also observed transsplicing from a downstream donor on one transcript to an upstream acceptor on a different transcript, which we detected in 0.3% of 1.8-kb RNA reads. There were several examples of splicing suppression when the env intron was retained in the 4-kb size class. These results demonstrate the utility of this assay and identify new examples of HIV-1 splicing regulation. IMPORTANCE During HIV-1 replication, over 50 conserved spliced RNA variants are generated. The splicing assay described here uses new developments in deep-sequencing technology combined with Primer ID-tagged cDNA primers to efficiently quantify HIV-1 splicing at a depth that allows even low-frequency splice variants to be monitored. We have used this assay to examine several features of HIV-1 splicing and to identify new examples of

  6. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Poeschla, Eric, E-mail: poeschla.eric@mayo.edu

    2013-06-20

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.

  7. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  8. HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2

    Science.gov (United States)

    Fernández-Oliva, Alberto; Finzi, Andrés; Haim, Hillel; Menéndez-Arias, Luis; Sodroski, Joseph

    2015-01-01

    ABSTRACT Previous studies have shown that a major block to HIV-1 replication in common marmosets operates at the level of viral entry and that this block can be overcome by adaptation of the virus in tissue-cultured cells. However, our current studies indicate that HIV-1 encounters additional postentry blocks in common marmoset peripheral blood mononuclear cells. Here, we show that the common marmoset APOBEC3G (A3G) and BST2 proteins block HIV-1 in cell cultures. Using a directed-evolution method that takes advantage of the natural ability of HIV-1 to mutate during replication, we have been able to overcome these blocks in tissue-cultured cells. In the adapted viruses, specific changes were observed in gag, vif, env, and nef. The contribution of these changes to virus replication in the presence of the A3G and BST2 restriction factors was studied. We found that certain amino acid changes in Vif and Env that arise during adaptation to marmoset A3G and BST2 allow the virus to replicate in the presence of these restriction factors. The changes in Vif reduce expression levels and encapsidation of marmoset APOBEC3G, while the changes in Env increase viral fitness and discretely favor cell-to-cell transmission of the virus, allowing viral escape from these restriction factors. IMPORTANCE HIV-1 can infect only humans and chimpanzees. The main reason for this narrow tropism is the presence in many species of dominant-acting factors, known as restriction factors, that block viral replication in a species-specific way. We have been exploring the blocks to HIV-1 in common marmosets, with the ultimate goal of developing a new animal model of HIV-1 infection in these monkeys. In this study, we observed that common marmoset APOBEC3G and BST2, two known restriction factors, are able to block HIV-1 in cell cultures. We have adapted HIV-1 to replicate in the presence of these restriction factors and have characterized the mechanisms of escape. These studies can help in the

  9. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  10. Brain Microglial Cells Are Highly Susceptible to HIV-1 Infection and Spread.

    Science.gov (United States)

    Cenker, Jennifer J; Stultz, Ryan D; McDonald, David

    2017-11-01

    Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) infection and may serve as an important reservoir of the virus in the body, particularly after depletion of CD4+ T cells in HIV/AIDS. Recently, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) was identified as the major restriction factor of HIV-1 infection in myeloid cells. SAMHD1 is targeted for proteolytic degradation by Vpx, a viral protein encoded by HIV-2 and many simian immunodeficiency viruses but not HIV-1. In this study, we assessed SAMHD1 restriction in in vitro differentiated macrophages and in freshly isolated macrophages from the lungs, abdomen, and brain. We found that infection and spread in in vitro cultured monocyte-derived macrophages were highly limited and that Vpx largely relieved the restriction to initial infection, as expected. We observed nearly identical infection and restriction profiles in freshly isolated peripheral blood monocytes, as well as lung (alveolar) and abdominal (peritoneal) macrophages. In contrast, under the same infection conditions, primary brain macrophages (microglia) were highly susceptible to HIV-1 infection despite levels of endogenous SAMHD1 comparable to the other macrophage populations. Addition of Vpx further increased HIV-1 infection under conditions of limiting virus input, and viral spread was robust whether or not SAMHD1 was depleted. These results suggest that HIV-1 infection of peripherally circulating macrophages is effectively restricted by SAMHD1; however, microglia are highly susceptible to infection despite SAMHD1 expression. These data may explain the long-standing observation that HIV-1 infection is often detected in macrophages in the brain, but seldom in other tissues of the body.

  11. Different pattern of immunoglobulin gene usage by HIV-1 compared to non-HIV-1 antibodies derived from the same infected subject.

    Science.gov (United States)

    Li, Liuzhe; Wang, Xiao-Hong; Banerjee, Sagarika; Volsky, Barbara; Williams, Constance; Virland, Diana; Nadas, Arthur; Seaman, Michael S; Chen, Xuemin; Spearman, Paul; Zolla-Pazner, Susan; Gorny, Miroslaw K

    2012-01-01

    A biased usage of immunoglobulin (Ig) genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs) resulting probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes, it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP) expressing HIV-1 envelope (Env) proteins of JRFL and BaL and control VLPs (without Env) were used to select single B cells for the production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to autoreactive mechanisms, according to the gp120 superantigen hypothesis.

  12. Different pattern of immunoglobulin gene usage by HIV-1 compared to non-HIV-1 antibodies derived from the same infected subject.

    Directory of Open Access Journals (Sweden)

    Liuzhe Li

    Full Text Available A biased usage of immunoglobulin (Ig genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs resulting probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes, it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP expressing HIV-1 envelope (Env proteins of JRFL and BaL and control VLPs (without Env were used to select single B cells for the production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to autoreactive mechanisms, according to the gp120 superantigen hypothesis.

  13. Infected cell killing by HIV-1 protease promotes NF-kappaB dependent HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Gary D Bren

    2008-05-01

    Full Text Available Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1 NF-kappaB activation, (2 caspase 8 dependent apoptosis, and that (3 caspase 8 directly activates NF-kappaB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-kappaB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-kappaB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-kappaB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-kappaB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.

  14. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB.

    Science.gov (United States)

    Liu, Guohong; Weston, Christopher Q; Pham, Long K; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2016-01-01

    We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.

  15. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB.

    Directory of Open Access Journals (Sweden)

    Guohong Liu

    Full Text Available We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.

  16. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    Science.gov (United States)

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing.

    Science.gov (United States)

    Awad, Mohamed; Ouda, Osama; El-Refy, Ali; El-Feky, Fawzy A; Mosa, Kareem A; Helmy, Mohamed

    2015-01-01

    Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups) in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  18. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Mohamed Awad

    2015-01-01

    Full Text Available Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  19. Cytoplasmic Dynein Promotes HIV-1 Uncoating

    Directory of Open Access Journals (Sweden)

    Paulina Pawlica

    2014-11-01

    Full Text Available Retroviral capsid (CA cores undergo uncoating during their retrograde transport (toward the nucleus, and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.

  20. Inhibiting sexual transmission of HIV-1 infection.

    Science.gov (United States)

    Shattock, Robin J; Moore, John P

    2003-10-01

    The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.

  1. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  2. TRIM5 and the Regulation of HIV-1 Infectivity

    Directory of Open Access Journals (Sweden)

    Jeremy Luban

    2012-01-01

    Full Text Available The past ten years have seen an explosion of information concerning host restriction factors that inhibit the replication of HIV-1 and other retroviruses. Among these factors is TRIM5, an innate immune signaling molecule that recognizes the capsid lattice as soon as the retrovirion core is released into the cytoplasm of otherwise susceptible target cells. Recognition of the capsid lattice has several consequences that include multimerization of TRIM5 into a complementary lattice, premature uncoating of the virion core, and activation of TRIM5 E3 ubiquitin ligase activity. Unattached, K63-linked ubiquitin chains are generated that activate the TAK1 kinase complex and downstream inflammatory mediators. Polymorphisms in the capsid recognition domain of TRIM5 explain the observed species-specific differences among orthologues and the relatively weak anti-HIV-1 activity of human TRIM5. Better understanding of the complex interaction between TRIM5 and the retrovirus capsid lattice may someday lead to exploitation of this interaction for the development of potent HIV-1 inhibitors.

  3. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread.

    Science.gov (United States)

    Compton, Alex A; Bruel, Timothée; Porrot, Françoise; Mallet, Adeline; Sachse, Martin; Euvrard, Marine; Liang, Chen; Casartelli, Nicoletta; Schwartz, Olivier

    2014-12-10

    The interferon-induced transmembrane (IFITM) proteins protect cells from diverse virus infections by inhibiting virus-cell fusion. IFITM proteins also inhibit HIV-1 replication through mechanisms only partially understood. We show that when expressed in uninfected lymphocytes, IFITM proteins exert protective effects during cell-free virus infection, but this restriction can be overcome upon HIV-1 cell-to-cell spread. However, when present in virus-producing lymphocytes, IFITM proteins colocalize with viral Env and Gag proteins and incorporate into nascent HIV-1 virions to limit entry into new target cells. IFITM in viral membranes is associated with impaired virion fusion, offering additional and more potent defense against virus spread. Thus, IFITM proteins act additively in both productively infected cells and uninfected target cells to inhibit HIV-1 spread, potentially conferring these proteins with greater breadth and potency against enveloped viruses. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Stoichiometric parameters of HIV-1 entry.

    Science.gov (United States)

    Zarr, Melissa; Siliciano, Robert

    2015-01-01

    During HIV type 1 (HIV-1) entry, trimers of gp120 bind to CD4 and either the CCR5 or CXCR4 coreceptor on the target cell. The stoichiometric parameters associated with HIV-1 entry remain unclear. Important unanswered questions include: how many trimers must attach to CD4 molecules, how many must bind coreceptors, and how many functional gp120 subunits per trimer are required for entry? We performed single round infectivity assays with chimeric viruses and compared the experimental relative infectivity curves with curves generated by mathematical models. Our results indicate that HIV-1 entry requires only a small number of functional spikes (one or two), that Env trimers may function with fewer than three active subunits, and that there is no major difference in the stoichiometric requirements for CCR5 vs. CXCR4 mediated HIV-1 entry into host cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Molecular Understanding of HIV-1 Latency

    Directory of Open Access Journals (Sweden)

    W. Abbas

    2012-01-01

    Full Text Available The introduction of highly active antiretroviral therapy (HAART has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.

  6. Evidence of at Least Two Introductions of HIV-1 in the Amerindian Warao Population from Venezuela

    Science.gov (United States)

    Rangel, Héctor R.; Maes, Mailis; Villalba, Julian; Sulbarán, Yoneira; de Waard, Jacobus H.; Bello, Gonzalo; Pujol, Flor H.

    2012-01-01

    Background The Venezuelan Amerindians were, until recently, free of human immunodeficiency virus (HIV) infection. However, in 2007, HIV-1 infection was detected for the first time in the Warao Amerindian population living in the Eastern part of Venezuela, in the delta of the Orinoco river. The aim of this study was to analyze the genetic diversity of the HIV-1 circulating in this population. Methodology/Principal Findings The pol genomic region was sequenced for 16 HIV-1 isolates and for some of them, sequences from env, vif and nef genomic regions were obtained. All HIV-1 isolates were classified as subtype B, with exception of one that was classified as subtype C. The 15 subtype B isolates exhibited a high degree of genetic similarity and formed a highly supported monophyletic cluster in each genomic region analyzed. Evolutionary analyses of the pol genomic region indicated that the date of the most recent common ancestor of the Waraos subtype B clade dates back to the late 1990s. Conclusions/Significance At least two independent introductions of HIV-1 have occurred in the Warao Amerindians from Venezuela. The HIV-1 subtype B was successfully established and got disseminated in the community, while no evidence of local dissemination of the HIV-1 subtype C was detected in this study. These results warrant further surveys to evaluate the burden of this disease, which can be particularly devastating in this Amerindian population, with a high prevalence of tuberculosis, hepatitis B, among other infectious diseases, and with limited access to primary health care. PMID:22808212

  7. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3...... individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative...

  8. Tailored enrichment strategy detects low abundant small noncoding RNAs in HIV-1 infected cells

    Directory of Open Access Journals (Sweden)

    Althaus Claudia F

    2012-03-01

    Full Text Available Abstract Background The various classes of small noncoding RNAs (sncRNAs are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels. This is best illustrated by HIV-1 where virus encoded sncRNAs represent approximately 0.1-1.0% of all sncRNAs in HIV-1 infected cells or were found to be undetected. Thus, we applied a novel, sequence targeted enrichment strategy to capture HIV-1 derived sncRNAs in HIV-1 infected primary CD4+ T-lymphocytes and macrophages that allows a greater than 100-fold enrichment of low abundant sncRNAs. Results Eight hundred and ninety-two individual HIV-1 sncRNAs were cloned and sequenced from nine different sncRNA libraries derived from five independent experiments. These clones represent up to 90% of all sncRNA clones in the generated libraries. Two hundred and sixteen HIV-1 sncRNAs were distinguishable as unique clones. They are spread throughout the HIV-1 genome, however, forming certain clusters, and almost 10% show an antisense orientation. The length of HIV-1 sncRNAs varies between 16 and 89 nucleotides with an unexpected peak at 31 to 50 nucleotides, thus, longer than cellular microRNAs or short-interfering RNAs (siRNAs. Exemplary HIV-1 sncRNAs were also generated in cells infected with different primary HIV-1 isolates and can inhibit HIV-1 replication. Conclusions HIV-1 infected cells generate virally encoded sncRNAs, which might play a role in the HIV-1 life cycle. Furthermore, the enormous capacity to enrich low abundance sncRNAs in a sequence specific manner highly recommends our selection strategy for any type of investigation where origin or target sequences of the sought-after sncRNAs are known.

  9. Multiple proviral integration events after virological synapse-mediated HIV-1 spread.

    Science.gov (United States)

    Russell, Rebecca A; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J

    2013-08-15

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. Copyright © 2013. Published by Elsevier Inc.

  10. Clinical research in HIV-1 infected children

    OpenAIRE

    Fraaij, Pieter

    2005-01-01

    textabstractAcquired immune deficiency syndrome (AIDS) was described for the first time in 1981. Two years later the previously unknown human immunodeficiency virus (HIV) was identified as the causative agent. HIV has been included in the genus Lent/viruses of the Retroviridae family. Two types are recognized: HIV-1 and HIV-2. Of these, HIV-1 is the primary etiologic agent of the current pandemic. HIV probably originates from simian immunodeficiency virus (SIV) which is endemic in African mon...

  11. Prospective Memory in HIV-1 Infection

    OpenAIRE

    CAREY, CATHERINE L.; WOODS, STEVEN PAUL; RIPPETH, JULIE D.; HEATON, ROBERT K.; GRANT, IGOR

    2006-01-01

    The cognitive deficits associated with HIV-1 infection are thought to primarily reflect neuropathophysiology within the fronto-striato-thalamo-cortical circuits. Prospective memory (ProM) is a cognitive function that is largely dependent on prefronto-striatal circuits, but has not previously been examined in an HIV-1 sample. A form of episodic memory, ProM involves the complex processes of forming, monitoring, and executing future intentions vis-à-vis ongoing distractions. The current study e...

  12. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation.

    Science.gov (United States)

    Lowry, David B; Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Reed, Laura K; Antolin, Michael F; Storfer, Andrew

    2017-03-01

    Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best-case modelling scenario, we found that RADseq using six- or eight-base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation. © 2016 John Wiley & Sons Ltd.

  13. Prospective memory in HIV-1 infection.

    Science.gov (United States)

    Carey, Catherine L; Woods, Steven Paul; Rippeth, Julie D; Heaton, Robert K; Grant, Igor

    2006-05-01

    The cognitive deficits associated with HIV-1 infection are thought to primarily reflect neuropathophysiology within the fronto-striato-thalamo-cortical circuits. Prospective memory (ProM) is a cognitive function that is largely dependent on prefronto-striatal circuits, but has not previously been examined in an HIV-1 sample. A form of episodic memory, ProM involves the complex processes of forming, monitoring, and executing future intentions vis-à-vis ongoing distractions. The current study examined ProM in 42 participants with HIV-1 infection and 29 demographically similar seronegative healthy comparison (HC) subjects. The HIV-1 sample demonstrated deficits in time- and event-based ProM, as well as more frequent 24-hour delay ProM failures and task substitution errors relative to the HC group. In contrast, there were no significant differences in recognition performance, indicating that the HIV-1 group was able to accurately retain and recognize the ProM intention when retrieval demands were minimized. Secondary analyses revealed that ProM performance correlated with validated clinical measures of executive functions, episodic memory (free recall), and verbal working memory, but not with tests of semantic memory, retention, or recognition discrimination. Taken together, these findings indicate that HIV-1 infection is associated with ProM impairment that is primarily driven by a breakdown in the strategic (i.e., executive) aspects of retrieving future intentions, which is consistent with a prefronto-striatal circuit neuropathogenesis.

  14. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Thomas [Los Alamos National Laboratory; Campbell, Mary S [UNIV OF WASHINGTON; Mullins, James I [UNIV OF WASHINGTON; Hughes, James P [UNIV OF WASHINGTON; Wong, Kim G [UNIV OF WASHINGTON; Raugi, Dana N [UNIV OF WASHINGTON; Scrensen, Stefanie [UNIV OF WASHINGTON

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  15. A novel whole genome amplification method using type IIS restriction enzymes to create overhangs with random sequences.

    Science.gov (United States)

    Pan, Xiaoming; Wan, Baihui; Li, Chunchuan; Liu, Yu; Wang, Jing; Mou, Haijin; Liang, Xingguo

    2014-08-20

    Ligation-mediated polymerase chain reaction (LM-PCR) is a whole genome amplification (WGA) method, for which genomic DNA is cleaved into numerous fragments and then all of the fragments are amplified by PCR after attaching a universal end sequence. However, the self-ligation of these fragments could happen and may cause biased amplification and restriction of its application. To decrease the self-ligation probability, here we use type IIS restriction enzymes to digest genomic DNA into fragments with 4-5nt long overhangs with random sequences. After ligation to an adapter with random end sequences to above fragments, PCR is carried out and almost all present DNA sequences are amplified. In this study, whole genome of Vibrio parahaemolyticus was amplified and the amplification efficiency was evaluated by quantitative PCR. The results suggested that our approach could provide sufficient genomic DNA with good quality to meet requirements of various genetic analyses. Copyright © 2014. Published by Elsevier B.V.

  16. Lack of adaptation to human tetherin in HIV-1 Group O and P

    Directory of Open Access Journals (Sweden)

    Haworth Kevin G

    2011-09-01

    Full Text Available Abstract Background HIV-1 viruses are categorized into four distinct groups: M, N, O and P. Despite the same genomic organization, only the group M viruses are responsible for the world-wide pandemic of AIDS, suggesting better adaptation to human hosts. Previously, it has been reported that the group M Vpu protein is capable of both down-modulating CD4 and counteracting BST-2/tetherin restriction, while the group O Vpu cannot antagonize tetherin. This led us to investigate if group O, and the related group P viruses, possess functional anti-tetherin activities in Vpu or another viral protein, and to further map the residues required for group M Vpu to counteract human tetherin. Results We found a lack of activity against human tetherin for both the Vpu and Nef proteins from group O and P viruses. Furthermore, we found no evidence of anti-human tetherin activity in a fully infectious group O proviral clone, ruling out the possibility of an alternative anti-tetherin factor in this virus. Interestingly, an activity against primate tetherins was retained in the Nef proteins from both a group O and a group P virus. By making chimeras between a functional group M and non-functional group O Vpu protein, we were able to map the first 18 amino acids of group M Vpu as playing an essential role in the ability of the protein to antagonize human tetherin. We further demonstrated the importance of residue alanine-18 for the group M Vpu activity. This residue lies on a diagonal face of conserved alanines in the TM domain of the protein, and is necessary for specific Vpu-tetherin interactions. Conclusions The absence of human specific anti-tetherin activities in HIV-1 group O and P suggests a failure of these viruses to adapt to human hosts, which may have limited their spread.

  17. Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain.

    Science.gov (United States)

    Mack, Katharina; Starz, Kathrin; Sauter, Daniel; Langer, Simon; Bibollet-Ruche, Frederic; Learn, Gerald H; Stürzel, Christina M; Leoz, Marie; Plantier, Jean-Christophe; Geyer, Matthias; Hahn, Beatrice H; Kirchhoff, Frank

    2017-03-15

    Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4(+) T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal.IMPORTANCE Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1

  18. HIV-1 vaccine induced immune responses in newborns of HIV-1 infected mothers.

    Science.gov (United States)

    McFarland, Elizabeth J; Johnson, Daniel C; Muresan, Petronella; Fenton, Terence; Tomaras, Georgia D; McNamara, James; Read, Jennifer S; Douglas, Steven D; Deville, Jaime; Gurwith, Marc; Gurunathan, Sanjay; Lambert, John S

    2006-07-13

    Breast milk transmission continues to account for a large proportion of cases of mother-to-child transmission of HIV-1 worldwide. An effective HIV-1 vaccine coupled with either passive immunization or short-term antiretroviral prophylaxis represents a potential strategy to prevent breast milk transmission. This study evaluated the safety and immunogenicity of ALVAC HIV-1 vaccine with and without a subunit envelope boost in infants born to HIV-1-infected women. : Placebo-controlled, double-blinded study. Infants born to HIV-1-infected mothers in the US were immunized with a prime-boost regimen using a canarypox virus HIV-1 vaccine (vCP1452) and a recombinant glycoprotein subunit vaccine (rgp120). Infants (n = 30) were randomized to receive: vCP1452 alone, vCP1452 + rgp120, or corresponding placebos. Local reactions were mild or moderate and no significant systemic toxicities occurred. Subjects receiving both vaccines had gp120-specific binding serum antibodies that were distinguishable from maternal antibody. Repeated gp160-specific lymphoproliferative responses were observed in 75%. Neutralizing activity to HIV-1 homologous to the vaccine strain was observed in 50% of the vCP1452 + rgp120 subjects who had lost maternal antibody by week 24. In some infants HIV-1-specific proliferative and antibody responses persisted until week 104. HIV-1-specific cytotoxic T lymphocyte responses were detected in two subjects in each treatment group; the frequency of HIV-1 specific cytotoxic T lymphocyte responses did not differ between vaccine and placebo recipients. The demonstration of vaccine-induced immune responses in early infancy supports further study of HIV-1 vaccination as a strategy to reduce breast milk transmission.

  19. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  20. A machine learning approach for viral genome classification.

    Science.gov (United States)

    Remita, Mohamed Amine; Halioui, Ahmed; Malick Diouara, Abou Abdallah; Daigle, Bruno; Kiani, Golrokh; Diallo, Abdoulaye Baniré

    2017-04-11

    Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The classification and annotation of these genomes constitute important assets in the discovery of genomic variability, taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying and typing newly sequenced strains of diverse virus families. Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments. The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca .

  1. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila.

    Science.gov (United States)

    Shapiro, Lori R; Scully, Erin D; Straub, Timothy J; Park, Jihye; Stephenson, Andrew G; Beattie, Gwyn A; Gleason, Mark L; Kolter, Roberto; Coelho, Miguel C; De Moraes, Consuelo M; Mescher, Mark C; Zhaxybayeva, Olga

    2016-03-18

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila's current ecological niche. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. CCR5 inhibitors in HIV-1 therapy.

    Science.gov (United States)

    Dorr, Patrick; Perros, Manos

    2008-11-01

    The human immunodeficiency virus 1 (HIV-1) is the causative pathogen of AIDS, the world's biggest infectious disease killer. About 33 million people are infected worldwide, with 2.1 million deaths a year as a direct consequence. The devastating nature of AIDS has prompted widespread research, which has led to an extensive array of therapies to suppress viral replication and enable recovery of the immune system to prolong and improve patient life substantially. However, the genetic plasticity and replication rate of HIV-1 are considerable, which has lead to rapid drug resistance. This, together with the need for reducing drug side effects and increasing regimen compliance, has led researchers to identify antiretroviral drugs with new modes of action. This review describes the discovery and clinical development of CCR5 antagonists and the recent approval of maraviroc as a breakthrough in anti-HIV-1 therapy. CCR5 inhibitors target a human cofactor to disable HIV-1 entry into the cells, and thereby provide a new hurdle for the virus to overcome. The status and expert opinion of CCR5 antagonists for the treatment of HIV-1 infection are detailed.

  3. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    Science.gov (United States)

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  4. Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency

    Science.gov (United States)

    Jean, Maxime Junior; Power, Derek; Kong, Weili; Huang, Huachao; Santoso, Netty; Zhu, Jian

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) Tat is a virus-encoded trans-activator that plays a central role in viral transcription. We used our recently developed parallel analysis of in vitro translated open reading frames (ORFs) (PLATO) approach to identify host proteins that associate with HIV-1 Tat. From this proteomic assay, we identify 89 Tat-associated proteins (TAPs). We combine our results with other datasets of Tat or long terminal repeat (LTR)-associated proteins. For some of these proteins (NAT10, TINP1, XRCC5, SIN3A), we confirm their strong association with Tat. These TAPs also suppress Tat-mediated HIV-1 transcription. Removing suppression of HIV-1 transcription benefits the reversal of post-integrated, latent HIV-1 proviruses. We demonstrate that these transcriptionally suppressing TAPs contribute to HIV-1 latency in Jurkat latency (J-LAT) cells. Therefore, our proteomic analysis highlights the previously unappreciated TAPs that play a role in maintaining HIV-1 latency and can be further studied as potential pharmacological targets for the “shock and kill” HIV-1 cure strategy. PMID:28368303

  5. Determining the frequency and mechanisms of HIV-1 and HIV-2 RNA copackaging by single-virion analysis

    DEFF Research Database (Denmark)

    Dilley, Kari A; Ni, Na; Nikolaitchik, Olga A

    2011-01-01

    -2 RNA can be copackaged into the same particle. To determine the frequency of HIV-1 and HIV-2 RNA copackaging and to dissect the mechanisms that allow the heterologous RNA copackaging, we directly visualized the RNA content of each particle by using RNA-binding proteins tagged with fluorescent...... proteins to label the viral genomes. We found that when HIV-1 and HIV-2 RNA are present in viral particles at similar ratios, ∼10% of the viral particles encapsidate both HIV-1 and HIV-2 RNAs. Furthermore, heterologous RNA copackaging can be promoted by mutating the 6-nucleotide (6-nt) dimer initiation...... signal (DIS) to discourage RNA homodimerization or to encourage RNA heterodimerization, indicating that HIV-1 and HIV-2 RNA can heterodimerize prior to packaging using the DIS sequences. We also observed that the coassembly of HIV-1 and HIV-2 Gag proteins is not required for the heterologous RNA...

  6. Controlling Multicycle Replication of Live-Attenuated HIV-1 Using an Unnatural Genetic Switch.

    Science.gov (United States)

    Yuan, Zhe; Wang, Nanxi; Kang, Guobin; Niu, Wei; Li, Qingsheng; Guo, Jiantao

    2017-04-21

    A safe and effective human immunodeficiency virus type 1 (HIV-1) vaccine is urgently needed, but remains elusive. While HIV-1 live-attenuated vaccine can provide potent protection as demonstrated in rhesus macaque-simian immunodeficiency virus model, the potential pathogenic consequences associated with the uncontrolled virus replication preclude such vaccine from clinical applications. We investigated a novel approach to address this problem by controlling live-attenuated HIV-1 replication through an unnatural genetic switch that was based on the amber suppression strategy. Here we report the construction of all-in-one live-attenuated HIV-1 mutants that contain genomic copy of the amber suppression system. This genetic modification resulted in viruses that were capable of multicycle replication in vitro and could be switched on and off using an unnatural amino acid as the cue. This stand-alone, replication-controllable attenuated HIV-1 virus represents an important step toward the generation of a safe and efficacious live-attenuated HIV-1 vaccine. The strategy reported in this work can be adopted for the development of other live-attenuated vaccines.

  7. Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity

    Directory of Open Access Journals (Sweden)

    Marcel Tongo

    2014-10-01

    Full Text Available The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.

  8. Serotyping and genotyping of HIV-1 infection in residents of Khayelitsha, Cape Town, South Africa.

    Science.gov (United States)

    Jacobs, G B; de Beer, C; Fincham, J E; Adams, V; Dhansay, M A; van Rensburg, E Janse; Engelbrecht, S

    2006-12-01

    It is estimated that between 5.5 and 6.1 million people are infected with HIV/acquired immunodeficiency syndrome (AIDS) in South Africa, with subtype C responsible for the majority of these infections. The Khayelitsha suburb of Cape Town has one of the highest HIV prevalence rates in South Africa. Overcrowding combined with unemployment and crime in parts of the area perpetuates high-risk sexual behavior, which increases exposure to infection by HIV. Against this background, the objective of this study was to characterize HIV-1 in residents confirmed to be seropositive. Serotyping was performed through a competitive enzyme-linked immunosorbent assay (cPEIA). Genotyping methods included RNA isolation followed by RT-PCR and sequencing of the gag p24, env gp41 immunodominant region (IDR), and env gp120 V3 genome regions of HIV-1. With the exception of a possible C/D recombinant strain, all HIV-1 strains were characterized as HIV-1 group M subtype C. One individual was shown to harbor multiple strains of HIV-1 subtype C. In Southern Africa, the focus has been to develop a subtype C candidate vaccine, as this is the major subtype found in this geographical area. Therefore, the spread of HIV-1 and its recombinant strains needs to be monitored closely. (c) 2006 Wiley-Liss, Inc.

  9. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update.

    Science.gov (United States)

    Hamid, Faysal Bin; Kim, Jinsun; Shin, Cha-Gyun

    2017-02-16

    Reverse transcription of viral RNA and the subsequent integration of reverse transcripts are the classical early events of the HIV-1 life-cycle. Simultaneously, abundant unintegrated DNAs (uDNAs), are formed in cells ubiquitously. The uDNAs either undergo recombination or degradation or persist inactively for long periods in the nucleus as future resources. Among them, 2-LTR circles are considered a dead-end for viral spread. Their contribution to the HIV-1 infection is still poorly understood. Nevertheless, the preintegration transcription of the aberrant DNAs and the consequent alterations of cellular factors have already been reported. Since the major fate of the viral genome is to persist as episomal DNA, precise characterization is required for studying the biology of HIV-1. This review compiles the biochemical and genetic updates on uDNA in the HIV-1 life cycle and could provide direction to further study of their roles in HIV-1 replication and application in HIV-1 pathogenesis.

  10. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T., E-mail: a.t.das@amc.uva.nl

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  11. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  12. HIV-1 replication in the central nervous system occurs in two distinct cell types.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2011-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection of the central nervous system (CNS can lead to the development of HIV-1-associated dementia (HAD. We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5 T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells. Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders.

  13. An HIV-1 Replication Pathway Utilizing Reverse Transcription Products That Fail To Integrate

    Science.gov (United States)

    Trinité, Benjamin; Ohlson, Eric C.; Voznesensky, Igor; Rana, Shashank P.; Chan, Chi N.; Mahajan, Saurabh; Alster, Jason; Burke, Sean A.; Wodarz, Dominik

    2013-01-01

    Integration is a central event in the replication of retroviruses, yet ≥90% of HIV-1 reverse transcripts fail to integrate, resulting in accumulation of unintegrated viral DNA in cells. However, understanding what role, if any, unintegrated viral DNA plays in the natural history of HIV-1 has remained elusive. Unintegrated HIV-1 DNA is reported to possess a limited capacity for gene expression restricted to early gene products and is considered a replicative dead end. Although the majority of peripheral blood CD4+ T cells are refractory to infection, nonactivated CD4 T cells present in lymphoid and mucosal tissues are major targets for infection. Treatment with cytokine interleukin-2 (IL-2), IL-4, IL-7, or IL-15 renders CD4+ T cells permissive to HIV-1 infection in the absence of cell activation and proliferation and provides a useful model for infection of resting CD4+ T cells. We found that infection of cytokine-treated resting CD4+ T cells in the presence of raltegravir or with integrase active-site mutant HIV-1 yielded de novo virus production following subsequent T cell activation. Infection with integration-competent HIV-1 naturally generated a population of cells generating virus from unintegrated DNA. Latent infection persisted for several weeks and could be activated to virus production by a combination of a histone deacetylase inhibitor and a protein kinase C activator or by T cell activation. HIV-1 Vpr was essential for unintegrated HIV-1 gene expression and de novo virus production in this system. Bypassing integration by this mechanism may allow the preservation of genetic information that otherwise would be lost. PMID:24049167

  14. Genetic association of IL-10 gene promoter polymorphism and HIV-1 infection in North Indians.

    Science.gov (United States)

    Chatterjee, Animesh; Rathore, Anurag; Sivarama, P; Yamamoto, Naohiko; Dhole, Tapan N

    2009-01-01

    Cytokines play a significant role in host immune defense. IL-10 is an anti-inflammatory, immunomodulatory cytokine that can both stimulate and suppress the immune response and inhibits HIV-1 replication in vivo. Interindividual variations in IL-10 production were genetically contributed to polymorphisms within IL-10 promoter region. The aim of this study was to investigate the association of IL-10 gene promoter -1082 G/A, -819 C/T, and 592 C/A polymorphism on HIV-1 transmission /progression in North Indian individuals. A total of 180 HIV-1 seropositive (HSP) stratified on the basis of disease severity (stage I, II, and III), 50 HIV-1 exposed seronegative (HES) and 305 HIV-1 seronegative (HSN) individuals were genotyped for IL-10 gene promoter by polymerase chain reaction-restriction fragment length polymorphism. A suggestive evidence of association was obtained for IL-10 592 C/A promoter polymorphism at the level of allele and genotype distribution. The frequency of IL-10 592 A allele and genotype was significantly increased in HSP compared to HSN (p = 0.013; OR = 1.412 and p = 0.034; OR = 1.685 respectively). Further comparison in between different clinical stages of HIV-1 infected patients of IL-10 592 A allele and genotype revealed a significant increase in its frequency in the stage III compared with those together in stage I (p = 0.004, OR = 2.181 and p = 0.002, OR = 4.156, respectively). This study reports for the first time that IL-10 gene promoter 592 C/A polymorphism may be a risk factor for HIV-1 transmission/progression in HIV-1 infected North Indian individuals.

  15. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Kløverpris, Henrik; Jensen, Kristoffer Jarlov

    2012-01-01

    The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design...... of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted...... from conserved regions of HIV-1 that were subdominant (i.e., infrequently targeted) within natural infections. Moreover, the epitopes were predicted to be restricted to at least one of the five common HLA supertypes (HLA-A01, A02, A03, B07, and B44). Here, we validated the resulting peptide...

  16. Host factors in HIV-1 replication: The good, the bad and the ugly

    NARCIS (Netherlands)

    Booiman, T.

    2015-01-01

    The ability of HIV-1 to replicate in its target cells is influenced by numerous host factors that act on different steps of the viral replication cycle. The effects of these host factors on the replication cycle can be cell type specific and they can either support or restrict viral replication.

  17. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication.

    Science.gov (United States)

    Stoltzfus, C Martin

    2009-01-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNA species, both completely and incompletely spliced, are produced by alternative splicing of the primary viral RNA transcript. In addition, about half of the viral RNA remains unspliced and is transported to the cytoplasm where it is used both as mRNA and as genomic RNA. In general, the identities of the completely and incompletely spliced HIV-1 mRNA species are determined by the proximity of the open reading frames to the 5'-end of the mRNAs. The relative abundance of the mRNAs encoding the HIV-1 gene products is determined by the frequency of splicing at the different alternative 3'-splice sites. This chapter will highlight studies showing how HIV-1 uses exon definition to control the level of splicing at each of its 3'-splice sites through a combination of positively acting exonic splicing enhancer (ESE) elements, negatively acting exonic and intronic splicing silencer elements (ESS and ISS elements, respectively), and the 5'-splice sites of the regulated exons. Each of these splicing elements represent binding sites for cellular factors whose levels in the infected cell can determine the dominance of the positive or negative elements on HIV-1 alternative splicing. Both mutations of HIV-1 splicing elements and overexpression or inhibition of cellular splicing factors that bind to these elements have been used to show that disruption of regulated splicing inhibits HIV-1 replication. These studies have provided strong rationale for the investigation and development of antiviral drugs that specifically inhibit HIV-1 RNA splicing.

  18. A New Class of Multimerization Selective Inhibitors of HIV-1 Integrase

    Science.gov (United States)

    Sharma, Amit; Slaughter, Alison; Jena, Nivedita; Feng, Lei; Kessl, Jacques J.; Fadel, Hind J.; Malani, Nirav; Male, Frances; Wu, Li; Poeschla, Eric; Bushman, Frederic D.; Fuchs, James R.; Kvaratskhelia, Mamuka

    2014-01-01

    The quinoline-based allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are promising candidates for clinically useful antiviral agents. Studies using these compounds have highlighted the role of IN in both early and late stages of virus replication. However, dissecting the exact mechanism of action of the quinoline-based ALLINIs has been complicated by the multifunctional nature of these inhibitors because they both inhibit IN binding with its cofactor LEDGF/p75 and promote aberrant IN multimerization with similar potencies in vitro. Here we report design of small molecules that allowed us to probe the role of HIV-1 IN multimerization independently from IN-LEDGF/p75 interactions in infected cells. We altered the rigid quinoline moiety in ALLINIs and designed pyridine-based molecules with a rotatable single bond to allow these compounds to bridge between interacting IN subunits optimally and promote oligomerization. The most potent pyridine-based inhibitor, KF116, potently (EC50 of 0.024 µM) blocked HIV-1 replication by inducing aberrant IN multimerization in virus particles, whereas it was not effective when added to target cells. Furthermore, KF116 inhibited the HIV-1 IN variant with the A128T substitution, which confers resistance to the majority of quinoline-based ALLINIs. A genome-wide HIV-1 integration site analysis demonstrated that addition of KF116 to target or producer cells did not affect LEDGF/p75-dependent HIV-1 integration in host chromosomes, indicating that this compound is not detectably inhibiting IN-LEDGF/p75 binding. These findings delineate the significance of correctly ordered IN structure for HIV-1 particle morphogenesis and demonstrate feasibility of exploiting IN multimerization as a therapeutic target. Furthermore, pyridine-based compounds present a novel class of multimerization selective IN inhibitors as investigational probes for HIV-1 molecular biology. PMID:24874515

  19. Cross-Reactivity of Anti-HIV-1 T Cell Immune Responses among the Major HIV-1 Clades in HIV-1-Positive Individuals from 4 Continents

    National Research Council Canada - National Science Library

    Paul M. Coplan; Swati B. Gupta; Sheri A. Dubey; Punnee Pitisuttithum; Alex Nikas; Bernard Mbewe; Efthyia Vardas; Mauro Schechter; Esper G. Kallas; Dan C. Freed; Tong-Ming Fu; Christopher T. Mast; Pilaipan Puthavathana; James Kublin; Kelly Brown Collins; John Chisi; Richard Pendame; Scott J. Thaler; Glenda Gray; James Mcintyre; Walter L. Straus; Jon H. Condra; Devan V. Mehrotra; Harry A. Guess; Emilio A. Emini; John W. Shiver

    2005-01-01

    .... Therefore, we quantified the cross-clade reactivity, among unvaccinated individuals, of anti-HIV-1 T cell responses to the infecting HIV-1 clade relative to other major circulating clades. Methods...

  20. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  1. Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms

    Science.gov (United States)

    Harper, Michael S.; Guo, Kejun; Gibbert, Kathrin; Lee, Eric J.; Dillon, Stephanie M.; Barrett, Bradley S.; McCarter, Martin D.; Hasenkrug, Kim J.; Dittmer, Ulf; Wilson, Cara C.; Santiago, Mario L.

    2015-01-01

    HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies. PMID:26529416

  2. Lack of association between intact/deletion polymorphisms of the APOBEC3B gene and HIV-1 risk.

    Directory of Open Access Journals (Sweden)

    Mayumi Imahashi

    Full Text Available The human APOBEC3 family of proteins potently restricts HIV-1 replication APOBEC3B, one of the family genes, is frequently deleted in human populations. Two previous studies reached inconsistent conclusions regarding the effects of APOBEC3B loss on HIV-1 acquisition and pathogenesis. Therefore, it was necessary to verify the effects of APOBEC3B on HIV-1 infection in vivo.Intact (I and deletion (D polymorphisms of APOBEC3B were analyzed using PCR. The syphilis, HBV and HCV infection rates, as well as CD4(+ T cell counts and viral loads were compared among three APOBEC3B genotype groups (I/I, D/I, and D/D. HIV-1 replication kinetics was assayed in vitro using primary cells derived from PBMCs.A total of 248 HIV-1-infected Japanese men who have sex with men (MSM patients and 207 uninfected Japanese MSM were enrolled in this study. The genotype analysis revealed no significant differences between the APOBEC3B genotype ratios of the infected and the uninfected cohorts (p = 0.66. In addition, HIV-1 disease progression parameters were not associated with the APOBEC3B genotype. Furthermore, the PBMCs from D/D and I/I subjects exhibited comparable HIV-1 susceptibility.Our analysis of a population-based matched cohort suggests that the antiviral mechanism of APOBEC3B plays only a negligible role in eliminating HIV-1 in vivo.

  3. Sequence and structure requirements for specific recognition of HIV-1 TAR and DIS RNA by the HIV-1 Vif protein.

    Science.gov (United States)

    Freisz, Séverine; Mezher, Joelle; Hafirassou, Lamine; Wolff, Philippe; Nominé, Yves; Romier, Christophe; Dumas, Philippe; Ennifar, Eric

    2012-07-01

    The HIV-1 Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion and in vivo pathogenesis. Vif neutralizes the human DNA-editing enzyme APOBEC3 protein, an antiretroviral cellular factor from the innate immune system, allowing the virus to escape the host defence system. It was shown that Vif is packaged into viral particles through specific interactions with the viral genomic RNA. Conserved and structured sequences from the 5'-noncoding region, such as the Tat-responsive element (TAR) or the genomic RNA dimerization initiation site (DIS), are primary binding sites for Vif. In the present study we used isothermal titration calorimetry to investigate sequence and structure determinants important for Vif binding to short viral RNA corresponding to TAR and DIS stem-loops. We showed that Vif specifically binds TAR and DIS in the low nanomolar range. In addition, Vif primarily binds the TAR UCU bulge, but not the apical loop. Determinants for Vif binding to the DIS loop-loop complex are likely more complex and involve the self-complementary loop together with the upper part of the stem. These results suggest that Tat-TAR inhibitors or DIS small molecule binders might be also effective to disturb Vif-TAR and Vif-DIS binding in order to reduce Vif packaging into virions.

  4. Whole-Genome Restriction Mapping by "Subhaploid"-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding.

    Science.gov (United States)

    Dou, Jinzhuang; Dou, Huaiqian; Mu, Chuang; Zhang, Lingling; Li, Yangping; Wang, Jia; Li, Tianqi; Li, Yuli; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2017-07-01

    Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based "in vitro" linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of "subhaploid" fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6-14 kb), with up to 15-fold improvement of N50 (∼816 kb-3.7 Mb) and high scaffolding accuracy (98.1-98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies. Copyright © 2017 Dou et al.

  5. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission

    NARCIS (Netherlands)

    Zarrabi, N.; Prosperi, M.; Belleman, R.G.; Colafigli, M.; De Luca, A.; Sloot, P.M.A.

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current

  6. Common genetic variation and the control of HIV-1 in humans

    DEFF Research Database (Denmark)

    Fellay, J.; Ge, D.; Shianna, K.V.

    2009-01-01

    To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. ...

  7. A suicide gene approach using the human pro-apoptotic protein tBid inhibits HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Gueckel Eva

    2011-01-01

    Full Text Available Abstract Background Regulated expression of suicide genes is a powerful tool to eliminate specific subsets of cells and will find widespread usage in both basic and applied science. A promising example is the specific elimination of human immunodeficiency virus type 1 (HIV-1 infected cells by LTR-driven suicide genes. The success of this approach, however, depends on a fast and effective suicide gene, which is expressed exclusively in HIV-1 infected cells. These preconditions have not yet been completely fulfilled and, thus, success of suicide approaches has been limited so far. We tested truncated Bid (tBid, a human pro-apoptotic protein that induces apoptosis very rapidly and efficiently, as suicide gene for gene therapy against HIV-1 infection. Results When tBid was introduced into the HIV-1 LTR-based, Tat- and Rev-dependent transgene expression vector pLRed(INS2R, very efficient induction of apoptosis was observed within 24 hours, but only in the presence of both HIV-1 regulatory proteins Tat and Rev. Induction of apoptosis was not observed in their absence. Cells containing this vector rapidly died when transfected with plasmids containing full-length viral genomic DNA, completely eliminating the chance for HIV-1 replication. Viral replication was also strongly reduced when cells were infected with HIV-1 particles. Conclusions This suicide vector has the potential to establish a safe and effective gene therapy approach to exclusively eliminate HIV-1 infected cells before infectious virus particles are released.

  8. Genomic DNA restriction endonuclease from Pasteurella multocida isolated from Indonesia, katha strain and reference strains and analysed by PFGE

    Directory of Open Access Journals (Sweden)

    Supar

    2003-10-01

    Full Text Available Pasteurella multocida strains are the causative disease agents of wide range of domestic and wild animals in Indonesia. The most important serotypes are associated with Hemorrhagic septicaemic (HS diseases in cattle and buffaloes, cholera in ducks and chickens. The HS disease associated with P. multocia in large ruminants in Indonesia is controled by killed whole cell vaccines produced by the use of P. multocida Katha strains. There is no discriminatory data of the molecular biology technique has been applied to investigate P. multocida isolates from different geographic locations in Indonesia. The purpose of this studies were to observe the genetic diversity among P. multocida isolated from various geograpic locations and compared with Katha vaccine strain and other reference strains. A total samples of 38 isolates and strains of P. multocida were analysed by means of pulsed-field gel electrophoresis (PFGE. Each sample was grown in nutrient broth, cells were separeted by centrifugation. Whole cell pellet was mixed with agarose and then prepared agarose plugs. The genomic DNA of each sample was digested in situ (plug with either restriction endonuclease of ApaI and/or BamHI. The digested genomic DNA of each sample was analysed by PFGE, the genomic DNA restricted profile of each sample was compared with others. The use of ApaI restriction endonuclease digestion and analysed by PFGE, demonstrated that 34 out of 38 P. multocia samples could be differentiated into 16 ApaI types, whereas based on the BamHI digestion of these samples were differentiated into 20 BamHI types. Genomic DNA restriction pattern of Indonesian P. multocida isolates originated from cattle and buffaloes associated with haemorrhagic septicaemic diseases demonstrated different pattern to those of vaccine Katha strain, poultry strains as well as the reference strains currenly kept at Balitvet Culture Collection (BCC unit. Two P. multocida isolates derived from ducks with cholera

  9. Viral linkage in HIV-1 seroconverters and their partners in an HIV-1 prevention clinical trial.

    Directory of Open Access Journals (Sweden)

    Mary S Campbell

    2011-03-01

    Full Text Available Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519 was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners.We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of ≥ 50%. Adjudicators classified each seroconversion, finding 108 (71.5% linked, 40 (26.5% unlinked, and 3 (2.0% indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%. Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters.In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner

  10. Epidemiology of HIV-1 and emerging problems

    NARCIS (Netherlands)

    Lukashov, V. V.; de Ronde, A.; de Jong, J. J.; Goudsmit, J.

    2000-01-01

    Broad use of antiretroviral drugs is becoming a factor that is important to consider for understanding the HIV-1 epidemiology. Since 1993, we observe that a proportion of new infections within major risk groups in Amsterdam is caused by azidothymidine (AZT)-resistant viruses. After the introduction

  11. HIV-1 transcription and latency: an update.

    Science.gov (United States)

    Van Lint, Carine; Bouchat, Sophie; Marcello, Alessandro

    2013-06-26

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.

  12. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Unknown

    Erichsen D, Lopez A L, Peng H, Niemann D, Williams C,. Bauer M, Morgello S, Cotter R L, Ryan L A, Ghorpade A,. Gendelman H E and Zheng J 2003 Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia; J. Neu- roimmunol. 138 144–155. Enting R H, Hoetelmans R M, Lange J M, Burger D M and.

  13. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological ...

  14. Epigenetic heterogeneity in HIV-1 latency establishment.

    Science.gov (United States)

    Matsuda, Yuka; Kobayashi-Ishihara, Mie; Fujikawa, Dai; Ishida, Takaomi; Watanabe, Toshiki; Yamagishi, Makoto

    2015-01-09

    Despite prolonged antiretroviral therapy, HIV-1 persists as transcriptionally inactive proviruses. The HIV-1 latency remains a principal obstacle in curing AIDS. It is important to understand mechanisms by which HIV-1 latency is established to make the latent reservoir smaller. We present a molecular characterization of distinct populations at an early phase of infection. We developed an original dual-color reporter virus to monitor LTR kinetics from establishment to maintenance stage. We found that there are two ways of latency establishment i.e., by immediate silencing and slow inactivation from active infection. Histone covalent modifications, particularly polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation, appeared to dominate viral transcription at the early phase. PRC2 also contributes to time-dependent LTR dormancy in the chronic phase of the infection. Significant differences in sensitivity against several stimuli were observed between these two distinct populations. These results will expand our understanding of heterogeneous establishment of HIV-1 latency populations.

  15. Enteric viruses in HIV-1 seropositive and HIV-1 seronegative children with diarrheal diseases in Brazil

    Science.gov (United States)

    Rocha, Monica Simões; Fumian, Tulio Machado; Maranhão, Adriana Gonçalves; de Assis, Rosane Maria; Xavier, Maria da Penha Trindade Pinheiro; Rocha, Myrna Santos; Miagostovich, Marize Pereira; Leite, José Paulo Gagliardi; Volotão, Eduardo de Mello

    2017-01-01

    Diarrheal diseases (DD) have distinct etiological profiles in immune-deficient and immune-competent patients. This study compares detection rates, genotype distribution and viral loads of different enteric viral agents in HIV-1 seropositive (n = 200) and HIV-1 seronegative (n = 125) children hospitalized with DD in Rio de Janeiro, Brazil. Except for group A rotavirus (RVA), which were detected through enzyme immunoassay, the other enteric viruses (norovirus [NoV], astrovirus [HAstV], adenovirus [HAdV] and bocavirus [HBoV]) were detected through PCR or RT-PCR. A quantitative PCR was performed for RVA, NoV, HAstV, HAdV and HBoV. Infections with NoV (19% vs. 9.6%; p<0.001), HBoV (14% vs. 7.2%; p = 0.042) and HAdV (30.5% vs. 14.4%; p<0.001) were significantly more frequent among HIV-1 seropositive children. RVA was significantly less frequent among HIV-1 seropositive patients (6.5% vs. 20%; p<0.001). Similarly, frequency of infection with HAstV was lower among HIV-1 seropositive children (5.5% vs. 12.8%; p = 0.018). Among HIV-1 seropositive children 33 (16.5%) had co-infections, including three enteric viruses, such as NoV, HBoV and HAdV (n = 2) and NoV, HAstV and HAdV (n = 2). The frequency of infection with more than one virus was 17 (13.6%) in the HIV-1 negative group, triple infection (NoV + HAstV + HBoV) being observed in only one patient. The median viral load of HAstV in feces was significantly higher among HIV-1 positive children compared to HIV-1 negative children. Concerning children infected with RVA, NoV, HBoV and HAdV, no statistically significant differences were observed in the medians of viral loads in feces, comparing HIV-1 seropositive and HIV-1 seronegative children. Similar detection rates were observed for RVA, HAstV and HAdV, whilst NoV and HBoV were significantly more prevalent among children with CD4+ T lymphocyte count below 200 cells/mm3. Enteric viruses should be considered an important cause of DD in HIV-1 seropositive children, along with

  16. Enteric viruses in HIV-1 seropositive and HIV-1 seronegative children with diarrheal diseases in Brazil.

    Directory of Open Access Journals (Sweden)

    Silvana Augusta Rodrigues Portes

    Full Text Available Diarrheal diseases (DD have distinct etiological profiles in immune-deficient and immune-competent patients. This study compares detection rates, genotype distribution and viral loads of different enteric viral agents in HIV-1 seropositive (n = 200 and HIV-1 seronegative (n = 125 children hospitalized with DD in Rio de Janeiro, Brazil. Except for group A rotavirus (RVA, which were detected through enzyme immunoassay, the other enteric viruses (norovirus [NoV], astrovirus [HAstV], adenovirus [HAdV] and bocavirus [HBoV] were detected through PCR or RT-PCR. A quantitative PCR was performed for RVA, NoV, HAstV, HAdV and HBoV. Infections with NoV (19% vs. 9.6%; p<0.001, HBoV (14% vs. 7.2%; p = 0.042 and HAdV (30.5% vs. 14.4%; p<0.001 were significantly more frequent among HIV-1 seropositive children. RVA was significantly less frequent among HIV-1 seropositive patients (6.5% vs. 20%; p<0.001. Similarly, frequency of infection with HAstV was lower among HIV-1 seropositive children (5.5% vs. 12.8%; p = 0.018. Among HIV-1 seropositive children 33 (16.5% had co-infections, including three enteric viruses, such as NoV, HBoV and HAdV (n = 2 and NoV, HAstV and HAdV (n = 2. The frequency of infection with more than one virus was 17 (13.6% in the HIV-1 negative group, triple infection (NoV + HAstV + HBoV being observed in only one patient. The median viral load of HAstV in feces was significantly higher among HIV-1 positive children compared to HIV-1 negative children. Concerning children infected with RVA, NoV, HBoV and HAdV, no statistically significant differences were observed in the medians of viral loads in feces, comparing HIV-1 seropositive and HIV-1 seronegative children. Similar detection rates were observed for RVA, HAstV and HAdV, whilst NoV and HBoV were significantly more prevalent among children with CD4+ T lymphocyte count below 200 cells/mm3. Enteric viruses should be considered an important cause of DD in HIV-1 seropositive children, along

  17. NMR Studies of the Structure and Function of the HIV-1 5′-Leader

    Directory of Open Access Journals (Sweden)

    Sarah C. Keane

    2016-12-01

    Full Text Available The 5′-leader of the human immunodeficiency virus type 1 (HIV-1 genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  18. NMR Studies of the Structure and Function of the HIV-1 5'-Leader.

    Science.gov (United States)

    Keane, Sarah C; Summers, Michael F

    2016-12-21

    The 5'-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5'-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  19. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies.

    Directory of Open Access Journals (Sweden)

    Susanne Eriksson

    2013-02-01

    Full Text Available HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART. The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy

  20. The Application of Restriction Landmark Genome Scanning Method for Surveillance of Non-Mendelian Inheritance in F1 Hybrids

    Directory of Open Access Journals (Sweden)

    Tomoko Takamiya

    2009-01-01

    Full Text Available We analyzed inheritance of DNA methylation in reciprocal F1 hybrids (subsp. japonica cv. Nipponbare × subsp. indica cv. Kasalath of rice (Oryza sativa L. using restriction landmark genome scanning (RLGS, and detected differing RLGS spots between the parents and reciprocal F1 hybrids. MspI/HpaII restriction sites in the DNA from these different spots were suspected to be heterozygously methylated in the Nipponbare parent. These spots segregated in F1 plants, but did not segregate in selfed progeny of Nipponbare, showing non-Mendelian inheritance of the methylation status. As a result of RT-PCR and sequencing, a specific allele of the gene nearest to the methylated sites was expressed in reciprocal F1 plants, showing evidence of biased allelic expression. These results show the applicability of RLGS for scanning of non-Mendelian inheritance of DNA methylation and biased allelic expression.

  1. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes.

    Directory of Open Access Journals (Sweden)

    Ashok Chauhan

    Full Text Available Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase and TRBP (anti-PKR in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.

  2. Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication.

    Science.gov (United States)

    Tekeste, Shewit S; Wilkinson, Thomas A; Weiner, Ethan M; Xu, Xiaowen; Miller, Jennifer T; Le Grice, Stuart F J; Clubb, Robert T; Chow, Samson A

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts

  3. Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1.

    Science.gov (United States)

    Khamaikawin, Wannisa; Shimizu, Saki; Kamata, Masakazu; Cortado, Ruth; Jung, Yujin; Lam, Jennifer; Wen, Jing; Kim, Patrick; Xie, Yiming; Kim, Sanggu; Arokium, Hubert; Presson, Angela P; Chen, Irvin S Y; An, Dong Sung

    2018-06-15

    Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting.

  4. Exploring the Complexity of the HIV-1 Fitness Landscape

    Science.gov (United States)

    Kouyos, Roger D.; Leventhal, Gabriel E.; Hinkley, Trevor; Haddad, Mojgan; Whitcomb, Jeannette M.; Petropoulos, Christos J.; Bonhoeffer, Sebastian

    2012-01-01

    Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place. PMID:22412384

  5. Exploring the complexity of the HIV-1 fitness landscape.

    Directory of Open Access Journals (Sweden)

    Roger D Kouyos

    Full Text Available Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects or in combination with other mutations (epistasis is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.

  6. Primary T-lymphocytes rescue the replication of HIV-1 DIS RNA mutants in part by facilitating reverse transcription.

    Science.gov (United States)

    Jones, Kate L; Sonza, Secondo; Mak, Johnson

    2008-03-01

    The dimerization initiation site (DIS) stem-loop within the HIV-1 RNA genome is vital for the production of infectious virions in T-cell lines but not in primary cells. In comparison to peripheral blood mononuclear cells (PBMCs), which can support the replication of both wild type and HIV-1 DIS RNA mutants, we have found that DIS RNA mutants are up to 100 000-fold less infectious than wild-type HIV-1 in T-cell lines. We have also found that the cell-type-dependent replication of HIV-1 DIS RNA mutants is largely producer cell-dependent, with mutants displaying a greater defect in viral cDNA synthesis when viruses were not derived from PBMCs. While many examples exist of host-pathogen interplays that are mediated via proteins, analogous examples which rely on nucleic acid triggers are limited. Our data provide evidence to illustrate that primary T-lymphocytes rescue, in part, the replication of HIV-1 DIS RNA mutants through mediating the reverse transcription process in a cell-type-dependent manner. Our data also suggest the presence of a host cell factor that acts within the virus producer cells. In addition to providing an example of an RNA-mediated cell-type-dependent block to viral replication, our data also provides evidence which help to resolve the dilemma of how HIV-1 genomes with mismatched DIS sequences can recombine to generate chimeric viral RNA genomes.

  7. Identification of Acute HIV-1 Infection by Hologic Aptima HIV-1 RNA Qualitative Assay

    Science.gov (United States)

    Eller, Leigh Anne; Malia, Jennifer; Jagodzinski, Linda L.; Trichavaroj, Rapee; Oundo, Joseph; Lueer, Cornelia; Cham, Fatim; de Souza, Mark; Michael, Nelson L.; Robb, Merlin L.; Peel, Sheila A.

    2017-01-01

    ABSTRACT The Hologic Aptima HIV-1 Qualitative RNA assay was used in a rigorous screening approach designed to identify individuals at the earliest stage of HIV-1 infection for enrollment into subsequent studies of cellular and viral events in early infection (RV 217/Early Capture HIV Cohort [ECHO] study). Volunteers at high risk for HIV-1 infection were recruited from study sites in Thailand, Tanzania, Uganda, and Kenya with high HIV-1 prevalence rates among the populations examined. Small-volume blood samples were collected by finger stick at twice-weekly intervals and tested with the Aptima assay. Participants with reactive Aptima test results were contacted immediately for entry into a more comprehensive follow-up schedule with frequent blood draws. Evaluation of the Aptima test prior to use in this study showed a detection sensitivity of 5.5 copies/ml (50%), with all major HIV-1 subtypes detected. A total of 54,306 specimens from 1,112 volunteers were examined during the initial study period (August 2009 to November 2010); 27 individuals were identified as converting from uninfected to infected status. A sporadic reactive Aptima signal was observed in HIV-1-infected individuals under antiretroviral therapy. Occasional false-reactive Aptima results in uninfected individuals, or nonreactive results in HIV-1-infected individuals not on therapy, were observed and used to calculate assay sensitivity and specificity. The sensitivity and specificity of the Aptima assay were 99.03% and 99.23%, respectively; positive and negative predictive values were 92.01% and 99.91%, respectively. Conversion from HIV-1-uninfected to -infected status was rapid, with no evidence of a prolonged period of intermittent low-level viremia. PMID:28424253

  8. Role of raltegravir in the management of HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Okeke NL

    2011-07-01

    Full Text Available N Lance Okeke1, Charles Hicks21Duke University Medical Center, Department of Hospital Medicine, Durham Regional Hospital, Durham, North Carolina, USA; 2Duke University School of Medicine, Durham, NC, USAAbstract: The development of multiple agents with potent antiretroviral activity against HIV has ushered in a new age of optimism in the management of patients infected with the virus. However, the viruses’ dynamic ability to develop resistance against these agents necessitates the investigation of novel targets for viral suppression. Raltegravir represents a first-in-class agent targeting the HIV integrase enzyme, which is responsible for integration of virally encoded DNA into the host genome. Over the last 5 years, clinical trials data has demonstrated an increasing role for raltegravir in the management of both treatment-experienced and treatment-naïve HIV-1-infected patients. This review focuses on the evidence supporting raltegravir’s efficacy in an array of clinical settings. Other HIV-1 integrase inhibitors in development are also briefly discussed.Keywords: HIV, antiretroviral therapy, raltegravir 

  9. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  10. HIV-1 Group P is unable to antagonize human tetherin by Vpu, Env or Nef

    Directory of Open Access Journals (Sweden)

    Sauter Daniel

    2011-12-01

    Full Text Available Abstract Background A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317 suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans. Results Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression. Conclusions Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.

  11. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Directory of Open Access Journals (Sweden)

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  12. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Science.gov (United States)

    Huang, Li; Ho, Phong; Yu, Jie; Zhu, Lei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2011-01-01

    Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  13. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller

    Science.gov (United States)

    Freund, Natalia T.; Wang, Haoqing; Scharf, Louise; Nogueira, Lilian; Horwitz, Joshua A.; Bar-On, Yotam; Golijanin, Jovana; Sievers, Stuart A.; Sok, Devin; Cai, Hui; Cesar Lorenzi, Julio C.; Halper-Stromberg, Ariel; Toth, Ildiko; Piechocka-Trocha, Alicja; Gristick, Harry B.; van Gils, Marit J.; Sanders, Rogier W.; Wang, Lai-Xi; Seaman, Michael S.; Burton, Dennis R.; Gazumyan, Anna; Walker, Bruce D.; West, Anthony P.; Bjorkman, Pamela J.; Nussenzweig, Michel C.

    2017-01-01

    Some HIV-1–infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting non-overlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5%(31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual’s serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2–infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection. PMID:28100831

  14. Transplanting supersites of HIV-1 vulnerability.

    Directory of Open Access Journals (Sweden)

    Tongqing Zhou

    Full Text Available One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env of the human immunodeficiency virus type 1 (HIV-1 involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of "supersite transplants", capable of binding (and potentially eliciting antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2 on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3 on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼ 25 Env residues, can be

  15. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load

    NARCIS (Netherlands)

    McLaren, Paul J; Coulonges, Cedric; Bartha, István; Lenz, Tobias L; Deutsch, Aaron J; Bashirova, Arman; Buchbinder, Susan; Carrington, Mary N; Cossarizza, Andrea; Dalmau, Judith; De Luca, Andrea; Goedert, James J; Gurdasani, Deepti; Haas, David W; Herbeck, Joshua T; Johnson, Eric O; Kirk, Gregory D; Lambotte, Olivier; Luo, Ma; Mallal, Simon; van Manen, Daniëlle; Martinez-Picado, Javier; Meyer, Laurence; Miro, José M; Mullins, James I; Obel, Niels; Poli, Guido; Sandhu, Manjinder S; Schuitemaker, Hanneke; Shea, Patrick R; Theodorou, Ioannis; Walker, Bruce D; Weintrob, Amy C; Winkler, Cheryl A; Wolinsky, Steven M; Raychaudhuri, Soumya; Goldstein, David B; Telenti, Amalio; de Bakker, Paul I W; Zagury, Jean-François; Fellay, Jacques

    2015-01-01

    Previous genome-wide association studies (GWAS) of HIV-1-infected populations have been underpowered to detect common variants with moderate impact on disease outcome and have not assessed the phenotypic variance explained by genome-wide additive effects. By combining the majority of available

  16. HIV-1 pol diversity among female bar and hotel workers in Northern Tanzania.

    Science.gov (United States)

    Kiwelu, Ireen E; Novitsky, Vladimir; Kituma, Elimsaada; Margolin, Lauren; Baca, Jeannie; Manongi, Rachel; Sam, Noel; Shao, John; McLane, Mary F; Kapiga, Saidi H; Essex, M

    2014-01-01

    A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5-20) in samples collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9% and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1, U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1 drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1 drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART program. With increasing use of ARV, these results highlight the importance of drug

  17. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.

    Science.gov (United States)

    Baumgärtel, Viola; Müller, Barbara; Lamb, Don C

    2012-05-01

    Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.

  18. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R. (Tumaini); (NIH); (Duke); (Kilimanjaro Repro.); (IAVI)

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  19. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    Science.gov (United States)

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  1. Dual role of autophagy in HIV-1 replication and pathogenesis

    Directory of Open Access Journals (Sweden)

    Killian M

    2012-05-01

    Full Text Available Abstract Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear to disrupt autophagy in uninfected cells, thereby contributing to CD4+ cell death and HIV-1 pathogenesis. These observations allow for new approaches for the treatment and possibly the prevention of HIV-1 infection. This review focuses on the relationship between autophagy and HIV-1 infection. Discussed is how autophagy plays dual roles in HIV-1 replication and HIV-1 disease progression.

  2. KIF5B and Nup358 Cooperatively Mediate the Nuclear Import of HIV-1 during Infection.

    Directory of Open Access Journals (Sweden)

    Adarsh Dharan

    2016-06-01

    Full Text Available Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D or the cyclophilin A binding loop (P90A is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6, but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection.

  3. Intestinal microbiota and HIV-1 infection

    Directory of Open Access Journals (Sweden)

    E. B. S. M. Trindade

    2007-01-01

    Full Text Available The intestinal microbiota consists of a qualitatively and quantitatively diverse range of microorganisms dynamically interacting with the host. It is remarkably stable with regard to the presence of microorganisms and their roles which, however, can be altered due to pathological conditions, diet composition, gastrointestinal disturbances and/or drug ingestion. The present review aimed at contributing to the discussion about changes in the intestinal microbiota due to HIV-1 infection, focusing on the triad infection-microbiota-nutrition as factors that promote intestinal bacterial imbalance. Intestinal microbiota alterations can be due to the HIV-1 infection as a primary factor or the pharmacotherapy employed, or they can be one of the consequences of the disease.

  4. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  5. Aichi Virus Positivity in HIV-1 Seropositive Children Hospitalized with Diarrheal Disease.

    Science.gov (United States)

    Portes, Silvana Augusta Rodrigues; de Mello Volotao, Eduardo; Rose, Tatiana Lundgren; Rocha, Monica Simoes; Trindade Pinheiro Xavier, Maria da Penha; de Assis, Rosane Maria; Fialho, Alexandre Madi; Rocha, Myrna Santos; Miagostovich, Marize Pereira; Gagliardi Leite, Jose Paulo; Carvalho-Costa, Filipe Anibal

    2015-01-01

    Aichi viruses (AiV) have been detected in patients with diarrheal diseases (DD). The aim of this study was to assess AiV infection rates in hospitalized children with DD, including 123 HIV-1 seropositive and 125 HIV-1 seronegative patients, in two public pediatric hospitals in Rio de Janeiro, Brazil. AiV was investigated by nested RT-PCR. The AiV-positive samples were also tested for specie A rotavirus, norovirus, astrovirus, enteric adenovirus and bocavirus in order to assess co-infections. AiV parcial genome sequencing and phylogenetic analyses were performed. AiV were detected in 9/123 (7.32%) of the HIV-1 seropositive subjects and 1/125 (0.8%) of the HIV seronegative patients with DD (p = 0.019). The phylogenetic analysis of positive samples disclosed that: i) 13 samples were characterized as genotype A, with one of them being from the HIV-1 seronegative patient; ii) one sample from a HIV-1 seropositive patient was characterized as genotype B. AiV genotype A was grouped into 3 genetic clusters. Data suggest that AiV may be an opportunistic pathogen infecting children with AIDS and DD.

  6. Immune regulator ABIN1 suppresses HIV-1 transcription by negatively regulating the ubiquitination of Tat.

    Science.gov (United States)

    Chen, Shiyou; Yang, Xiaodan; Cheng, Weijia; Ma, Yuhong; Shang, Yafang; Cao, Liu; Chen, Shuliang; Chen, Yu; Wang, Min; Guo, Deyin

    2017-02-13

    A20-binding inhibitor of NF-κB activation (ABIN1), an important immune regulator, was previously shown to be involved in HIV-1 replication. However, the reported studies done with overexpressed ABIN1 provided controversial results. Here we identified ABIN1 as a suppressor of HIV-1 transcription since transient knockdown of ABIN1 led to increased HIV-1 replication both in transformed Jurkat T cell line and in primary human CD4+ T lymphocytes. Depletion of ABIN1 specifically enhanced the HIV-1 transcription from the integrated genome during viral life cycle, but not the earlier steps such as reverse transcription or integration. Immunoprecipitation assays revealed that ABIN1 specifically inhibits the proto-oncogene HDM2 catalyzed K63-linked polyubiquitination of Tat at Lys71, which is critical for the transactivation activity of Tat. The ubiquitin chain binding activity of ABIN1 carried by UBAN domain turned out to be essential for the inhibitory role of ABIN1. The results of immunofluorescence localization experiments suggested that ABIN1 may obstruct Tat ubiquitination by redistributing some of HDM2 from the nucleus to the cytoplasm. Our findings have revealed ABIN1 as intrinsic suppressor of HIV-1 mRNA transcription by regulating the ubiquitination of Tat.

  7. Combination antiretroviral therapy (cART) restores HIV-1 infection-mediated impairment of JAK-STAT signaling pathway.

    Science.gov (United States)

    Liu, Man-Qing; Zhao, Min; Kong, Wen-Hua; Tang, Li; Wang, Fang; Zhu, Ze-Rong; Wang, Xia; Qiu, Hong-Yan; Zhou, Dun-Jin; Wang, Xu; Ho, Wen-Zhe; Zhou, Wang

    2017-04-04

    JAK-STAT signaling pathway has a crucial role in host innate immunity against viral infections, including HIV-1. We therefore examined the impact of HIV-1 infection and combination antiretroviral therapy (cART) on JAK-STAT signaling pathway. Compared to age-matched healthy donors (n = 18), HIV-1-infected subjects (n = 18) prior to cART had significantly lower expression of toll-like receptors (TLR-1/4/6/7/8/9), the IFN regulatory factors (IRF-3/7/9), and the antiviral factors (OAS-1, MxA, A3G, PKR, and Tetherin). Three months' cART partially restores the impaired functions of JAK-STAT-mediated antiviral immunity. We also found most factors had significantly positive correlations (p HIV-1-infected subjects (43.86%, 75/171), and stably increased during the cART (57.31%, 98/171 after 6 months' cART). With regard to the restoration of some HIV-1 restriction factors, HIV-1-infected subjects who had CD4+ T cell counts > 350//μl responded better to cART than those with the counts HIV-1 disease.

  8. Limits on oral transmission of HIV-1.

    Science.gov (United States)

    Cohen, M S; Shugars, D C; Fiscus, S A

    2000-07-22

    This article discusses the potential of acquiring an HIV-1 infection through an oral route, with a view of offering clues for its prevention. In a study of adult animals given low concentration cell-free simian immunodeficiency virus (SIV) orally, histological examination suggested that SIV infected lymphoid tissue through the antigen-transporting crypt epithelium rather than through dendritic cells. The investigators found no evidence of acquiring SIV via the gastrointestinal tract. For humans, HIV transmission from saliva or intimate family contact seems to be extremely rare. This could be because of the low concentration of HIV-1 in saliva. A study of 40 people found that significantly less HIV was found in salivary secretions than in plasma. Another possible explanation for inefficient oral transmission might be that HIV-1 in the oropharynx is inhibited by components found in salivary secretions. Conversely, studies have noted that risk of oral transmission of HIV from contaminated breast milk and semen is higher than from saliva. Breast-feeding by an HIV-infected woman puts the baby at substantial risk of infection and receptive fellatio cannot be considered a safe sex act.

  9. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction.

    Science.gov (United States)

    Winglee, Kathryn; Manson McGuire, Abigail; Maiga, Mamoudou; Abeel, Thomas; Shea, Terrance; Desjardins, Christopher A; Diarra, Bassirou; Baya, Bocar; Sanogo, Moumine; Diallo, Souleymane; Earl, Ashlee M; Bishai, William R

    2016-01-01

    Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

  10. HIV-1 vaccine design: Learning from natural infection

    NARCIS (Netherlands)

    van den Kerkhof, T.L.G.M.

    2016-01-01

    Het humane immuundeficiëntie virus type 1 (hiv-1) is het virus dat aids veroorzaakt. Er is nog steeds geen bescherming tegen een hiv-1 infectie en de beëindiging van de wereldwijde epidemie kan waarschijnlijk alleen worden bereikt met behulp van een vaccin. Een hiv-1 vaccin zal bescherming moeten

  11. HIV-1 envelope trimer fusion proteins and their applications

    NARCIS (Netherlands)

    Sliepen, K.H.E.W.J.

    2016-01-01

    HIV-1 is a major threat to global health and a vaccine is not yet on the horizon. A successful HIV-1 vaccine should probably induce HIV-1 neutralizing antibodies that target the envelope glycoprotein (Env) trimer on the outside of the virion. A possible starting point for such a vaccine are soluble

  12. Genome-wide association study implicates PARD3B-based AIDS restriction

    NARCIS (Netherlands)

    Troyer, Jennifer L.; Nelson, George W.; Lautenberger, James A.; Chinn, Leslie; McIntosh, Carl; Johnson, Randall C.; Sezgin, Efe; Kessing, Bailey; Malasky, Michael; Hendrickson, Sher L.; Li, Guan; Pontius, Joan; Tang, Minzhong; An, Ping; Winkler, Cheryl A.; Limou, Sophie; Le Clerc, Sigrid; Delaneau, Olivier; Zagury, Jean-François; Schuitemaker, Hanneke; van Manen, Daniëlle; Bream, Jay H.; Gomperts, Edward D.; Buchbinder, Susan; Goedert, James J.; Kirk, Gregory D.; O'Brien, Stephen J.

    2011-01-01

    Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. European

  13. Transposon Mutagenesis of the Zika Virus Genome Highlights Regions Essential for RNA Replication and Restricted for Immune Evasion.

    Science.gov (United States)

    Fulton, Benjamin O; Sachs, David; Schwarz, Megan C; Palese, Peter; Evans, Matthew J

    2017-08-01

    The molecular constraints affecting Zika virus (ZIKV) evolution are not well understood. To investigate ZIKV genetic flexibility, we used transposon mutagenesis to add 15-nucleotide insertions throughout the ZIKV MR766 genome and subsequently deep sequenced the viable mutants. Few ZIKV insertion mutants replicated, which likely reflects a high degree of functional constraints on the genome. The NS1 gene exhibited distinct mutational tolerances at different stages of the screen. This result may define regions of the NS1 protein that are required for the different stages of the viral life cycle. The ZIKV structural genes showed the highest degree of insertional tolerance. Although the envelope (E) protein exhibited particular flexibility, the highly conserved envelope domain II (EDII) fusion loop of the E protein was intolerant of transposon insertions. The fusion loop is also a target of pan-flavivirus antibodies that are generated against other flaviviruses and neutralize a broad range of dengue virus and ZIKV isolates. The genetic restrictions identified within the epitopes in the EDII fusion loop likely explain the sequence and antigenic conservation of these regions in ZIKV and among multiple flaviviruses. Thus, our results provide insights into the genetic restrictions on ZIKV that may affect the evolution of this virus.IMPORTANCE Zika virus recently emerged as a significant human pathogen. Determining the genetic constraints on Zika virus is important for understanding the factors affecting viral evolution. We used a genome-wide transposon mutagenesis screen to identify where mutations were tolerated in replicating viruses. We found that the genetic regions involved in RNA replication were mostly intolerant of mutations. The genes coding for structural proteins were more permissive to mutations. Despite the flexibility observed in these regions, we found that epitopes bound by broadly reactive antibodies were genetically constrained. This finding may explain

  14. In vitro functional assessment of natural HIV-1 group M Vpu sequences using a universal priming approach.

    Science.gov (United States)

    Rahimi, Asa; Anmole, Gursev; Soto-Nava, Maribel; Escamilla-Gomez, Tania; Markle, Tristan; Jin, Steven W; Lee, Guinevere Q; Harrigan, P Richard; Bangsberg, David R; Martin, Jeffrey; Avila-Rios, Santiago; Reyes-Teran, Gustavo; Brockman, Mark A; Brumme, Zabrina L

    2017-02-01

    The HIV-1 accessory protein Vpu exhibits high inter- and intra- subtype genetic diversity that may influence Vpu function and possibly contribute to HIV-1 pathogenesis. However, scalable methods to evaluate genotype/phenotype relationships in natural Vpu sequences are limited, particularly those expressing the protein in CD4+ T-cells, the natural target of HIV-1 infection. A major impediment to assay scalability is the extensive genetic diversity within, and immediately upstream of, Vpu's initial 5' coding region, which has necessitated the design of oligonucleotide primers specific for each individual HIV-1 isolate (or subtype). To address this, we developed two universal forward primers, located in relatively conserved regions 38 and 90 bases upstream of Vpu, and a single universal reverse primer downstream of Vpu, which are predicted to cover the vast majority of global HIV-1 group M sequence diversity. We show that inclusion of up to 90 upstream bases of HIV-1 genomic sequence does not significantly influence in vitro Vpu expression or function when a Rev/Rev Response Element (RRE)-dependent expression system is used. We further assess the function of four diverse HIV-1 Vpu sequences, revealing reproducible and significant differences between them. Our approach represents a scalable option to measure the in vitro function of genetically diverse natural Vpu isolates in a CD4+ T-cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quantification of the Epitope Diversity of HIV-1-Specific Binding Antibodies by Peptide Microarrays for Global HIV-1 Vaccine Development

    OpenAIRE

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T; Barouch, Dan H.

    2014-01-01

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6,564 peptides from across...

  16. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    Science.gov (United States)

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  17. Evaluation of Xpert HIV-1 Qual assay for resolution of HIV-1 infection in samples with negative or indeterminate Geenius HIV-1/2 results.

    Science.gov (United States)

    Michaeli, Michal; Wax, Marina; Gozlan, Yael; Rakovsky, Aviya; Mendelson, Ella; Mor, Orna

    2016-03-01

    Diagnosis of HIV infection is a multistage algorithm. Following screening with 4(th) generation combination immunoassay, confirmation of HIV infection is performed with an antibody assay that differentiates HIV-1 from HIV-2 infection. In the newly updated algorithm, samples that are nonreactive or indeterminate in the differentiation assay are to be tested with an HIV-1 nucleic acid amplification (NAAT) test for resolution. Xpert HIV-1 Qual is a new NAAT assay approved for the identification of HIV infection in whole and dried blood. To assess the performance of Xpert HIV-1 Qual supplementary assay in resolving the clinical status of serum samples reactive by 4(th) generation immunoassays and indeterminate or negative by Geenius HIV-1/2 confirmatory assay. In a retrospective study, samples from 97 individuals for whom the true HIV-1 status was already known (by follow-up samples) and which were negative or indeterminate by HIV-1/2 Geenius assay were tested with Xpert Qual HIV-1 assay. Xpert Qual assay correctly classified all 97 samples from HIV-1 positive (n=49) and negative (n=48) individuals. The sensitivity and specificity of Xpert Qual when using the true HIV status as a reference were 100% (92.7-100% at 95% confidence interval [CI] and 92.6-100% at 95% CI, respectively). Applying Xpert Qual HIV-1 assay in the new HIV multi-stage diagnostic algorithm correctly classified 100% of HIV-1 infections including 49 from HIV-1 carriers who have not yet seroconverted. With this assay the total time required for acute HIV diagnosis could be significantly reduced. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sensing of HIV-1 Entry Triggers a Type I Interferon Response in Human Primary Macrophages.

    Science.gov (United States)

    Decalf, Jérémie; Desdouits, Marion; Rodrigues, Vasco; Gobert, François-Xavier; Gentili, Matteo; Marques-Ladeira, Santy; Chamontin, Célia; Mougel, Marylène; Cunha de Alencar, Bruna; Benaroch, Philippe

    2017-08-01

    Along with CD4(+) T lymphocytes, macrophages are a major cellular source of HIV-1 replication and a potential viral reservoir. Following entry and reverse transcription in macrophages, cloaking of the viral cDNA by the HIV-1 capsid limits its cytosolic detection, enabling efficient replication. However, whether incoming HIV-1 particles are sensed by macrophages prior to reverse transcription remains unclear. Here, we show that HIV-1 triggers a broad expression of interferon (IFN)-stimulated genes (ISG) in monocyte-derived macrophages within a few hours after infection. This response does not require viral reverse transcription or the presence of HIV-1 RNA within particles, but viral fusion is essential. This response is elicited by viruses carrying different envelope proteins and thus different receptors to proceed for viral entry. Expression of ISG in response to viral entry requires TBK1 activity and type I IFNs signaling. Remarkably, the ISG response is transient but affects subsequent viral spread. Together, our results shed light on an early step of HIV-1 sensing by macrophages at the level of entry, which confers an early protection through type I IFN signaling and has potential implications in controlling the infection.IMPORTANCE HIV infection is restricted to T lymphocytes and macrophages. HIV-1-infected macrophages are found in many tissues of infected patients, even under antiretroviral therapy, and are considered a viral reservoir. How HIV-1 is detected and what type of responses are elicited upon sensing remain in great part elusive. The kinetics and localization of the production of cytokines such as interferons in response to HIV is of critical importance to understanding how the infection and the immune response are established. Our study provides evidence that macrophages can detect HIV-1 as soon as it enters the cell. Interestingly, this sensing is independent of the presence of viral nucleic acids within the particles but requires their fusion

  19. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  20. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Suzanne Gartner

    -fold more HIV-1-genome-harboring T-cells, than virus-expressing ones. These phenomena have far-reaching implications, and elicit new perspectives regarding HIV pathogenesis and T-cell and hematopoietic cell development.

  1. Photochemical neutralization of HIV-1 and inhibition of HIV-1 induced syncytium formation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.E.; Utecht, R.E. [South Dakota State Univ., Brookings, SD (United States); Chanh, T.C.; Allan, J.S. [Southwest Foundation for Biomedical Research, San Antonio, TX (United States); Sogandares-Bernal, F.; Judy, M.M.; Matthews J.L. [Baylor Research Foundation, Dallas, TX (United States)

    1993-12-31

    The authors have prepared a new class of photochemically activatable antiviral compounds based on the 1,8-naphthalimide skeleton which are excited by visible (420 nm) light, and which are highly effective in causing neutralization of enveloped viruses including HIV-1, HSV-1, and VSV. One such photoactive compound, 1,14-bis-(N-hexyl-3-bromo-1,8-naphthalimid-4-yl)-1,4,11,14-tetrazatetradecane-5,10-dione (diED66Br) effectively neutralized HIV-1 in vitro at concentrations below .1{mu}M; similar results are obtained for HSV-1 and VSV. DiED66Br also effectively inhibits syncytium formation induced by cells infected with HIV-1 at doses which had no effect on normal human blood peripheral mononuclear cells. The synthesis of the photochemically active compounds and the mode of antiviral action will be discussed.

  2. Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Cutler Mary

    2010-11-01

    Full Text Available Abstract Background Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5α restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1 appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5α splice variant TRIM5δ in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction. Results We show that the interaction of BTBD1 and BTBD2 with TOP1 requires hu-TOP1 residues 236 and 237, the same residues required to enhance the infectivity of progeny virions when hu-TOP1 is expressed in AGM producer cells. Additionally, interference with the expression of BTBD2 in AGM and human 293T target cells increased their permissiveness to HIV-1 infection two- to three-fold. Conclusions These results do not exclude the possibility that BTBD2 may modestly restrict HIV-1 infection via colocation with TRIM5 variants in cytoplasmic bodies.

  3. Defining HIV-1 transmission clusters based on sequence data.

    Science.gov (United States)

    Hassan, Amin S; Pybus, Oliver G; Sanders, Eduard J; Albert, Jan; Esbjörnsson, Joakim

    2017-06-01

    : Understanding HIV-1 transmission dynamics is relevant to both screening and intervention strategies of HIV-1 infection. Commonly, HIV-1 transmission chains are determined based on sequence similarity assessed either directly from a sequence alignment or by inferring a phylogenetic tree. This review is aimed at both nonexperts interested in understanding and interpreting studies of HIV-1 transmission, and experts interested in finding the most appropriate cluster definition for a specific dataset and research question. We start by introducing the concepts and methodologies of how HIV-1 transmission clusters usually have been defined. We then present the results of a systematic review of 105 HIV-1 molecular epidemiology studies summarizing the most common methods and definitions in the literature. Finally, we offer our perspectives on how HIV-1 transmission clusters can be defined and provide some guidance based on examples from real life datasets.

  4. Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD markers in farmed Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Houston Ross D

    2012-06-01

    Full Text Available Abstract Background Restriction site-associated DNA sequencing (RAD-Seq is a genome complexity reduction technique that facilitates large-scale marker discovery and genotyping by sequencing. Recent applications of RAD-Seq have included linkage and QTL mapping with a particular focus on non-model species. In the current study, we have applied RAD-Seq to two Atlantic salmon families from a commercial breeding program. The offspring from these families were classified into resistant or susceptible based on survival/mortality in an Infectious Pancreatic Necrosis (IPN challenge experiment, and putative homozygous resistant or susceptible genotype at a major IPN-resistance QTL. From each family, the genomic DNA of the two heterozygous parents and seven offspring of each IPN phenotype and genotype was digested with the SbfI enzyme and sequenced in multiplexed pools. Results Sequence was obtained from approximately 70,000 RAD loci in both families and a filtered set of 6,712 segregating SNPs were identified. Analyses of genome-wide RAD marker segregation patterns in the two families suggested SNP discovery on all 29 Atlantic salmon chromosome pairs, and highlighted the dearth of male recombination. The use of pedigreed samples allowed us to distinguish segregating SNPs from putative paralogous sequence variants resulting from the relatively recent genome duplication of salmonid species. Of the segregating SNPs, 50 were linked to the QTL. A subset of these QTL-linked SNPs were converted to a high-throughput assay and genotyped across large commercial populations of IPNV-challenged salmon fry. Several SNPs showed highly significant linkage and association with resistance to IPN, and population linkage-disequilibrium-based SNP tests for resistance were identified. Conclusions We used RAD-Seq to successfully identify and characterise high-density genetic markers in pedigreed aquaculture Atlantic salmon. These results underline the effectiveness of RAD

  5. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice.

    Directory of Open Access Journals (Sweden)

    Guangming Li

    2014-07-01

    Full Text Available The role of plasmacytoid dendritic cells (pDC in human immunodeficiency virus type 1 (HIV-1 infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.

  6. Increased Risk of HIV-1 Transmission in Pregnancy: A Prospective Study among African HIV-1 Serodiscordant Couples

    Science.gov (United States)

    MUGO, Nelly R.; HEFFRON, Renee; DONNELL, Deborah; WALD, Anna; WERE, Edwin O.; REES, Helen; CELUM, Connie; KIARIE, James N.; COHEN, Craig R.; KAYINTEKORE, Kayitesi; BAETEN, Jared M.

    2011-01-01

    Background Physiologic and behavioral changes during pregnancy may alter HIV-1 susceptibility and infectiousness. Prospective studies exploring pregnancy and HIV-1 acquisition risk in women have found inconsistent results. No study has explored the effect of pregnancy on HIV-1 transmission risk from HIV-1 infected women to male partners. Methods In a prospective study of African HIV-1 serodiscordant couples, we evaluated the relationship between pregnancy and the risk of 1) HIV-1 acquisition among women and 2) HIV-1 transmission from women to men. Results 3321 HIV-1 serodiscordant couples were enrolled, 1085 (32.7%) with HIV-1 susceptible female partners and 2236 (67.3%) with susceptible male partners. HIV-1 incidence in women was 7.35 versus 3.01 per 100 person-years during pregnant and non-pregnant periods (hazard ratio [HR] 2.34, 95% confidence interval [CI] 1.33–4.09). This effect was attenuated and not statistically significant after adjusting for sexual behavior and other confounding factors (adjusted HR 1.71, 95% CI 0.93–3.12). HIV-1 incidence in male partners of infected women was 3.46 versus 1.58 per 100 person-years when their partners were pregnant versus not pregnant (HR 2.31, 95% CI 1.22–4.39). This effect was not attenuated in adjusted analysis (adjusted HR 2.47, 95% CI 1.26–4.85). Conclusions HIV-1 risk increased two-fold during pregnancy. Elevated risk of HIV-1 acquisition in pregnant women appeared in part to be explained by behavioral and other factors. This is the first study to show pregnancy increased the risk of female-to-male HIV-1 transmission, which may reflect biological changes of pregnancy that could increase HIV-1 infectiousness. PMID:21785321

  7. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1

    Science.gov (United States)

    Bonsignori, Mattia; Wiehe, Kevin; Grimm, Sebastian K.; Lynch, Rebecca; Yang, Guang; Kozink, Daniel M.; Perrin, Florence; Cooper, Abby J.; Hwang, Kwan-Ki; Chen, Xi; Liu, Mengfei; McKee, Krisha; Parks, Robert J.; Eudailey, Joshua; Wang, Minyue; Clowse, Megan; Criscione-Schreiber, Lisa G.; Moody, M. Anthony; Ackerman, Margaret E.; Boyd, Scott D.; Gao, Feng; Kelsoe, Garnett; Verkoczy, Laurent; Tomaras, Georgia D.; Liao, Hua-Xin; Kepler, Thomas B.; Montefiori, David C.; Mascola, John R.; Haynes, Barton F.

    2014-01-01

    Broadly HIV-1–neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1–infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1–infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient’s plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells. PMID:24614107

  8. Role of Endolysosomes in HIV-1 Tat-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Liang Hui

    2012-05-01

    Full Text Available Combined anti-retroviral therapeutic drugs effectively increase the lifespan of HIV-1-infected individuals who then have a higher prevalence of HAND (HIV-1 associated neurocognitive disorder. Soluble factors including HIV-1 proteins released from HIV-1-infected cells have been implicated in the pathogenesis of HAND, and particular attention has been paid to the HIV-1 Tat (transactivator of transcription protein because of its ability to directly excite neurons and cause neuronal cell death. Since HIV-1 Tat enters cells by receptor-mediated endocytosis and since endolysosomes play an important role in neuronal cell life and death, we tested here the hypothesis that HIV-1 Tat neurotoxicity is associated with changes in the endolysosome structure and function and also autophagy. Following the treatment of primary cultured rat hippocampal neurons with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal viability was determined using a triple staining method. Preceding observations of HIV-1 Tat-induced neuronal cell death, we observed statistically significant changes in the structure and membrane integrity of endolysosomes, endolysosome pH and autophagy. As early as 24 h after HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated in endolysosomes, endolysosome morphology was affected and their size increased, endolysosome membrane integrity was disrupted, endolysosome pH increased, specific activities of endolysosome enzymes decreased and autophagy was inhibited, as indicated by the significant changes in three markers for autophagy. In contrast, statistically significant levels of HIV-1 Tat-induced neuronal cell death were observed only after 48 h of HIV-1 Tat treatment. Our findings suggest that endolysosomes are involved in HIV-1 Tat-induced neurotoxicity and may represent a target for therapeutic intervention against HAND.

  9. Human Cytosolic Extracts Stabilize the HIV-1 Core

    Science.gov (United States)

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B.

    2013-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro. PMID:23885082

  10. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease.

    Science.gov (United States)

    Hussein, G; Miyashiro, H; Nakamura, N; Hattori, M; Kawahata, T; Otake, T; Kakiuchi, N; Shimotohno, K

    1999-02-01

    Forty-eight methanol and aqueous extracts from Sudanese plants were screened for their inhibitory activity on viral replication. Nineteen extracts showed inhibitory effects on HIV-induced cytopathic effects (CPE) on MT-4 cells. The extracts were further screened against HIV-1 protease (PR) using an HPLC assay method. Of the tested extracts, the methanol extracts of Acacia nilotica (bark and pods), Euphorbia granulata (leaves), Maytenus senegalensis (stem-bark) and aqueous extracts of A. nilotica (pods) and M. senegalensis (stem-bark) showed considerable inhibitory effects against HIV-1 PR. Inhibitory principles were isolated from M. senegalensis and their activities were also discussed.

  11. HIV-1 genetic variants in Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    V Laga

    2012-11-01

    Full Text Available Objectives: During the last two decades, HIV-1 has been spreading rapidly in former Soviet Union republics including Kyrgyzstan. The current molecular monitoring of HIV-infection epidemic is carried out in Russia only with no or limited data from the other FSU countries. The aim of this work was to investigate the prevalence of HIV-1 genetic variants circulating in Kyrgyzstan. Methods: Blood collection from the HIV-infected patients was carried out by local specialists with the informed consent and the questionnaire was answered by each of the patients. The total number of samples was 100. The washed cell pellets were transferred to Moscow following with proviral DNA extraction, PCR amplification and gag, pol and env genes sequencing. The phylogenetic analysis of nucleotide sequences using neighbor-joining method was carried out by MEGA 3 program. The preliminary data were obtained in 22 samples isolated from PBMC of HIV-infected patients from Kyrgyzstan. Results: Among the samples studied 6 (27.3% samples belonged to a subtype CRF02_AG, 16 samples - to subtype A (A1. One of the samples belonging to CRF02_AG, probably, is a recombinant between CRF02_AG and A1. There was no major drug resistance mutations in the samples studied. The minor mutations were presented in small proportions: 1 in PR (L10I, 6 in RT (A62V - in 3 samples, V108G, E138A, Y181F, M184I, L210M - on one sample and 1 in IN (L74M. It was impossible to associate the distribution of mutations with HIV-1 genetic variant. The V3 loop (env gene in 17 samples was analyzed for tropism using geno2pheno program; all samples were found to be R5-viruses. Conclusion: The HIV-1 subtype A seems to dominate in Kyrgyzstan like in other FSU countries. The recombinant CRF02_AG epidemiologically linked to Uzbekistan is quite widespread. The rest of Kyrgyzstan collection is under investigation and the data will be refined soon.

  12. Oral and vaginal epithelial cell lines bind and transfer cell-free infectious HIV-1 to permissive cells but are not productively infected.

    Directory of Open Access Journals (Sweden)

    Arinder Kohli

    Full Text Available The majority of HIV-1 infections worldwide are acquired via mucosal surfaces. However, unlike the vaginal mucosa, the issue of whether the oral mucosa can act as a portal of entry for HIV-1 infection remains controversial. To address potential differences with regard to the fate of HIV-1 after exposure to oral and vaginal epithelium, we utilized two epithelial cell lines representative of buccal (TR146 and pharyngeal (FaDu sites of the oral cavity and compared them with a cell line derived from vaginal epithelium (A431 in order to determine (i HIV-1 receptor gene and protein expression, (ii whether HIV-1 genome integration into epithelial cells occurs, (iii whether productive viral infection ensues, and (iv whether infectious virus can be transferred to permissive cells. Using flow cytometry to measure captured virus by HIV-1 gp120 protein detection and western blot to detect HIV-1 p24 gag protein, we demonstrate that buccal, pharyngeal and vaginal epithelial cells capture CXCR4- and CCR5-utilising virus, probably via non-canonical receptors. Both oral and vaginal epithelial cells are able to transfer infectious virus to permissive cells either directly through cell-cell attachment or via transcytosis of HIV-1 across epithelial cells. However, HIV-1 integration, as measured by real-time PCR and presence of early gene mRNA transcripts and de novo protein production were not detected in either epithelial cell type. Importantly, both oral and vaginal epithelial cells were able to support integration and productive infection if HIV-1 entered via the endocytic pathway driven by VSV-G. Our data demonstrate that under normal conditions productive HIV-1 infection of epithelial cells leading to progeny virion production is unlikely, but that epithelial cells can act as mediators of systemic viral dissemination through attachment and transfer of HIV-1 to permissive cells.

  13. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    Directory of Open Access Journals (Sweden)

    Narges Zarrabi

    Full Text Available Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1

  14. Detection of viral sequence fragments of HIV-1 subfamilies yet unknown.

    Science.gov (United States)

    Unterthiner, Thomas; Schultz, Anne-Kathrin; Bulla, Jan; Morgenstern, Burkhard; Stanke, Mario; Bulla, Ingo

    2011-04-11

    Methods of determining whether or not any particular HIV-1 sequence stems - completely or in part - from some unknown HIV-1 subtype are important for the design of vaccines and molecular detection systems, as well as for epidemiological monitoring. Nevertheless, a single algorithm only, the Branching Index (BI), has been developed for this task so far. Moving along the genome of a query sequence in a sliding window, the BI computes a ratio quantifying how closely the query sequence clusters with a subtype clade. In its current version, however, the BI does not provide predicted boundaries of unknown fragments. We have developed Unknown Subtype Finder (USF), an algorithm based on a probabilistic model, which automatically determines which parts of an input sequence originate from a subtype yet unknown. The underlying model is based on a simple profile hidden Markov model (pHMM) for each known subtype and an additional pHMM for an unknown subtype. The emission probabilities of the latter are estimated using the emission frequencies of the known subtypes by means of a (position-wise) probabilistic model for the emergence of new subtypes. We have applied USF to SIV and HIV-1 sequences formerly classified as having emerged from an unknown subtype. Moreover, we have evaluated its performance on artificial HIV-1 recombinants and non-recombinant HIV-1 sequences. The results have been compared with the corresponding results of the BI. Our results demonstrate that USF is suitable for detecting segments in HIV-1 sequences stemming from yet unknown subtypes. Comparing USF with the BI shows that our algorithm performs as good as the BI or better.

  15. Detection of viral sequence fragments of HIV-1 subfamilies yet unknown

    Directory of Open Access Journals (Sweden)

    Stanke Mario

    2011-04-01

    Full Text Available Abstract Background Methods of determining whether or not any particular HIV-1 sequence stems - completely or in part - from some unknown HIV-1 subtype are important for the design of vaccines and molecular detection systems, as well as for epidemiological monitoring. Nevertheless, a single algorithm only, the Branching Index (BI, has been developed for this task so far. Moving along the genome of a query sequence in a sliding window, the BI computes a ratio quantifying how closely the query sequence clusters with a subtype clade. In its current version, however, the BI does not provide predicted boundaries of unknown fragments. Results We have developed Unknown Subtype Finder (USF, an algorithm based on a probabilistic model, which automatically determines which parts of an input sequence originate from a subtype yet unknown. The underlying model is based on a simple profile hidden Markov model (pHMM for each known subtype and an additional pHMM for an unknown subtype. The emission probabilities of the latter are estimated using the emission frequencies of the known subtypes by means of a (position-wise probabilistic model for the emergence of new subtypes. We have applied USF to SIV and HIV-1 sequences formerly classified as having emerged from an unknown subtype. Moreover, we have evaluated its performance on artificial HIV-1 recombinants and non-recombinant HIV-1 sequences. The results have been compared with the corresponding results of the BI. Conclusions Our results demonstrate that USF is suitable for detecting segments in HIV-1 sequences stemming from yet unknown subtypes. Comparing USF with the BI shows that our algorithm performs as good as the BI or better.

  16. Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine

    Science.gov (United States)

    García-Pérez, Javier; García, Felipe; Blanco, Julia; Escribà-García, Laura; Gatell, Jose Maria; Alcamí, Jose; Plana, Montserrat; Sánchez-Palomino, Sonsoles

    2012-01-01

    Background The generation of new immunogens able to elicit strong specific immune responses remains a major challenge in the attempts to obtain a prophylactic or therapeutic vaccine against HIV/AIDS. We designed and constructed a defective recombinant virus based on the HIV-1 genome generating infective but non-replicative virions able to elicit broad and strong cellular immune responses in HIV-1 seropositive individuals. Results Viral particles were generated through transient transfection in producer cells (293-T) of a full length HIV-1 DNA carrying a deletion of 892 base pairs (bp) in the pol gene encompassing the sequence that codes for the reverse transcriptase (NL4-3/ΔRT clone). The viral particles generated were able to enter target cells, but due to the absence of reverse transcriptase no replication was detected. The immunogenic capacity of these particles was assessed by ELISPOT to determine γ-interferon production in a cohort of 69 chronic asymptomatic HIV-1 seropositive individuals. Surprisingly, defective particles produced from NL4-3/ΔRT triggered stronger cellular responses than wild-type HIV-1 viruses inactivated with Aldrithiol-2 (AT-2) and in a larger proportion of individuals (55% versus 23% seropositive individuals tested). Electron microscopy showed that NL4-3/ΔRT virions display immature morphology. Interestingly, wild-type viruses treated with Amprenavir (APV) to induce defective core maturation also induced stronger responses than the same viral particles generated in the absence of protease inhibitors. Conclusions We propose that immature HIV-1 virions generated from NL4-3/ΔRT viral clones may represent new prototypes of immunogens with a safer profile and stronger capacity to induce cellular immune responses than wild-type inactivated viral particles. PMID:23144996

  17. HIV-1 is not a major driver of increased plasma IL-6 levels in chronic HIV-1 disease

    Science.gov (United States)

    Shive, Carey L.; Biancotto, Angélique; Funderburg, Nicholas T.; Pilch-Cooper, Heather A.; Valdez, Hernan; Margolis, Leonid; Sieg, Scott F.; McComsey, Grace A.; Rodriguez, Benigno; Lederman, Michael M.

    2012-01-01

    Objective Increased plasma IL-6 levels have been associated with HIV-1 disease progression risk, yet the drivers of IL-6 production in HIV-1 infection are not known. This study was designed to explore the relationship between HIV-1 replication and IL-6 induction. Design Correlations between plasma levels of IL-6 and HIV-1 RNA were examined in two clinical studies. To more directly assess the induction of IL-6 by HIV-1, several cell and tissue types that support HIV-1 replication in vivo were infected with HIV-1 and expression of IL-6 was measured. Methods Spearman’s rank correlations were used to examine the relationship between plasma levels of IL-6 and HIV-1 RNA. Macrophages, and colonic and lymph node histocultures were infected with HIV-1 or stimulated with bacterial products, LPS or flagellin, and IL-6 levels in supernatant were measured by ELISA or multiplex bead assay. Results In the clinical studies there was weak or no correlation between plasma levels of IL-6 and HIV-1 RNA but IL-6 levels were correlated with plasma levels of the LPS coreceptor CD14. Macrophages stimulated with LPS or flagellin showed robust production of IL-6, but there was no increase in IL-6 production after HIV-1 infection. IL-6 expression was not increased in lymph node histocultures obtained from HIV-1 infected subjects nor after productive HIV-1 infection of colonic or lymph node histocultures ex vivo. Conclusions We find no evidence that HIV-1 replication is an important driver of IL-6 expression in vivo or in in vitro systems. PMID:22659649

  18. Chromosomal assignment of human genomic NotI restriction fragments in a two-dimensional electrophoresis profile

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hirohide; Nagai, Hisaki; Matsubara, Kenichi [Osaka Univ. (Japan)] [and others

    1996-01-01

    Using DNA from sorted human chromosomes and two-dimensional gel electrophoresis, we assigned 2295 NotI sites, 43% of the total, to specific chromosomes and designated the procedure CA-RLGS (chromosome-assigned restriction landmark genomic scanning). Although the NotI enzyme is sensitive to DNA methylation, our results suggested that the majority of the spots did not seem to be affected by this modification. The NotI sites were distributed at higher levels in chromosomes 17, 19, and 22, suggesting higher gene content in these chromosomes. Most spots were assigned to unique chromosomes, but some spots were found on two or more chromosomes. Quantitative analysis revealed the intensity of the DNA spots on the sex chromosomes to be haploid and that of the chromosome 21 spots in DNA from a male with Down syndrome to be trisomic, although there were exceptions. We report here the first-generation CA-RLGS map of the human genome. 23 refs., 4 figs.

  19. Genomic lesions and colorectal carcinogenesis: the effects of protein-calorie restriction and inulin supplementation on deficiency statuses.

    Science.gov (United States)

    Cantero, W B; Takahachi, N A; Mauro, M O; Pesarini, J R; Rabacow, A P M; Antoniolli, A C M B; Oliveira, R J

    2015-03-27

    The present study investigated the effects of restricting protein and calories and supplementation of inulin, a fiber comprising a linear type of polydisperse carbohydrates composed primarily of fructil-fructose bonds (β-(2→1), on the deficiency statuses of animals in which genomic lesion development and colorectal carcinogenesis had been induced. This experiment involved adult male Swiss mice (N = 11/group). The experimental groups were as follows: Negative Control (vehicle), Positive Control, 1,2-dimethylhydrazine (DMH), Inulin, and Associate. DMH, which promoted colorectal cancer, was administered intraperitoneally in 4 20-mg/kg body weight (bw) doses during a 2-week period; inulin was administered orally at a daily dose of 50 mg/kg bw. Each group was bifurcated; half of each group was fed a normal protein diet and the other half was fed a low-protein diet. The results indicated that a correlation existed between malnutrition and an increased frequency of genomic lesions but that malnutrition did not predispose animals to colorectal cancer development. Inulin exhibited genotoxic activity, which requires further investigation, and low anti-genotoxic activity. Moreover, inulin reduced the levels of intestinal carcinogenesis biomarkers in both malnourished and healthy animals. These data suggest that inulin holds therapeutic potential and is a strong candidate for inclusion among the functional foods used for cancer prevention in both properly nourished and malnourished individuals.

  20. Extensive evaluation of a seronegative participant in an HIV-1 vaccine trial as a result of false-positive PCR.

    Science.gov (United States)

    Schwartz, D H; Laeyendecker, O B; Arango-Jaramillo, S; Castillo, R C; Reynolds, M J

    1997-07-26

    In the USA, more than 2000 volunteers have received one or more experimental HIV-1 vaccines in phase I and II clinical trials, and there have been breakthrough HIV-1 infections among participants receiving vaccine and placebo. Serological diagnosis of new HIV-1 infections in vaccine-trial participants will become increasingly complicated as more viral components are used in vaccines. Recognition of this problem has led to a reliance on viral-genome measurement to distinguish vaccine-induced immunity from HIV-1 infection. Currently, quantitative RNA measurement is expensive, prone to contamination, and reliable only in laboratories certified by manufacturers or that have quality-control programmes. A high-risk vaccinee presented after an acute febrile episode and was tested for HIV-1 infection by reverse transcriptase (RT) PCR of viral RNA. Further extensive tests were required to clarify the HIV-1 infection and immune status of the vaccinee, including repeat RT-PCR, nested DNA PCR, western blot, lymphoproliferation assay, cytotoxic T-cell lysis, CD8-depleted co-culture, and HIV-1 challenge culture. Initial testing of plasma by RNA RT-PCR was reported as positive. This result was not confirmed by viral cultures, nested DNA PCR, western blot, or EIA. Additional RNA RT-PCR assays gave positive results from earlier occasions in the vaccine trial. Eventually, testing of all previously reactive samples by RNA RT-PCR was repeated in a quality-controlled laboratory, and confirmed the negative HIV-1 status of the individual. This case report exemplifies the difficulties with use of viral-genome measurement as a screening test to diagnose HIV-1 infection, particularly in individuals who have ever participated in HIV-1 vaccine trials. Monitoring of large numbers of phase III vaccinees by RNA RT-PCR will not be feasible. The design of efficacy trials for new vaccines should be in parallel with development of antibody-based diagnostic tests that are capable of differentiating

  1. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  2. Evaluation of three enzyme immunoassays for HIV-1 antigen detection.

    Science.gov (United States)

    Willoughby, P B; Lisker, A; Folds, J D

    1989-01-01

    Three enzyme immunoassay (EIA) methods for the detection of human immunodeficiency virus (HIV-1) were evaluated. Serum or plasma samples from 22 individuals seropositive for HIV-1 antibodies were tested with the Abbott, Coulter, and DuPont kits for presence of HIV-1 p24 antigen. Another 12 samples were tested with two kits only. Discordant results were obtained with 9 of 34 (26%) HIV-1-antibody-positive patient samples tested. Most of these discrepancies were found in samples containing less than 30 pg/ml of HIV-1 p24 core antigen. A sampling of sera from normal blood donors and patients with infectious or autoimmune diseases revealed a low level of false positive reactions, especially with sera containing antinuclear antibodies or rheumatoid factor. Noteworthy is the frequency of false positive reactions seen with the DuPont EIA for HIV-1 p24 antigen. 18/111 sera (16.2%) containing auto-antibodies tested positively with the DuPont HIV-1 p24 antigen EIA. The nonspecific nature of the test reactivity for 9/10 of these samples was confirmed using an HIV-1 p24 antigen inhibition assay. These findings are discussed in light of the need for HIV-1 antigen detection in the clinical laboratory and of other methods for HIV-1 detection: the polymerase chain reaction and measurements of reverse transcriptase activity.

  3. Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection.

    Science.gov (United States)

    Edo-Matas, Diana; van Gils, Marit J; Bowles, Emma J; Navis, Marjon; Rachinger, Andrea; Boeser-Nunnink, Brigitte; Stewart-Jones, Guillaume B; Kootstra, Neeltje A; van 't Wout, Angélique B; Schuitemaker, Hanneke

    2010-09-30

    The HIV-1 quasispecies in peripheral blood mononuclear cells (PBMC) is considered to be a mix of actively replicating, latent, and archived viruses and may be genetically distinct from HIV-1 variants in plasma that are considered to be recently produced. Here we analyzed the genetic relationship between gp160 env sequences from replication competent clonal HIV-1 variants that were isolated from PBMC and from contemporaneous HIV-1 RNA in serum and HIV-1 proviral DNA in PBMC of four longitudinally studied therapy naïve HIV-1 infected individuals. Replication competent clonal HIV-1 variants, HIV-1 RNA from serum, and HIV-1 proviral DNA from PBMC formed a single virus population at most time points analyzed. However, an under-representation in serum of HIV-1 sequences with predicted CXCR4 usage was sometimes observed implying that the analysis of viral sequences from different sources may provide a more complete assessment of the viral quasispecies in peripheral blood in vivo. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Subtype Classification of Iranian HIV-1 Sequences Registered in the HIV Databases, 2006-2013

    Science.gov (United States)

    Baesi, Kazem; Moallemi, Samaneh; Farrokhi, Molood; Alinaghi, Seyed Ahmad Seyed; Truong, Hong–Ha M.

    2014-01-01

    Background The rate of human immunodeficiency virus type 1 (HIV-1) infection in Iran has increased dramatically in the past few years. While the earliest cases were among hemophiliacs, injection drug users (IDUs) fuel the current epidemic. Previous molecular epidemiological analysis found that subtype A was most common among IDUs but more recent studies suggest CRF_35AD may be more prevalent now. To gain a better understanding of the molecular epidemiology of HIV-1 infection in Iran, we analyzed all Iranian HIV sequence data from the Los Alamos National Laboratory. Methods All Iranian HIV sequences from subtyping studies with pol, gag, env and full-length HIV-1 genome sequences registered in the HIV databases (www.hiv.lanl.gov) between 2006 and 2013 were downloaded. Phylogenetic trees of each region were constructed using Neighbor-Joining (NJ) and Maximum Parsimony methods. Results A total of 475 HIV sequences were analyzed. Overall, 78% of sequences were CRF_35AD. By gene region, CRF_35AD comprised 83% of HIV-1 pol, 62% of env, 78% of gag, and 90% of full-length genome sequences analyzed. There were 240 sequences re-categorized as CRF_AD. The proportion of CRF_35AD sequences categorized by the present study is nearly double the proportion of what had been reported. Conclusions Phylogenetic analysis indicates HIV-1 subtype CRF_35AD is the predominant circulating strain in Iran. This result differed from previous studies that reported subtype A as most prevalent in HIV- infected patients but confirmed other studies which reported CRF_35AD as predominant among IDUs. The observed epidemiological connection between HIV strains circulating in Iran and Afghanistan may be due to drug trafficking and/or immigration between the two countries. This finding suggests the possible origins and transmission dynamics of HIV/AIDS within Iran and provides useful information for designing control and intervention strategies. PMID:25188443

  5. Subtype classification of Iranian HIV-1 sequences registered in the HIV databases, 2006-2013.

    Directory of Open Access Journals (Sweden)

    Kazem Baesi

    Full Text Available BACKGROUND: The rate of human immunodeficiency virus type 1 (HIV-1 infection in Iran has increased dramatically in the past few years. While the earliest cases were among hemophiliacs, injection drug users (IDUs fuel the current epidemic. Previous molecular epidemiological analysis found that subtype A was most common among IDUs but more recent studies suggest CRF_35AD may be more prevalent now. To gain a better understanding of the molecular epidemiology of HIV-1 infection in Iran, we analyzed all Iranian HIV sequence data from the Los Alamos National Laboratory. METHODS: All Iranian HIV sequences from subtyping studies with pol, gag, env and full-length HIV-1 genome sequences registered in the HIV databases (www.hiv.lanl.gov between 2006 and 2013 were downloaded. Phylogenetic trees of each region were constructed using Neighbor-Joining (NJ and Maximum Parsimony methods. RESULTS: A total of 475 HIV sequences were analyzed. Overall, 78% of sequences were CRF_35AD. By gene region, CRF_35AD comprised 83% of HIV-1 pol, 62% of env, 78% of gag, and 90% of full-length genome sequences analyzed. There were 240 sequences re-categorized as CRF_AD. The proportion of CRF_35AD sequences categorized by the present study is nearly double the proportion of what had been reported. CONCLUSIONS: Phylogenetic analysis indicates HIV-1 subtype CRF_35AD is the predominant circulating strain in Iran. This result differed from previous studies that reported subtype A as most prevalent in HIV- infected patients but confirmed other studies which reported CRF_35AD as predominant among IDUs. The observed epidemiological connection between HIV strains circulating in Iran and Afghanistan may be due to drug trafficking and/or immigration between the two countries. This finding suggests the possible origins and transmission dynamics of HIV/AIDS within Iran and provides useful information for designing control and intervention strategies.

  6. The Life-Cycle of the HIV-1 Gag–RNA Complex

    Directory of Open Access Journals (Sweden)

    Elodie Mailler

    2016-09-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.

  7. HLA-C increases HIV-1 infectivity and is associated with gp120

    Directory of Open Access Journals (Sweden)

    Beretta Alberto

    2008-08-01

    Full Text Available Abstract Background A recently identified genetic polymorphism located in the 5' region of the HLA-C gene is associated with individual variations in HIV-1 viral load and with differences in HLA-C expression levels. HLA-C has the potential to restrict HIV-1 by presenting epitopes to cytotoxic T cells but it is also a potent inhibitor of NK cells. In addition, HLA-C molecules incorporated within the HIV-1 envelope have been shown to bind to the envelope glycoprotein gp120 and enhance viral infectivity. We investigated this last property in cell fusion assays where the expression of HLA-C was silenced by small interfering RNA sequences. Syncytia formation was analyzed by co-cultivating cell lines expressing HIV-1 gp120/gp41 from different laboratory and primary isolates with target cells expressing different HIV-1 co-receptors. Virus infectivity was analyzed using pseudoviruses. Molecular complexes generated during cell fusion (fusion complexes were purified and analyzed for their HLA-C content. Results HLA-C positive cells co-expressing HIV-1 gp120/gp41 fused more rapidly and produced larger syncytia than HLA-C negative cells. Transient transfection of gp120/gp41 from different primary isolates in HLA-C positive cells resulted in a significant cell fusion increase. Fusion efficiency was reduced in HLA-C silenced cells compared to non-silenced cells when co-cultivated with different target cell lines expressing HIV-1 co-receptors. Similarly, pseudoviruses produced from HLA-C silenced cells were significantly less infectious. HLA-C was co-purified with gp120 from cells before and after fusion and was associated with the fusion complex. Conclusion Virionic HLA-C molecules associate to Env and increase the infectivity of both R5 and X4 viruses. Genetic polymorphisms associated to variations in HLA-C expression levels may therefore influence the individual viral set point not only by means of a regulation of the virus-specific immune response but also

  8. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2010-05-01

    Full Text Available Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM and found that a high proportion (10 of 28; 36% had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38% versus 34 of 175 subjects (19%; Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5' and 3' half genome or env-only sequences from plasma viral RNA (vRNA and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3-6 days before symptom onset and 14-17 days before peak plasma viremia (47,600,000 vRNA molecules/ml. All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1

  9. The Structural Interface between HIV-1 Vif and Human APOBEC3H.

    Science.gov (United States)

    Ooms, Marcel; Letko, Michael; Simon, Viviana

    2017-03-01

    Human APOBEC3H (A3H) is a cytidine deaminase that inhibits HIV-1 replication. To evade this restriction, the HIV-1 Vif protein binds A3H and mediates its proteasomal degradation. To date, little information on the Vif-A3H interface has been available. To decipher how both proteins interact, we first mapped the Vif-binding site on A3H by functionally testing a large set of A3H mutants in single-cycle infectivity and replication assays. Our data show that the two A3H α-helixes α3 and α4 represent the Vif-binding site of A3H. We next used viral adaptation and a set of Vif mutants to identify novel, reciprocal Vif variants that rescued viral infectivity in the presence of two Vif-resistant A3H mutants. These A3H-Vif interaction points were used to generate the first A3H-Vif structure model, which revealed that the A3H helixes α3 and α4 interact with the Vif β-sheet (β2-β5). This model is in good agreement with previously reported Vif and A3H amino acids important for interaction. Based on the predicted A3H-Vif interface, we tested additional points of contact, which validated our model. Moreover, these experiments showed that the A3H and A3G binding sites on HIV-1 Vif are largely distinct, with both host proteins interacting with Vif β-strand 2. Taken together, this virus-host interface model explains previously reported data and will help to identify novel drug targets to combat HIV-1 infection.IMPORTANCE HIV-1 needs to overcome several intracellular restriction factors in order to replicate efficiently. The human APOBEC3 locus encodes seven proteins, of which A3D, A3F, A3G, and A3H restrict HIV-1. HIV encodes the Vif protein, which binds to the APOBEC3 proteins and leads to their proteasomal degradation. No HIV-1 Vif-APOBEC3 costructure exists to date despite extensive research. We and others previously generated HIV-1 Vif costructure models with A3G and A3F by mapping specific contact points between both proteins. Here, we applied a similar approach to HIV

  10. Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

    Science.gov (United States)

    Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang

    2018-02-01

    Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.

  11. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication.

    Science.gov (United States)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Expression of ATP-binding cassette membrane transporters in a HIV-1 transgenic rat model.

    Science.gov (United States)

    Robillard, Kevin R; Hoque, Md Tozammel; Bendayan, Reina

    2014-02-21

    P-glycoprotein (P-gp, product of Mdr1a and Mdr1b genes), multidrug resistance associated proteins (Mrps), and breast cancer resistance protein (Bcrp), all members of the ATP-binding cassette (ABC) membrane-associated drug transporters superfamily, can significantly restrict the entry of antiretroviral drugs (ARVs) into organs which exhibit a barrier function such as the central nervous system (CNS) and the male genital tract (MGT). In vitro, HIV-1 viral proteins such as glycoprotein-120 (gp120) and transcriptional transactivator (tat) have been shown to alter the expression of these transporters and ARVs permeability. The objective of this study was to compare mRNA expression of these transporters, in vivo, in several tissues obtained from HIV-1 transgenic rats (Tg-rat) (8 and 24 weeks) with those of age-matched wild-type rats. At 24 weeks, significant changes in several drug transporter mRNA expressions were observed, in particular, in brain, kidney, liver and testes. These findings suggest that HIV-1 viral proteins can alter the expression of ABC drug transporters, in vivo, in the context of HIV-1 and further regulate ARVs permeability in several organs including the CNS and MGT, two sites which have been reported to display very low ARVs permeability in the clinic. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  14. Human APOBEC3G drives HIV-1 evolution and the development of drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Tamoy [Los Alamos National Laboratory; Kim, Eun - Young [FEINBERG SCHOOL OF MEDS; Koning, Fransje [KING' S COLLEGE LONDON; Malim, Michael [KING' S COLLEGE LONDON; Wolinsky, Steven M [FEINBERG SCHOOL OF MEDS

    2008-01-01

    Human APOBEC3G (hA3G) is an innate virus restriction factor that induces deamination of specific cytidine residues in single-stranded human immunodeficiency virus type 1 (HIV-1) DNA. Whereas destructive hA3G editing leads to a profound loss of HIV-1 infectivity, more limited editing could be a source of adaptation and diversification. Here we show that the presence of hA3G in T-cells can drive the development of diversity in HIV-1 populations and that under selection pressure imposed by the nucleotide analog reverse transcriptase inhibitor 3TC ((-)2',3'-dideoxy-3'-thiacytidine), a single point mutation that confers 3TC resistance, methionine 184 to isoleucine (M1841), emerges rapidly and reaches fixation. These results provide strong evidence that mutation by hA3G is an important source of genetic variation on which natural selection acts to shape the structure of the viral population and drive the tempo of HIV-1 evolution.

  15. In silico enhanced restriction enzyme based methylation analysis of the human glioblastoma genome using Agilent 244K CpG Island microarrays

    Directory of Open Access Journals (Sweden)

    Anh Tran

    2010-01-01

    Full Text Available Genome wide methylation profiling of gliomas is likely to provide important clues to improving treatment outcomes. Restriction enzyme based approaches have been widely utilized for methylation profiling of cancer genomes and will continue to have importance in combination with higher density microarrays. With the availability of the human genome sequence and microarray probe sequences, these approaches can be readily characterized and optimized via in silico modeling. We adapted the previously described HpaII/MspI based Methylation Sensitive Restriction Enzyme (MSRE assay for use with two-color Agilent 244K CpG island microarrays. In this assay, fragmented genomic DNA is digested in separate reactions with isoschizomeric HpaII (methylation-sensitive and MspI (methylation-insensitive restriction enzymes. Using in silico hybridization, we found that genomic fragmentation with BfaI was superior to MseI, providing a maximum effective coverage of 22,362 CpG islands in the human genome. In addition, we confirmed the presence of an internal control group of fragments lacking HpaII/MspI sites which enable separation of methylated and unmethylated fragments. We used this method on genomic DNA isolated from normal brain, U87MG cells, and a glioblastoma patient tumor sample and confirmed selected differentially methylated CpG islands using bisulfite sequencing. Along with additional validation points, we performed a receiver operating characteristics (ROC analysis to determine the optimal threshold (p ≤ 0.001. Based on this threshold, we identified ~2400 CpG islands common to all three samples and 145 CpG islands unique to glioblastoma. These data provide more general guidance to individuals seeking to maximize effective coverage using restriction enzyme based methylation profiling approaches.

  16. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    Science.gov (United States)

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  17. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette Tina Marie [Los Alamos National Laboratory

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  18. The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Christina Gavegnano

    2012-01-01

    Full Text Available Macrophages are ubiquitous and represent a significant viral reservoir for HIV-1. Macrophages are nondividing, terminally differentiated cells, which have a unique cellular microenvironment relative to actively dividing T lymphocytes, all of which can impact HIV-1 infection/replication, design of inhibitors targeting viral replication in these cells, emergence of mutations within the HIV-1 genome, and disease progression. Scarce dNTPs drive rNTP incorporation into the proviral DNA in macrophages but not lymphocytes. Furthermore, the efficacy of a ribose-based inhibitor that potently inhibits HIV-1 replication in macrophages, has prompted a reconsideration of the previously accepted dogma that 2′-deoxy-based inhibitors demonstrate effective inhibition of HIV-1 replication. Additionally, higher levels of dUTP and rNTP incorporation in macrophages, and lack of repair mechanisms relative to lymphocytes, provide a further mechanistic understanding required to develop targeted inhibition of viral replication in macrophages. Together, the concentrations of dNTPs and rNTPs within macrophages comprise a distinctive cellular environment that directly impacts HIV-1 replication in macrophages and provides unique insight into novel therapeutic mechanisms that could be exploited to eliminate virus from these cells.

  19. HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles.

    Science.gov (United States)

    Douaisi, Marc; Dussart, Sylvie; Courcoul, Marianne; Bessou, Gilles; Vigne, Robert; Decroly, Etienne

    2004-08-27

    The cytidine deaminase hAPOBEC3G is an antiviral human factor that counteracts the replication of HIV-1 in absence of the Vif protein. hAPOBEC3G is packaged into virus particles and lethally hypermutates HIV-1. In this work, we examine the mechanisms governing hAPOBEC3G packaging. By GST pull-down and co-immunoprecipitation assays, we show that hAPOBEC3G binds to HIV-1 Pr55 Gag and its NC domain and to the RT and IN domains contained in Pr160 Gag-Pol. We demonstrate that the expression of HIV-1 Gag is sufficient to induce the packaging of hAPOBEC3G into Gag particles. Gag-Pol polypeptides containing RT and IN domains, as well as HIV-1 genomic RNA, seem not to be necessary for hAPOBEC3G packaging. Lastly, we show that hAPOBEC3G and its murine ortholog are packaged into HIV-1 and MLV Gag particles. We conclude that the Gag polypeptides from distant retroviruses have conserved domains allowing the packaging of the host antiviral factor APOBEC3G.

  20. The Short Isoform of BRD4 Promotes HIV-1 Latency by Engaging Repressive SWI/SNF Chromatin-Remodeling Complexes.

    Science.gov (United States)

    Conrad, Ryan J; Fozouni, Parinaz; Thomas, Sean; Sy, Hendrik; Zhang, Qiang; Zhou, Ming-Ming; Ott, Melanie

    2017-09-21

    BET proteins commonly activate cellular gene expression, yet inhibiting their recruitment paradoxically reactivates latent HIV-1 transcription. Here we identify the short isoform of BET family member BRD4 (BRD4S) as a corepressor of HIV-1 transcription. We found that BRD4S was enriched in chromatin fractions of latently infected T cells, and it was more rapidly displaced from chromatin upon BET inhibition than the long isoform. BET inhibition induced marked nucleosome remodeling at the latent HIV-1 promoter, which was dependent on the activity of BRG1-associated factors (BAF), an SWI/SNF chromatin-remodeling complex with known repressive functions in HIV-1 transcription. BRD4S directly bound BRG1, a catalytic subunit of BAF, via its bromodomain and extraterminal (ET) domain, and this isoform was necessary for BRG1 recruitment to latent HIV-1 chromatin. Using chromatin immunoprecipitation sequencing (ChIP-seq) combined with assay for transposase-accessible chromatin coupled to high-throughput sequencing (ATAC-seq) data, we found that the latent HIV-1 promoter phenotypically resembles endogenous long terminal repeat (LTR) sequences, pointing to a select role of BRD4S-BRG1 complexes in genomic silencing of invasive retroelements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.

    Directory of Open Access Journals (Sweden)

    Francesca Di Nunzio

    Full Text Available The nuclear pore complex (NPC mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.

  2. Species tropism of HIV-1 modulated by viral accessory proteins

    OpenAIRE

    Masako eNomaguchi; Naoya eDoi; Yui eMatsumoto; Yosuke eSakai; Sachi eFujiwara; Akio eAdachi

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) is tropic and pathogenic only for humans, and does not replicate in macaque monkeys routinely used for experimental infections. This specially narrow host range (species tropism) has impeded much the progress of HIV-1/acquired immunodeficiency syndrome (AIDS) basic research. Extensive studies on the underlying mechanism have revealed that Vif, one of viral accessory proteins, is critical for the HIV-1 species tropism in addition to Gag-capsid protei...

  3. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    NARCIS (Netherlands)

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape

  4. Reverse transcription of the HIV-1 pandemic.

    Science.gov (United States)

    Basavapathruni, Aravind; Anderson, Karen S

    2007-12-01

    The HIV/AIDS pandemic has existed for >25 years. Extensive work globally has provided avenues to combat viral infection, but the disease continues to rage on in the human population and infected approximately 4 million people in 2006 alone. In this review, we provide a brief history of HIV/AIDS, followed by analysis of one therapeutic target of HIV-1: its reverse transcriptase (RT). We discuss the biochemical characterization of RT in order to place emphasis on possible avenues of inhibition, which now includes both nucleoside and non-nucleoside modalities. Therapies against RT remain a cornerstone of anti-HIV treatment, but the virus eventually resists inhibition through the selection of drug-resistant RT mutations. Current inhibitors and associated resistance are discussed, with the hopes that new therapeutics can be developed against RT.

  5. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+T Cells.

    Science.gov (United States)

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  6. TIM-family proteins inhibit HIV-1 release.

    Science.gov (United States)

    Li, Minghua; Ablan, Sherimay D; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S; Rennert, Paul D; Maury, Wendy; Johnson, Marc C; Freed, Eric O; Liu, Shan-Lu

    2014-09-02

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.

  7. RNA Interference Therapies for an HIV-1 Functional Cure.

    Science.gov (United States)

    Scarborough, Robert J; Gatignol, Anne

    2017-12-27

    HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.

  8. Progress in HIV-1 antibody research using humanized mice.

    Science.gov (United States)

    Gruell, Henning; Klein, Florian

    2017-05-01

    Recent discoveries of highly potent broadly HIV-1 neutralizing antibodies provide new opportunities to successfully prevent, treat, and potentially cure HIV-1 infection. To test their activity in vivo, humanized mice have been shown to be a powerful model and were used to investigate antibody-mediated prevention and therapy approaches. In this review, we will summarize recent findings in humanized mice that have informed on the potential use of broadly neutralizing antibodies targeting HIV-1 in humans. Humanized mouse models have been used to demonstrate the antiviral efficacy of HIV-1 neutralizing antibodies in vivo. It has been shown that a combination of antibodies can suppress viremia below the limit of detection and targets the HIV-1 reservoir. Moreover, passively administered antibodies and vector-mediated antibody production protect humanized mice from HIV-1 infection. Finally, immunization studies in knock-in/transgenic mice carrying human antibody gene segments have informed on potential vaccination strategies to induce broad and potent HIV-1 neutralizing antibodies. Humanized mouse models are of great value for HIV-1 research. They represent a highly versatile in vivo system to investigate novel approaches for HIV-1 prevention and therapy and expedite the critical translation from basic findings to clinical application.

  9. Characteristics of HIV-1 Serodiscordant Couples Enrolled in a Clinical Trial of Antiretroviral Pre-Exposure Prophylaxis for HIV-1 Prevention

    OpenAIRE

    Andrew Mujugira; Baeten, Jared M.; Deborah Donnell; Patrick Ndase; Mugo, Nelly R.; Linda Barnes; Campbell, James D.; Jonathan Wangisi; Tappero, Jordan W.; Elizabeth Bukusi; Cohen, Craig R.; Elly Katabira; Allan Ronald; Elioda Tumwesigye; Edwin Were

    2011-01-01

    Introduction Stable heterosexual HIV-1 serodiscordant couples in Africa have high HIV-1 transmission rates and are a critical population for evaluation of new HIV-1 prevention strategies. The Partners PrEP Study is a randomized, double-blind, placebo-controlled trial of tenofovir and emtricitabine-tenofovir pre-exposure prophylaxis to decrease HIV-1 acquisition within heterosexual HIV-1 serodiscordant couples. We describe the trial design and characteristics of the study cohort. Methods HIV-1...

  10. Identification of Genetically Intact HIV-1 Proviruses in Specific CD4+ T Cells from Effectively Treated Participants

    Directory of Open Access Journals (Sweden)

    Bonnie Hiener

    2017-10-01

    Full Text Available Latent replication-competent HIV-1 persists in individuals on long-term antiretroviral therapy (ART. We developed the Full-Length Individual Proviral Sequencing (FLIPS assay to determine the distribution of latent replication-competent HIV-1 within memory CD4+ T cell subsets in six individuals on long-term ART. FLIPS is an efficient, high-throughput assay that amplifies and sequences near full-length (∼9 kb HIV-1 proviral genomes and determines potential replication competency through genetic characterization. FLIPS provides a genome-scale perspective that addresses the limitations of other methods that also genetically characterize the latent reservoir. Using FLIPS, we identified 5% of proviruses as intact and potentially replication competent. Intact proviruses were unequally distributed between T cell subsets, with effector memory cells containing the largest proportion of genetically intact HIV-1 proviruses. We identified multiple identical intact proviruses, suggesting a role for cellular proliferation in the maintenance of the latent HIV-1 reservoir.

  11. Improved envelope function selected by long-term cultivation of a translation-impaired HIV-1 mutant.

    Science.gov (United States)

    Das, A T; van Dam, A P; Klaver, B; Berkhout, B

    1998-05-10

    The untranslated leader region of the human immunodeficiency virus (HIV) RNA genome contains multiple regulatory elements that fold into stable hairpin structures. Because extensive secondary structure can block the scanning of ribosomes, an alternative mechanism for HIV translation seems feasible. To study the mechanism of HIV-1 mRNA translation, a start codon was introduced in the leader region that will usurp scanning ribosomes. This upstream AUG mutation (uAUG) inhibited HIV gene expression, indicating that HIV-1 mRNA translation occurs via the regular scanning mechanism. Revertant viruses with increased replication capacity were obtained upon prolonged culturing of the mutant virus. To our surprise, the introduced start codon had not been inactivated in these phenotypic revertants. Instead, these revertants contain additional mutations in the envelope (Env) protein that stimulated HIV-1 replication. These second-site Env mutations did not specifically overcome the gene expression defect of the uAUG mutant, as the replication capacity of other HIV-1 mutants with an unrelated defect could also be improved. The uAUG construct appears to be a unique tool in forced HIV-1 adaptation studies because the deleterious uAUG mutation is stably maintained in the progeny, yielding phenotypic revertants with second-site mutations elsewhere in the viral genome.

  12. Association of HLA-C and HCP5 gene regions with the clinical course of HIV-1 infection

    NARCIS (Netherlands)

    van Manen, Daniëlle; Kootstra, Neeltje A.; Boeser-Nunnink, Brigitte; Handulle, Muna Am; Vanʼt Wout, Angélique B.; Schuitemaker, Hanneke

    2009-01-01

    Background: Recently, a genome-wide association analysis revealed single-nucleotide polymorphisms (SNPs) in the gene regions of HLA-C and HCP5 to be associated with viral load at set point and SNPs in the RNF39/ZNRD1 gene region to be associated with HIV-1 disease course. Methods: We Studied whether

  13. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA

    NARCIS (Netherlands)

    Harwig, Alex; Jongejan, Aldo; van Kampen, Antoine H. C.; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Evidence is accumulating that retroviruses can produce microRNAs (miRNAs). To prevent cleavage of their RNA genome, retroviruses have to use an alternative RNA source as miRNA precursor. The transacting responsive (TAR) hairpin structure in HIV-1 RNA has been suggested as source for miRNAs, but how

  14. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  15. Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard; Cashin, Kieran; Roche, Michael

    2013-01-01

    -HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from......HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C...

  16. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  17. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera...... on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...

  18. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    OpenAIRE

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a def...

  19. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif.

    Science.gov (United States)

    Britan-Rosich, Elena; Nowarski, Roni; Kotler, Moshe

    2011-07-29

    In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available The human immunodeficiency virus (HIV type-1 viral protein U (Vpu protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.

  1. Comparison of whole genome sequencing to restriction endonuclease analysis and gel diffusion precipitin-based serotyping of Pasteurella multocida.

    Science.gov (United States)

    LeCount, Karen J; Schlater, Linda K; Stuber, Tod; Robbe Austerman, Suelee; Frana, Timothy S; Griffith, Ronald W; Erdman, Matthew M

    2018-01-01

    The gel diffusion precipitin test (GDPT) and restriction endonuclease analysis (REA) have commonly been used in the serotyping and genotyping of Pasteurella multocida. Whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) analysis has become the gold standard for other organisms, offering higher resolution than previously available methods. We compared WGS to REA and GDPT on 163 isolates of P. multocida to determine if WGS produced more precise results. The isolates used represented the 16 reference serovars, isolates with REA profiles matching an attenuated fowl cholera vaccine strain, and isolates from 10 different animal species. Isolates originated from across the United States and from Chile. Identical REA profiles clustered together in the phylogenetic tree. REA profiles that differed by only a few bands had fewer SNP differences than REA profiles with more differences, as expected. The GDPT results were diverse but it was common to see a single serovar show up repeatedly within clusters. Several errors were found when examining the REA profiles. WGS was able to confirm these errors and compensate for the subjectivity in analysis of REA. Also, results of WGS and SNP analysis correlated more closely with the epidemiologic data than GDPT. In silico results were also compared to a lipopolysaccharide rapid multiplex PCR test. From the data produced in our study, WGS and SNP analysis was superior to REA and GDPT and highlighted some of the issues with the older tests.

  2. Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis

    OpenAIRE

    Lavens, Delphine; Peelman, Frank; Van Der Heyden, José; Uyttendaele, Isabel; Catteeuw, Dominiek; Verhee, Annick; Van Schoubroeck, B; Kurth, J; Hallenberger, S; Clayton, R; Tavernier, Jan

    2010-01-01

    The host restriction factor Apobec3G is a cytidine deaminase that incorporates into HIV-1 virions and interferes with viral replication. The HIV-1 accessory protein Vif subverts Apobec3G by targeting it for proteasomal degradation. We propose a model in which Apobec3G N-terminal domains symmetrically interact via a head-to-head interface containing residues 122 RLYYFW 127. To validate this model and to characterize the Apobec3G?Apobec3G and the Apobec3G?Vif interactions, the mammalian protein...

  3. HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels

    Directory of Open Access Journals (Sweden)

    Laviolette François

    2008-12-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infects cells by means of ligand-receptor interactions. This lentivirus uses the CD4 receptor in conjunction with a chemokine coreceptor, either CXCR4 or CCR5, to enter a target cell. HIV-1 is characterized by high sequence variability. Nonetheless, within this extensive variability, certain features must be conserved to define functions and phenotypes. The determination of coreceptor usage of HIV-1, from its protein envelope sequence, falls into a well-studied machine learning problem known as classification. The support vector machine (SVM, with string kernels, has proven to be very efficient for dealing with a wide class of classification problems ranging from text categorization to protein homology detection. In this paper, we investigate how the SVM can predict HIV-1 coreceptor usage when it is equipped with an appropriate string kernel. Results Three string kernels were compared. Accuracies of 96.35% (CCR5 94.80% (CXCR4 and 95.15% (CCR5 and CXCR4 were achieved with the SVM equipped with the distant segments kernel on a test set of 1425 examples with a classifier built on a training set of 1425 examples. Our datasets are built with Los Alamos National Laboratory HIV Databases sequences. A web server is available at http://genome.ulaval.ca/hiv-dskernel. Conclusion We examined string kernels that have been used successfully for protein homology detection and propose a new one that we call the distant segments kernel. We also show how to extract the most relevant features for HIV-1 coreceptor usage. The SVM with the distant segments kernel is currently the best method described.

  4. Further Evidence that Human Endogenous Retrovirus K102 is a Replication Competent Foamy Virus that may Antagonize HIV-1 Replication.

    Science.gov (United States)

    Laderoute, Marian P; Larocque, Louise J; Giulivi, Antonio; Diaz-Mitoma, Francisco

    2015-01-01

    The goals of the research were to determine if a foamy effect on macrophages was due to human endogenous retrovirus K102 (HERV-K102) replication, and to further address its potential significance in HIV-1 infection. An RT-PCR HERV-K HML-2 pol method was used to screen the unknown HERV, and isolated bands were sent for sequencing. Confirmation of RNA expression was performed by a real time quantitative PCR (qPCR) pol ddCt method. Rabbit antibodies to Env peptides were used to assess expression by immunohistology and processing of Env by western blots. A qPCR pol ddCt method to ascertain genomic copy number was performed on genomic DNA isolated from plasma comparing HIV-1 exposed seronegative (HESN) commercial sex workers (CSW) to normal controls and contrasted with HIV-1 patients. HERV-K102 expression, particle production and replication were associated with foamy macrophage generation in the cultures of cord blood mononuclear cells under permissive conditions. A five-fold increased HERV-K102 pol genomic copy number was found in the HESN cohort over normal which was not found in HIV-1 positive patients (p=0.0005). This work extends the evidence that HERV-K102 has foamy virus attributes, is replication competent, and is capable of high replication rate in vivo and in vitro. This may be the first characterization of a replication-competent, foamy-like virus of humans. High particle production inferred by increased integration in the HESN cohort over HIV-1 patients raises the issue of the clinical importance of HERV-K102 particle production as an early protective innate immune response against HIV-1 replication.

  5. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    Directory of Open Access Journals (Sweden)

    Zhiqing Zhang

    2016-11-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes acquired immune deficiency syndrome (AIDS, a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  6. HIV-1, how llamas help us fight the AIDS pandemic

    NARCIS (Netherlands)

    Strokappe, N.M.|info:eu-repo/dai/nl/314411534

    2013-01-01

    Human Immunodeficiency Virus type 1 (HIV-1) is one of the major health problems worldwide and has been for over thirty years. Most (67%) of the people infected with HIV-1 are living in sub-Saharan Africa. Here, the access to treatments is limited and most women are not in a position to protect

  7. Vaginalmycosis and HIV-1 infection in Kaduna, Nigeria. | Eni ...

    African Journals Online (AJOL)

    Vaginal mycosis and HIV-1 infection are common health problems in females. These infections cause high mortality, morbidity and reproductive health disorders in females. The study is to investigate to what extent these infections are prevalent in this centre. 300 non- pregnant females who tested positive with HIV-1 ...

  8. The origin and emergence of an HIV-1 epidemic:

    DEFF Research Database (Denmark)

    Bruhn, Christian Anders Wathne; Audelin, Anne M.; Helleberg, Marie

    2014-01-01

    To describe, at patient-level detail, the determining events and factors involved in the development of a country's HIV-1 epidemic.......To describe, at patient-level detail, the determining events and factors involved in the development of a country's HIV-1 epidemic....

  9. Telomeres and HIV-1 infection: in search of exhaustion

    NARCIS (Netherlands)

    Wolthers, K. C.; Miedema, F.

    1998-01-01

    Telomere length analysis could be helpful in determining if exhaustion and replicative senescence are involved in HIV-1 pathogenesis. Evidence that CD8+ T cells have shorter telomeres may point towards an increased turnover of CD8+ T cells and exhaustion of the CD8+ T-cell responses in HIV-1

  10. Schistosomiasis and HIV-1 infection in rural Zimbabwe

    DEFF Research Database (Denmark)

    Kallestrup, Per; Zinyama, Rutendo; Gomo, Exnevia

    2005-01-01

    Stunted development and reduced fecundity of Schistosoma parasites in immunodeficient mice and the impaired ability of human immunodeficiency virus 1 (HIV-1)-infected humans to excrete schistosome eggs have been described. This study explores the effect that HIV-1-associated immunodeficiency has ...

  11. Development of aptamer based HIV-1 entry inhibitor prophylactic drugs

    CSIR Research Space (South Africa)

    London, G

    2013-08-01

    Full Text Available AIDS remains a major public health problem globally, especially in Southern Africa where over 6.4 million people are infected by the most prevalent HIV-1 subtype C. To help stop the spread of HIV-1 subtype C, we isolated 2ʹ-F-RNA aptamers against gp...

  12. Raltegravir with optimized background therapy for resistant HIV-1 infection

    DEFF Research Database (Denmark)

    Steigbigel, Roy T; Cooper, David A; Kumar, Princy N

    2008-01-01

    BACKGROUND: Raltegravir (MK-0518) is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase active against HIV-1 susceptible or resistant to older antiretroviral drugs. METHODS: We conducted two identical trials in different geographic regions to evaluate the safety and efficacy...

  13. Antibody function in neutralization and protection against HIV-1

    NARCIS (Netherlands)

    Hessell, A.J.

    2009-01-01

    The ability to induce neutralizing antibodies is generally thought to be of great importance for vaccine efficacy. In HIV-1 research this quality has been elusive as the HIV-1 virus has evolved multiple mechanisms to evade neutralizing antibodies. This thesis traces studies with four broadly

  14. HTLV-1 Tax activates HIV-1 transcription in latency models.

    Science.gov (United States)

    Geddes, Victor Emmanuel Viana; José, Diego Pandeló; Leal, Fabio E; Nixon, Douglas F; Tanuri, Amilcar; Aguiar, Renato Santana

    2017-04-01

    HIV-1 latency is a major obstacle to HIV-1 eradication. Coinfection with HTLV-1 has been associated with faster progression to AIDS. HTLV-1 encodes the transactivator Tax which can activate both HTLV-1 and HIV-1 transcription. Here, we demonstrate that Tax activates HIV transcription in latent CD4(+) T cells. Tax promotes the activation of P-TEFb, releasing CDK9 and Cyclin T1 from inactive forms, promoting transcription elongation and reactivation of latent HIV-1. Tax mutants lacking interaction with the HIV-1-LTR promoter were not able to activate P-TEFb, with no subsequent activation of latent HIV. In HIV-infected primary resting CD4(+) T cells, Tax-1 reactivated HIV-1 transcription up to five fold, confirming these findings in an ex vivo latency model. Finally, our results confirms that HTLV-1/Tax hijacks cellular partners, promoting HIV-1 transcription, and this interaction should be further investigated in HIV-1 latency studies in patients with HIV/HTLV-1 co-infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Molecular Mechanisms in Activation of Latent HIV-1

    NARCIS (Netherlands)

    H. Rafati (Haleh)

    2014-01-01

    markdownabstract__Abstract__ Finding a cure for the human immunodeficiency virus type 1 (HIV-1) is extremely challenging. Development of highly active anti-retroviral therapy (HAART), transformed HIV-1 infection from an acute syndrome into chronic disease. Although using HAART results in

  16. Neutralizing antibodies in slowly progressing HIV-1 infection

    DEFF Research Database (Denmark)

    Schønning, Kristian; Nielsen, C; Iversen, Johan

    1995-01-01

    Ten asymptomatic individuals who had experienced only limited CD4+ cell loss after prolonged infection with HIV-1 were studied. These individuals had a mean CD4+ cell count of 674 x 10(6) cells/L and a mean duration of infection of 8.5 years. Also included were 10 asymptomatic HIV-1-infected...

  17. The role of polymorphonuclear neutrophils during HIV-1 infection.

    Science.gov (United States)

    Yaseen, Mahmoud Mohammad; Abuharfeil, Nizar Mohammad; Yaseen, Mohammad Mahmoud; Shabsoug, Barakat Mohammad

    2018-01-01

    It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.

  18. Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals.

    Directory of Open Access Journals (Sweden)

    Ashley Azar

    Full Text Available Evolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings. In this study, we undertook a detailed neuropsychological analysis of a cohort of long-term HIV-1-infected individuals in conjunction with sequencing of their mitochondrial genomes. Stepwise regression analysis showed that the best model for predicting both working memory and declarative memory were age and years since diagnosis. In contrast, years since diagnosis and sub-haplogroup were significantly predictive of psychomotor speed. Consistent with this, patients with haplogroup L3e obtained better scores on psychomotor speed and dexterity tasks when compared to the remainder of the cohort, suggesting that this haplogroup provides a protective advantage when faced with the combined stress of HIV-1 infection and long-term antiretroviral therapies. Differential performance on declarative memory tasks was noted for individuals with other sub-L haplogroups, but these differences were not as robust as the association between L3e and psychomotor speed and dexterity tasks. This work provides evidence that mitochondrial haplogroup is related to neuropsychological test performance among patients in chronic disease settings such as HIV-1 infection.

  19. Daily Acyclovir Delays HIV-1 Disease Progression Among HIV-1/HSV-2 Dually-Infected Persons: A Randomized Trial

    Science.gov (United States)

    Lingappa, Jairam R.; Baeten, Jared M.; Wald, Anna; Hughes, James P.; Thomas, Katherine K.; Mujugira, Andrew; Mugo, Nelly; Bukusi, Elizabeth A.; Cohen, Craig R.; Katabira, Elly; Ronald, Allan; Kiarie, James; Farquhar, Carey; Stewart, Grace John; Makhema, Joseph; Essex, Myron; Were, Edwin; Fife, Kenneth H.; de Bruyn, Guy; Gray, Glenda E.; McIntyre, James; Manongi, Rachel; Kapiga, Saidi; Coetzee, David; Allen, Susan; Inambao, Mubiana; Kayitenkore, Kayitesi; Karita, Etienne; Kanweka, William; Delany, Sinead; Rees, Helen; Vwalika, Bellington; Magaret, Amalia; Wang, Richard S.; Kidoguchi, Lara; Barnes, Linda; Ridzon, Renee; Corey, Lawrence; Celum, Connie

    2010-01-01

    Background Well-tolerated medications that slow HIV-1 disease progression and delay initiation of antiretroviral therapy (ART) are needed. Most HIV-1-infected persons are dually-infected with herpes simplex virus type 2 (HSV-2). Daily HSV-2 suppression reduces plasma HIV-1 levels, but whether HSV-2 suppression delays HIV-1 disease progression is unknown. Methods Within a randomized, placebo-controlled trial of HSV-2 suppressive therapy (acyclovir 400 mg orally bid) to decrease HIV-1 transmission, 3381 HSV-2/HIV-1 dually-infected heterosexual Africans who at enrollment had CD4 counts ≥250 cells/mm3 and were not taking ART were followed for up to 24 months. We evaluated the effect of acyclovir on HIV-1 disease progression, defined by a primary composite endpoint of first occurrence of CD4 count death. As an exploratory analysis, we evaluated the endpoint of CD4 decline to HIV-1 plasma RNA was 4.1 log10 copies/mL. Acyclovir reduced risk of HIV-1 disease progression: 284 participants on acyclovir versus 324 on placebo reached the primary endpoint (hazard ratio [HR] 0.84, 95% confidence interval [CI] 0.71–0.98, p=0.03). Among participants with CD4 counts ≥350 cells/mm3, acyclovir delayed risk of CD4 decline to HIV-1 disease progression by 16% (95% CI 2–29%). The role of HSV-2 suppression in reducing HIV-1 disease progression prior to ART initiation warrants consideration (ClinicalTrials.gov #NCT00194519). PMID:20153888

  20. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material

    Directory of Open Access Journals (Sweden)

    Rebecca A. Russell

    2017-02-01

    Full Text Available HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

  1. AIDS in rural Africa: a paradigm for HIV-1 prevention.

    Science.gov (United States)

    Hudson, C P

    1996-07-01

    Networks of concurrent sexual partnerships may be the primary cause of epidemic spread of HIV-1 in parts of sub-Saharan Africa. This pattern of sexual behaviour increases the likelihood that individuals experiencing primary HIV-1 infection transmit the virus to other persons. Networks of concurrent partnerships are likely to be important in both the early ('epidemic') and late ('endemic') phases of HIV-1 transmission. Interventions should aim to break the sexual networks, whatever the stage of the epidemic. However, prevention of transmission in the endemic phase also requires a greater awareness of early clinical manifestations of HIV-1 infection in the general population. Such awareness, coupled with the availability of condoms and access to HIV-1 testing facilities, may reduce transmission in discordant couples.

  2. Integrase and integration: biochemical activities of HIV-1 integrase

    Directory of Open Access Journals (Sweden)

    Deprez Eric

    2008-12-01

    Full Text Available Abstract Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1. This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.

  3. Sexually transmitted infections among HIV-1-discordant couples.

    Directory of Open Access Journals (Sweden)

    Brandon L Guthrie

    2009-12-01

    Full Text Available More new HIV-1 infections occur within stable HIV-1-discordant couples than in any other group in Africa, and sexually transmitted infections (STIs may increase transmission risk among discordant couples, accounting for a large proportion of new HIV-1 infections. Understanding correlates of STIs among discordant couples will aid in optimizing interventions to prevent HIV-1 transmission in these couples.HIV-1-discordant couples in which HIV-1-infected partners were HSV-2-seropositive were tested for syphilis, chlamydia, gonorrhea, and trichomoniasis, and HIV-1-uninfected partners were tested for HSV-2. We assessed sociodemographic, behavioral, and biological correlates of a current STI.Of 416 couples enrolled, 16% were affected by a treatable STI, and among these both partners were infected in 17% of couples. A treatable STI was found in 46 (11% females and 30 (7% males. The most prevalent infections were trichomoniasis (5.9% and syphilis (2.6%. Participants were 5.9-fold more likely to have an STI if their partner had an STI (P<0.01, and STIs were more common among those reporting any unprotected sex (OR = 2.43; P<0.01 and those with low education (OR = 3.00; P<0.01. Among HIV-1-uninfected participants with an HSV-2-seropositive partner, females were significantly more likely to be HSV-2-seropositive than males (78% versus 50%, P<0.01.Treatable STIs were common among HIV-1-discordant couples and the majority of couples affected by an STI were discordant for the STI, with relatively high HSV-2 discordance. Awareness of STI correlates and treatment of both partners may reduce HIV-1 transmission.ClinicalTrials.gov NCT00194519.

  4. Homogenous HIV-1 subtype B quasispecies in Brazilian men and women recently infected via heterosexual transmission.

    Science.gov (United States)

    Gouveia, Nancy Lima; Camargo, Michelle; Caseiro, Marcos Montani; Janini, Luiz Mario Ramos; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie

    2014-06-01

    HIV has extraordinary genetic mutability, both among individuals and at the population level. However, studies of primary HIV-1 infection and serum-converters indicate that the viral population is homogeneous at the sequence level, which suggests clonal HIV transmission. It remains unclear whether this feature applies to the female population. Ten single genome amplification sequences were generated from ten individuals (five females) with recent heterosexually acquired HIV infection as determined by the serologic testing algorithm for recent HIV seroconversion. Intra-individual genetic diversity was equally low in both genders (selection for sexual transmission of HIV-1 in both genders. Future studies that generate a larger number of clones, preferably by next generation deep sequencing, are needed to confirm these results.

  5. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  6. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid.

    Directory of Open Access Journals (Sweden)

    Mallori Burse

    Full Text Available The host immunophilin cyclophilin A (CypA binds to the capsid protein (CA of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α. Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.

  7. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid.

    Science.gov (United States)

    Burse, Mallori; Shi, Jiong; Aiken, Christopher

    2017-01-01

    The host immunophilin cyclophilin A (CypA) binds to the capsid protein (CA) of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α). Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.

  8. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies

    Science.gov (United States)

    Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-09-01

    The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5'-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.

  9. Highly activated p53 contributes to selectively increased apoptosis of latently HIV-1 infected cells upon treatment of anticancer drugs.

    Science.gov (United States)

    Shin, YoungHyun; Lim, Hoyong; Choi, Byeong-Sun; Kim, Kyung-Chang; Kang, Chun; Bae, Yong-Soo; Yoon, Cheol-Hee

    2016-08-16

    Despite the successful inhibition of human immunodeficiency virus type 1 (HIV-1) replication by combination antiretroviral therapy, cells latently infected with HIV-1 remaining in patients are a major obstacle for eradication of HIV-1 infection. The tumor suppressor factor p53 is activated by HIV-1 infection, and restricts HIV-1 replication. However, a therapeutic strategy based on p53 activity has not been considered for elimination of latently infected cells. Apoptotic cells were analyzed using flow cytometry with anti-annexin A5-FITC Ab and PI staining upon treatment of anticancer drugs. The expression and activation of p53 and apoptotic molecules in latently HIV-1-infected T cells were compared using Western blot analysis. The role of p53 in the anticancer drug treatment-induced apoptosis of cells latently infected with HIV-1 was determined by knock-down experiment using siRNA against p53. Upon treatment with 5-fluorouracil (5-FU), apoptosis was increased in latently infected ACH2 cells encoding competent p53 compared with uninfected parent A3.01 cells, while the apoptosis of latently infected p53 null J1.1 cells was less than that of uninfected cells. Treatment with 5-FU increased the levels of cleaved caspase-3 and PARP in ACH2 cells compared with uninfected and latently infected p53 null J1.1 cells. The levels of expression and activation of p53 were higher in both latently infected ACH2 and NCHA2 cells than in uninfected cells. Furthermore, the activation levels of p53 in both cells were further increased upon 5-FU treatment. Consistent with p53 status, apoptosis was markedly increased in ACH2 and NCHA2 cells compared with uninfected and latently infected J1.1 cells upon treatment with other anticancer drugs such as doxorubicin and etoposide. Inhibition of p53 in cells with latent HIV-1 infection diminished apoptosis upon 5-FU treatment. Evidence described here indicate that when treated with anticancer drugs, apoptosis of cells with latent HIV-1 infection

  10. Replication competent HIV-1 viruses that express intragenomic microRNA reveal discrete RNA-interference mechanisms that affect viral replication.

    Science.gov (United States)

    Klase, Zachary; Houzet, Laurent; Jeang, Kuan-Teh

    2011-11-23

    It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication of a lentivirus such as HIV-1 after the deliberate intragenomic insertion of a bona fide miRNA. We have constructed several HIV-1 molecular clones, each containing a discrete cellular miRNA positioned in Nef. These retroviral genomes express the inserted miRNA and are generally replication competent in T-cells. The inserted intragenomic miRNA was observed to elicit two different consequences for HIV-1 replication. First, the expression of miRNAs with predicted target sequences in the HIV-1 genome was found to reduce viral replication. Second, in one case, where an inserted miRNA was unusually well-processed by Drosha, this processing event inhibited viral replication. This is the first study to examine in detail the replication competence of HIV-1 genomes that express cis-embedded miRNAs. The results indicate that a replication competent retroviral genome is not precluded from encoding and expressing a viral miRNA.

  11. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera...... on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...... to CD4 and that post binding events may be common to the infection of lymphocytes. Anti HIV-1 sera showed neutralizing activity against heterologous and even autologous escape virus. This finding, together with the observation that monocytes and M phi s are infected in vivo, suggests that protection...

  12. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Zandrea, E-mail: zaa4@pitt.edu [Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261 (United States); Aiken, Christopher [Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2014-04-15

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals.

  13. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2010-05-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (dsRNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP that contains the HIV-1 genomic RNA (vRNA, Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1 occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The

  14. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir.

    Science.gov (United States)

    Chiozzini, Chiara; Arenaccio, Claudia; Olivetta, Eleonora; Anticoli, Simona; Manfredi, Francesco; Ferrantelli, Flavia; d'Ettorre, Gabriella; Schietroma, Ivan; Andreotti, Mauro; Federico, Maurizio

    2017-09-01

    Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

  15. Molecular mechanism of HIV-1 resistance to 3’-azido-2’,3’-dideoxyguanosine

    OpenAIRE

    Meteer, Jeffrey D.; Schinazi, Raymond F.; Mellors, John W.; Sluis-Cremer, Nicolas

    2013-01-01

    We reported that 3’-azido-2’,3’-dideoxyguanosine (3’-azido-ddG) selected for the L74V, F77L, and L214F mutations in the polymerase domain and K476N and V518I mutations in the RNase H domain of HIV-1 reverse transcriptase (RT). In this study, we have defined the molecular mechanisms of 3’-azido-ddG resistance by performing in-depth biochemical analyses of HIV-1 RT containing mutations L74V, F77L, V106I, L214F, R277K and K476N (SGS3). The SGS3 HIV-1 RT was from a single-genome-derived full-leng...

  16. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Science.gov (United States)

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  17. HIV-1 molecular epidemiology among newly diagnosed HIV-1 individuals in Hebei, a low HIV prevalence province in China.

    Directory of Open Access Journals (Sweden)

    Xinli Lu

    Full Text Available New human immunodeficiency virus type 1 (HIV-1 diagnoses are increasing rapidly in Hebei. The aim of this study presents the most extensive HIV-1 molecular epidemiology investigation in Hebei province in China thus far. We have carried out the most extensive systematic cross-sectional study based on newly diagnosed HIV-1 positive individuals in 2013, and characterized the molecular epidemiology of HIV-1 based on full length gag-partial pol gene sequences in the whole of Hebei. Nine HIV-1 genotypes based on full length gag-partial pol gene sequence were identified among 610 newly diagnosed naïve individuals. The four main genotypes were circulating recombinant form (CRF01_AE (53.4%, CRF07_BC (23.4%, subtype B (15.9%, and unique recombinant forms URFs (4.9%. Within 1 year, three new genotypes (subtype A1, CRF55_01B, CRF65_cpx, unknown before in Hebei, were first found among men who have sex with men (MSM. All nine genotypes were identified in the sexually contracted HIV-1 population. Among 30 URFs, six recombinant patterns were revealed, including CRF01_AE/BC (40.0%, CRF01_AE/B (23.3%, B/C (16.7%, CRF01_AE/C (13.3%, CRF01_AE/B/A2 (3.3% and CRF01_AE/BC/A2 (3.3%, plus two potential CRFs. This study elucidated the complicated characteristics of HIV-1 molecular epidemiology in a low HIV-1 prevalence northern province of China and revealed the high level of HIV-1 genetic diversity. All nine HIV-1 genotypes circulating in Hebei have spread out of their initial risk groups into the general population through sexual contact, especially through MSM. This highlights the urgency of HIV prevention and control in China.

  18. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Directory of Open Access Journals (Sweden)

    Silvana Pasetto

    Full Text Available HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic, H9 and PBMC cells plus HIV-1 MN (X4 tropic, and the dual tropic (X4R5 HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  19. Circulation of HIV-1 CRF02_AG among MSM Population in Central Italy: A Molecular Epidemiology-Based Study

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    2013-01-01

    Full Text Available Introduction. The evolutionary and demographic history of the circular recombinant form CRF02_AG in a selected retrospective group of HIV-1 infected men who have sex with men (MSM resident in Central Italy was investigated. Methods. A total of 55 HIV-1 subtype CRF02_AG pol sequences were analyzed using Bayesian methods and a relaxed molecular clock to reconstruct their dated phylogeny and estimate population dynamics. Results. Dated phylogeny indicated that the HIV-1 CRF02_AG strains currently circulating in Central Italy originated in the early 90's. Bayesian phylogenetic analysis revealed the existence of a main HIV-1 CRF02_AG clade, introduced in the area of Rome before 2000 and subsequently differentiated in two different subclades with a different date of introduction (2000 versus 2005. All the sequences within clusters were interspersed, indicating that the MSM analyzed form a close and restricted network where the individuals, also moving within different clinical centers, attend the same places to meet and exchange sex. Conclusions. It was suggested that the HIV-1 CRF02_AG epidemic entered central Italy in the early 1990s, with a similar trend observed in western Europe.

  20. Factors Associated With the Control of Viral Replication and Virologic Breakthrough in a Recently Infected HIV-1 Controller

    Directory of Open Access Journals (Sweden)

    Victoria E. Walker-Sperling

    2017-02-01

    Full Text Available HIV-1 controllers are patients who control HIV-1 viral replication without antiretroviral therapy. Control is achieved very early in the course of infection, but the mechanisms through which viral replication is restricted are not fully understood. We describe a patient who presented with acute HIV-1 infection and was found to have an HIV-1 RNA level of <100 copies/mL. She did not have any known protective HLA alleles, but significant immune activation of CD8+ T cells and natural killer (NK cells was present, and both cell types inhibited viral replication. Virus cultured from this patient replicated as well in vitro as virus isolated from her partner, a patient with AIDS who was the source of transmission. Virologic breakthrough occurred 9 months after her initial presentation and was associated with an increase in CD4+ T cell activation levels and a significant decrease in NK cell inhibitory capacity. Remarkably, CD8+ T cell inhibitory capacity was preserved and there were no new escape mutations in targeted Gag epitopes. These findings suggest that fully replication-competent virus can be controlled in acute HIV-1 infection in some patients without protective HLA alleles and that NK cell responses may contribute to this early control of viral replication.

  1. Proteasomal degradation of TRIM5alpha during retrovirus restriction.

    Directory of Open Access Journals (Sweden)

    Christopher James Rold

    2008-05-01

    Full Text Available The host protein TRIM5alpha inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5alpha. Here, we show that TRIM5alpha is rapidly degraded upon encounter of a restriction-susceptible retroviral core. Inoculation of TRIM5alpha-expressing human 293T cells with a saturating level of HIV-1 particles resulted in accelerated degradation of the HIV-1-restrictive rhesus macaque TRIM5alpha protein but not the nonrestrictive human TRIM5alpha protein. Exposure of cells to HIV-1 also destabilized the owl monkey restriction factor TRIMCyp; this was prevented by addition of the inhibitor cyclosporin A and was not observed with an HIV-1 virus containing a mutation in the capsid protein that relieves restriction by TRIMCyp IVHIV. Likewise, human TRIM5alpha was rapidly degraded upon encounter of the restriction-sensitive N-tropic murine leukemia virus (N-MLV but not the unrestricted B-MLV. Pretreatment of cells with proteasome inhibitors prevented the HIV-1-induced loss of both rhesus macaque TRIM5alpha and TRIMCyp proteins. We also detected degradation of endogenous TRIM5alpha in rhesus macaque cells following HIV-1 infection. We conclude that engagement of a restriction-sensitive retrovirus core results in TRIM5alpha degradation by a proteasome-dependent mechanism.

  2. Assessment of recent HIV-1 infection by a line immunoassay for HIV-1/2 confirmation.

    Directory of Open Access Journals (Sweden)

    Jörg Schüpbach

    2007-12-01

    Full Text Available BACKGROUND: Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this "recency" information can also be gained from an HIV confirmatory assay. METHODS AND FINDINGS: The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA. Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8% with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1% as recent (< or = 12 mo. Symptoms of CDC stages B or C classified 161 infections as older (21.5%, and 392 patients with no symptoms remained unclassified. BED-EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33

  3. Assessment of recent HIV-1 infection by a line immunoassay for HIV-1/2 confirmation.

    Science.gov (United States)

    Schüpbach, Jörg; Gebhardt, Martin D; Tomasik, Zuzana; Niederhauser, Christoph; Yerly, Sabine; Bürgisser, Philippe; Matter, Lukas; Gorgievski, Meri; Dubs, Rolf; Schultze, Detlev; Steffen, Ingrid; Andreutti, Corinne; Martinetti, Gladys; Güntert, Bruno; Staub, Roger; Daneel, Synove; Vernazza, Pietro

    2007-12-01

    Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this "recency" information can also be gained from an HIV confirmatory assay. The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics) to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA). Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8%) with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1%) as recent (EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33% for the two INNO-LIA algorithms. Window-based estimation with BED-EIA yielded 41% (95% confidence interval 36%-46%). Recency information can be extracted from INNO-LIA-based confirmatory testing at

  4. Sex and gender differences in HIV-1 infection.

    Science.gov (United States)

    Griesbeck, Morgane; Scully, Eileen; Altfeld, Marcus

    2016-08-01

    The major burden of the human immunodeficiency (HIV) type 1 pandemic is nowadays carried by women from sub-Saharan Africa. Differences in the manifestations of HIV-1 infection between women and men have been long reported, and might be due to both socio-economic (gender) and biological (sex) factors. Several studies have shown that women are more susceptible to HIV-1 acquisition than men. Following HIV-1 infection, women have lower viral loads during acute infection and exhibit stronger antiviral responses than men, which may contribute to differences in the size of viral reservoirs. Oestrogen receptor signalling could represent an important mediator of sex differences in HIV-1 reservoir size and may represent a potential therapeutic target. Furthermore, immune activation, a hallmark of HIV-1 infection, is generally higher in women than in men and could be a central mechanism in the sex difference observed in the speed of HIV-1 disease progression. Here, we review the literature regarding sex-based differences in HIV-1 infection and discuss how a better understanding of the underlying mechanisms could improve preventive and therapeutic strategies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Correlates of HIV-1 genital shedding in Tanzanian women.

    Directory of Open Access Journals (Sweden)

    Clare Tanton

    2011-03-01

    Full Text Available Understanding the correlates of HIV shedding is important to inform strategies to reduce HIV infectiousness. We examined correlates of genital HIV-1 RNA in women who were seropositive for both herpes simplex virus (HSV-2 and HIV-1 and who were enrolled in a randomised controlled trial of HSV suppressive therapy (aciclovir 400 mg b.i.d vs. placebo in Tanzania.Samples, including a cervico-vaginal lavage, were collected and tested for genital HIV-1 and HSV and reproductive tract infections (RTIs at randomisation and 6, 12 and 24 months follow-up. Data from all women at randomisation and women in the placebo arm during follow-up were analysed using generalised estimating equations to determine the correlates of cervico-vaginal HIV-1 RNA detection and load.Cervico-vaginal HIV-1 RNA was detected at 52.0% of 971 visits among 482 women, and was independently associated with plasma viral load, presence of genital ulcers, pregnancy, bloody cervical or vaginal discharge, abnormal vaginal discharge, cervical ectopy, Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, an intermediate bacterial vaginosis score and HSV DNA detection. Similar factors were associated with genital HIV-1 RNA load.RTIs were associated with increased presence and quantity of genital HIV-1 RNA in this population. These results highlight the importance of integrating effective RTI treatment into HIV care services.

  6. The Complex Interaction Between Methamphetamine Abuse and HIV-1 Pathogenesis.

    Science.gov (United States)

    Passaro, Ryan Colby; Pandhare, Jui; Qian, Han-Zhu; Dash, Chandravanu

    2015-09-01

    The global HIV/AIDS pandemic has claimed the lives of an estimated 35 million people. A significant barrier for combating this global pandemic is substance use since it is associated with HIV transmission, delayed diagnosis/initiation of therapy, and poor adherence to therapy. Clinical studies also suggest a link between substance use and HIV-disease progression/AIDS-associated mortality. Methamphetamine (METH) use is one of the fastest-growing substance use problems in the world. METH use enhances high-risk sexual behaviors, therefore increases the likelihood of HIV-1 acquisition. METH use is also associated with higher viral loads, immune dysfunction, and antiretroviral resistance. Moreover, METH use has also been correlated with rapid progression to AIDS. However, direct effects of METH on HIV-1 disease progression remains poorly understood because use of METH and other illicit drugs is often associated with reduced/non adherence to ART. Nevertheless, in vitro studies demonstrate that METH increases HIV-1 replication in cell cultures and animal models. Thus, it has been proposed that METH's potentiating effects on HIV-1 replication may in part contribute to the worsening of HIV-1 pathogenesis. However, our recent data demonstrate that METH at physiologically relevant concentrations has no effect and at higher concentrations inhibits HIV-1 replication in CD4+ T cells. Thus, the goal of this review is to systematically examine the published literature to better understand the complex interaction between METH abuse and HIV-1 disease progression.

  7. The HIV epidemic in the Amazon Basin is driven by prototypic and recombinant HIV-1 subtypes B and F.

    Science.gov (United States)

    Vicente, A C; Otsuki, K; Silva, N B; Castilho, M C; Barros, F S; Pieniazek, D; Hu, D; Rayfield, M A; Bretas, G; Tanuri, A

    2000-04-01

    This paper describes genetic subtypes of HIV-1 found in blood samples from 31 HIV-1-infected people who visited the Counseling and Testing AIDS Center of Instituto de Medicina Tropical in Manaus, Brazil. Manaus, the main city in Brazil's Amazon Basin, is also the closest urban connection for more than 100,000 Indians living in the rain forests of this region. Although to date there is no evidence of increased incidence of HIV-1 infection among the indigenous population, our understanding of both the prevalence and nature of the epidemic in the region as a whole is limited. From the 31 samples analyzed by C2V3 sequencing, we found almost equal proportions of HIV-1 strains belonging to subtype B (n = 16; 51.6%) and subtype F (n = 15; 48.4%), a finding that differs from results from previous studies conducted in urban areas of southeastern Brazil. We also observed the presence of the GWGR amino-acid sequence in the critical tetra-peptide crown of the env V3 loop in the HIV-1 subtype B samples analyzed. Among these samples, we also found 14 mosaic genomes (45.16%) in which different combinations of subtypes B, C, and F were identified between the p24 gag, pro, and env regions. Our data support the hypothesis that the Amazonian HIV-1 infections linked to the urban epidemic in southeastern Brazil. The genetic diversity and the prevalence of mosaic genomes among the isolates in our study confirm an integral role of recombination in the complex Brazilian epidemic.

  8. High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay

    Directory of Open Access Journals (Sweden)

    Robert W. Yucha

    2017-06-01

    Full Text Available Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent infection. We therefore developed a microfluidic single-cell-in-droplet (scdPCR assay to directly measure the number of CD4+ T cells that produce unspliced (usRNA and multiply spliced (msRNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin or T cell receptor (TCR stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4+ T-cells in a single experiment. The scdPCR method was then applied to CD4+ T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous—increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies.

  9. Electron cryotomography studies of maturing HIV-1 particles reveal the assembly pathway of the viral core.

    Science.gov (United States)

    Woodward, Cora L; Cheng, Sarah N; Jensen, Grant J

    2015-01-15

    To better characterize the assembly of the HIV-1 core, we have used electron cryotomography (ECT) to image infected cells and the viral particles cryopreserved next to them. We observed progressive stages of virus assembly and egress, including flower-like flat Gag lattice assemblies, hemispherical budding profiles, and virus buds linked to the plasma membrane via a thin membrane neck. The population of budded viral particles contains immature, maturation-intermediate, and mature core morphologies. Structural characteristics of the maturation intermediates suggest that the core assembly pathway involves the formation of a CA sheet that associates with the condensed ribonucleoprotein (RNP) complex. Our analysis also reveals a correlation between RNP localization within the viral particle and the formation of conical cores, suggesting that the RNP helps drive conical core assembly. Our findings support an assembly pathway for the HIV-1 core that begins with a small CA sheet that associates with the RNP to form the core base, followed by polymerization of the CA sheet along one side of the conical core toward the tip, and then closure around the body of the cone. During HIV-1 assembly and release, the Gag polyprotein is organized into a signature hexagonal lattice, termed the immature lattice. To become infectious, the newly budded virus must disassemble the immature lattice by proteolyzing Gag and then reassemble the key proteolytic product, the structural protein p24 (CA), into a distinct, mature hexagonal lattice during a process termed maturation. The mature HIV-1 virus contains a conical capsid that encloses the condensed viral genome at its wide base. Mutations or small molecules that interfere with viral maturation also disrupt viral infectivity. Little is known about the assembly pathway that results in the conical core and genome encapsidation. Here, we have used electron cryotomography to structurally characterize HIV-1 particles that are actively maturing

  10. Expression analysis of LEDGF/p75, APOBEC3G, TRIM5alpha, and tetherin in a Senegalese cohort of HIV-1-exposed seronegative individuals.

    Directory of Open Access Journals (Sweden)

    Kim Mous

    Full Text Available BACKGROUND: HIV-1 replication depends on a delicate balance between cellular co-factors and antiviral restriction factors. Lens epithelium-derived growth factor (LEDGF/p75 benefits HIV, whereas apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, tripartite motif 5alpha (TRIM5α, and tetherin exert anti-HIV activity. Expression levels of these proteins possibly contribute to HIV-1 resistance in HIV-1-exposed populations. METHODOLOGY/PRINCIPAL FINDINGS: We used real-time PCR and flow cytometry to study mRNA and protein levels respectively in PBMC and PBMC subsets. We observed significantly reduced LEDGF/p75 protein levels in CD4+ lymphocytes of HIV-1-exposed seronegative subjects relative to healthy controls, whereas we found no differences in APOBEC3G, TRIM5α, or tetherin expression. Untreated HIV-1-infected patients generally expressed higher mRNA and protein levels than healthy controls. Increased tetherin levels, in particular, correlated with markers of disease progression: directly with the viral load and T cell activation and inversely with the CD4 count. CONCLUSIONS/SIGNIFICANCE: Our data suggest that reduced LEDGF/p75 levels may play a role in resistance to HIV-1 infection, while increased tetherin levels could be a marker of advanced HIV disease. Host factors that influence HIV-1 infection and disease could be important targets for new antiviral therapies.

  11. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  12. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo.

    Science.gov (United States)

    Rodgers, Mary A; Wilkinson, Eduan; Vallari, Ana; McArthur, Carole; Sthreshley, Larry; Brennan, Catherine A; Cloherty, Gavin; de Oliveira, Tulio

    2017-03-15

    As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C (n = 2), D (n = 1), F1 (n = 1), H (n = 3), and J (n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic.IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By

  13. In vivo effects of methamphetamine on HIV-1 replication: A population-based study

    National Research Council Canada - National Science Library

    Jiang, Junjun; Wang, Minlian; Liang, Bingyu; Shi, Yi; Su, Qijian; Chen, Hui; Huang, Jiegang; Su, Jinming; Pan, Peijiang; Li, Yu; Wang, Hong; Chen, Rongfeng; Liu, Jie; Zhao, Fangning; Ye, Li; Liang, Hao

    2016-01-01

    Although a number of in vitro studies have shown that methamphetamine (METH) can increase HIV-1 replication in human immune cells, a direct link between METH use and HIV-1 pathogenesis remains to be determined among HIV-1 patients...

  14. Multiple HIV-1/M + HIV-1/O dual infections and new HIV-1/MO inter-group recombinant forms detected in Cameroon.

    Science.gov (United States)

    De Oliveira, Fabienne; Mourez, Thomas; Vessiere, Aurélia; Ngoupo, Paul-Alain; Alessandri-Gradt, Elodie; Simon, François; Rousset, Dominique; Plantier, Jean-Christophe

    2017-01-13

    Due to the prevalence of HIV-1 group M and the endemicity of HIV-1 group O infections in Cameroon, patients may be infected with both viruses and/or with HIV-1/MO recombinant forms. Such atypical infections may be deleterious in terms of diagnosis and therapeutic management due to the high divergence of HIV-1/O. The aim of this study was to identify prospectively such atypical infections in Cameroon. Based on serological screening by env-V3 serotyping and a molecular strategy using group-specific (RT)-PCRs, we identified 10 Cameroonian patients harboring three different profiles of infection: (1) 4 HIV-1/M + O dual infections without evidence of recombinant; (2) 5 recombinants associated with one or both parental strains; and (3) 1 new recombinant form without parental strains. This work highlights the dynamic co-evolution of these two HIV groups in Cameroon that could lead to the emergence of a circulating recombinant form MO, and the need for accurate identification of such atypical infections for precise diagnosis, virological monitoring and therapeutic management with adapted tools.

  15. Exon level transcriptomic profiling of HIV-1-infected CD4(+ T cells reveals virus-induced genes and host environment favorable for viral replication.

    Directory of Open Access Journals (Sweden)

    Michaël Imbeault

    Full Text Available HIV-1 is extremely specialized since, even amongst CD4(+ T lymphocytes (its major natural reservoir in peripheral blood, the virus productively infects only a small proportion of cells under an activated state. As the percentage of HIV-1-infected cells is very low, most studies have so far failed to capture the precise transcriptomic profile at the whole-genome scale of cells highly susceptible to virus infection. Using Affymetrix Exon array technology and a reporter virus allowing the magnetic isolation of HIV-1-infected cells, we describe the host cell factors most favorable for virus establishment and replication along with an overview of virus-induced changes in host gene expression occurring exclusively in target cells productively infected with HIV-1. We also establish that within a population of activated CD4(+ T cells, HIV-1 has no detectable effect on the transcriptome of uninfected bystander cells at early time points following infection. The data gathered in this study provides unique insights into the biology of HIV-1-infected CD4(+ T cells and identifies genes thought to play a determinant role in the interplay between the virus and its host. Furthermore, it provides the first catalogue of alternative splicing events found in primary human CD4(+ T cells productively infected with HIV-1.

  16. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study.

    Science.gov (United States)

    Henrich, Timothy J; Hatano, Hiroyu; Bacon, Oliver; Hogan, Louise E; Rutishauser, Rachel; Hill, Alison; Kearney, Mary F; Anderson, Elizabeth M; Buchbinder, Susan P; Cohen, Stephanie E; Abdel-Mohsen, Mohamed; Pohlmeyer, Christopher W; Fromentin, Remi; Hoh, Rebecca; Liu, Albert Y; McCune, Joseph M; Spindler, Jonathan; Metcalf-Pate, Kelly; Hobbs, Kristen S; Thanh, Cassandra; Gibson, Erica A; Kuritzkes, Daniel R; Siliciano, Robert F; Price, Richard W; Richman, Douglas D; Chomont, Nicolas; Siliciano, Janet D; Mellors, John W; Yukl, Steven A; Blankson, Joel N; Liegler, Teri; Deeks, Steven G

    2017-11-01

    /mouse) experienced very low level viremia (201 copies/mL); sequence confirmation was unsuccessful. PrEP Participant A stopped ART and remained aviremic for 7.4 months, rebounding with HIV RNA of 36 copies/mL that rose to 59,805 copies/mL 6 days later. ART was restarted promptly. Rebound plasma HIV sequences were identical to those obtained during acute infection by single-genome sequencing. Mathematical modeling predicted that the latent reservoir size was approximately 200 cells prior to ATI and that only around 1% of individuals with a similar HIV burden may achieve lifelong ART-free remission. Furthermore, we observed that lymphocytes expressing the tumor marker CD30 increased in frequency weeks to months prior to detectable HIV-1 RNA in plasma. This study was limited by the small sample size, which was a result of the rarity of individuals presenting during hyperacute infection. We report HIV relapse despite initiation of ART at one of the earliest stages of acute HIV infection possible. Near complete or complete loss of detectable HIV in blood and tissues did not lead to indefinite ART-free HIV remission. However, the small numbers of latently infected cells in individuals treated during hyperacute infection may be associated with prolonged ART-free remission.

  17. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication.

    Directory of Open Access Journals (Sweden)

    Harry E Taylor

    2015-05-01

    Full Text Available Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1 infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1 links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.

  18. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    Science.gov (United States)

    Pou, Christian; Codoñer, Francisco M; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing should be specifically validated in clinical trials before it can be applied to routine clinical decision-making.

  19. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera on this in......To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera...... on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...... after seroconversion lead to persistent infection with high level of antigen production in contrast to infection by homologous virus isolated later. MAb against the V3-IIIB loop and sCD4 inhibited the infection of monocyte/M phi s in a dose dependent manner, indicating that infection requires binding...

  20. Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects.

    Science.gov (United States)

    Roff, Shannon R; Sanou, Missa P; Rathore, Mobeen H; Levy, Jay A; Yamamoto, Janet K

    2015-01-01

    Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.

  1. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sarah K Mercier

    2013-10-01

    Full Text Available HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54 expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺ MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1

  2. 96 shRNAs designed for maximal coverage of HIV-1 variants

    Directory of Open Access Journals (Sweden)

    Shen Sylvie

    2009-06-01

    summary, our novel selection process resulted in a large panel of highly active shRNAs spanning the HIV-1 genome, representing excellent candidates for use in multiple shRNA gene therapies. Our core selection method ensuring maximal conservation in the processed product(s is also widely applicable to other shRNA applications.

  3. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Directory of Open Access Journals (Sweden)

    Vera Klemm

    2016-12-01

    Full Text Available HIV-1 infection has been transformed by combined anti-retroviral therapy (ART, changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi, short interfering RNA (siRNA induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.

  4. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  5. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Dat