Filip-Vacarescu Norin
2016-03-01
Full Text Available This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB can be combined with a magneto-rheological (MR Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE scale of reference parameters (i.e. interstory drift.
Autoregressive trispectrum and its slices analysis of magnetorheological damping device
陈丙三; 黄宜坚
2008-01-01
A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.
Power system damping using fuzzy controlled facts devices
Kazemi, Ahad; Sohrforouzani, Mahmoud Vakili [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran)
2006-06-15
This paper presents a new approach to the implementation of the effect of FACTS devices on damping local modes and inter-area modes of oscillations based on a simple fuzzy logic proportional plus conventional integral controller in a multi-machine power system. The proposed controller uses a combination of a FLC and a PI controller. In comparison with the existing fuzzy controllers, the proposed fuzzy controller combines the advantages of a FLC and a conventional PI controller. By applying this controller to the FACTS devices such as UPFC, TCSC and SVC the damping of local modes and inter-area modes of oscillations in a multi-machine power system will be handled properly. In addition, the paper considers the conventional PI controller and compares its performance with respect to the proposed fuzzy controller. Also the effects of the auxiliary signals in damping multimodal oscillation have been shown. Finally, several fault and load disturbance simulation results are presented to highlight the effectiveness of the proposed FACTS controller in a multi-machine power system. (author)
A Novel Restraining Device for Small Animal Imaging Exams: Validation in Rabbits
Carlos Henrique Barbosa
2015-01-01
Full Text Available Objective. To develop, validate, and patent a Restraining Device for Small Animal Imaging Exams (RDSAIE that allows exams to be comfortably conducted without risks to animals and professionals. Methods. A RDSAIE with a mobile cover and shelf was built with transparent acrylic material. A total of six anesthetized rabbits were used to perform the following imaging exams of the skull: Cone Beam Computed Tomography, Magnetic Resonance Imaging, and Scintigraphy. Results. The device showed great functionality and full visibility of the animal behavior, which remained fully stabilized and immobilized in either the horizontal or vertical position without the need for a person to remain in the test room to assist them. The procedures were performed without difficulty, and images of good resolution and without artifacts were obtained. Conclusion. The RDSAIE is comfortable, safe, efficient, and ergonomic. It allows the easy placement of animals in different body positions, including the vertical, the maintenance of postural stability, and full visibility. It may be constructed for animals heavier than 4 kg and it is adaptable for translational studies in anima nobile.
Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices
Morin, B.; Legay, A.; Deü, J.-F.
2016-09-01
In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.
A Five-Freedom Active Damping and Alignment Device Used in the Joule Balance
Xu, Jinxin; Zhang, Zhonghua; Li, Zhengkun; Li, Shisong
2016-01-01
Damping devices are necessary for suppressing the undesired coil motions in the watt/joule balance. In this paper, an active electromagnetic damping device, located outside the main magnet, is introduced in the joule balance project. The presented damping device can be used in both dynamic and static measurement modes. With the feedback from a detection system, five degrees of freedom of the coil, i.e. the horizontal displacement $x$, $y$ and the rotation angles $\\theta_x$, $\\theta_y$, $\\theta_z$, can be controlled by the active damping device. Hence, two functions, i.e. suppressing the undesired coil motions and reducing the misalignment error, can be realized with this active damping device. The principle, construction and performance of the proposed active damping device are presented.
Structural damping with shape-memory alloys: one class of devices
Krumme, Robert; Hayes, Jack; Sweeney, Steve
1995-05-01
Passive control of the dynamic response of civil structures utilizing shape-memory alloy (SMA) damping techniques is reviewed. An important class of SMA damper -- the center- tapped (CT) device -- is described. Coverage includes: (1) characterization of damping requirements and passive damping approaches for civil structures; (2) characterization of SMA material behaviors relevant to civil structural applications; (3) overview of our SMA passive damping device technology and description of the center-tapped device operation and structure; (4) precis of an experimental program conducted to verify the CT device behavior, the detailed results of which are reported in another paper by the Earthquake Engineering Research Center; (5) review of a design study of SMA passive damping for retrofit of an extant nonductile concrete building.
Chen, D
The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.
Enpuku, Keiji; Doi, Hideki; Tokita, Go; Maruo, Taku
1994-05-01
The effect of damping resistance on the voltage versus flux (V -Φ) relation of the high T c dc superconducting quantum interference device (SQUID) is studied experimentally. Dc SQUID using YBaCuO step-edge junction and damping resistance in parallel with SQUID inductance is fabricated. Measured values of modulation voltage in the V -Φ relation are compared with those of the conventional SQUID without damping resistance. It is shown that modulation voltage is much improved by using damping resistance. The obtained experimental results agree reasonably with theoretical predictions reported previously.
Damping MEMS Devices in Harsh Environments Using Active Thin Films
2008-06-17
natural motion of domain walls and twin boundaries to absorb the energy. Therefore, the focus of this research is to develop new microscale damping...film is placed in tension the twin boundaries move and when the tension is released the residual stresses in the film produce a restoring force to move
Kathryn E McCormick
Full Text Available This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans. Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities.
Power oscillation damping by a converter-based power generation device
2012-01-01
There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical...... output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....
Mai Tong; Thomas Liebner
2007-01-01
In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper's initial stroke as it moves away from its neutral position.This phenomenon is referred to as the effect of "deadzone". The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers.An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping ifa deadzone is to be considered.
Damping Of Low Frequency Oscillations In Power System Using Device Upfc With Fuzzy Logic
B.Divya Lakshmi
2014-04-01
Full Text Available Power stability is an important issue that is becoming increasingly important to an power systems at all levels. We are unable to achieve the stability of the system due to some factors. Low frequency oscillation’s is one of the major factors that affect the transmission line capacity. Traditionally power system stabilizers(PSS are being used to damp these inevitable oscillations. In advanced technology FACTS devices such as unified power flow controllers (UPFC are used to control the power flow in transmission lines. They can also replace the PSS to damp the low frequency oscillations effectively through direct control of voltage and power. In our model, single machine infinite bus power system with UPFC is considered. The designed FUZZY based UPFC controllers adjusts four UPFC inputs by appropriately processing of input error signal and provides an efficient damping. The results of the simulation show that the UPFC with FUZZY LOGIC controller is effectively damping the LOW FREQUENCY OSCILLATIONS.
Collisional damping of helicon waves in a high density hydrogen linear plasma device
Caneses, Juan F.; Blackwell, Boyd D.
2016-10-01
In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}∼ 1–2 × 1019 m‑3, {{T}\\text{e}}∼ 1–6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50–200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4–8 G and {λz}∼ 10–15 cm) propagating away from the antenna region which become collisionally absorbed within 40–50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.
Improving the Validity of Squeeze Film Air-Damping Model of MEMS Devices with Border Effect
Cheng Bai
2014-01-01
Full Text Available Evaluation of squeezed film air damping is critical in the design and control of dynamic MEMS devices. The published squeezed film air damping models are generally derived from the analytical solutions of Reynolds equation or its other modified forms under the supposition of trivial pressure boundary conditions on the peripheral borders. These treatments ignoring the border effect can not give faithful result for structure with smaller air venting gap or the double-gimbaled structure in which the inner frame and outer one affect the air venting. In this paper, we use Green’s function to solve the nonlinear Reynolds equation with inhomogeneous boundary conditions. For two typical normal motion cases of parallel plate, the analytical models of squeeze film damping force with border effect are established. The viscous and inertial losses with real values and image values acoustic impedance are all included in the model. These models reduced the time consumption while giving satisfactory result. Without multifield coupling analysis, the estimation of the dynamic behavior of MEMS device is also allowed, and the simulation of the system performance is more convenient.
Feasibility study to damp power system multi-mode oscillations by using a single FACTS device
Du, W.; Wu, X. [School of Electrical Engineering, Southeast University, Nanjing (China); Wang, H.F. [School of Electronics, Electrical Engineering and Computer Science, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Dunn, R. [University of Bath, Bath (United Kingdom)
2010-07-15
To damp power system multi-mode oscillations, the commonly-used method is to arrange multiple decentralized stabilizers, such as PSS (Power System Stabilizer) and FACTS (Flexible AC Transmission Systems) stabilizers. In order to overcome the problem of interactions between stabilizers, coordinated design of multiple decentralized stabilizers has been proposed to simultaneously set parameters of all stabilizers. However, in practice it could be very difficult to implement the coordinated design of multiple stabilizers. This is because those stabilizers are often at different geographical locations in a power system and cross-location simultaneous field tuning of stabilizers' parameters is a tremendous task due to their interactions. Hence this paper proposes a novel scheme of damping power system multi-mode oscillations by using a single FACTS device and presents the results of feasibility study of the proposed scheme. It is demonstrated that multiple stabilizers can be arranged in a single FACTS device to effectively damp power system multi-mode oscillations. Under this scheme, multiple stabilizers are at a same geographical location in the power system and hence their parameters can be tuned simultaneously in coordination in the field. In the paper, three examples of multi-machine power systems installed with a UPFC (Unified Power Flow Controller), a STATCOM (Static Synchronous Compensator)/BESS (Battery Energy Storage System) and a MUPFC (Multiple-terminal UPFC) respectively are presented. Parameters of multiple stabilizers are designed in coordination by using a newly appeared method of optimisation-artificial fish swarm algorithm. Simulation results in the paper are compared with those obtained from applying the conventional scheme of decentralized control involving multiple PSSs. They demonstrate and confirm the feasibility of proposed scheme in the paper. (author)
Kim, Seok-Kyoon; Song, Hwachang; Yoon, Tae-Woong
2015-04-01
On the basis of the non-linear third-order generator model, this article proposes a dual control scheme for a single synchronous machine equipped with an energy storage device to regulate the terminal voltage while enhancing the damping. Based on the input-output feedback linearisation method, the exciter controller is designed such that the terminal voltage robustly converges to its predetermined reference in the presence of a model uncertainty. In addition, the control input of the energy storage device feedbacks only the relative speed. It is shown that this controller can effectively increase the damping of the synchronous machine and that there is a set of initial conditions such that all trajectories started from this set go to the equilibrium point, satisfying input constraints. Moreover, it is also verified that all generator variables are bounded except for the power angle. The simulation results show that the closed-loop performance is satisfactory despite a transmission line fault and a model uncertainty in which the non-linear fourth-order generator model (two-axis) is used.
Investigation of newly developed added damping and stiffness device with low yield strength steel
SHIH Ming-hsiang; SUNG Wen-pei; GO Cheer-germ
2004-01-01
Energy dissipators, isolated-resistant and specific structural forms for earthquake resistance are popular topics in the research to improve shock-resistance. In this work, experimental methods were used to investigate the property of low yield strength steel. Carbon content in LYS material is lower than that in other steels; the ultimate stress is three times the yield stress. The ultimate elongation rate is about 62% and the ductility is 2?3 times that of A36 steel. In order to overcome some defects of ordinary use metallic dampers, the mechanical characteristic of low yield strength steel is used to develop added damping and stiffness for rhombic steel plate absorber. Test of the energy dissipation behavior for this newly developed device indicated that LYS could stably dissipate or absorb the input energy of earthquake. Then, the analytical model for the hysteretic behavior of this new device is proposed. Comparison of experimental data and numerical simulation results showed that this analytical model is suitable for simulating the hysteretic energy behavior of this new device.
Power oscillation damping controller
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
Rajkumar, V. [ABB Transmission Technology Institute, Raleigh, NC (United States); Mohler, R.R. [Oregon State Univ., Corvallis, OR (United States)
1994-12-31
This paper presents a framework for the development of discrete-time, nonlinear predictive controllers using thyristor-controlled-series-capacitors and phasor measurements of bus voltage magnitude and angle, for the stabilization and rapid damping of multimachine power systems which are subjected to large disturbances. When the faults of concern are large, the nonlinear predictive controllers are used to return the power system state to a small region about the post-fault equilibrium. In this region, linear controllers provide local asymptotic stability and rapid damping. Simulation results are provided on a sample four-machine power system.
A. N. Hussain
2013-01-01
Full Text Available Unified Power Flow Controller (UPFC device is applied to control power flow in transmission lines. Supplementary damping controller can be installed on any control channel of the UPFC inputs to implement the task of Power Oscillation Damping (POD controller. In this paper, we have presented the simultaneous coordinated design of the multiple damping controllers between Power System Stabilizer (PSS and UPFC-based POD or between different multiple UPFC-based POD controllers without PSS in a single-machine infinite-bus power system in order to identify the design that provided the most effective damping performance. The parameters of the damping controllers are optimized utilizing a Chaotic Particle Swarm Optimization (CPSO algorithm based on eigenvalue objective function. The simulation results show that the coordinated design of the multiple damping controllers has high ability in damping oscillations compared to the individual damping controllers. Furthermore, the coordinated design of UPFC-based POD controllers demonstrates the superiority over the coordinated design of PSS and UPFC-based POD controllers for enhancing greatly the stability of the power system.
Shen, Wenai; Zhu, Songye; Zhu, Hongping
2016-06-01
Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck-boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.
Damping Undulators vs Damping Wigglers
Muchnoi, Nickolai
2016-01-01
Use of damping wigglers is a common technique for beam emittance reduction in the electron storage rings. The general approach to estimate damping effect is based on evaluation of several radiation integrals for a storage ring itself as well as for insertion devices. In this letter we show that a wiggler radiation integrals should be tweaked to account for the impact of lower harmonics of undulator radiation, which is an equivalent of Thomson scattering. Under certain conditions, these amendments play a decisive role in a formation of equilibrium emittance.
Pern, F. J. J.; Noufi, R.
2011-09-01
This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.
Admissible and Restrained Revision
Booth, R; 10.1613/jair.1874
2011-01-01
As partial justification of their framework for iterated belief revision Darwiche and Pearl convincingly argued against Boutiliers natural revision and provided a prototypical revision operator that fits into their scheme. We show that the Darwiche-Pearl arguments lead naturally to the acceptance of a smaller class of operators which we refer to as admissible. Admissible revision ensures that the penultimate input is not ignored completely, thereby eliminating natural revision, but includes the Darwiche-Pearl operator, Nayaks lexicographic revision operator, and a newly introduced operator called restrained revision. We demonstrate that restrained revision is the most conservative of admissible revision operators, effecting as few changes as possible, while lexicographic revision is the least conservative, and point out that restrained revision can also be viewed as a composite operator, consisting of natural revision preceded by an application of a "backwards revision" operator previously studied by Papini. ...
Total Restrained Bondage in Graphs
Nader JAFARI RAD; Roslan HASNI; Joanna RACZEK; Lutz VOLKMANN
2013-01-01
A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V(G)-S is also adjacent to a vertex in V(G)-S.The total restrained domination number of G is the minimum cardinality of a total restrained dominating set of G.In this paper we initiate the study of total restrained bondage in graphs.The total restrained bondage number in a graph G with no isolated vertex,is the minimum cardinality of a subset of edges E such that G-E has no isolated vertex and the total restrained domination number of G-E is greater than the total restrained domination number of G.We obtain several properties,exact values and bounds for the total restrained bondage number of a graph.
Zapoměl J.
2013-12-01
Full Text Available Unbalance is the principal source of increase of time varying forces transmitted between the rotor and its stationary part. Their magnitudes can be considerably reduced if the rotor is flexibly suspended and if the damping devices are added to the support elements. Their damping effect must be high for low rotor velocities and small for velocities approximately higher than the critical one to minimize the transmitted forces and the vibrations amplitude. This implies to achieve maximum efficiency of the damping elements, their damping effect has to be adaptable to the current operating conditions. Such technological solution is offered by application of a squeeze film magnetorheological damper. Its hybrid variant consisting of two damping units (one controllable in a serial arrangement is investigated in this paper. The damping takes place in two concentric lubricating films formed by normal and magnetorheological oils. The damper is equipped with an electric coil generating magnetic flux passing through the layer of the magnetorheological fluid. As resistance against its flow depends on magnetic induction, changing magnitude of the applied current enables to control the damping force. In the computational model, the rotor is considered to be absolutely rigid, unbalanced and the damping elements are represented by force couplings. The goal of the analysis is to study influence of the investigated magnetorheological damper on behaviour of a rigid rotor during different transient regimes. A special attention is focused on passing the rotor through the critical speed and on planning the dependence of the applied current on speed of the rotor rotation to achieve the optimum compromise between minimizing the transmitted forces and maximum attenuation of the rotor vibrations.
谭燕秋; 王颖欣
2013-01-01
By using finite element analysis software SPA2000, 12 layers of steel frame structure were set up. In X direction and Y direction of original framework bottom column, BRC structure was constructed. The top maximum displacement, base shear and top absolute acceleration time history of three structure scheme under the action of seismic wave as follow EL - Centra wave, Taft wave and TRI_TREASURE ISLAND_90 were analyzed. The results show that comparing with the traditional steel structure, the natural vibration period of BRC structure increased. The control effect of top floor of the maximum displacement and basal shear control is very apparent. This structure has obvious damping effect.%利用有限元分析软件SPA2000,建立12层的钢框架结构,在原框架底层柱X方向、Y方向添加BRC结构.分析三种结构方案在EL-Centro波、Taft波和TRI_TREASURE ISLAND_90这三种地震波作用下的顶层最大位移、基底剪力和顶层绝对加速度时程分析这几种结构反应.结果表明:BRC结构与传统钢结构相比,自振周期有所增加,对顶层最大位移和基底剪力的控制效果非常明显,具有显著的减震效果.
Passive damping technology demonstration
Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.
1995-05-01
A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.
STUDY ON RESTRAINING THE RESIDUAL VIBRATION OF FLEXIBLE ARM BY PLANNING ACCELERATION
Zhu Jian; Shao Hao; Wang Xingsong
2000-01-01
The method of planning acceleration is discussed to restrain the residual vibration of flexible arm.Based on the built mathematical model of the flexible arm,the equations of vibration with acceleration,vibration frequency,damping and time are obtained theoretically.According to the vibration frequency and damping,the suitable acceleration is executed experimentally to the flexible arm at the corresponding time.The result shows that this way can give rise to good effect to restrain the residual vibration.
Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, J. V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.
2011-08-01
CuInGaSe2 (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH)2 from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.
Restrained roman domination in graphs
Roushini Leely Pushpam
2015-03-01
Full Text Available A Roman dominating function (RDF on a graph G = (V,E is defined to be a function satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. A set S V is a Restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in . We define a Restrained Roman dominating function on a graph G = (V,E to be a function satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2 and at least one vertex w for which f(w = 0. The weight of a Restrained Roman dominating function is the value . The minimum weight of a Restrained Roman dominating function on a graph G is called the Restrained Roman domination number of G and denoted by . In this paper, we initiate a study of this parameter.
Music for untying restrained patients.
Janelli, L M; Kanski, G
1998-03-01
The purpose of this descriptive pilot study was two-fold: (a) to test psychometrically an observational instrument designed to measure patient behaviors displayed while unrestrained and receiving a musical intervention; and (b) to determine the effect of a musical intervention on the behavioral reactions of physically restrained patients. The Restraint-Music Response Instrument (RMRI) is a 40-item observational checklist consisting of 22 positive and 18 negative responses developed by the researchers. Content validity was assessed by a panel of experts. The RMRI was tested for interrater reliability using three simulated and 10 actual patients. Results suggest that the RMRI is a valid and reliable measure of patients' responses to music but requires additional study with a control group not receiving the intervention.
Hofmann, A
2006-01-01
Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...
一种新型的空气阻尼逃生器%Design of a Novel Air Damping Escaping Device
王宏臣
2011-01-01
The novelty of the design lies in the fact that the principle of air damping is used to convert the potential energy people and things release in gravitational field when dropping into kinetic energy of spiral leaf and to be consumed by air resistance, thus limiting the speed of falling within a reasonable limit to a safe landing. The designed cam and linkage mechanisms are then used to achieve variable transmission ratio, so that gear pair of the different speed ratio work, changing the target rate of falling. This device, which is especially suitable for people of different weight, is safe and reliable. It can be used on high-rise buildings when a fire occures.%采用空气阻尼原理,将人、物在重力场内下降时释放出的位能转变螺旋叶的动能,被空气阻力所消耗,限制落地速度在合理范围之内从而安全落地.再利用设计出的凸轮和连杆机构实现变传动比,使不同传动比的齿轮副工作,改变人下降速度,尤其适用于不同体重的人逃生.安全可靠、可连续重复使用,可用于高层、超高层建筑发生灾害时集体自救逃生.
严俊; 庞金来; 施卫星
2015-01-01
For the lack of researches of the longitudinal framing of fabricated structure with weak lateral stiffness, non-damped, buckling-restrainedbrace and damped structure finite element analysis models were es-tablished .The three models'earthquake reaction in the longitudinal system were compared by the nonlinear time history analysis method .Analysis shows that the similar structure with damper can significantly improve the damping effect , and keep the structure in the elastic stage under the major earthquake .The paper can provide a reference for damper's application in the longitudinal framing .%针对抗侧刚度较弱的装配式结构纵向框架研究较少的现状，建立了纯框架、增设防屈曲支撑及增设阻尼器的装配式框架有限元分析模型，通过非线性的时程对比分析了在地震作用下三种模型纵向体系的结构反应。分析表明，在类似结构中增设阻尼器，可显著提高减震效果，使结构在大震中依然处于弹性状态。对于进一步提高阻尼器在纵向框架的应用水平具有一定的借鉴意义。
Pern, F. J. John; Noufi, Rommel
2011-09-01
This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS. Bare and encapsulated sample sets were separately prepared and exposed in an environmental chamber at 85°C and 85% relative humidity (RH). The ECIS results from bare samples tested within 50-100 h of DH exposure allowed the determination of the use of a conducting Ag paste and a low-melting-point solder alloy for making a DH-stable external connection with Au wires. Bare Mo and AlNi grid degraded (corroded) rapidly while Ni was DH-stable. The moisture-dampened Al-doped ZnO (AZO) and bilayer ZnO (BZO) likely underwent hydrolytic "capacitor-forming" reaction by DH, resulting in "transient" behavior of very high resistance in ECIS that was not detected by four-point probe. Using an encapsulation test structure that allowed moisture ingress control, DH-induced degradation (resistance increase) rates of BZO on glass decreased from 0.21 ohm/h using a moisture-permeable Tedlar/Polyester/Tedlar (TPT) backsheet to 1.0 x 10-3 ohm/h using a moisture barrier FG-200 film, while Mo on glass did not exhibit the same conducting degradation and corrosion as the bare samples after over 1270 h DH exposure. CIGS solar cells encapsulated with a TPT backsheet degraded irregularly over 774 h DH exposure. Key resistance and capacitance parameters extracted by curve fitting of impedance data clearly showed the variation and impact of DH exposure on cell characteristics. Profound "depression" or shorting of the "p-n junction capacitor" by DH was evident. ECIS results are shown to correlate reasonably well with the solar cells' currentvoltage (I-V) degrading trends. Furthermore, ECIS analysis was capable of differentiating cell degradation due to "junction capacitor" shorting, damage or
韩健; 肖新标; 王瑞乾; 尹学军; 高星亮; 金学松
2015-01-01
According to the indoor acoustic test standard, the effect of labyrinth ring damping device on vibration and noise reduction of railway wheels was tested and analyzed. There were two kinds of damped wheels: single ring damped wheels and double ring damped wheels. Impact-hammering and steel ball dropping were used as the excitations in the testing of the wheels in a semi-anechoic room. Effect of vibration and noise reduction of the labyrinth ring damping device was eval-uated with damping ratio, acceleration level and sound energy level (SEL). The results show that comparing with a typical wheel (W-0), the damping ratios of both the single-ring damped wheel (W-A) and the double-ring damped wheel (W-AB) in-crease significantly, which means that the effect of vibration and noise reduction of the labyrinth ring damped wheels is obvi-ously better than that of the typical wheel, and W-AB wheel is even better. Under radial excitation, the SELs of W-A and W-AB are respectively reduced by 7.2 dB and 9.5 dB. Under axial excitation, the SELs of W-A and W-AB wheels are reduced by 7.9 dB and 9.2 dB respectively.%根据室内声学测试标准，试验和分析了迷宫式阻尼环装置对铁路车轮的减振降噪特性。阻尼车轮有两种，分别为单环和双环阻尼车轮。采用力锤敲击和落球撞击作为激励输入，在半消声室内进行振动声辐射特性试验。以模态阻尼比、加速度级和声能量级为评价指标，对迷宫式环形阻尼车轮的减振降噪效果进行评价。据此表明了与标准车轮相比（W-0），单环阻尼车轮（W-A）和双环阻尼车轮（W-AB）的模态阻尼比提升显著，减振降噪效果明显，双环阻尼车轮更佳。在径向激励下，W-A阻尼车轮声能量级降低7.2 dB，W-AB阻尼车轮声能量级降低9.5 dB。在轴向激励下， W-A阻尼车轮声能量级降低7.9 dB，W-AB阻尼车轮声能量级降低9.2 dB。显示了各种阻尼环车轮对铁路机车的降噪是有效的。
Successful restrained eating and trait impulsiveness.
van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk
2013-01-01
Restrained eaters with high scores on the Perceived Self-Regulatory Success in Dieting Scale (PSRS) are more successful than low scorers in regulating their food intake. According to the theory of temptation-elicited goal activation (Fishbach, Friedman, & Kruglanski, 2003), they have become successful because, due to earlier repeated instances of successful self-control, they formed an associative link between temptations and thoughts of dieting. It is unclear, however, why they should have been more successful in earlier attempts at self-control than their unsuccessful counterparts. We examined whether trait impulsiveness plays a role by investigating the associations between dietary restraint, trait impulsiveness, and PSRS. Results showed that the interaction between dietary restraint and impulsiveness predicted dieting success: A lower level of impulsiveness was associated with greater dieting success among restrained eaters. These results suggest that restrained eaters who are less impulsive are more likely to become successful restrained eaters as identified with the PSRS.
Air Damping Analysis in Comb Microaccelerometer
Wu Zhou
2014-04-01
Full Text Available Air damping significantly influences the dynamical characteristics of MEMS accelerometers. Its effects at micro-scale level sharply depend on the structure layouts and size of MEMS devices. The damping phenomenon of comb microaccelerometers is investigated. The air between fixed plate electrodes and movable plate electrodes cannot flow freely and is compressed. The air damping, therefore, exhibits both viscous effects and stiffness effects. The former generates a drag force like that in macromechanical systems, and the damping force is proportional to the velocity of movable electrodes. The latter stiffens the rigidity of structure, and the stiffening level is related to the gap value of capacitors, internal pressure, and temperature. This paper focuses on the dependence of the squeeze film air damping on capacitor gaps. The simulation and experiments indicate that the squeeze film effect is sharply affected by the gap value when the structural dimensions decrease. And the influence of fabrication errors is considered in damping design in comb microaccelerometers.
Magnetic damping of ski vibrations
Yonnet, J.-P. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble; Patton, A.C.; Philippe; Arnould; Bressan, C. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble]|[Skis Dynastar S.A., Sallanches (France)
1998-07-01
An original damping device has been developed to reduce ski vibrations. Ski movement is transmitted to a conductive sheet situated in a multipole magnetic field created by permanent magnets. The conductive sheet is simultaneously submitted to eddy current and friction forces, giving the damping effect. The eddy current damper is more efficient for high frequency than for low frequency vibrations and consequently is very well adapted to ski vibrations. Bench and snow tests show the positive effects of the damper, which will be commercially available before the end of this year. (orig.)
Successful restrained eating and trait impulsiveness
van koningsbruggen, G.M.; Stroebe, Wolfgang; Aarts, H.
2013-01-01
Restrained eaters with high scores on the Perceived Self-Regulatory Success in Dieting Scale (PSRS) are more successful than low scorers in regulating their food intake. According to the theory of temptation-elicited goal activation (Fishbach, Friedman, & Kruglanski, 2003), they have become successf
Active damping of unidimensional structures
Tartakovskiy, B. D.
1973-01-01
The vibration characteristics of an unidimensional structure are discussed. The cases considered are: (1) a rigid pipe in which a wave propagates, (2) an infinite string along which a transverse wave propagates, (3) a rod along which longitudinal or torsional columns propagate, and (4) generally a unidimensional propagation of some one mode of vibrations which is nondegenerating with distance. Mathematical models are developed to show the performance of the mechanical devices under various damping conditions.
Introduction to Landau Damping
Herr, W
2014-01-01
The mechanism of Landau damping is observed in various systems from plasma oscillations to accelerators. Despite its widespread use, some confusion has been created, partly because of the different mechanisms producing the damping but also due to the mathematical subtleties treating the effects. In this article the origin of Landau damping is demonstrated for the damping of plasma oscillations. In the second part it is applied to the damping of coherent oscillations in particle accelerators. The physical origin, the mathematical treatment leading to the concept of stability diagrams and the applications are discussed.
蒋强; 张大伟
2012-01-01
Hydraulic oil bulk modulus and fatigue property parameters are very important physical parameters in the hydraulic system, directly affects the stability and dynamic quality of the system. Based on the definition of the elastic modulus, the testing device for damping oil bulk modulus and fatigue characteristic has been designed, while using the oil gas suspension device of special purpose vehicle asthe testing object,where the fatigue characteristic parameters of hydraulic damping oil have been tested,such as temperature, viscosity. And the design of control system and data acquisition system are completed, timely communication with the host computer,the automatization of the test process is realized.%油液的体积弹性模量以及疲劳特性参数是油液非常重要的物理参数,在液压系统中,直接影响系统的稳定性和动态品质.研究设计了弹性模量及疲劳特性参数测试试验台,基于弹性模量的定义对弹性模量进行测量计算,同时以专用车辆油气悬挂装置为对象,对悬挂内液压油疲劳特性参数进行测试,如:温度、粘度等.完成控制系统以及数据采集系统的设计,与上位机实时通讯,实现测试过程的自动化.
Experimental investigation of damping force of twin tube shock absorber
Sandip K. Kadu
2014-09-01
Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Critically damped quantum search
Mizel, Ari
2008-01-01
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we have found that there is a critical damping value that divides between the quantum $O(\\sqrt{N})$ and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-poin...
Transversely Compressed- and Restrained Shear Joints
Schmidt, Jacob Wittrup; Hansen, Christian Skodborg
2013-01-01
. This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...
Palmer, R.B.
1988-07-01
Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.
Nuclear SMAD2 Restrains Proliferation of Glioblastoma
Yunhu Yu
2015-03-01
Full Text Available Aims: Although TGFβ receptor signaling has been shown to play a role in regulation of the growth and metastasis of glioblastoma multiforme (GBM, the downstream pathway through either SMAD2 or SMAD3 has not been elucidated. In this study, we investigate whether nuclear SMAD2 can restrain the proliferation of glioblastoma. Methods: A total of 23 resected specimens from GBM patients were collected for SMAD2 detection. Human GBM cell line A172, U87mg, D341m and Hs683 were maintained in Dulbecco's modified Eagle's medium and transfected with SMAD2 and SMAD3 shRNA plasmids. Gene expression was detected by RT-qPCR and Western and cell growth were detected by MTT assay. Results: Our results showed that the phosphorylated SMAD2 (pSMAD2, the nuclear and functional form of SMAD2 levels in GBM were significantly lower than the paired normal brain tissue in patients. Depletion of SMAD2, but not SMAD3, significantly abolished the inhibitory effects of TGFβ1 on the growth of GBM cells, possibly through pSMAD2-mediated increases in cell-cycle inhibitor, p27. Conclusion: Our data suggest that TGFβ/SMAD2 signaling cascades restrains growth of GBM.
Rees, John; Chao, Alexander; /SLAC
2008-12-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.
Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load
Zheng Lu
2017-02-01
Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.
Control System Damps Vibrations
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic Internal Friction Damping
Peters, R D
2003-01-01
The mechanical damping properties of sheet polaroid material have been studied with a physical pendulum. The polaroid samples were placed under the knife-edges of the pendulum, which was operated in free-decay at a period in the vicinity of 10 s. With the edges oriented parallel to the direction of the long molecular chains in the polaroid, it was found that the damping was more than 10% smaller than when oriented perpendicular to the chains.
49 CFR 1103.22 - Restraining clients from improprieties.
2010-10-01
... 49 Transportation 8 2010-10-01 2010-10-01 false Restraining clients from improprieties. 1103.22... Practitioner's Duties and Responsibilities Toward A Client § 1103.22 Restraining clients from improprieties. A practitioner should see that his clients act with the same restraint that the practitioner himself uses...
Mechanical Analysis of Concrete Specimen under Restrained Condition
MA Xinwei; NIU Changren; R D Hooton
2005-01-01
In order to quantify the development of the tensile stresses and obtain a reliable estimation of the cracking risk, the concrete was subjected to restrained conditions. The fully restrained condition was achieved by keeping the length constant of a concrete specimen. Comparing the free shrinkage with the restrained shrinkage,tensile creep could be discriminated from shrinkage. The testing method was introduced in details, and the mechanical behaviors under tensile load were analyzed. Results show that concrete exhibits a pronounced viscoelasticity. Under restrained condition, the self induced tensile stress increases with time. The lower the water to cement ratio, the larger the tensile stress at the same age. The tensile creep of hardening concrete is much larger than that of hardened concrete. The relationships among autogenous shrinkage under free condition, elastic strain and creep under restrained condition are described, and the mathematical model for the calculation of elastic strain and creep is proposed.
洪峰
2002-01-01
In this paper, existing damping theories are briefly reviewed. On the basis of the existing damping theories, a new kind of damping theory, i.e., the time-delay damping theory, is developed. In the time-delay damping theory, the damping force is considered to be directly proportional to the increment of displacement. The response analysis of an SDOF time-delay damping system is carried out, and the methods for obtaining the solution for a time-delay damping system in the time domain as well as the frequency domain are given. The comparison between results from different damping theories shows that the time-delay damping theory is both reasonable and convenient.
Damping modeling in Timoshenko beams
Banks, H. T.; Wang, Y.
1992-01-01
Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.
Wang Changfeng
2014-10-01
Full Text Available During an earthquake, the nonlinearity of the bridge structure mainly occurs at the supports, bridge piers and restrainers. When entering nonlinear stage, members of the bridge structure affect the elasto-plastic seismic response of the whole structure to a certain extent; for multi-span continuous bridges, longitudinal restrainers can be installed on the movable piers to optimise the distribution of seismic force and enable the movable piers to bear a certain amount of seismic effect. In order to evaluate the effect of nonlinearity of restrainer and supports on the elasto-plastic seismic response of continuous girder bridge, analytical models of continuous girder bridge structure considering the nonlinearity of movable supports, restrainers and bridge piers were built and the nonlinear time history analysis was conducted to evaluate the effect of nonlinearity of restraining devices and supports on the elasto-plastic seismic response of continuous girder bridge. Relevant structural measures and recommendation were made to reduce the seismic response of the fixed piers of the continuous girder bridge.
Damping Analyses of Structural Vibrations and Shunted Piezoelectric Transducers
Saber Mohammadi
2012-01-01
Full Text Available Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. Alternatively, undesired mechanical energy of a structure could be converted into electrical energy that can be dissipated through a shunt network in the form of Joule heating. This paper presents an experimental method to calculate damping energy in mechanical systems. However, the mathematical description of damping mechanism is much more complicated, and any process responsible for the occurrence of damping is very intricate. Structural and piezoelectric damping are calculated and analysed in the case of pulse switching or SSDI semiactive vibration control technique. This technique which was developed in the field of piezoelectric damping consists in triggering the inverting switch on each extremum of the piezoelectric voltage which induces an increase of the electromechanical energy conversion.
Radiation damping on cryoprobes.
Shishmarev, Dmitry; Otting, Gottfried
2011-12-01
Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle β between a vector 90° phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm sample tube within about 5 ms following a 165° pulse. This can be exploited in water flip-back versions of NOESY and TOCSY experiments of proteins, but care must be taken to limit the effect of the radiation damping field from the water on the Ha protons. Long water-selective pulses can be applied only following corrections. We developed a program for correcting pulse shapes if β is non-zero. The WATERGATE scheme is shown to be insensitive to imperfections introduced by radiation damping.
Burns, J. A.; Sharma, I.
2000-10-01
Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2007-10-30
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2009-12-15
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Nembach, Hans T; Shaw, Justin M; Boone, Carl T; Silva, T J
2013-03-15
We demonstrate a strong dependence of the effective damping on the nanomagnet size and the particular spin-wave mode that can be explained by the theory of intralayer transverse-spin pumping. The effective Landau-Lifshitz damping is measured optically in individual, isolated nanomagnets as small as 100 nm. The measurements are accomplished by use of a novel heterodyne magneto-optical microwave microscope with unprecedented sensitivity. Experimental data reveal multiple standing spin-wave modes that we identify by use of micromagnetic modeling as having either localized or delocalized character, described generically as end and center modes. The damping parameter of the two modes depends on both the size of the nanomagnet as well as the particular spin-wave mode that is excited, with values that are enhanced by as much as 40% relative to that measured for an extended film. Contrary to expectations based on the ad hoc consideration of lithography-induced edge damage, the damping for the end mode decreases as the size of the nanomagnet decreases. The data agree with the theory for damping caused by the flow of intralayer transverse spin currents driven by the magnetization curvature. These results have serious implications for the performance of nanoscale spintronic devices such as spin-torque-transfer magnetic random access memory.
Inverse design of nonlinearity in energy harvesters for optimum damping
Ghandchi Tehrani, Maryam; Elliott, S. J.
2016-09-01
This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.
Based on ANSYS buckling-restrained brace frame structure analysis%基于ANSYS约束屈曲支撑框架结构分析
费建伟
2011-01-01
传统的耗能支撑框架结构具有较好的经济性,但是,在中震和强震时,支撑会发生受压屈曲.利用ANSYS模拟约束屈曲支撑框架在地震作用下的结构响应,采用理想弹塑性模型模拟屈曲约束支撑的滞回性能,分别在中震烈度和大震烈度下,对一般框架结构和约束屈曲支撑框架结构进行非线性时程分析,得到结构响应.分析结果表明,约束屈曲支撑结构减震效果良好.%The traditional energy support frame structure with good efficiency, but in moderate earthquakes and strong earthquake support will occur pressure buckling. Using ANSYS simulation buckling-restrained brace framework response of the structure in earthquake. Using the ideal elastic-plastic model describe buckling-restrained brace hysteretic performance, in moderate earthquakes and strong earthquake, general framework and buckling-restrained brace framework for nonlinear time-history analysis, solving structural response. Analysis results show that buckling-restrained brace structure damping effect is good.
Study of Buckling Restrained Braces in Steel Frame Building
Mr. Y. D. Kumbhar
2014-08-01
Full Text Available Conventional braces have limited deformation ductility capacity, and exhibit unsymmetrical hysteretic cycles, with marked strength deterioration when loaded in compression. To overcome the above mentioned problems, a new type of brace was developed in Japan called as buckling restrained braces, designated as BRB’s. These braces are designed such that buckling is inhibited to occur, exhibiting adequate behavior and symmetrical hysteretic curves under the action of both tensile and compressive cycles, produced by the action of seismic and wind forces. This paper presents experimental results concerning the lateral load carrying capacity of steel frame model by use of buckling restrained brace. This paper also includes the comparative study of lateral load carrying capacity of frame model for bare frame, frame with Conventional brace and frame with buckling restrained brace.
Magnetically Damped Furnace (MDF)
1998-01-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
Theoretical prediction of the damping of a railway wheel with sandwich-type dampers
Merideno, Inaki; Nieto, Javier; Gil-Negrete, Nere; Giménez Ortiz, José Germán; Landaberea, Aitor; Iartza, Jon
2014-09-01
This paper presents a procedure for predicting the damping added to a railway wheel when sandwich-type dampers are installed. Although there are different ways to reduce the noise generated by a railway wheel, most devices are based on the mechanism of increasing wheel damping. This is why modal damping ratios are a clear indicator of the efficiency of the damping device and essential when a vibro-acoustic study of a railway wheel is carried out. Based on a number of output variables extracted from the wheel and damper models, the strategy explained herein provides the final damping ratios of the damped wheel. Several different configurations are designed and experimentally tested. Theoretical and experimental results agree adequately, and it is demonstrated that this procedure is a good tool for qualitative comparison between different solutions in the design stages.
Mathematical modeling and full-scale shaking table tests for multi-curve buckling restrained braces
C. S. Tsai; Yungchang Lin; Wenshin Chen; H. C. Su
2009-01-01
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.
The Duffing oscillator with damping
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Nonlinear Vibration of an Elastically Restrained Tapered Beam
Karimpour, S; Ganji, S.S; Barari, Amin;
2012-01-01
This paper presents the analytical simulation of an elastically restrained tapered cantilever beam using the energy balance method (EBM) and the iteration perturbation method (IPM). To assess the accuracy of solutions, we compare the results with the harmonic balance method (HBM). The obtained re...
Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis
Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.
1994-01-01
Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.
Bullock, Jack C.; Kelly, Benjamin E.
1980-01-01
A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.
Gilbert Damping in Noncollinear Ferromagnets
Yuan, Zhe; Hals, Kjetil M.D.; Liu, Yi; Starikov, Anton A.; Brataas, Arne; Kelly, Paul J.
2014-01-01
The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearit
Oscillations with three damping effects
Wang Xiaojun [Department of Physics, Georgia Southern University, Statesboro, GA (United States)]. E-mail: xwang@gasou.edu; Schmitt, Chris; Payne, Marvin [Department of Physics, Georgia Southern University, Statesboro, GA (United States)
2002-03-01
Experiments on oscillatory motion are described with three different damping effects. The first experiment is a physical pendulum whose damping mechanism is due to sliding friction; the second is magnetic resistance due to eddy currents; and the third experiment involves a pendulum setup where air resistance is the dominant factor. These three damping mechanisms yield constant ({nu}-bar/ vertical bar {nu}-bar vertical bar), linear, and quadratic resistances in velocity respectively. Approximation methods are described for treating the three damping effects and a general solution is derived for the damping with a very general velocity dependence. A sonic rangefinder is used to record the oscillatory motions of the pendulums. The experimental measurements and theoretical calculations are in a good agreement. (author)
Damping Bearings In High-Speed Turbomachines
Von Pragenau, George L.
1994-01-01
Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).
Controlling the Gilbert damping using spin pumping and magnetic impurities
Verhagen, Tim; Tinkey, Holly; van Ruitenbeek, Jan; Aarts, Jan
2013-03-01
The ability to control the magnetic damping parameter of thin magnetic films is an important issue when designing for example giant magnetoresistance (GMR) devices. A well-known way to influence the damping of the ferromagnetic (F) layer is by using the spin pumping effect in which a spin current is emitted into an adjacent normal (N) layer by bringing the F-layer into ferromagnetic resonance (FMR). As N layer, we used the well studied strongly spin sinking material Pt and the bad spin sink Cu, but also a Cu layer with Co impurities. We find that by adding a small amount of Co impurities, the Cu layer becomes as effective in damping as a Pt layer. In the latter case, the damping is caused by the strong spin orbit coupling. Using magnetic impurities, we rather make use of the inelastic spin scattering. This opens up new ways to control the damping of a ferromagnetic thin layer, for example in current-in-plane (CIP) GMR sensors, where the extra damping can suppress the spin transfer torque which becomes dominant with the further decrease of the size of the sensor.
Mesh Size and Damped Edge Effects in Micromagnetic Spin Wave Simulation
Venkat, G; Fangohr, H; Prabhakar, A
2014-01-01
We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been suggested. In a separate study, spin wave reflections are absorbed by introducing highly damped edges in the device. However, an abrupt change in the damping parameter causes reflections. We compare damping profiles and identify an exponential damping profile as causing significantly less reflections.
Head excursion of restrained human volunteers and hybrid III dummies in steady state rollover tests.
Moffatt, Edward; Hare, Barry; Hughes, Raymond; Lewis, Lance; Iiyama, Hiroshi; Curzon, Anne; Cooper, Eddie
2003-01-01
Seatbelts provide substantial benefits in rollover crashes, yet occupants still receive head and neck injuries from contacting the vehicle roof interior when the roof exterior strikes the ground. Prior research has evaluated rollover restraint performance utilizing anthropomorphic test devices (dummies), but little dynamic testing has been done with human volunteers to learn how they move during rollovers. In this study, the vertical excursion of the head of restrained dummies and human subjects was measured in a vehicle being rotated about its longitudinal roll axis at roll rates from 180-to-360 deg/sec and under static inversion conditions. The vehicle's restraint design was the commonly used 3-point seatbelt with continuous loop webbing and a sliding latch plate. This paper presents an analysis of the observed occupant motion and provides a comparison of dummy and human motion under similar test conditions. Thirty-five tests (eighteen static and seventeen dynamic) were completed using two different sizes of dummies and human subjects in both near and far-side roll directions. The research indicates that far-side rollovers cause the restrained test subjects to have greater head excursion than near-side rollovers, and that static inversion testing underestimates head excursion for far-side occupants. Human vertical head excursion of up to 200 mm was found at a roll rate of 220 deg/sec. Humans exhibit greater variability in head excursion in comparison to dummies. Transfer of seatbelt webbing through the latch plate did not correlate directly with differences in head excursion.
Social ultrasonic vocalization in awake head-restrained mouse
Benjamin Weiner
2016-12-01
Full Text Available Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats and invertebrates resulting in deep insights into motor control, neural coding and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM to interact with non-restrained female mice (NRFM and show that mice can emit USVs in this context. We first recorded USVs in free arena with non-restrained male mice (NRMM and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter syllable interval distribution and USV sequence length, and therefore are interpreted as social USVs. By analyzing vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have higher proportions of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.
Liu, Yi; Sanchez, Alberto; Zogg, Markus; Ermanni, Paolo
2010-04-01
Dynamic loadings in automotive structures may lead to reduction of driving comfort and even to failure of the components. Damping treatments are applied in order to attenuate the vibrations and improve the long term fatigue behavior of the structures. This experimental study is targeting applications in floor panels that are mounted to the loadcarrying primary structure of the vehicle. The objective is to reach outstanding damping performance considering the stringent weight and cost requirement in the automotive industry. An experimental setup has been developed and validated for the determination of the damping properties of structural specimens also considering interface damping effects. This contribution is structured in three main parts: test rig design, experimental results and discussion. Reliable and easy-to-use devices for the characterization of the damping properties of specimens between 200×40 mm2 and 400×400 mm2 are not available "on the shelf". In this context, we present a flexible experimental set-up which has been realized to (1) support the development of novel damping solutions for multi-functional composite structures; (2) characterize the loss-factor of the different damping concepts, including boundary effects. A variety of novel passive and active damping treatments have been investigated including viscoelastic, coulomb, magnetorheological (MR), particle, magnetic and eddy current damping. The particle, interface as well as active damping systems show promising performance in comparison to the classical viscoelastic treatments.
Visual associative learning in restrained honey bees with intact antennae.
Scott E Dobrin
Full Text Available A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER. Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee.
The structure design and performance analysis for damping system of the airborne equipment
Zhang, Wei; Wu, Chun-xia; Yan, Cong-lin; Cui, Ding; Ma, She
2015-02-01
Vibration is an important factor that could affect the performance of airbone optical system, the damping device based on the wire-rope vibration isolators was designed in this paper, in which the optical system mounted on the helicopter was taken as an example. The transmissibility of the damping device was about 40% which obtained by finite element method, the transmissibility of the damping device was about 36% which obtained by vibration platform test, the result obtained by finite element method was proved by vibration platform test. The vibration of the optical system could been reduced significantly as a result of the device with good damping effect, thereby the stability of the optical system could be enhanced.
Landau damping in space plasmas
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
Simple suppression of radiation damping.
Khitrin, A K; Jerschow, Alexej
2012-12-01
Radiation damping is known to cause line-broadening and frequency shifts of strong resonances in NMR spectra. While several techniques exist for the suppression of these effects, many require specialized hardware, or are only compatible with the presence of few strong resonances. We describe a simple pulse sequence for radiation damping suppression in spectra with many strong resonances. The sequence can be used as-is to generate simple spectra or as a signal excitation part in more advanced experiments.
Experimental Program for the Determination of Hull Structural Damping Coefficients.
1981-09-01
approaches are appar- ent. One concept is to have each individual excitation device self contained, and to control the phasing and amplitude of the motions...n ma. cllt r ibu-t si,,nificantly to hull damping hut avai.1lt iu, lo 1 , , ht if tt I - scle and from model tests, toil to adequo tI e ly :anf Wtf... controlled excitations. It is generally understood that the total damping consists of at least three basic components, i.e. hydrodynamic, cargo and structural
Variable stiffness and damping suspension system for train
Sun, Shuaishuai; Deng, Huaxia; Li, Weihua
2014-03-01
As the vibration of high speed train becomes fierce when the train runs at high speed, it is crucial to develop a novel suspension system to negotiate train's vibration. This paper presents a novel suspension based on Magnetorheological fluid (MRF) damper and MRF based smart air spring. The MRF damper is used to generate variable damping while the smart air spring is used to generate field-dependent stiffness. In this paper, the two kind smart devices, MRF dampers and smart air spring, are developed firstly. Then the dynamic performances of these two devices are tested by MTS. Based on the testing results, the two devices are equipped to a high speed train which is built in ADAMS. The skyhook control algorithm is employed to control the novel suspension. In order to compare the vibration suppression capability of the novel suspension with other kind suspensions, three other different suspension systems are also considered and simulated in this paper. The other three kind suspensions are variable damping with fixed stiffness suspension, variable stiffness with fixed damping suspension and passive suspension. The simulation results indicate that the variable damping and stiffness suspension suppresses the vibration of high speed train better than the other three suspension systems.
Moura, R.F. de; Furini, M.A.; Araujo, P.B. de; Moura, R.F. de; Araujo, Percival Bueno de [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: moura@dee.feis.unesp.br; mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br
2009-07-01
It is analyzed the ability of the Unified Power Flow Controller - FACTS UPFC, when equipped to Power Oscillation Damping - (POD) - a additional controller - to cushion low frequency oscillations in the electric power system (EPS). For this purpose, the MPS - Model of the Power Sensibility, which has as the main concept the application of the power nodal balance in each bar of the system, is used to represent the EPS. The analysis of sensibility, through the method of residues - that gives information about the control and observation of an input and output set to the controller - will provide the best place to install the UPFC/POD set and the procedures to adjust the parameters of the controller.
Cracking Tendency of Restrained Concrete at Early Ages
BA Hengjing; SU Anshuang; GAO Xiaojian; TAO Qi
2008-01-01
A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in restrained condition at early ages. The shrinkage stress and the tensile creep behavior of HSC at early ages were investigated. The influence of W/C ratio and curing conditions on the early-age shrinkage stress and tensile creep was evaluated. It was found that the lower W/C ratio and drying curing condition resulted in higher shrinkage stress, stress induced tensile creep and greater cracking tendency.
Damping mechanisms of a pendulum
Dolfo, Gilles; Castex, Daniel; Vigué, Jacques
2016-11-01
In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.
Dampness in buildings and health
Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.
2001-01-01
Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem......Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown...... in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks...... definitions of dampness have been used in the studies, but all seems to be associated with health problems. Sensitisation to mites may be one but obviously not the only mechanism. Even if the mechanisms are unknown, there is sufficient evidence to take preventive measures against dampness in buildings....
Design and simulation of a tuning fork micromachined gyroscope with slide film damping
CHE Lu-feng; XIONG Bin; JIAO Ji-wei; WANG Yue-lin
2005-01-01
A novel tuning fork micromachined gyroscope, based on slide-film damping, is presented. The electrostatic driving gyroscope consists of two driving masses each of which supports one sensitive mass. The angular rate is sensed by the differential capacitances consisted of movable bar electrodes and fixed bar electrodes located on the glass wafer. The gyroscope can operate at atmospheric pressure with slide film damping in the driving and sensing directions, eliminate vacuum packaging and restrain cross-axis acceleration signal. The results of design and simulation show that the driving and sensing mode frequencies are 3 106 Hz and 3 175 Hz,respectively, and the Q-values in driving and sensitive modes are 1 721 and 1 450 respectively. The design resolution is 0.025°/s.
Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.
Zhidkov, A; Koga, J; Sasaki, A; Uesaka, M
2002-05-01
A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.
High Damping Alloys and Their Application
Fuxing Yin
2000-01-01
Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.
Landau damping of auroral hiss
Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.
1994-01-01
Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.
IMPACT GRINDING OF DAMP MATERIALS
Ladaev Nikolay Mikhaylovich
2012-10-01
Centrifugal grinders were used to analyze the grinding process. The experimental data have proven that the probability of destruction of damp samples is a lot higher than the one of dry samples, given the same initial dimensions of particles and the loading intensity. The rise in the probability of destruction is stipulated by the fact that that the grinder speed at which crushing is triggered is lower in case of damp samples than in case of dry ones. Expressions for speed that describes destruction initiation and the probability of destruction depending on the type of materials, the moisture content and the loading intensity have been derived.
Perez, Tristan; Blanke, Mogens
2012-01-01
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system designs, which have proven to be far from trivial due to fundamental performance...... limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...... and the applicability of different mathematical models, and it surveys the control methods that have been implemented and validated with full scale experiments. The paper also presents an outlook on what are believed to be potential areas of research within this topic....
Interactive effects of emotional and restrained eating on responses to chocolate and affect.
Macht, Michael; Mueller, Jochen
2007-12-01
To examine differences and interactions between emotional and restrained-eating healthy adults (56 women, 53 men) were classified into emotional or restrained eaters, and persons scoring high or low on both dimensions. Participants tasted different types of chocolate (with 30, 70, 85, or 99% cocoa content) and completed questionnaires on affect and attitudes towards chocolate. Emotional eaters reported increased craving for and increased consumption of chocolate, whereas restrained eaters experienced chocolate-related guilt. However, restrained eaters rated plain chocolate (70% and 85% cocoa) as more pleasant than other groups. Persons scoring high on both dimensions showed heightened negative affect and may be prone to disturbances of eating and affect.
Physically Damped Noise Canceling Hydrophone
2016-06-24
300075 1 of 10 PHYSICALLY DAMPED NOISE CANCELING HYDROPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...transducer with an electromechanical driver comprising a plurality of single crystal piezoelectric elements joined to an inner surface and arranged to form...an electromechanical stack assembly. Each single crystal piezoelectric element has a surface, an opposite surface, and a Attorney Docket No
Waves, damped wave and observation
Phung, Kim Dang
2009-01-01
We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.
Red cell DAMPs and inflammation.
Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola
2016-09-01
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Damped Oscillator with Delta-Kicked Frequency
Manko, O. V.
1996-01-01
Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it
Modal approximations to damped linear systems
Veseli/'c, K
2009-01-01
We consider a finite dimensional damped second order system and obtain spectral inclusion theorems for the related quadratic eigenvalue problem. The inclusion sets are the 'quasi Cassini ovals' which may greatly outperform standard Gershgorin circles. As the unperturbed system we take a modally damped part of the system; this includes the known proportionally damped models, but may give much sharper estimates. These inclusions are then applied to derive some easily calculable sufficient conditions for the overdampedness of a given damped system.
Theoretical Research of Magnetorheological Shock Absorber Damping Force
Andrius Klevinskis
2014-02-01
Full Text Available In the article an overview of magnetorheological shock absorbertypes is presented, theoretical calculations of heat dispersion,magnetic field strength produced by shock absorber as well asmaximum power of electromagnet are provided. The article alsoprovides device damping force in line with a change of devicetemperature. In the end of the research the results of experimentare presented in the graph format as well as the conclusions.
Piezoelectric Generation and Damping of Extensional Waves in Bars
Jansson, Anders
2007-01-01
This thesis focuses on the electromechanical processes of generation and damping of transient waves in bars with attached piezoelectric members. In particular, the influence of amplifier and electrical circuitry on the mechanical waves is of interest. A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it interacts with external electrical and mechanical devices through voltage, current, forces and velocities....
Blood vessels restrain pancreas branching, differentiation and growth.
Magenheim, Judith; Ilovich, Ohad; Lazarus, Alon; Klochendler, Agnes; Ziv, Oren; Werman, Roni; Hija, Ayat; Cleaver, Ondine; Mishani, Eyal; Keshet, Eli; Dor, Yuval
2011-11-01
How organ size and form are controlled during development is a major question in biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here, we report that, surprisingly, non-nutritional signals from blood vessels act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus, the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.
Decoherence and damping in ideal gases
Polonyi, Janos
2010-01-01
The particle and current densities are shown to display damping and undergo decoherence in ideal quantum gases. The damping is read off from the equations of motion reminiscent of the Navier-Stokes equations and shows some formal similarity with Landau damping. The decoherence leads to consistent density and current histories with characteristic length and time scales given by the ideal gas.
Review: Modeling Damping in Mechanical Engineering Structures
Michel Lalanne
2000-01-01
Full Text Available This paper is concerned with the introduction of damping effects in the analysis of mechanical engineering structures. Damping can be considered as being generated by concentrated elements, by distributed elements, or by several effects existing simultaneously. Modeling damping for different engineering situations is described and some applications are presented briefly.
Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin
2017-10-01
This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
A novel method to analyze damping effect of VSC based FACTS
2008-01-01
A novel method to analyze the damping effect of the VSC based FACTS(VBF) device is proposed,which is developed on the basis of the well-known equalarea criterion and small-disturbance analysis of power system oscillations.By use of the proposed method,two conclusions are obtained for study of the damping effect of the VBF.The research results clearly show the contribution of the VBF control to the damping of power system oscillations.Simulation results of an example power system are used to verify the effectiveness of the proposed method.
DAMPs, Ageing, and Cancer: The ‘DAMP Hypothesis’
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J.; Kang, Rui; Lotze, Michael T.; Tang, Daolin
2014-01-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. PMID:25446804
2014-09-01
Joint Fuze Technology Program (JFTP) provided the funding behind the production of the 60G MEMS impact switches. The JFTP MEMS impact switches are...Conference 2013, VTT Technical Research Centre of Finland, 2013. 8. Zhang W. Energy dissipations in MEMS resonators: fluid damping of flexural resonators...Research Laboratory CAD computer-aided design DUT device under test HEMDP harmonic excitation modal damping predictor JFTP Joint Fuze Technology
Gianini, Loren M.; Smith, Jane Ellen
2008-01-01
The purpose of the current study was to examine the eating behavior, self-esteem, and social anxiety of restrained and non-restrained eaters exposed to an interpersonal stressor. Sixty female undergraduate students completed questionnaires and took part in a stressor and taste test. Results indicated that self-esteem was not predictive of eating…
Restrained eating and self-esteem in premenopausal and postmenopausal women.
Drobnjak, Suzana; Atsiz, Semra; Ditzen, Beate; Tuschen-Caffier, Brunna; Ehlert, Ulrike
2014-01-01
There has been limited research about disordered eating in middle-aged women, and to date, few data exist about restrained eating behavior in postmenopausal women. Therefore, the aim of this study was to examine eating behavior with a specific focus on menopause as an associated factor in restrained eating. Beyond this, we were interested in how postmenopausal status and self-esteem would interact to determine eating patterns in women in middle age. We conducted an online survey in women aged between 40 and 66. Eating behavior was assessed with the Eating Disorder Examination-Questionnaire (EDE-Q) in premenopausal (N = 318) and postmenopausal women (N = 250). All participants rated their self-esteem using the Rosenberg Self-Esteem Scale (RSE) and reported their weight, height, waist circumference, and hip circumference. 15.7% of all participants showed clinically meaningful scores on restrained eating. Postmenopausal women showed significantly higher scores on the EDE-Q subscale of restrained eating as compared to premenopausal women, but when controlling for body mass index, however, this finding was no longer significant. Further exploratory analyses suggest that particularly low or high self-esteem levels are associated with restrained eating. Self-esteem might serve as a mediator between menopausal status and restrained eating, however results of these additional analyses were inconsistent. Restrained eating may appear in middle-aged women. Particularly in postmenopausal women, restrained eating might be associated with lower and higher self-esteem.
EXPERIMENTAL TESTING OF DRAW-BEAD RESTRAINING FORCE IN SHEET METAL FORMING
J.H. Yang; J. Chen; D.N. He; X. Y. Ruan
2003-01-01
Due to complexities of draw-bead restraining force calculated according to theory anddepending on sheet metal forming properties experiment testing system, a simplifiedmethod to calculate draw-bead restraining force is put forward by experimental methodin cup-shaped drawing process. The experimental results were compared with numer-ical results and proved agreement. It shows the method is effective.
Horobets, V. L.; Snitko, N. P.; A. D. Lashko
2010-01-01
In the paper an approximate classification of methods of damping oscillations for complex mechanical systems is offered as well as the approach of an adaptive control by dissipation of the vibration energy of the railway rolling stock devices is presented.
Modelling of Dampers and Damping in Structures
Høgsberg, Jan Riess
2006-01-01
The present thesis consists of an extended summary and four papers concerning damping of structures and algorithmic damping in numerical analysis. The first part of the thesis deals with the efficiency and the tuning of external collocated dampers acting on flexible structures. The dynamics...... and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions...... only realizable by means of active control. The present thesis demonstrates how stiffness affects both the performance and the tuning of the damper. The final part of the thesis considers algorithmic damping in connection with Newmark time integration. The damping characteristics of the Newmark method...
The Damped String Problem Revisited
Gesztesy, Fritz
2010-01-01
We revisit the damped string equation on a compact interval with a variety of boundary conditions and derive an infinite sequence of trace formulas associated with it, employing methods familiar from supersymmetric quantum mechanics. We also derive completeness and Riesz basis results (with parentheses) for the associated root functions under less smoothness assumptions on the coefficients than usual, using operator theoretic methods (rather than detailed eigenvalue and root function asymptotics) only.
Radiation damping in real time.
Mendes, A C; Takakura, F I
2001-11-01
We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.
The DAMPE silicon tungsten tracker
Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D
2017-01-01
The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...
Nonlinear damping identification from transient data
Smith, Clifford B.; Wereley, Norman M.
1999-06-01
To study new damping augmentation methods for helicopter rotor systems, accurate and reliable nonlinear damping identification techniques are needed. For example, current studies on applications of magnetorheological (MR) dampers for rotor stability augmentation suggest that a strong Coulomb damping characteristic will be manifested as the field applied to the MR fluid is maximized. Therefore, in this work, a single degree of freedom (SDOF) system having either nonlinear Coulomb or quadratic damping is considered. This paper evaluates three analyses for identifying damping from transient test data; an FFT-based moving block analysis, an analysis based on a periodic Fourier series decomposition, and a Hilbert transform based technique. Analytical studies are used to determine the effects of block length, noise, and error in identified modal frequency on the accuracy of the identified damping level. The FFT-based moving block has unacceptable performance for systems with nonlinear damping. These problems were remedied in the Fourier series based analysis and acceptable performance is obtained for nonlinear damping identification from both this technique and the Hilbert transform based method. To more closely simulate a helicopter rotor system test, these techniques were then applied to a signal composed of two closely spaced modes. This data was developed to simulate a response containing the first lag and 1/rev modes. The primary mode of interest (simulated lag mode) had either Coulomb or quadratic damping, and the close mode (1/rev) was either undamped or had a specified viscous damping level. A comprehensive evaluation of the effects of close mode amplitude, frequency, and damping level was performed. A classifier was also developed to identify the dominant damping mechanism in a signal of 'unknown' composition. This classifier is based on the LMS error of a fit of the analytical envelope expression to the experimentally identified envelope signal. In most
Endotracheal Intubation Done in Field Conditions of Restrained Space
S. Gavrilovic
2010-01-01
Full Text Available Endotracheal intubation used as a method of cardiopulmonal resuscitation and advanced life support in a field condition frequently represents a problem even to very experienced resuscitatiors because of its extremly complex circumstances. The author’s aim of this work is to suggest his own way of the patient’s intubation in a field condition by the application of the method which has not been described in the literature yet. A several dozen of patients have been intubated by this method in such conditions which did not represent even the minimum for intubation done in a conventional way, but they were enough to prove our method. Maximum performing time for the sample was 15 seconds. We consider that, using this method, the endo-tracheal intubation can be realized in all conditions up to now thought untouchable. This method requires only 30 to 35 cm wider space than patient’s shoulders occupate and 20 to 30 cm extra of his height. The only noted inadequacy is the risk in spine injury intubation, but with more careful treatment it can be avoided. Key words: Endotracheal intubation, cardiopul-monal resuscitation, field condition, restrained space.
Full scale tests of all-steel buckling restrained braces
Ma, Ning; Wu, Bin; Li, Hui; Ou, Jinping; Yang, Weibiao
2009-03-01
Buckling-restrained braces (BRBs) are widely used seismic response-controlling members with excellent energy dissipation capacity without buckling at design deformation. However, the property of all-steel BRBs with cruciform cross section encased in a square steel tube remains insufficiently studied. In this paper, the properties of this kind of BRBs, which were used in two office buildings in Beijing, were examined by full-scale test. First, initial design was done according to the client's requirement. Then, two full-scale specimens were tested under uniaxial quasi-static cyclic loading. The test results indicate that there should be no welding in yielding portion of the core. Finally, the full-scale subassemblage test was done with an improved BRB and gusset plates installed in a frame. The result shows that the brace exhibited high energy dissipation capacity and stable hysteretic characteristic. According to the results from above tests, some important issues are summarized to provide advices for practical applications.
Seismic Energy Demand of Buckling-Restrained Braced Frames
Choi, Hyunhoon; Kim, Jinkoo
2008-07-01
In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 60 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.
Stromal response to Hedgehog signaling restrains pancreatic cancer progression.
Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A
2014-07-29
Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
Martelli Pier
2009-10-01
Full Text Available Abstract Background Discriminative models are designed to naturally address classification tasks. However, some applications require the inclusion of grammar rules, and in these cases generative models, such as Hidden Markov Models (HMMs and Stochastic Grammars, are routinely applied. Results We introduce Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs as an extension of Hidden Conditional Random Fields (HCRFs. GRHCRFs while preserving the discriminative character of HCRFs, can assign labels in agreement with the production rules of a defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior knowledge of the problem by means of a defined grammar. Our current implementation allows regular grammar rules. We test our GRHCRF on a typical biosequence labeling problem: the prediction of the topology of Prokaryotic outer-membrane proteins. Conclusion We show that in a typical biosequence labeling problem the GRHCRF performs better than CRF models of the same complexity, indicating that GRHCRFs can be useful tools for biosequence analysis applications. Availability GRHCRF software is available under GPLv3 licence at the website http://www.biocomp.unibo.it/~savojard/biocrf-0.9.tar.gz.
Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.
Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin
2015-08-04
The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.
Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice
Yanli Li
2015-08-01
Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.
Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division.
Adachi, Yoshihiro; Itoh, Kie; Yamada, Tatsuya; Cerveny, Kara L; Suzuki, Takamichi L; Macdonald, Patrick; Frohman, Michael A; Ramachandran, Rajesh; Iijima, Miho; Sesaki, Hiromi
2016-09-15
Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.
Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice
Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin
2015-01-01
The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969
Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.
Burger, Steven K; Schofield, Jeremy; Ayers, Paul W
2013-12-05
We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.
Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.
Damped transverse oscillations of interacting coronal loops
Soler, Roberto
2015-01-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...
Quantizing the damped harmonic oscillator
Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)
2005-03-04
We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.
Vitreous Enamel Damping Material Development.
1982-11-01
PROCEDURES 3 2.1. EXPERIMENTAL 3 2.1.1. GLASS PREPARATION 3 2.1.2. METHOD OF COATING APPLICATION 3 2.1.3. VIBRATION DAMPING MEASUREMENTS 3 2.2. CALCULATION OF...discussion in this report. fL 2 SECTION II TECHNICAL PROCEDURES 2.1 EXPERIMENTAL 2.1.1 Glass Preparation All of the compositions, except the standard...After heat treatments of composition "B", a- cristobalite and devitrite (Na20.3CaO-6SiO 2) appear as crystalline phases; a- cristobalite being the major
Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.
2013-01-01
There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267
Optimal Thyristor Control Series Capacitor Neuro-Controller for Damping Oscillations
M. Magaji
2009-01-01
Full Text Available This study applies a neural-network-based optimal TCSC controller for damping oscillations. Optimal neural network controller is related to model-reference adaptive control, the network controller is developed based on the recursive “pseudo-linear regression. Problem statement: The optimal NN controller is designed to damp out the low frequency local and inter-area oscillations of the large power system. Approach: Two multilayer-perceptron neural networks are used in the design-the identifier/model network to identify the dynamics of the power system and the controller network to provide optimal damping. By applying this controller to the TCSC devices the damping of inter-area modes of oscillations in a multi-machine power system will be handled properly. Results: The effectiveness of the proposed optimal controller is demonstrated on two power system problems. The first case involves TCSC supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a complex system to provide a very good solution to oscillation damping control problem in the Southern Malaysian Peninsular Power Grid. Conclusion: Finally, several fault and load disturbance simulation results are presented to stress the effectiveness of the proposed TCSC controller in a multi-machine power system and show that the proposed intelligent controls improve the dynamic performance of the TCSC devices and the associated power network.
Coelho, Jennifer S; Nederkoorn, Chantal; Jansen, Anita
2014-04-01
The cue-reactivity model, which is based on conditioning processes, posits that repeated food exposure (in the absence of consumption) should decrease cue reactivity. To examine whether repeated chocolate exposure attenuates cravings and intake, relative to those exposed to an acute cue, a 2 (repeated vs acute cue) × 2 (restrained vs unrestrained eaters) design was employed. Fifty female participants were recruited. Repeated exposure reduced cravings in unrestrained eaters (relative to acute exposure), but increased cravings in restrained eaters. An interaction between restraint and exposure emerged on intake, such that restrained eaters ate less after acute exposure than did unrestrained eaters.
Radiation damping in metal nanoparticle pairs.
Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero
2007-02-01
The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.
Parametric Landau damping of space charge modes
Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis
2016-01-01
Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.
Nonlinear theory of magnetic Landau damping
Kirpichnikov, A.P.; Yusupov, I.U.
1978-05-01
The nonlinear Cerenkov damping of helical electromagnetic waves in a magnetized plasma is analyzed. The nonlinear mechanism which leads to oscillations in the wave amplitude and limits the damping is the trapping of resonant particles in the potential well of the wave, as in the O'Neil problem. The factors of the type exp (-..cap alpha..t/sup 2/) in the expression for the nonlinear damping rate for a Maxwellian particle distribution lead to a damping of the amplitude oscillations of the helical wave which is much more rapid than for a plasma wave.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
The next linear collider damping ring lattices
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Hysteretic damping in rotordynamics: An equivalent formulation
Genta, Giancarlo; Amati, Nicola
2010-10-01
The hysteretic damping model cannot be applied to time domain dynamic simulations: this is a well-known feature that has been discussed in the literature since the time when analog computers were widespread. The constant equivalent damping often introduced to overcome this problem is also discussed, and its limitations are stated, in particular those linked with its application in rotordynamics to simulate rotating damping. An alternative model based on the nonviscous damping (NVD) model, but with a limited number of additional degrees of freedom, is proposed, and the relevant equations are derived. Some examples show applications to the rotordynamics field.
Wang, K. W.; Kim, Y. S.; Shea, D. B.
1994-10-01
It has been recognized that the semi-active control concept is promising for vibration suppression of flexible structures and that the electrorheological (ER) fluid-based device is a good candidate for such applications. In this research, a new control law is developed to maximize the damping effect of ER dampers for structural vibration suppression under actuator constraints and viscous-frictional-combined damping. Numerical simulations and experimental work are carried out to evaluate the semi-active concept. It is illustrated that the performance of the semi-active system is superior to those of the critical damping and maximum damping variety. It is also concluded that the actuator frictional effect is significant, and should be considered in the controller design process.
Kleinman, B
1989-04-01
The model that describes the physical behavior of a fluid-filled catheter-transducer blood pressure monitoring system is a simple mass-spring system. When the mass is displaced and then released, there results a characteristic motion called simple harmonic motion. The full description of this motion requires defining the concepts of undamped and damped natural frequency, as well as of damping itself. Once these concepts are defined and the mass-spring system clearly understood, their relevance to recording blood pressure measurement by fluid-filled catheters is explained. The apparent paradox of how damping can affect undamped natural frequency is clarified. Finally, impedance matching is explained in the context of how some damping devices work. Detailed mathematical proofs are relegated to an appendix.
Petitjean, P.; Ledoux, C.
Recently, Prochaska & Wolfe (1997) have used Keck spectra of 17 DLA absorbers to investigate the kinematics of the neutral gas using unsaturated low excitation transitions such as Si iiλ 1808. They show that the absorption profiles are inconsistent with models of galactic haloes with random motions, spherically infalling gas and slowly rotating hot disks. The CDM model (Kauffmann 1996) is rejected as it produces disks with rotation velocities too small to account for the large observed velocity broadening of the absorption lines. Models of thick disks (h ~0.3 R, where h is the vertical scale and R the radius) with large rotational velocity (v 225kms-1) can reproduce the data. By combining new data on five damped systems with information gathered in the literature, we study the kinematics of the low and high-ionization phases in a sample of 26 damped Lyman-α systems in the redshift range 1.17 - 4.38. We show that the broader the line the more asymmetric, as expected in case rotation dominates the line broadening. However this correlation does not hold for velocities larger than 150 km/s indicating that evidence for rotational motions if any is restricted to velocity broadenings Δ V 200kms-1 are peculiar with kinematics consistent with random motions. They show sub-systems as those expected if the objects are in the process of merging.
Damped and detuned accelerator structures
Deruyter, H.; Farkas, Z.D; Hoag, H.A.; Ko, K.; Kroll, N.; Loew, G.A.; Miller, R.; Palmer, R.B.; Paterson, J.M.; Thompson, K.A.; Wang, J.W.; Wilson, P.B.
1990-09-01
This paper reports continuing work on accelerator structures for future TeV linear colliders. These structures, in addition to having to operate at high gradients, must minimize the effects of wakefield modes which are induced by e{sup {plus minus}} bunch trains. Two types of modified disk-loaded waveguides are under investigation: damped structures in which the wakefield power is coupled out to lossy regions through radial slots in the disks and/or azimuthal rectangular waveguides, whereby the external Q of the undesirable HEM{sub 11} mode is lowered to values below 20, and detuned structures in which the frequencies of these modes are modified from one end to the other of each section by {approximately}10%, thereby scrambling their effects on the beam. Beam dynamics calculations indicate that these two approaches are roughly equivalent. MAFIA, ARGUS and URMEL codes have been used extensively in conjunction with low-power tests on S- and X-band models to identify mode patterns, dispersion curves and Q values, and to demonstrate damping or detuning of the HEM modes. Results of calculations and measurements on the various structures are presented and evaluated.
Acoustic transducer with damping means
Smith, Richard W.; Adamson, Gerald E.
1976-11-02
An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.
Quasienergy formulation of damped response theory.
Kristensen, Kasper; Kauczor, Joanna; Kjaergaard, Thomas; Jørgensen, Poul
2009-07-28
We present a quasienergy-based formulation of damped response theory where a common effective lifetime parameter has been introduced for all excited states in terms of complex excitation energies. The introduction of finite excited state lifetimes leads to a set of (complex) damped response equations, which have the same form to all orders in the perturbation. An algorithm is presented for solving the damped response equations in Hartree-Fock theory and Kohn-Sham density functional theory. The use of the quasienergy formulation allows us to obtain directly the computationally simplest expressions for damped response functions by applying a set of response parameter elimination rules, which minimize the total number of damped response equations to be solved. In standard response theory broadened absorption spectra are obtained by ad hoc superimposing lineshape functions onto the absorption stick spectra, whereas an empirical lineshape function common to all excitations is an integrated part of damped response theory. By superimposing the lineshape functions inherent in damped response theory onto the stick spectra of standard response theory, we show that the absorption spectra obtained in standard and damped response theory calculations are identical. We demonstrate that damped response theory may be applied to obtain absorption spectra in all frequency ranges, also those that are not readily addressed using standard response theory. This makes damped response theory an effective tool, e.g., for determining absorption spectra for large molecules, where the density of the excited states may be very high, and where standard response theory therefore is not applicable in practice. A thorough comparison is given between our formulation of damped response theory and the formulation by Norman et al. [J. Chem. Phys. 123, 194103 (2005)].
EXPERIMENTAL TESTING OF DRAW—BEAD RESTRAINING FORCE IN SHEET METAL FORMING
J.H.Yang; J.Chen; 等
2003-01-01
Due to complexities of draw-bead restraining force calculated according to theory and depending on sheet metal forming properties experiment testing system,a simplified method to calculate draw-bead restraining force is put forward by experimental method in cup-shaped drawing process.The experimental results were compared with numer-ical results and proved agreement.It shows the method is effective.
Seismic Analysis of a Viscoelastic Damping Isolator
Bo-Wun Huang
2015-01-01
Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.
Peláez-Fernández, María Angeles; Extremera, Natalio
2011-11-01
The present research explored the effects of pre-exposure to temptation primes and dieting primes on food intake, goal accessibility and explicit automatic evaluations of food-enjoyment and dieting goals among restrained and unrestrained eaters. Participants (n= 166) were randomly assigned to three conditions: food-cue, dieting, or control, in which they were exposed to incidental presentation of gourmet, fashion or geographic magazines, respectively. Words related to the goals of dieting and/or food- enjoyment were presented in a computer decision task following the incidental presentation of gourmet, dieting, and geographic magazine photographs. The computer task and the presentation of food were counterbalanced. Participants' food intake was assessed in a taste-rating task. Restrained eaters ate more than did unrestrained eaters across the three conditions. Restrained eaters who were exposed to food cues ate more than did restrained eaters in the control condition and they evaluated the goal of dieting more negatively compared to restrained eaters in the other two conditions. These findings were inconsistent with 'Counteractive Self-Control Theory' but consistent with previous studies on the effects of food-cue exposure in restrained eaters.
Passivation of Underactuated Systems with Physical Damping
Gómez-Estern, F.; Schaft, A.J. van der; Acosta, J.A.
2004-01-01
In recent works, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in method
Magnetic dipole oscillations and radiation damping
Stump, Daniel R.; Pollack, Gerald L.
1997-01-01
We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.
Gyroscopic Stabilization of Indefinite Damped Systems
Kliem, Wolfhard; Müller, Peter C.
1997-01-01
Modelling of mechanical systems with sliding bearings, or with dry friction, can lead to linear systems with an indefinite damping matrix. We ask under what conditions such a system is unstable (the indefiniteness of the damping matrix is not enough) and under what conditions we can stabilize...
Understanding the Damped SHM without ODEs
Ng, Chiu-king
2016-01-01
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Damping Characteristics of Metal Matrix Composites
1989-05-25
Sin . ........... Inches x 106 (Microinches) IR&D ......................... n e t Research and Development.K ...................... Kelvin LPSS...Proper Sitan Ampliutde Dependence for a Dislocation Damping Mechanism 5.4 SUMMARY Damping measurements of pitch 55 graphite fiber reinforcement in high
Anisotropic damping of Timoshenko beam elements
Hansen, M.H.
2001-01-01
This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...
On Collisionless Damping of Ion Acoustic Waves
Jensen, Vagn Orla; Petersen, P.I.
1973-01-01
Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....
Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro
2011-01-01
to Full-Scale Converter based type. Moreover resemblance of such Wind Power Plant to modern FACTS devices is recognized and exploited. Paper discusses many aspect of damping controller design, including feedback signal selection and control effectiveness with respect to wind farm location. Analysis......Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...... and design is based on modal analysis, therefore matching modeling approach for wind power plant is proposed. Finally, performance of Wind Power Plant damping control is compared to a regular power system stabilizer installed on a synchronous generator....
Magnetic damping of rotation. [in satellites
Opik, E. J.
1977-01-01
Based on Wilson's (1977) article on the magnetic effects on space vehicles and other celestial bodies, the magnetic damping of rotation is considered. The inadequacy of the interstellar magnetic field in overcoming solar wind shielding and thus influencing the rotation of bodies is described. The ionospheric shielding of the interstellar field is discussed along with the permeability and magnetic damping by the solar or stellar wind. Star formation and angular momentum is discussed and attention is given to the magnetic damping of unshielded small bodies. Calculations of the rate for damping through random particle impact are made. Theories concerning the rotation of asteroids and the origin of meteorites are reviewed. The shielding process of ionospheric plasmas is outlined and the damping effect of the geomagnetic field on the rotation of artificial satellites is evaluated.
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Damping characteristics of damaged fiber composite components
Eberle, K.
1986-01-01
Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.
Practical Damping Identification of FAST Cable Suspension
Jinghai Sun
2014-03-01
Full Text Available FAST focus cabin is suspended and driven by 6 parallel large span cables. Low stiffness of cables makes the cabin sensitive to disturbance and difficult to control. Structural damping then becomes a key factor that can improve control ability. Therefore, a reasonable damping estimation is important for system design. In this paper, a practical damping identification method is developed based on Ibrahim-time-domain algorithm. The method shows satisfied performance on accuracy and reliability in simulation test and is utilized in vibration experiments to identify damping ratios of both single cable model and FAST 3 m scale cable suspension model. Finally, a preliminary analysis of the damping properties is given out based on the results of identification.
Dampness in Buildings and Health
Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf
1999-01-01
will maintain close contact with international, not the least Nordic, research groups by facilitating possibilities for exchange visits and guest positions. The centre will be very active in educating new Ph.D.'s.Next to presenting the setting, the paper gives an overview of the research tasks within the centre...... academic positions. It is anticipated that the research council's support for the centre will be prolonged for another five years, during which period it will be gradually reduced and the centre will be indulged as a permanent activity at DTU.The ambition of the research is to extend the knowledge....... The main themes are:· Continued research in human perception of indoor air quality, especially by identification of the factors that may cause annoyance to the occupants. Such annoyances may be emissions from materials or biological activity, and is often linked to the dampness of buildings.· Studies...
Unimodal optimal passive electromechanical damping of elastic structures
Ben Mekki, O.; Bourquin, F.; Maceri, F.; Merliot, E.
2013-08-01
In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed.
A New Fine Damping Method for Solid ESG Rotor
LIU Chun-ning; TIAN Wei-feng; JIN Zhi-hua
2006-01-01
For the electrostatically suspended gyro(ESG) with solid rotor, because the equatorial photoelectric sensor won't sense the equatorial marking line and output the correct damping control information when the nutation angle is small, the active damping with equatorial marking line will bring considerable error. The passive damping method by applying strong DC magnetic field requires too much time. So an active damping method by longitude marking lines is proposed to fulfill the fine damping for solid ESG rotor. The shape of rotor marking lines and the principle of fine damping are introduced. The simulation results prove that this fine damping method can effectively solve the problem of damping error introduced by active damping with equatorial marking line. The estimating results for damping time indicate that the fine damping time is less than 10 percent of passive damping time.
Air damping of atomically thin MoS{sub 2} nanomechanical resonators
Lee, Jaesung; Wang, Zenghui; Feng, Philip X.-L., E-mail: philip.feng@case.edu [Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); He, Keliang; Shan, Jie [Department of Physics, College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)
2014-07-14
We report on experimental measurement of air damping effects in high frequency nanomembrane resonators made of atomically thin molybdenum disulfide (MoS{sub 2}) drumhead structures. Circular MoS{sub 2} nanomembranes with thickness of monolayer, few-layer, and multi-layer up to ∼70 nm (∼100 layers) exhibit intriguing pressure dependence of resonance characteristics. In completely covered drumheads, where there is no immediate equilibrium between the drum cavity and environment, resonance frequencies and quality (Q) factors strongly depend on environmental pressure due to bulging of the nanomembranes. In incompletely covered drumheads, strong frequency shifts due to compressing-cavity stiffening occur above ∼200 Torr. The pressure-dependent Q factors are limited by free molecule flow (FMF) damping, and all the mono-, bi-, and tri-layer devices exhibit lower FMF damping than thicker, conventional devices do.
Chortis, D I; Chrysochoidis, N A; Saravanos, D A [Department of Mechanical Engineering and Aeronautics, University of Patras, Patras 26500 (Greece)
2007-07-15
The paper presents a brief description of composite damping mechanics for blade sections of arbitrary lamination and geometry. A damped 3-D shear beam element is presented enabling the assembly of damped structural dynamic models of blades with hollow multi-cell tubular laminated sections. Emphasis is placed to the inclusion of composite material coupling effects, first in the blade section stiffness and damping matrices and finally into the stiffness and damping matrices of the finite element. Evaluations of the beam element are presented, to quantify the material coupling effect on composite beams of simple box sections. Correlations between predicted and measured modal frequencies and damping values in small model Glass/Epoxy are also shown. Finally, the damped modal characteristics of a 35m realistic wind-turbine blade model design, are predicted.
Ferroelectric control of anisotropic damping in multiferroic tunnel junctions
Wang, Yan; Zhang, Ning; Berakdar, Jamal; Jia, Chenglong
2015-10-01
The magnetoelectric effect on nonlocal magnetization dynamics is theoretically investigated in normal-metal/ferroelectric-insulator/ferromagnetic tunnel junctions. In addition to the Rashba spin-orbit interaction (SOI) originating from loss of parity symmetry at the interfaces, the topology of interfacial spiral spins triggered by ferroelectric polarization acts with an effective SOI that is electrically controllable. These spin-dependent interactions result in an anisotropic Gilbert damping with C2 v symmetry. The findings are of a direct relevance for the utilization of composite multiferroics for devices that rely on electrically controlled magnetic switching.
Effect of embedded voltage source converter on power system oscillation damping
R; DUNN
2010-01-01
This paper presents the damping torque analysis of power system oscillation stability as affected by the dynamic and control functions of an embedded voltage source converter(VSC).The objective of the study is to explain why and how the dynamic and basic control functions of the embedded VSC,ac and dc voltage regulation,provide damping to power system oscillations.The most important conclusion obtained in the paper is that both the dynamics and the dc voltage control of the VSC contribute a variable damping torque,which can be positive or negative,at different levels of system load conditions.More positive damping torque can be provided by the VSC at a heavier load condition.There exists a point of system load condition where the VSC provides no damping torque to power system oscillation hence dose not impose any influence on power system oscillation stability.The VSC studied in the paper can be the power-electronics-based interface of various FACTS(flexible ac transmission systems) devices,energy storage systems and renewable power generation units,although the focus of the discussion presented in this paper is the effect of the dynamics and basic control functions of the VSC themselves on power system oscillation damping.To demonstrate the analytical conclusions obtained in the paper,results of eigenvalue computation and nonlinear simulation of an example power system with STATCOM(static synchronous compensator) are given.
Elfrink, R.; Renaud, M.; Kamel, T.M.; Nooijer, C. de; Jambunathan, M.; Goedbloed, M.; Hohlfeld, D.; Matova, S.; Pop, V.; Caballero, L.; Schaijk, R. van
2010-01-01
This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 μW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated. V
Accurate calibration of RL shunts for piezoelectric vibration damping of flexible structures
Høgsberg, Jan Becker; Krenk, Steen
2016-01-01
Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominantvibration modes of a flexible structure and their efficiency relies on precise calibration of the shuntcomponents. In the present paper improved calibration accuracy is attained by an extension ...
A current controller of grid-connected converter for harmonic damping in a distribution network
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2011-01-01
Harmonic resonance caused by the increased use of shunt-connected capacitors in LCL-filters and power factor correction devices may become a serious power quality challenge in electric distribution systems. A voltage-detection method based on current control is developed to damp harmonic resonanc...
Ruiz Lopez, Pablo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1989-12-31
This paper describes a damping criterion that allows realizing in a more convenient form the dynamic analysis of piping and structures in general, subjected to independent stimulations, fabricated in different materials and/or damping devices. This criterion, named composed damping, is applicable to the method of modal superimposition. [Espanol] En este trabajo se describe un criterio de amortiguamiento que permite realizar en una forma mas conveniente el analisis dinamico de tuberias y estructuras en general, sujetas a excitaciones independientes, compuestas de diferentes materiales y/o mecanismos de amortiguamiento. Este criterio, denominado amortiguamiento compuesto, es aplicable en el metodo de superposicion modal.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics.
Yu, Haiming; Kelly, O d'Allivy; Cros, V; Bernard, R; Bortolotti, P; Anane, A; Brandl, F; Huber, R; Stasinopoulos, I; Grundler, D
2014-10-30
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.
Jong Wan Hu; Myung-Hyun Noh
2015-01-01
This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs) subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced fra...
A Resonant Damping Study Using Piezoelectric Materials
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Structural dynamic modification using additive damping
B C Nakra
2000-06-01
In order to control dynamic response in structures and machines, modofications using additive viscoelastic damping materials are highlighted. The techniques described for analysis include analytical methods for structural elements, FEM and perturbation methods for reanalysis or structural dynamic modifications for complex structures. Optimisation techniques are used for damping effectiveness include multi-parameter optimisatoin techniques and a technique using dynamic sensitivity analysis and structural dynamic modification. These have been applied for optimum dynamic design of structures incorporating viscoelastic damping. Some current trends for vibraton control are also discussed.
Radiation damping of a polarizable particle
Novotny, Lukas
2017-09-01
A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.
Damping Properties of Flexible Epoxy Resin
WANG Xiang; LIU Hanxing; OUYANG Shixi
2008-01-01
Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.
Identification of Light Damping in Structures
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... is identification by ARMA models assuming a white noise input. Method 2 is identification by simulation of a free decay response. Experimental data on the free decay response has been obtained directly by measurement as well as by the random decrement technique. Two experimental cases has been considered. The first...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
Haiming Yu; O. d'Allivy Kelly; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I; Grundler, D.
2014-01-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers ty...
Studies on effect of stress preconditioning in restrain stress-induced behavioral alterations.
Kaur, Rajneet; Jaggi, Amteshwar Singh; Singh, Nirmal
2010-02-01
Stress preconditioning has been documented to confer on gastroprotective effects on stress-induced gastric ulcerations. However, the effects of prior exposure of stress preconditioning episodes on stress-induced behavioral changes have not been explored yet. Therefore the present study was designed to investigate the ameliorative effects of stress preconditioning in immobilization stress-induced behavioral alterations in rats. The rats were subjected to restrain stress by placing in restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Stress preconditioning was induced by subjecting the rats to two cycles of restraint and restrain-free periods of 15 min each. Furthermore, a similar type of stress preconditioning was induced using different time cycles of 30 and 45 min. The extent and severity of the stress-induced behavioral alterations were assessed using different behavioral tests such as hole-board test, social interaction test, open field test, and actophotometer. Restrain stress resulted in decrease in locomotor activity, frequency of head dips and rearing in hole board, line crossing and rearing in open field, and decreased following and increased avoidance in social interaction test. Stress preconditioning with two cycles of 15, 30 or 45 min respectively, did not attenuate stress-induced behavioral changes to any extent. It may be concluded that stress preconditioning does not seem to confer any protective effect in modulating restrain stress-induced behavioral alterations.
Resonant Electromagnetic Shunt Damping of Flexible Structures
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...
DAMPING PERFORMANCE OF EUCOMMIA ULMOIDES GUM
Ji-chuan Zhang; Zhao-hong Xue; Rui-fang Yan
2011-01-01
Eucommia ulmoides gum (EU gum), known as gutta percha in Southeast Asia, is a natural polymer with double characteristics of rubber and plastic. In present paper, tanδ-T curve and hysteresis loss (HL) were chosen to characterize its damping property. The results indicated that its tanδvalue would increase with rising of temperature when T＞ 0°C and form another damping peak at 40-80°C besides Tg peak. This phenomenon resulted fiom meltage of crystals of EU gum could increase its damping property at ambient-high temperature. Its tanδ value even exceeded those of conventional damping rubbers, such as nitrile-butadiene rubber (NBR) and chlorinated isobutene-isoprene rubber (CIIR).
Simplified Model of Nonlinear Landau Damping
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Damping by branching: a bioinspiration from trees
Theckes, Benoit; Boutillon, Xavier
2011-01-01
Man-made slender structures are known to be sensitive to high levels of vibration, due to their flexibility, which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is here identified and characterized in the simplest tree-like structure, a Y-shape branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being...
Piezoelectric RL shunt damping of flexible structures
Høgsberg, Jan Becker; Krenk, Steen
2015-01-01
Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...
Modification of spastic gait through mechanical damping.
Maki, B E; Rosen, M J; Simon, S R
1985-01-01
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.
Dynamic damping property of magnetorheological elastomer
李剑锋; 龚兴龙
2008-01-01
Magnetorheological elastomer(MRE) is a new kind of smart materials,its dynamic mechanic performances can be controlled by an applied magnetic field.MRE is usually used as a stiffness-changeable spring in the semi-active vibration absorber.In order to get perfect vibration control effect,low dynamic damping of MRE is need.But the dynamic damping of MRE was not studied deeply in the past.The dynamic damping of MRE was studied and analyzed.The influences of different test conditions including test strain amplitude,test frequency and test magnetic field were deeply studied.MRE sample and pure silicone rubber sample were prepared and tested under different conditions.The test results show that the main source of dynamic damping is the friction between iron particles and rubber matrix.And the friction is mainly influenced by the strain amplitude and test magnetic field.
Techniques for Thermal Damping in Tube Bundles
QAMAR IQBAL
2010-10-01
Full Text Available Flow-induced vibration in heat exchangers has been a source of concern in the process, power generation and nuclear industry for several decades. Damping has a major influence on the flow induced vibrations and is dependant on a variety of factors such as mechanical properties of the tube material, geometry of intermediate supports, the physical properties of shell-side fluid, type of tube motion, number of supports, tube frequency, shell-side temperature etc. Various damping mechanisms have been identified and quantified. Generally the effects of the higher operating temperatures on the various damping mechanisms are neglected in the general design procedure. This paper focuses on the thermal aspects of damping mechanisms subjected to single phase cross-flow in shell and tube heat exchanger and a comparison is carried out safer design based on experimental and empirical formulations.
Damping Wiggler Study at KEK-ATF
Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank
2005-01-01
The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.
ON DAMPING COEFFICIENT DUE TO PHASE TRANSFORMATION
Din-YuHSIEH
2003-01-01
The damping coefficient of capillary waves due to the evaporation-condensation process at the interface of the two phases of a fluid is evaluated. To highlight the mechanism of the effect of heat and mass transfer across the interface between regions of liquid and vapor, potential flow of incompressible fluids are assumed. Thus other mechanisms of damping are neglected. To fascilitate the analysis, the method of multiple-scale is employed in the analysis, even though the problem is linear.
Diffusion-damped domain wall dynamics
Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)
2010-01-01
In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.
Optimal constrained layer damping with partial coverage
Marcelin, J.-L.; Trompette, Ph.; Smati, A.
1992-12-01
This paper deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. An efficient finite element model for dynamic analysis of such beams is used. The design variables are the dimensions and prescribed locations of the viscoelastic layers and the objective is the maximum viscoelastic damping factor. The method for nonlinear programming in structural optimization is the so-called method of moving asymptotes.
Turbine blade with tuned damping structure
Campbell, Christian X.; Messmann, Stephen J.
2015-09-01
A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.
On a Nonlocal Damping Model in Ferromagnetism
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Analysis of nonlinear damping properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Numerical studies of shear damped composite beams using a constrained damping layer
Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard
2008-01-01
Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping...
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method.
Roux, Benoît; Weare, Jonathan
2013-02-28
An issue of general interest in computer simulations is to incorporate information from experiments into a structural model. An important caveat in pursuing this goal is to avoid corrupting the resulting model with spurious and arbitrary biases. While the problem of biasing thermodynamic ensembles can be formulated rigorously using the maximum entropy method introduced by Jaynes, the approach can be cumbersome in practical applications with the need to determine multiple unknown coefficients iteratively. A popular alternative strategy to incorporate the information from experiments is to rely on restrained-ensemble molecular dynamics simulations. However, the fundamental validity of this computational strategy remains in question. Here, it is demonstrated that the statistical distribution produced by restrained-ensemble simulations is formally consistent with the maximum entropy method of Jaynes. This clarifies the underlying conditions under which restrained-ensemble simulations will yield results that are consistent with the maximum entropy method.
Lattimore, Paul; Caswell, Noreen
2004-04-01
This study examined the effects of active (AC) and passive coping (PC) stress tasks on food intake in female restrained (n = 20) and unrestrained eaters (n = 20) Participants completed a reaction time task (AC), a cold-pressor test (PC), and a relaxation control condition separated by 1-week intervals. Food intake was assessed after each task. Self-reported anxiety, heart rate and blood pressure (BP) were measured before and after each task. Restraint was measured using the Dutch Eating Behaviour Questionnaire. Significant increases in BP were evident in the AC task only. Stress tasks produced significant increases in self-rated anxiety. Restrained eaters consumed more than unrestrained following the reaction time task, while the opposite was observed following relaxation. The findings of this study show that disinhibited eating of restrained eaters can be triggered by the distracting effects of a cognitively demanding task and may be independent of anxiety experienced.
Linear control strategies for damping of flexible structures
Høgsberg, Jan Riess; Krenk, Steen
2006-01-01
Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...
EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES
1998-01-01
The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.
Thermal damping and retardation in karst conduits
A. J. Luhmann
2014-08-01
Full Text Available Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However, within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationships that describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical experiments where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a tracer experiment that provides field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.
Damp heat stable doped zinc oxide films
Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)
2014-03-31
Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.
The next linear collider damping ring complex
Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.
2001-06-12
We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.
SELF TUNING CONTROLLERS FOR DAMPING LOW FREQUENCY OSCILLATIONS
SANGU RAVINDRA
2012-09-01
Full Text Available This paper presents a new control methods based on adaptive Neuro-Fuzzy damping controller and adaptive Artificial Neural Networks damping controller techniques to control a Unified Power Flow controller (UPFC installed in a single machine infinite bus Power System. The objective of Neuro-Fuzzy and ANN based UPFC controller is to damp power system oscillations.Phillips-Herffron model of a single machine power system equipped with a UPFC is used to model the system. In order to damp power system oscillations, adaptive neuro-fuzzy damping controller and adaptive ANN damping controller for UPFC are designed and simulated. Simulation is performed for various types of loads and for different disturbances. Simulation results demonstrate that the developed adaptive ANN damping controller has an excellent capability in damping electromechanical oscillations which exhibits a superior damping performance in comparison to the neuro-fuzzy damping controller as well as conventional lead-lag controller.
Research on the Defects Restraining Ability of Power Supply Transacting Electrocircuit
GAO Jun; CHEN Chuan-bo
2006-01-01
Adopting the mechanism model and the system identification method, the power supply transacting electrocircuit (integrate manostat) is analyzed, and the restraining ability and the response for power supply transacting electrocircuit to overcome various battery defects are studied. The effects of the power supply yawp on the normal functions of the radio fuze are investigated. The research indicate that the shortcomings of the integration manostat as battery defects can be regarded as steady noise, and the restraining ability of the integration manostat to battery defects isn't less than 50 dB.
Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen
2014-12-01
Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.
Acoustic enhancement for photo detecting devices
Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W
2013-02-19
Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.
Gârnet, I. A.; Stanciu, S.; Hopulele, I.; Zaharia, M. G.; Cimpoesu, N.; Chicet, D. L.; Crăciun, R. C.
2017-06-01
An experimental equipment, type torsion pendulum was made in laboratory in order to analyze the damping capacity of metallic materials. The scheme of the equipment is presented, 2D and 3D visions at real scale. The equipment functioning (mechanical and electrical part) and principles are presented. In this article we present some preliminary experimental results obtained on different materials (aluminium, steel etc.) using two different methods for registration the outputs (one based on optoelectronic device with Arduino acquisition board and second on video analyze (cinematic review: video to jpeg) of the damped motion of the lead pendulum). Steel materials were with shoot penning surface modification with and without heat treatment in order to establish the heat treatment influence on the damping capacity property.
Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin films
Zhang, W., E-mail: xiaotur@gmail.com; Jiang, S.; Sun, L.; Wang, Y. K.; Zhai, Y. [Department of Physics, Southeast University, Nanjing 211189 (China); Wong, P. K. J.; Wang, K.; Jong, M. P. de; Wiel, W. G. van der [NanoElectronics Group, MESA Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede (Netherlands); Laan, G. van der [Diamond Light Source, Magnetic Spectroscopy Group, Didcot OX11 0DE (United Kingdom)
2014-05-07
By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ∼6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd inclusion. X-ray magnetic circular dichroism measurements reveal a strong increase in the orbital-to-spin moment ratio of Fe with increasing Gd concentration, in full agreement with the increase in the Gilbert damping obtained for these thin films. Combined with x-ray diffraction and vibrating sample magnetometry, the results demonstrate that the FeGd thin films with dilute Gd doping of up to 20% are promising candidates for spin-transfer-torque applications in soft magnetic devices, in which an enhanced damping is required.
Vibration damping characteristics of laminated steel sheet
Chen, Y. S.; Hsu, T. J.; Chen, S. I.
1991-03-01
The use of laminated steel sheets as vibration damping materials was studied. The laminate consisted of a viscoelastic layer which was sandwiched between two steel sheets. The study sought to identify parameters affecting the damping efficiency of the laminate. Two viscoelastic materials, a copolymer based on ethylene and acrylic acid (PEAA) and polyvinyl butyral (PVB), were used. A frequency analyzer was used to measure the loss factor of the laminates. A theoretical analysis of damping efficiency based on a model described by Ungar[2] was also carried out. The results showed that the loss factor of the PEAA-based laminates increased monotonically with increasing thickness of the viscoelastic layer and leveled off at 25.9 pct of total thickness. Ungar’s theory predicted a higher loss factor than the experimental data. This might have resulted from interfacial adhesive bonding, a nonuniform viscoelastic layer thickness, and the extrapolation of the rheological data from low to high frequencies. The loss factor of the laminate increased with increasing temperature, reached a maximum value, and then decreased. An optimum temperature for maximum damping was found for each laminate configuration. The PEAA-based laminates possessed higher damping efficiency than the PVB-based laminates at room temperature. The symmetric laminate (with the same steel sheet thickness) possessed a better damping efficiency than asymmetric laminates. The maximum damping peak of the laminates using a polymer blend, when compared to the laminates using unblended resin, exhibited a lower loss factor value, became broader, and occurred at a temperature between the T g’s of the individual components of the polymer blend.
Numerical Research of the Viscous Effect of the Bilge Keel on the Damping Moment
Deng Rui
2015-09-01
Full Text Available Bilge keels are effective passive devices in mitigating the rolling motion, and the usage of them covers almost all the sea going vessels. This paper focuses on the viscous effect of the bilge keel, ignored the effect of the free surface and the effect of the ship hull, for the general viscous characteristic of the bilge keel. In order to investigate the viscous effect of the bilge keel on the total damping moment, a special 2 dimensional numerical model, which includes a submerged cylinder with and without bilge keels, is designed for the simulation of forced rolling. Three important factors such as bilge keels width, rolling periods, as well as maximal rolling angles are taken into account, and the viscous flow field around the cylinder is simulated by some codes based on the viscous method in different conditions, in which the three factors are coupled. Verification and validation based on the ITTC method are performed for the cylinder without bilge keels in the conditions of different rolling periods and maximal rolling angles. The primary calculation of damping moment induced by the cylinder with 0mm, 4mm, and 10mm width bilge keels shows some interesting results, and a systematic analysis is conducted. The analysis of the damping moment components suggests there is phase difference between the damping moment induced by the cylinder and the bilge keels, and when the bilge keels width reaches a special size, the total damping moment is mitigated. The calculation of the damping moments induced by the cylinder with some larger bilge keels are also performed, and the results suggest that, the damping moment induced by the bilge keels is increased rapidly and becomes the dominant part in the total damping moment while the width of the bilge keels are increased, but the damping moment induced by the cylinder is not changed significantly. Some illustration of the vortices formation and shedding is included, which is the mechanism of the damping
Ming Li; Zeng He; Huiming Zheng; Ning Zhang
2008-01-01
A cantilever beam with Damping Material Applying Rubber Magnetic Powder (DRM)has been investigated.Two methods are selected to hold DRM to a vibrating steel beam,one is to attach DRM by the magnetic attractive force (called DRM beam) and the other by adhesive bonding (called AB-DRM beam).Different from the damping property of AB-DRM beam caused by shear deformation of damping material,the damping property of DRM beam is characterized by the sliding frictional loss together with the internal loss of damping material.The authors established a formulation to predict the damping characteristics of DRM beam,which was validated experimentally.It is found that rubber material loss factor/β has a decisive influence on damping improvement of DRM beam versus AB-DRM beam.If/β is smaller than the critical value around 0.8255,a valid range of vibratory amplitude always exists in which DRM beam can achieve better damping than AB-DRM beam;conversely,if/β is bigger than the critical value,the valid range does not exist when slide occurs.Such results are used to determine the merits and limitations of DRM and develop design guidelines.
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan
2002-01-01
Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality.......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...
Determining damping characteristics of railway-overhead-wire system for finite-element analysis
Zou, Dong; Zhang, Wei Hua; Li, Rui Ping; Zhou, Ning; Mei, Gui Ming
2016-07-01
In order to investigate the damping characteristics of railway-overhead-wire systems, we propose herein an approach based on the continuous wavelet transform (CWT) and two existing formulas concerning Rayleigh damping coefficients (RDCs). In the proposed process, the displacement histories of a real catenary are first obtained by using a set of noncontact photogrammetric devices, following which an exclusive catenary damping ratio related to the first dominant modal component in the catenary response is identified through a complex Morlet CWT. Thereafter, iterative finite-element analysis is conducted to find the optimal RDCs, which involves using two related formulas and the similarity between the catenary displacements obtained by simulation and experimentation. The results of our study demonstrate that this combined approach is constructive, especially for structures with closely spaced modes, such as catenaries. For the case studied herein, the catenary modal damping ratio at 1.19 Hz is approximately 1%, and the mass and stiffness proportional Rayleigh damping coefficients are approximately 0.02845 and 0.00274, respectively.
Enhanced damping for bridge cables using a self-sensing MR damper
Chen, Z. H.; Lam, K. H.; Ni, Y. Q.
2016-08-01
This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.
1 in 5 U.S. Kids Killed in Crashes Not Restrained Properly
... https://medlineplus.gov/news/fullstory_165912.html 1 in 5 U.S. Kids Killed in Crashes Not Restrained Properly Finding highlights importance of ... save young lives, researchers now report that one in every five children killed in car crashes in ...
Emotional, external and restrained eating behaviour and BMI trajectories in adolescence
Snoek, Harriëtte M.; Engels, Rutger C.M.E.; Strien, Van Tatjana; Otten, Roy
2013-01-01
Individual differences in eating behaviours might partly explain the variations in development of weight gain and subsequent overweight and obesity. In the current study, identified trajectories of BMI in adolescence and their associations with restrained, emotional and external eating were tested.
van Rooij, F.B.; ten Haaf, J.; Verhoeff, A.P.
2013-01-01
In 2009, the Netherlands introduced a 10-day temporary restraining order (TRO) intended for adult perpetrators of domestic violence to defuse dangerous situations and to reduce recidivism by combining a legal action with social services. For this study, 18 victims and 10 perpetrators were interviewe
Zhou, Yizhou; Gao, Xiao; Chen, Hong; Kong, Fanchang
2017-08-01
Restrained eating for weight control and loss is becoming highly prevalent in many affluent societies, while most of the restrained eaters are rather unsuccessful in the long term. According to the strength model of self-control, the disinhibition effect of restrained eaters may occur after the depletion of self-control resources. However, no work has examined the direct impact of self-control resources on inhibitory control ability of restrained eaters. This study investigated the influences of self-control resources on the food-related inhibitory control among high-restraint/low-disinhibition restrained eaters, high-restraint/high-disinhibition restrained eaters and unrestrained eaters using stop signal task. Results reveal that there's no difference of food-related inhibitory control between three groups when the self-control resources are non-depleted, while high-restraint/high-disinhibition restrained eaters showing a decrease of food-related inhibitory control after ego-depletion. This disinhibition effect only seems to occur in samples of restrained eaters with a high tendency toward overeating. Copyright © 2017 Elsevier Ltd. All rights reserved.
Werthmann, Jessica; Jansen, Anita; Roefs, Anne
2016-01-01
Attention bias for food could be a cognitive pathway to overeating in obesity and restrained eating. Yet, empirical evidence for individual differences (e.g., in restrained eating and body mass index) in attention bias for food is mixed. We tested experimentally if temporarily induced health versus
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Radiation damping in microcoil NMR probes.
Krishnan, V V
2006-04-01
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.
Anti-damping effect of radiation reaction
Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.
2010-01-01
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
Fluid damping of cylindrical liquid storage tanks.
Habenberger, Joerg
2015-01-01
A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Resolving photons from cosmic ray in DAMPE
Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.
Damping of wind turbine tower vibrations
Brodersen, Mark Laier; Pedersen, Mikkel Melters
Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... that a minimum of three braces in a symmetric circumferential configuration are needed to introduce homogeneous damping in the two lowest vibration modes, independent of the rotor direction. A novel hybrid viscous damper concept is described in the second part. The hybriddamper consists of a viscous dash...
Chiral damping in magnetic domain-walls (Conference Presentation)
Jue, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stéphane; Schuhl, Alain; Manchon, Aurélien; Miron, Ioan Mihai; Gaudin, Gilles
2016-10-01
The Dzyaloshinskii-Moriya interaction is responsible for chiral magnetic textures (skyrmions, spin spiral structures, …) in systems with structural inversion asymmetry and high spin-orbit coupling. It has been shown that the domain wall (DW) dynamics in such materials can be explained by chiral DWs with (partly or fully) Néel structure, whose stability derives from an interfacial DMI [1]. In this work, we show that DMI is not the only effect inducing chiral dynamics and demonstrate the existence of a chiral damping [2]. This result is supported by the study of the asymmetry induced by an in-plane magnetic field on field induced domain wall motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. Whereas the asymmetry of the DW motion is consistent with the spatial symmetries expected with the DMI, we show that this asymmetry cannot be attributed to an effective field but originates from a purely dissipative mechanism. The observation of chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexist with DMI it is essential for conceiving DW and skyrmion devices. [1] A. Thiaville, et al., EPL 100, 57002 (2012) [2] E. Jué, et al., Nat. Mater., in press (doi: 10.1038/nmat4518)
Radiation Damping in a Focusing Channel
Ruth, Ronald D.
1996-05-01
In electron storage rings synchrotron radiation leads to the damping of the three degrees of freedom of the particle trajectory towards a stable closed orbit transversely and a fixed stable phase longitudinally. At the same time, the emission of discrete quanta leads to diffusion in all three degrees of freedom. These two competing effects result in an equilibrium beam emittance that depends upon the parameters of the storage ring. In the case above, the radiation in the bending fields dominates, and the radiation due to the focusing fields is either neglected or taken into account perturbatively. In this talk we study the opposite case, a continuous focusing channel in which the radiation and its reaction are dominated by the strong focusing field. If there is a bending field, it is much weaker than the focusing field. In such focusing systems, we find that the radiation is synchrotron-like for larger betatron oscillation amplitudes and undulator-like for smaller amplitudes. However, quantum excitation is absent for any oscillation amplitude, and the damping exhibits asymmetry in favor of the transverse degree of freedom as the amplitude becomes smaller. In the undulator regime, the damping turns into exponential in the transverse direction, much faster than the total energy damping in this system. In principle, the particle could damp to the transverse ground state of the harmonic oscillator, reaching a minimum normalized emittance, γ ɛ_min = hbar/2mc, limited only by the uncertainty principle. In the case of a bent focusing system, we find that the lack of quantum excitation and asymmetric damping still hold provided that the bending field is sufficiently weak.
Damping Functions correct over-dissipation of the Smagorinsky Model
Pakzad, Ali
2016-01-01
This paper studies the time-averaged energy dissipation rate $\\langle \\varepsilon_{SMD} (u)\\rangle$ for the combination of the Smagorinsky model and damping function. The Smagorinsky model is well known to over-damp. One common correction is to include damping functions that reduce the effects of model viscosity near walls. Mathematical analysis is given here that allows evaluation of $\\langle \\varepsilon_{SMD} (u)\\rangle $ for any damping function. Moreover, the analysis motivates a modified van Driest damping. It is proven that the combination of the Smagorinsky with this modified damping function does not over dissipate and is also consistent with Kolmogorov phenomenology.
Variable stiffness and damping magnetorheological isolator
Yang ZHOU; Xingyu WANG; Xianzhou ZHANG; Weihua LI
2009-01-01
This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic perfor-mance of the isolator is evaluated in simulation. Experi-mental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.
Classical Statistical Mechanics and Landau Damping
1997-01-01
We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.
Wind turbine blade with viscoelastic damping
Sievers, Ryan A.; Mullings, Justin L.
2017-01-10
A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).
System Reduction and Damping of Flexible Structures
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... frequency - containing the resulting modal damping via the imaginary part - is given by an explicit formula. For very flexible structures, e.g. cables, only moderate damping is involved, and the explicit approximation is very accurate. However, even for stiffer structures the explicit form gives a quite...
Shock Performance of Different Semiactive Damping Strategies
N. Ferguson
2010-08-01
Full Text Available The problem of shock generated vibration is presented and analyzed. The fundamental background is explainedbased on the analysis of a single degree-of-freedom model with passive stiffness and damping. The advantages andlimitations of such a shock mount are discussed. Afterwards, different semi-active strategies involving variabledamping are presented. These strategies have been used for harmonic excitation but it is not clear how they willperform during a shock. This paper analyzes the different variable damping schemes already used for harmonicvibration in order to find any potential advantages or issues for theoretical shock pulses.
Damping control for the vibration in a magnetic bearing using the selective turn-over method
Matsumura, Fumio; Fujita, Masayuki; Oida, Chikashi; Higashida, Akira
1988-01-20
The report presents a device that uses the selective turn-over method to simultaneously achieve stability leviation and shaft vibration damping in a magnetic bearing. The device is applied to a radial-thrust simultaneous control type magnetic bearing that incorporates four pairs (total of eight) of electromagnets to perform control for all of the five degrees of freedom. A mathematical model is developed to simulate the rotor's motions including asymmetric motions. The device employs the Robust servomechanism. For stabilization, the selective turn-over method is used which is higher in accuracy and performance than the ordinary turn-over method that has been conventionally used for stabilization. This permits control of both shaft vibration damping and stability levitation. The stability of levitation and the damping of shaft vibration are investigated at 1,900 rpm, and results obtained are compared with those made with an integral type optimal regulating method. It is demonstrated that the control device using the selective turn-over method has high performance as a servomechanism. (12 figs, 8 refs)
Damping of the wrist joint during voluntary movement.
Milner, T E; Cloutier, C
1998-10-01
Damping characteristics of the musculoskeletal system were investigated during rapid voluntary wrist flexion movements. Oscillations about the final position were induced by introducing a load with the characteristics of negative damping, which artificially reduced the damping of the wrist. Subjects responded to increases in the negatively damped load by stronger cocontraction of wrist flexor and extensor muscles during the stabilization phase of the movement. However, their ability to counteract the effects of the negatively damped load diminished as the negative damping increased. Consequently, the number and frequency of oscillations increased. The oscillations were accompanied by phase-locked muscle activity superimposed on underlying tonic muscle activation. The wrist stiffness and damping coefficient increased with the increased cocontraction that accompanied more negatively damped loads, although changes in the damping coefficient were less systematic than the stiffness. Analysis of successive half-cycles of the oscillation revealed that the wrist stiffness and damping coefficient increased, despite decreasing muscle activation, as oscillation amplitude and velocity declined. This indicates that the inverse dependence of the damping coefficient on oscillation velocity contributes significantly to damping of joint motion. It is suggested that this property helps to offset a negative contribution to damping from the stretch reflex.
EM characterization of Damping materials for CLIC RF accelerating structures
De Michele, Giovanni
2013-01-01
Electromagnetic (EM) characterization of materials up to high frequencies is a major requirement for the correct modelling of many accelerator components: collimators, kickers, high order modes damping devices for accelerating cavities. Different methods and techniques have been used in the past and a unique setup for all kind of materials and frequencies range does not exist. In this note the details of our measurements setup and the different applied methods are described. This work will focus on the coaxial line setup that can be used in a wide range of frequencies. Reflection and transmission methods will be analyzed and discussed. Measurements of silicon carbide (SiC) CerasicB1, EkasicF and EkasicP will be presented
Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio
2016-04-01
Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the
Quantum search via superconducting quantum interference devices in a cavity
Lu Yan; Dong Ping; Xue Zheng-Yuan; Cao Zhuo-Liang
2007-01-01
We propose a scheme for implementing the Grover search algorithm with two superconducing quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.
Active Damping Using Distributed Anisotropic Actuators
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Damping of Crank–Nicolson error oscillations
Britz, Dieter; Østerby, Ole; Strutwolf, J.
2003-01-01
The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...
The DAMPE silicon–tungsten tracker
Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others
2016-09-21
The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.
Radiation Damping at a Bubble Wall
Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho
1999-01-01
The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.
The Nonlinear Spatial Damping Rate in QGP
Jiarong, L
1998-01-01
The derivative expansion method has been used to solve the semiclassical kinetic equations of quark-gluon plasma (QGP). The nonlinear spatial damping rate, the imaginary part of the wave vector, for the longitudinal secondary color waves in the long wavelength limit has been calculated numerically.
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
2011-01-01
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method previo
Passivation of underactuated systems with physical damping
Gomez-Estern, F.; Schaft, van der A.J.; Acosta, J.A.; Allgöwer, Frank; Zeitz, Michael
2005-01-01
In recent works, IDA-PBC has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in methods that modify the kinetic energy, a controller designed for stabili
Damping mechanisms and models in structural dynamics
Krenk, Steen
2002-01-01
Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...
Active damping in precision equipment using piezo
Babakhani, B.; de Vries, Theodorus J.A.
2010-01-01
In this paper, the rotational vibration in the linearly actuated precision machines with low damping is discussed. This so called Rocking mode is e.g. caused by the compliance in the guiding system of a linear actuator and leads to a long settling time of the end-effector. Another problem occurs
DETERMINISTIC HOMOGENIZATION OF QUASILINEAR DAMPED HYPERBOLIC EQUATIONS
Gabriel Nguetseng; Hubert Nnang; Nils Svanstedt
2011-01-01
Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term.It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.
Active damping based on decoupled collocated control
Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.
2002-01-01
High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method
First Stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyα Absorption systems (DLAs) potentially hosting first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The model explains the
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
An Equivalent Circuit for Landau Damping
Pécseli, Hans
1976-01-01
An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....
Du, W. [Southeast Univ., Nanjing (China)]|[Bath Univ., Bath (United Kingdom); Wang, H.F. [Queen' s Univ. of Belfast, Belfast (United Kingdom); Dunn, R. [Bath Univ., Bath (United Kingdom)
2008-07-01
The Voltage Source Converter (VSC) for Flexible AC Transmission Systems (FACTS) devices can be equipped with a supplementary damping function to improve power system oscillation stability. This paper presented a general analytical method to study this type of VSC based FACTS stabilizers in damping power system oscillations. These converters include electronic devices such as the Static Synchronous Compensator (STATCOM), the Series Static Synchronous Compensator, (SSSC) and the Unified Power Flow Controller (UPFC). A proposed analysis was provided for the simple case of single-machine infinite-bus power systems. This paper also presented the extension of the proposed method to the more general case of multi-machine power systems. 10 refs., 5 figs.
Leuva, Dhawal
2011-07-01
Motion of propellant in the liquid propellant tanks due to inertial forces transferred from actions like stage separation and trajectory correction of the launch vehicle is known as propellant slosh. If unchecked, propellant slosh can reach resonance and lead to complete loss of the spacecraft stability, it can change the trajectory of the vehicle or increase consumption of propellant from the calculated requirements, thereby causing starvation of the latter stages of the vehicle. Predicting the magnitude of such slosh events is not trivial. Several passive mechanisms with limited operating range are currently used to mitigate the effects of slosh. An active damping mechanism concept developed here can operate over a large range of slosh frequencies and is much more effective than passive damping devices. Spherical and cylindrical tanks modeled using the ANSYS CFX software package considers the free surface of liquid propellant exposed to atmospheric pressure. Hydrazine is a common liquid propellant and since it is toxic, it cannot be used in experiment. But properties of hydrazine are similar to the properties of water; therefore water is substituted as propellant for experimental study. For close comparison of the data, water is substituted as propellant in CFD simulation. The research is done in three phases. The first phase includes modeling free surface slosh using CFD and validation of the model by comparison to previous experimental results. The second phase includes developing an active damping mechanism and simulating the behavior using a CFD model. The third phase includes experimental development of damping mechanism and comparing the CFD simulation to the experimental results. This research provides an excellent tool for low cost analysis of damping mechanisms for propellant slosh as well as proves that the concept of an active damping mechanism developed here, functions as expected.
The structural damping of composite beams with tapered boundaries
Coni, M.; Benchekchou, B.; White, R. G.
1994-11-01
Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.
Anti-damping effect of radiation reaction
Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail: gz_wang131@yahoo.cn
2010-01-15
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Experimental and numerical study of restraining force development in inclined draw beads
Raghavan, K. S.; Narainen, R.; Smith, L. M.
2013-12-01
Inclined (angled) draw bead geometries are becoming increasingly common as body styling requirements necessitate external panel shapes with considerable curvature. The restraining force that develops as material undergoes bending and frictional contact varies with bead geometry, material strength level and ambient lubrication conditions. In this study, an FEA based parametric approach is used to model the effects of material strength, friction condition, and binder angle on draw bead restraining force (DBRF). A finite element draw bead simulation was calibrated to experimental data for a 250 MPa electro-galvanized bake-hardenable specimen. The experimental data is used to confirm that the DBRF vs. binder angle curve roughly follows a concave shaped second order function with a maximum somewhere in the positive binder angle domain.
The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation.
Sorci, Guglielmo; Giovannini, Gloria; Riuzzi, Francesca; Bonifazi, Pierluigi; Zelante, Teresa; Zagarella, Silvia; Bistoni, Francesco; Donato, Rosario; Romani, Luigina
2011-03-01
Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen-induced inflammation and a pathogen-sensing mechanism resolves danger-induced inflammation.
The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation.
Guglielmo Sorci
2011-03-01
Full Text Available Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen-induced inflammation and a pathogen-sensing mechanism resolves danger-induced inflammation.
Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun
2013-12-01
Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.
Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes
Holst, G; Høst, Arne; Doekes, G;
2016-01-01
Little is known about the health effects of school-related indoor dampness and microbial exposures. In this study we investigated dampness and dampness-related agents in both homes and schools and their association with allergy and respiratory health effects in 330 Danish pupils. Classroom dampness...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0.......23), zFVC (β-coef. -0.52; 95%CI -0.98 - -0.06) and positively with wheezing (OR 8.09; 95%CI 1.49-43.97). No consistent findings were found between any individual microbial components or combination of microbial components and health outcomes. Among other indoor risk factors, environmental tobacco smoke...
Recovering the damping rates of cyclotron damped plasma waves from simulation data
Schreiner, Cedric; Spanier, Felix
2016-01-01
Plasma waves with frequencies close to the particular gyrofrequencies of the charged particles in the plasma lose energy due to cyclotron damping. We briefly discuss the gyro-resonance of low frequency plasma waves and ions particularly with regard to particle-in-cell (PiC) simulations. A setup is outlined which uses artificially excited waves in the damped regime of the wave mode's dispersion relation to track the damping of the wave's electromagnetic fields. Extracting the damping rate directly from the field data in real or Fourier space is an intricate and non-trivial task. We therefore present a simple method of obtaining the damping rate {\\Gamma} from the simulation data. This method is described in detail, focusing on a step-by-step explanation of the course of actions. In a first application to a test simulation we find that the damping rates obtained from this simulation generally are in good agreement with theoretical predictions. We then compare the results of one-, two- and three-dimensional simul...
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Towards an understanding of nurturing and restraining relational patterns in school communities
2012-01-01
This study aimed to understand the nature of nurturing and restraining relationships in a school communiy. The inquiry entailed a single instrumental case study of a selected school community in a semi-urban context in South Africa. Participants were learners (n=720), teachers (n=33) and administrative and terrain staff members (N=8) as well as two parents. Data on participants' perceptions of relationships in the school community were collected using work sessions/nominal group techniques, v...
Minimum Reinforcement in Concrete Structures under Restrained Shrinkage and Thermal Actions
Christiansen, Morten Bo; Nielsen, Mogens Peter
1999-01-01
The present paper deals with minimum reinforcement to ensure limitation of crack widths in concrete structures subjected to small imposed strains, such as those from restrained shrinkage or thermal actions. A theory is presented, which models the behaviour of a tensile member from zero load...... to first yielding of reinforcement. The theory takes into account the formation of each crack. However, concluding the paper, a simple design formula is given, which provides the amount of reinforcement, necessary to ensure a given crack width....
Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra
2016-06-01
This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.
Energy harvesting using parametric resonant system due to time-varying damping
Scapolan, Matteo; Tehrani, Maryam Ghandchi; Bonisoli, Elvio
2016-10-01
In this paper, the problem of energy harvesting is considered using an electromechanical oscillator. The energy harvester is modelled as a spring-mass-damper, in which the dissipated energy in the damper can be stored rather than wasted. Previous research provided the optimum damping parameter, to harvest maximum amount of energy, taking into account the stroke limit of the device. However, the amount of the maximum harvested energy is limited to a single frequency in which the device is tuned. Active and semi-active strategies have been suggested, which increases the performance of the harvester. Recently, nonlinear damping in the form of cubic damping has been proposed to extend the dynamic range of the harvester. In this paper, a periodic time-varying damper is introduced, which results in a parametrically excited system. When the frequency of the periodic time-varying damper is twice the excitation frequency, the system internal energy increases proportionally to the energy already stored in the system. Thus, for certain parametric damping values, the system can become unstable. This phenomenon can be exploited for energy harvesting. The transition curves, which separate the stable and unstable dynamics are derived, both analytically using harmonic balance method, and numerically using time simulations. The design of the harvester is such that its response is close to the transition curves of the Floquet diagram, leading to stable but resonant system. The performance of the parametric harvester is compared with the non-parametric one. It is demonstrated that performances and the frequency bandwidth in which the energy can be harvested can be both increased using time-varying damping.
Principles of TRIP Steel Optimization for Passive Damping Applications
Fraley, George Jay
Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf fatigue life and a lower rate of cyclic hardening at fixed displacement amplitudes for low to intermediate levels of plastic strain range (2-10%) compared to the lower stability austenite condition (Mssigma = 27 °C). However, at higher levels of plastic straining (10-16% strain range) the fatigue lives and strain hardening behavior converged for the two stabilities, indicating a likely exhaustion of transformation during the first few cycles. ULCF life behavior for the high-stability austenite condition compared favorably with literature values for structural stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as fracture-initiation sites, and highly dimpled fracture surfaces
Upgrading the seismic capacity of existing RC buildings using buckling restrained braces
Hamdy Abou-Elfath
2017-06-01
Full Text Available Many existing RC buildings do not meet the lateral strength requirements of current seismic codes and are vulnerable to significant damage or collapse in the event of future earthquakes. In the past few decades, buckling-restrained braces have become increasingly popular as a lateral force resisting system because of their capability of improving the strength, the stiffness and the energy absorbing capacity of structures. This study evaluates the seismic upgrading of a 6-story RC-building using single diagonal buckling restrained braces. Seismic evaluation in this study has been carried out by static pushover analysis and time history earthquake analysis. Ten ground motions with different PGA levels are used in the analysis. The mean plus one standard deviation values of the roof-drift ratio, the maximum story drift ratio, the brace ductility factors and the member strain responses are used as the basis for the seismic performance evaluations. The results obtained in this study indicate that strengthening of RC buildings with buckling restrained braces is an efficient technique as it significantly increases the PGA capacity of the RC buildings. The results also indicate the increase in the PGA capacity of the RC building with the increase in the amount of the braces.
In-Situ-measurement of restraining forces during forming of rectangular cups
Singer, M.; Liewald, M.
2016-11-01
This contribution introduces a new method for evaluating the restraining forces during forming of rectangular cups with the goal of eliminating the disadvantages of the currently used scientifically established measurement procedures. With this method forming forces are measured indirectly by the elastic deformation of die structure caused by locally varying tribological system. Therefore, two sensors were integrated into the punch, which measure the restraining forces during the forming process. Furthermore, it was possible to evaluate the effects of different lubricants showing the time dependent trend as a function of stroke during the forming of the materials DP600 and DC04. A main advantage of this testing method is to get real friction corresponding data out of the physical deep drawing process as well as the measurement of real acting restraining forces at different areas of the deep drawing part by one single test. Measurement results gained by both sensors have been integrated into LS-Dyna simulation in which the coefficient of friction was regarded as a function of time. The simulated and deep drawn parts afterwards are analysed and compared to specific areas with regard to locally measured thickness of part. Results show an improvement of simulation quality when using locally varying, time dependent coefficients of friction compared to commonly used constant values.
Martins, N.; Pinto, H.J.C.P.; Bianco, A. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Macedo, N.J.P. [FURNAS, Rio de Janeiro, RJ (Brazil)
1994-12-31
This paper describes control structures and computer methods to enhance the practical use of thyristor controlled series compensation (TCSC) in power systems. The location and controller design of the TCS devices, to damp system oscillations, are based on modal analysis and frequency response techniques, respectively. Results are given for a large practical power system. (author) 15 refs., 18 figs., 5 tabs.
Numerical simulation of Ge solar cells using D-AMPS-1D code
Barrera, Marcela, E-mail: barrera@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Rubinelli, Francisco [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC)-CONICET, Gueemes 3450, Santa Fe 3000 (Argentina); Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avenida Complutense 30, Madrid 28040 (Spain); Pla, Juan [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)
2012-08-15
A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.
Effects of Landau-Lifshitz-Gilbert damping on domain growth.
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Topology Optimization in Damping Structure Based on ESO
GUO Zhong-ze; CHEN Yu-ze; HOU Qiang
2008-01-01
The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction ofdamping material. The optimal placement is found. Several examples are presented for verification. The results demonstratethat the method based on ESO is effective in solving the topology optimization of the structure with uncon-strained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.
Effects of Landau-Lifshitz-Gilbert damping on domain growth
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Gian Paolo Cimellar; Hwasung Roh; Alessandro De Stefano
2009-01-01
A retrofit procedure for existing buildings called the "weakening and damping technique" (WED) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Femando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.
Gilbert damping parameter characterization in perpendicular magnetized Co2FeAl films
Cui, Yishen; Lu, Jiwei; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Wolf, Stuart
2013-03-01
Materials with perpendicular magnetic anisotropy(PMA) have gotten extensive recent attention because of their potential application in spintronic devices such as spin transfer torque random access memory (STT-RAM). It was shown that a much lower switching current density(JC) is required to write STT-RAM tunnel junctions with perpendicular magnetic anisotropy ferromagnetic electrodes (p-MTJ). Additionally Heusler alloy Co2FeAl is expected to further reduce JC due to its ultra low Gilbert damping parameter. In our study, Heusler alloy Co2FeAl films were prepared using a Biased Target Ion Beam Deposition (BTIBD) technique. We demonstrated a low Gilbert damping parameter achieved in thick B2-Co2FeAl films. Besides, we achieved an interfacial PMA in ultra thin Co2FeAl films by rapid thermal annealing (RTA) with no external field presented. Annealing conditions were carefully adjusted to maximize the interfacial PMA. However it was noticed that a higher annealing temperature was required for a low damping parameter which to some extent sacrificed the interfacial PMA. We also deposited ultra thin CoFeB films and characterized their damping parameters for comparison. We acknowledge the financial support from DARPA.
Foucault pendulum with eddy-current damping of the elliptical motion
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
A soft damping function for dispersion corrections with less overfitting
Ucak, Umit V.; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-01
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
Barotropic FRW cosmologies with Chiellini damping
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS
JAGADEESH PASUPULETI
2006-06-01
Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.
Study on damping properties of magnetorheological damper
ZHOU Yu-feng; CHEN Hua-ling
2006-01-01
To research the properties of a new kind of smart controllable MR (magnetorheological) fluid,in this paper,the rheological models are discussed.On the basis of analyzing the structural forms of MR dampers,an improved structure of the MR damper is introduced;the properties of the novel MR damper are then tested.The experimental resuits reveal that the Herschel-Bulkley model predicts the force-velocity well;the damping properties of the ameliorated structure of the MR damper have improved;when the excitation is a trigonal signal,the MR damper reveals a thinning effect at high velocity;and when the excitation is a sinusoidal signal,the MR damper reveals a nonlinear hysteretic property between the damping force and relative velocity.Finally,the main unsolved problems have been put forward.
Wakefield Damping for the CLIC Crab Cavity
Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Khan, V.; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Dolgashev, V.; /SLAC
2011-12-01
A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.
Nonlinear Dynamics of A Damped Magnetic Oscillator
Kim, S Y
1999-01-01
We consider a damped magnetic oscillator, consisting of a permanent magnet in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this dissipative magnetic system is made by varying the field amplitude $A$. As $A$ is increased, the damped magnetic oscillator, albeit simple looking, exhibits rich dynamical behaviors such as symmetry-breaking pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar behaviors, a cascade of ``resurrections'' (i.e., an infinite sequence of alternating restabilizations and destabilizations) of the stationary points also occurs. It is found that the stationary points restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork bifurcations. We also discuss the critical behaviors in the period-doubling cascades.
Damping effects in Penning trap mass spectrometry
George, S; Kowalska, M; Dworschak, M; Neidherr, D; Blaum, K; Schweikhard, L; Ramirez, E M; Breitenfeldt, M; Kretzschmar, M; Herfurth, F; Schwarz, S; Herlert, A
2011-01-01
Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes. The results are in good agreement with predictions obtained by analytical continuation of the formulae for the undamped case.
Accelerator physics measurements at the damping ring
Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.
1985-05-01
Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.
Linear Inviscid Damping for Monotone Shear Flows
Zillinger, Christian
2014-01-01
In this article we prove linear stability, inviscid damping and scattering of the 2D Euler equations around regular, strictly monotone shear flows $(U(y),0)$ in a periodic channel under Sobolev perturbations. We treat the settings of an infinite channel, $\\mathbb{T} \\times \\mathbb{R}$, as well as a finite channel, $\\mathbb{T} \\times [0,1]$, with impermeable boundary. We first prove inviscid damping with optimal algebraic rates for strictly monotone shear flows under the assumption of controlling the regularity of the scattered vorticity. Subsequently, we establish linear stability of the scattering equation in Sobolev spaces under perturbations which are of not too large wave-length with respect to $x$, depending on $U''$.
Power Oscillations Damping in DC Microgrids
Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang
2016-01-01
This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow...... transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to actively damp the low-frequency oscillations of the power sharing control unit. The gain of virtual...... impedance loop is determined using small signal analysis and pole placement method. The Mesh analysis is employed to further study the stability of low-frequency modes of the overall dc microgrid. Moreover, based on the guardian map theorem, a robust stability analysis is carried out to determine...
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-09-01
Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Relativity Damps OPEP in Nuclear Matter
Banerjee, M K
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of $M^*$ it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled $\\pi$N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Radiation Damping in Einstein-Aether Theory
Foster, B Z
2006-01-01
This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory-an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian-order are waveforms for the metric and vector fields far from a nearly-Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to lowest order. Because observations from binary pulsar systems already test the damping rate beyond this order, this family cannot yet be declared observationally viable.
Damping behavior of synthetic graphite beams
Luiz Cláudio Pardini
2006-06-01
Full Text Available The main objective of this work was to obtain the damping factor (xi as well as the elasticity modulus (E of two kinds of synthetic graphite (HLM and ATJ, using the modal analysis technique. Prismatic beams of square section (~ 11 x 11 mm and length over thickness ratio (L/t of about 22.7 were tested in the free - free boundary condition. The first four modes of vibration were taken into account in the non-destructive evaluation of the materials. In addition, numerical simulations were also carried out in this investigation. The agreement between the theoretical and the experimental results was quite good. The average values of E and xi for the HLM graphite were 20% and 90% higher, respectively, than those presented by the ATJ graphite, indicating that the HLM graphite has, proportionally, more damping mechanisms than the ATJ graphite.
Beam halo study on ATF damping ring
Wang, Dou; Yokoya, Kaoru; Naito, Takashi; Gao, Jie
2016-01-01
Halo distribution is a key topic for background study. This paper has developed an analytical method to give an estimation of ATF beam halo distribution. The equilibrium particle distribution of the beam tail in the ATF damping ring is calculated analytically with different emittance and different vacuum degree. The analytical results agree the measurements very well. This is a general method which can be applied to any electron rings.
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
On circular flows: linear stability and damping
Zillinger, Christian
2016-01-01
In this article we establish linear inviscid damping with optimal decay rates around 2D Taylor-Couette flow and similar monotone flows in an annular domain $B_{r_{2}}(0) \\setminus B_{r_{1}}(0) \\subset \\mathbb{R}^{2}$. Following recent results by Wei, Zhang and Zhao, we establish stability in weighted norms, which allow for a singularity formation at the boundary, and additional provide a description of the blow-up behavior.
Proceedings of Damping Volume 2 of 3
1993-06-01
Inc., 1979. [101 N. Balabanian and T. Bickert. Electrical Network Theory. Jonh Wiley and Sons, Inc., 1969. [111 D. Wang and M. Vidyasagar. Passive...1987). Dynamics of Polymeric Liquids, J. Wiley , New York, NY. Dargush, G.E and Banerjee, P.K. (1991a). "A Time-dependent Incompressible Viscous BEM for...414. 11. Nashif, A. D., Jones, D. I. G. and Henderson, J. P. (1985). Vibration Damping, Wiley -Interscience Publication, New York. 12. Bland, D. R. and
Active Compliance And Damping In Telemanipulator Control
Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake
1991-01-01
Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.
Damping of roll vibrations of vehicle suspension
Le, K. C.; Pieper, A.
2014-04-01
Small forced vibrations of an axle model of independent suspensions having four degrees of freedom are studied. The exact analytical solution of the generalised Lagrange equation enables one to produce 3D plots of the normalised amplitudes of forced vibrations versus frequency and excitation ratio or phase difference of the road inputs. The analysis of these plots exhibits some deficiency in damping of roll vibrations of conventional vehicle suspensions. The possibilities of improvement are discussed.
Coulomb collision effects on linear Landau damping
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Accurate integration of forced and damped oscillators
García Alonso, Fernando Luis; Cortés Molina, Mónica; Villacampa, Yolanda; Reyes Perales, José Antonio
2016-01-01
The new methods accurately integrate forced and damped oscillators. A family of analytical functions is introduced known as T-functions which are dependent on three parameters. The solution is expressed as a series of T-functions calculating their coefficients by means of recurrences which involve the perturbation function. In the T-functions series method the perturbation parameter is the factor in the local truncation error. Furthermore, this method is zero-stable and convergent. An applica...
Damping of liquid sloshing by foams
Sauret, Alban; Cappello, Jean; Dressaire, Emilie; Stone, Howard A
2014-01-01
When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of wa ter is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, wh ich suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscill ations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissi pation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D a...
Synchrosqueezed wavelet transform for damping identification
Mihalec, Marko; Slavič, Janko; Boltežar, Miha
2016-12-01
Synchrosqueezing is a procedure for improving the frequency localization of a continuous wavelet transform. This research focuses on using a synchrosqueezed wavelet transform (SWT) to determine the damping ratios of a vibrating system using a free-response signal. While synchrosqueezing is advantageous due to its localisation in the frequency, damping identification with the original SWT is not sufficiently accurate. Here, the synchrosqueezing was researched in detail, and it was found that an error in the frequency occurs as a result of the numerical calculation of the preliminary frequencies. If this error were to be compensated, a better damping identification would be expected. To minimize the frequency-shift error, three different strategies are investigated: the scale-dependent coefficient method, the shifted-coefficient method and the autocorrelated-frequency method. Furthermore, to improve the SWT, two synchrosqueezing criteria are introduced: the average SWT and the proportional SWT. Finally, the proposed modifications are tested against close modes and the noise in the signals. It was numerically and experimentally confirmed that the SWT with the proportional criterion offers better frequency localization and performs better than the continuous wavelet transform when tested against noisy signals.
Radiative damping in plasma-based accelerators
Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.
2012-11-01
The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.
Radiation damping in pulsed Gaussian beams
Harvey, Chris; Marklund, Mattias
2012-01-01
We consider the effects of radiation damping on the electron dynamics in a Gaussian-beam model of a laser field. For high intensities, i.e., with dimensionless intensity a0≫1, it is found that the dynamics divides into three regimes. For low-energy electrons (low initial γ factor, γ0) the radiation damping effects are negligible. At higher energies, but still at 2γ0a0 one is in a regime of radiation-reaction-induced electron capture. This capture is found to be stable with respect to the spatial properties of the electron beam and results in a significant energy loss of the electrons. In this regime the plane-wave model of the laser field provides a good description of the dynamics, whereas for lower energies the Gaussian-beam and plane-wave models differ significantly. Finally the dynamics is considered for the case of an x-ray free-electron laser field. It is found that the significantly lower intensities of such fields inhibit the damping effects.
DAMPs and influenza virus infection in ageing.
Samy, Ramar Perumal; Lim, Lina H K
2015-11-01
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Damping of acoustic vibrations in gold nanoparticles
Pelton, Matthew; Sader, John E.; Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe; Gosztola, David
2009-08-01
Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures. Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size. Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate, but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes. The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model.
Metallic materials for mechanical damping capacity applications
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Damped and zero-damped quasinormal modes of charged, nearly-extremal black holes
Zimmerman, Aaron
2015-01-01
Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly-extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the non-rotating limit, we argue that gravito-electromagnetic perturbations of nearly-extremal Reissner-Nordstr\\"{o}m black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequenci...
The plastic scintillator detector calibration circuit for DAMPE
Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.
Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com
2009-07-01
This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.
Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller
Yao, Wei; Jiang, L.; Fang, Jiakun
2013-01-01
This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... in each sampling interval. Case studies are undertaken on a two-area fourmachine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation...
Reliable Damping of Free Surface Waves in Numerical Simulations
Peric, Robinson
2015-01-01
This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...
Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.
Cheng, Xi; Jo, Sunhwan; Qi, Yifei; Marassi, Francesca M; Im, Wonpil
2015-04-21
Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein
Neural Mechanism of Restrained Eating%限制性饮食的神经机制
周一舟; 陈红; 高笑
2012-01-01
This paper introduced the ERP and brain mechanism studies on the dimension of cognitive restraint and tendency toward disinhibitive eating respectively, and put forward the restrained model of "cool-hot" processing. Future stud-ies are also advanced.%本文分别从认知限制和去抑制进食倾向两个维度回顾了限制性饮食的ERP和脑成像研究,初步提出限制性饮食者对食物的“冷—热”加工模型,并对今后的研究提出了展望.
Time-dependent Early-age Behaviors of Concrete under Restrained Condition
MA Xinwei; CAO Lixin; R D Hooton; H Lam; NIU Changren
2007-01-01
To investigate the early-age behaviors of concrete under a restrained condition, a set of apparatus was developed. In this way, the tensile creep and other early-age properties can be investigated in depth. By measuring the modulus of elasticity of concrete, synchronous shrinkage of concrete and steel rings and free shrinkage of concrete, the deformations of concrete ring can be quantified respectively. The experimental results show the tensile stress in concrete is time-dependent, and the stress at cracking is much lower than the tensile strength at that age; the tensile creep plays an important role in relaxing the tensile stress and postponing the cracking of concrete.
Barroga, Edward F
2014-11-01
Peer review is the pillar of the integrity of science communication. It is often beset with flaws as well as accusations of unreliability and lack of predictive validity. 'Rational cheating' by reviewers is a threat to the validity of peer review. It may diminish the value of good papers by unfavourable appraisals of the reviewers whose own works have lower scientific merits. This article analyzes the mechanics and defects of peer review and focuses on rational cheating in peer review, its implications, and options to restrain it.
Awasthi, Saurabh; Saraswathi, N T
2016-06-01
Vanillin a major component of vanilla bean extract is commonly used a natural flavoring agent. Glycation is known to induce aggregation and fibrillation of globular proteins such as albumin, hemoglobin. Here we report the inhibitory potential of vanillin toward early and advanced glycation modification and amyloid like aggregation of albumin based on the determination of both early and advanced glycation and conformational changes in albumin using circular dichroism. Inhibition of aggregation and fibrillation of albumin was determined based on amyloid specific dyes i.e., Congo red and Thioflavin T and microscopic imaging. It was evident that vanillin restrains glycation of albumin and exhibits protective effect toward its native conformation.
Kerr, I. D.; Sankararamakrishnan, R; Smart, O.S.; Sansom, M S
1994-01-01
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to...
Homentcovschi, Dorel; Miles, Ronald N.
2010-01-01
A model of squeeze-film behavior is developed based on Stokes’ equations for viscous, compressible isothermal flows. The flow domain is an axisymmetrical, unit cell approximation of a planar, periodic, perforated microstructure. The model is developed for cases when the lubrication approximation cannot be applied. The complex force generated by vibrations of the diaphragm driving the flow has two components: the damping force and the spring force. While for large frequencies the spring force dominates, at low (acoustical) frequencies the damping force is the most important part. The analytical approach developed here yields an explicit formula for both forces. In addition, using a finite element software package, the damping force is also obtained numerically. A comparison is made between the analytic result, numerical solution, and some experimental data found in the literature, which validates the analytic formula and provides compelling arguments about its value in designing microelectomechanical devices. PMID:20329828
Boundary layer control device for duct silencers
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
A macromodel for squeeze-film air damping in the free-molecule regime
Hong, Gang
2010-01-07
A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling-time distribution, a macromodel, which relates air damping directly with device dimensions and operation parameters, is constructed. This model provides an efficient tool for the design of high-performance microresonators. The accuracy of the macromodel is validated through the modeling of the quality factors of several microresonators. It has been found that the relative errors of the quality factors of two resonators, as compared with experimental data, are 3.9% and 5.7%, respectively. The agreements between the macromodel results and MC simulation results, on the other hand, are excellent in all cases considered.
A Macro Model of Squeeze-Film Air Damping in the Free-Molecule Regime
Hong, Gang
2009-11-30
An accurate macro model for free‐molecule squeeze‐film air damping on micro plate resonators is present. This model relates air damping directly with device dimensions and operation parameters and therefore provides an efficient tool for the design of high‐performance micro resonators. The construction of the macro model is based on Molecular Dynamics (MD) simulations and analytical traveling‐time distribution. Its accuracy is validated via the comparison between the calculated quality factors of several micro resonators and the available experimental measurements and full MD simulation results. It has been found that the relative errors of the quality factors of two resonators, as compared with experimental data, are 3.9% and 5.7% respectively. The agreements between the macro model results and MD simulation results, on the other hand, are excellent in all cases considered.
The effect of resonant driving and damping on dynamic suction pumping
Battista, Nicholas; Miller, Laura
2016-11-01
Impedance pumping (or dynamic suction pumping) drives flow through a a flexible valveless tube with a single region of actuation. It is a profoundly complex pumping mechanism given that the flow velocities and directions generated depend nonlinearly upon the driving frequency, material properties, duty factor, and location of the actuation point. Given the simplicity of its actuation, it is used in biomedical devices and is thought to generate flow in a number of biological systems. In this study, we numerically simulate an elastic tube with mass using the immersed boundary method and explore the performance when it is driven over a range of frequencies and damping factors. Flow is maximized during resonance, and bulk transport is minimal when the tube is over-damped.
Optimal Control Design of Static Synchronous Series Compensator for Damping Power System Oscillation
Prechanon Kumkratug
2011-01-01
Full Text Available Problem statement: In power systems, there exists a continuous challenge to improve dynamic performance of power system. Approach: The Static Synchronous Series Compensator (SSSC is a power electronic based device that has capability of controlling the power flow through the line both in steady state and dynamic sate. This study applied the SSSC to damp power system oscillation. The optimal control design is applied to derive the control strategy of SSSC. The simulation results are tested on a Single Machine Infinite bus. The proposed method is equipped in sample system with disturbance. The generator rotor angle curve of the system without and with a SSSC is plotted and compared. Results: It was found that the system without a SSSC has high variation whereas that of the system with a SSSC has much smaller variation. Conclusion: From the simulation results, the SSSC can damp power system oscillation.
Z-Axis Micromachined Tuning Fork Gyroscope with Low Air Damping
Minh Ngoc Nguyen
2017-02-01
Full Text Available This paper reports on the design and fabrication of a z-axis tuning fork gyroscope which has a freestanding architecture. In order to improve the performance of the tuning fork gyroscope by eliminating the influence of the squeeze-film air damping, the driving and sensing parts of the gyroscope were designed to oscillate in-plane. Furthermore, by removing the substrate underneath the device, the slide-ﬁlm air damping in the gap between the proof masses and the substrate was eliminated. The proposed architecture was analyzed by the finite element method using ANSYS software. The simulated frequencies of the driving and sensing modes were 9.788 and 9.761 kHz, respectively. The gyroscope was fabricated using bulk micromachining technology. The quality factor and sensitivity of the gyroscope operating in atmospheric conditions were measured to be 111.2 and 11.56 mV/°/s, respectively.
Influence of Sandwich-Type Constrained Layer Damper Design Parameters on Damping Strength
Inaki Merideno
2016-01-01
Full Text Available This paper presents a theoretical study of the parameters that influence sandwich-type constrained layer damper design. Although there are different ways to reduce the noise generated by a railway wheel, most devices are based on the mechanism of increasing wheel damping. Sandwich-type constrained layer dampers can be designed so their resonance frequencies coincide with the wheel’s resonant vibration frequencies, and thus the damping effect can be concentrated within the frequency ranges of interest. However, the influence of design parameters has not yet been studied. Based on a number of numerical simulations, this paper provides recommendations for the design stages of sandwich-type constrained layer dampers.
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Whistler damping at oblique propagation - Laminar shock precursors
Gary, S. P.; Mellott, M. M.
1985-01-01
This paper addresses the collisionless damping of whistlers observed as precursors standing upstream of oblique, low-Mach number terrestrial bow shocks. The linear theory of electromagnetic waves in a homogeneous Vlasov plasma with Maxwellian distribution functions and a magnetic field is considered. Numerical solutions of the full dispersion equation are presented for whistlers propagating at an arbitrary angle with respect to the magnetic field. It is demonstrated that electron Landau damping attenuates oblique whistlers and that the parameter which determines this damping is beta-e. In a well-defined range of parameters, this theory provides damping lengths which are the same order of magnitude as those observed. Thus electron Landau damping is a plausible process in the dissipation of upstream whistlers. Nonlinear plasma processes which may contribute to precursor damping are also discussed, and criteria for distinguishing among these are described.
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Digital notch filter based active damping for LCL filters
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2015-01-01
. In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....
Damping behaviors of metal matrix composites with interface layer
无
2001-01-01
A novel technique of designing the interface layer in metal matrix composites of high damping capacity was developed via different CVD coatings on carbon fibers in Cf/Al composites. It was shown that the interface layer improved the tensile strength, elastic modulus and damping capacity of the Cf/Al composites. A carbon layer showed the highest improvement and a silicon layer the lowest, while a mixed carbon and silicon layer exhibited an intermediate effect. Moreover, the thickness of interface layer also influences the damping capacity. A thicker carbon layer produced a better damping capacity because the dependence of damping capacity on strain amplitude was increased. It is suggested that a micro-sliding action occurring in the interface layer is the main mechanism responsible for the high damping capacity of the composites.
The damping performance of aluminum-based composites
Updike, C.A.; Bhagat, R.B.; Pechersky, M.J.; Amateau, M.F. (Harris Corp., Government Aerospace Systems Div., Melbourne, FL (USA) Pennsylvania State Univ., University Park (USA))
1990-03-01
Metal-matrix-composites may offer better damping properties than unreinforced alloys. Because damping properties (and metal-matrix composites) are becoming important in airframe design, the damping capabilities of a number of aluminum-matrix composites were measured over a wide range of frequencies at low strain amplitudes, using a new laser vibrometer technique. Silicon carbide and alumina reinforcements resulted in a material with damping properties similar to that of unreinforced aluminum 6061-T6, but unidirectional and planar-random graphite continuous-fiber reinforcements increased the damping by 5 and 14 times, respectively. The increased damping of the continuous fiber composites is attributed to the absence of interfacial reaction resulting from the high-pressure infiltration method used for their manufacture. 25 refs.
Active member bridge feedback control for damping augmentation
Chen, Gun-Shing; Lurie, Boris J.
1992-01-01
An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.
Design of damping valve for vehicle hydro pneumatic suspension
Mingming DONG; Hua HUANG; Lian GU
2008-01-01
According to the design features of a hydro pneumatic spring, the necessity of a separate damping valve is proposed. Based on a 1/4 vehicle linear suspension model, the optimum damping coefficient is worked out and the parameters of the damping valve are determined with the equivalent linearization method. A practical structure of the damping valve is proposed having a small size, high flowrate when the valve opens, and the ability of enduring high back pressure. Based on bench tests, the damping valve has been found to properly work and be suitable. The design method and damping valve structure are useful guides for hydro pneumatic suspension, especially for the design of heavy-duty vehicles.
Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect
Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen
2017-01-01
In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.
Researches on Track Reconstruction for DAMPE
Lu, T. S.; Lei, S. J.; Zang, J. J.; Chang, J.; Wu, J.
2016-05-01
The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via observation of high energy particles in space with unprecedented large energy bandwidth, high energy resolution, and high space resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the detector. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) detector and the BGO (Bi_4Ge_3O12) calorimeter. In accordance with the design and structure of the two sub-detectors and using the data collected during the beam tests and ground tests, we provide a detailed introduction of the track reconstruction of DAMPE data, including three basic steps, the selection of track hits, the fitting of track hits, and the judgement of the best track among (most probably) many of them. Since a high energy particle most probably leaves more than one hit in each level of the STK and BGO, we first provide a method to constrain the STK clusters for the track reconstruction using the rough result of the BGO reconstruction. We apply two different algorithms, the Kalman filter and the least square linear fitting, to fit the track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results, and we discuss the advantages/disadvantages of each method. Several criteria combining the BGO and STK detection are discussed for picking out the most possible track among all the tracks found in the track reconstruction. Using the track reconstruction methods mentioned in this article and the beam test data, we confirm that the angular resolution of DAMPE satisfies the requirement in design.
System Reduction and Damping of Flexible Structures
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... good estimate for use in design calculations. The efficiency of the damper configuration depends on damper placement as well as damper properties. Thus a stiffness component in the damper characteristic leads to a decrease in damping efficiency. The method is illustrated by some simple examples, also...
PENDULUM WITH LINEAR DAMPING AND VARIABLE LENGTH
蔡建平; 杨翠红; 李怡平
2004-01-01
The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly varying parameter of length, three different cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency and solution are obtained. The method of approximate potential makes the results effective for large oscillations. A modified multiple scales method is used to get more accurate leading order approximations when the coefficient friction is not small. Comparisons are also made with numerical results to show the efficiency of the present method.
System for damping vibrations in a turbine
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Problem of the gyroscopic stabilizer damping
Šklíba J.
2009-06-01
Full Text Available The gyroscopic stabilization of the vibro-isolation system of an ambulance couch is analyzed. This paper follows several previous papers, which concern the derivation of the complete system of appropriate differential equations and some analyses were provided there, as well. It was supposed that mass matrix, stiffness matrix and gyroscope impulse-moment remain constant and the stability of equilibrium state was solved according to different alternatives of the damping and of the radial correction. Little known theorems of the stability were used there. With respect to these theorems, vibro-isolation systems can be classified according to odd or even number of generalized coordinates.
Mode damping in a commensurate monolayer solid
Bruch, Ludwig Walter; Hansen, Flemming Yssing
1997-01-01
with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... anisotropy of the elastic behavior of the graphite leads to quite different wave-vector dependence of the damping for modes polarized perpendicular and parallel to the substrate. A phenomenological extension of the elasticity theory of the graphite to include bond-bending energies improves the description...
Gyroscopic Stabilization of Indefinite Damped Systems
Kliem, Wolfhard; Müller, Peter C.
1996-01-01
The paper deals with linear systems of differential equationswith symmetric system matrices M,D, and K.The mass matrix M and the stiffness matrix K are both assumed to bepositive definite. The damping matrix D is indefinite. Three questionsare of interest: 1) When is the system unstable? Apparently...... not always,if the matrix D is indefinite. 2) What can we say about conditions whichensure that an unstable system can be stabilized by adding a gyroscopicterm Gdx/dt? 3) What is, in this case, a suitable or optimal matrixG? The questions are answered in the frame of a first order perturbationapproach....
Glued trees algorithm under phase damping
Lockhart, J. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University, Belfast, BT7 1NN (United Kingdom); Di Franco, C., E-mail: c.difranco@qub.ac.uk [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Paternostro, M. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom)
2014-01-17
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph.
Radiation damping in closed expanding universes
Bernui, Armando
The dynamics of a coupled model (harmonic oscillator-relativistic scalar field) in Conformal Robertson-Walker (k = +1) spacetimes is investigated. The exact radiation-reaction equation of the source-including the retarded radiation terms due to the closed space geometry - is obtained and analyzed. A suitable family of Lyapunov functions is constructed to show that, if the spacetime expands monotonely, then the source's energy damps. A numerical simulation of this equation for expanding Universes, with and without Future Event Horizon, is performed.
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP...
Bridge feedback for active damping augmentation
Chen, G.-S.; Lurie, B. J.
1990-01-01
A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.
Optimal Constrained Layer Damping of Beams: Experimental and Numerical Studies
J.-L. Marcelin
1995-01-01
Full Text Available This article deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. The design variables are the dimensions and locations of the viscoelastic layers and the objective function is the maximum damping factor. The discrete design variable optimization problem is solved using a genetic algorithm. Numerical results for minimum and maximum damping are compared to experimental results. This is done for a various number of materials and beams.
Test particle study of Landau damping of steepening magnetosonic waves
Matsumoto, H.; Barnes, A.
1982-01-01
A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.
Damping of Torsional Beam Vibrations by Control of Warping Displacement
Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian
2016-01-01
Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...... as viscous boundary conditions. It is demonstrated that properly calibrated viscous bimoments introduce a significant level of supplemental damping to the targeted vibration mode and that the attainable damping can be accurately estimated from the two undamped problems associated with vanishing and infinite...
Nogueira, Fabricio G.; Barreiros, Jose A.L.; Barra, Walter Jr.; Costa, Carlos T. Jr. [Universidade Federal do Para (UFPA), Instituto de Tecnologia, Faculdade de Engenharia Eletrica, Campus Universitario do Guama, CEP: 66075-900, Belem (Brazil); Ferreira, Andre M.D. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Campus Belem, Departamento de Controle e Processos Industriais, Av. Almirante Barroso, 1155 (Marco), CEP: 66093-020, Belem (Brazil)
2011-02-15
This paper presents the development and field tests of a digital damping controller designed to mitigate intra-plant electromechanical oscillations via the speed governor system of fast acting units. The controller performance is assessed on an 18-MVA diesel generating unit, at Santana Power Plant (Amapa State, Amazon Region at Northern Brazil). In order to design the damping control law, a set of parametric ARX models representing the plant dynamics at several load conditions, are previously identified from data collected on field tests. The damping controller gains are calculated by using the identified ARX models parameters as inputs to a discrete-time pole-placement design method (pole-shifting) and then embedded on a DSP based microcontroller digital system, for field tests assessment. The digital damping controller modulates the diesel engine inlet valve position according to the observed oscillation on the measured electric power, using a PWM device, which is specially developed to this application. The experimental results shown the good performance of the developed controller on damping efficiently the electromechanical oscillations observed between generating units at Santana Power Plant. (author)
RESEARCH ON THE ASEISMIC BEHAVIOR OF LONG-SPAN CABLE-STAYED BRIDGE WITH DAMPING EFFECT
Wu Fangwen
2016-07-01
Full Text Available The main beam of a cable-stayed bridge with a floating system may have a larger longitudinal displacement subject to earthquake effect. Thus, seismic control and isolation are crucial to bridge safety. This paper takes Huai’an Bridge, which has elastic coupling devices and viscous dampers set at the joint of the tower and the beam, as the research background. Its finite element model is established, and the elastic stiffness of elastic coupling devices and damper parameters are analyzed. Viscous damper and elastic coupling devices are simulated using Maxwell model and spring elements, and their damping effects are analyzed and compared through structural dynamic time-history analysis. Results show that viscous damper and elastic coupling device furnished at the joint of tower and beam of a cable-stayed bridge tower beam can effectively reduce the longitudinal displacement of the key part of the construction subject to earthquake effect, perfect the internal force distribution, and improve the aseismic performance. Between the two, viscous damper has better damping effects.
Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion
Nemeth, Michael P.
2002-01-01
An approach for synthesizing buckling results for, and behavior of, thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. The effects of membrane orthotropy and membrane anisotropy are included in the general formulation. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of elastically restrained laminate thermal expansion or contraction, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.
Thoracic Duct Narrowing-Innovative Technique Restraining Weight Gain in Rats.
Rosenzweig, Barak; Barshack, Iris; Harats, Dror; Shaish, Aviv
2015-12-01
The lymphatic system is responsible for the absorption of fats from the digestive system, conveying 60-70 % of ingested fat to the blood stream. From the anatomical point of view, all the lymphatic drainage from the lower half of the body converges in the abdomen to enter the thoracic duct. This experimental study aim was to study the result of thoracic duct narrowing (TDN), an innovative surgical technique, on weight gain restrain in high-fat diet-fed rats. Forty-seven rats were allocated into three groups: thoracic duct narrowing ("S"-surgery), sham operation ("CS"-control surgery), and no surgery ("C"-control). All rats were fed with high-fat, cholesterol-rich diet. Food consumption and metabolic syndrome parameters including weight gain, plasma lipids and glucose, blood pressure, and viscera weight and histopathology were analyzed. Thoracic duct narrowing was proved simple and safe surgical procedure in the rat model. TDN induced weight gain restrain, associated with mild hepatic steatosis compared to moderate-severe hepatic steatosis in control groups. Splenomegaly and splenic fatty histiocytes were shown in the treated animals. TDN improved several parameters of the metabolic syndrome in high-fat diet-fed rats. TDN carries the potential of innovative obesity treatment using the lymphatic route of lipid absorption.
Bcl6 Sets a Threshold for Antiviral Signaling by Restraining IRF7 Transcriptional Program.
Xu, Feng; Kang, Yanhua; Zhuang, Ningtong; Lu, Zhe; Zhang, Hang; Xu, Dakang; Ding, Yina; Yin, Hongping; Shi, Liyun
2016-01-05
The coordination of restraining and priming of antiviral signaling constitute a fundamental aspect of immunological functions. However, we currently know little about the molecular events that can translate the pathogenic cues into the appropriate code for antiviral defense. Our present study reports a specific role of B cell lymphoma (Bcl)6 as a checkpoint in the initiation of the host response to cytosolic RNA viruses. Remarkably, Bcl6 specifically binds to the interferon-regulatory factor (IRF)7 loci and restrains its transcription, thereby functioning as a negative regulator for interferon (IFN)-β production and antiviral responses. The signal-controlled turnover of the Bcl6, most likely mediated by microRNA-127, coordinates the antiviral response and inflammatory sequelae. Accordingly, de-repression of Bcl6 resulted in a phenotypic conversion of macrophages into highly potent IFN-producing cells and rendered mice more resistant to pathogenic RNA virus infection. The failure to remove the Bcl6 regulator, however, impedes the antiviral signaling and exaggerates viral pneumonia in mice. We thus reveal a novel key molecular checkpoint to orchestrate antiviral innate immunity.
Ductility demands on buckling-restrained braced frames under earthquake loading
Fahnestock, Larry A.; Sause, Richard; Ricles, James M.; Lu, Le-Wu
2003-12-01
Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The buckling-restrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and time-history analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands on the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studies, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. The results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and time-history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.
Dynamical Analysis of Long Fiber-Reinforced Laminated Plates with Elastically Restrained Edges
Liz G. Nallim
2012-01-01
Full Text Available This paper presents a variational formulation for the free vibration analysis of unsymmetrically laminated composite plates with elastically restrained edges. The study includes a micromechanics approach that allows starting the study considering each layer as constituted by long unidirectional fibers in a continuous matrix. The Mori-Tanaka method is used to predict the mechanical properties of each lamina as a function of the elastic properties of the components and of the fiber volume fraction. The resulting mechanical properties for each lamina are included in a general Ritz formulation developed to analyze the free vibration response of thick laminated anisotropic plates resting on elastic supports. Comprehensive numerical examples are computed to validate the present method, and the effects of the different mechanical and geometrical parameters on the dynamical behavior of different laminated plates are shown. New results for general unsymmetrical laminates with elastically restrained edges are also presented. The analytical approximate solution obtained in this paper can also be useful as a basis to deal with optimization problems under, for instance, frequency constraints.
Geneviève Painchaud Guérard
2016-01-01
Full Text Available Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating versus “hedonic” by two (restrained or not restrained by two (normal-weight or overweight/obese by two (men versus women factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations.
Doucet, Éric; Pomerleau, Sonia
2016-01-01
Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating) versus “hedonic”) by two (restrained or not restrained) by two (normal-weight or overweight/obese) by two (men versus women) factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm) were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations. PMID:27725885
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Excitation of magnetization using a modulated radiation damping field.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2006-10-12
In this work, pulsed-field gradients are used to modulate the radiation damping field generated by the detection coil in an NMR experiment in order that spins with significantly different chemical shifts can affect one another via the radiation damping field. Experiments performed on solutions of acetone/water and acetone/DMSO/water demonstrate that spins with chemical shift differences much greater than the effective radiation damping field strength can still be coupled by modulating the radiation damping field. Implications for applications in high-field NMR and for developing sensitive magnetization detectors are discussed.
Design Rules for High Damping in Mobile Hydraulic Systems
Axin, Mikael; Krus, Petter
2013-01-01
This paper analyses the damping in pressure compensated closed centre mobile working hydraulic systems. Both rotational and linear loads are covered and the analysis applies to any type of pump controller. Only the outlet orifice in the directional valve will provide damping to a pressure compensated system. Design rules are proposed for how the system should be dimensioned in order to obtain a high damping. The volumes on each side of the load have a high impact on the damping. In case of a ...
Damping factor estimation using spin wave attenuation in permalloy film
Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp [Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180 (Japan); Yamanoi, Kazuto [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kasai, Shinya; Mitani, Seiji [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan)
2015-05-07
Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.
Dovey, Terence M; Torab, Tina; Yen, Dorothy; Boyland, E J; Halford, Jason C G
2017-05-01
The objective of this study was to explore the impact of different advertising messages on adults' snack choice. Eighty participants (18-24 years old) were offered the choice between two snack packs following exposure to one of three advertising conditions. The snack packs contained either healthy or high fat, sugar or salt (HFSS) foods. Participants were exposed to commercials containing either non-food products, healthy food products or HFSS food products and their subsequent choice of snack pack was recorded. The Dutch Eating Behaviour Questionnaire (DEBQ) was used to assess the impact of external, restrained and emotional eating behaviour on snack pack selection following exposure to advertisements. The majority of unrestrained participants preferentially choose the HFSS snack pack irrespective of advertisement condition. In contrast, high restrained individuals exposed to the healthy eating advertisement condition preferentially selected the healthy snack pack while those in other advertisement conditions refused to take either snack pack. The healthy eating message, when distributed through mass media, resonated with restrained eaters only. Exposure to healthy food adverts provoked restrained eaters into choosing a snack pack; while exposure to other messages results in restrained eaters refusing to take any foods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of damping in microfibrous material
Soobramaney, Pregassen; Flowers, George T.; Dean, Robert N.
2012-04-01
MEMS gyroscopes are used in many applications including harsh environments such as high-power, high-frequency acoustic noise. If the latter is at the natural frequency of the gyroscope, the proof mass will be overexcited giving rise to a corrupted gyroscope output. To mitigate the effect of the high-power, high-frequency acoustic noise, it is proposed to use nickel microfibrous sheets as an acoustic damper. For this purpose, the characterization of vibration damping in Nickel microfibrous sheets was examined in the present research effort. The sheets were made from nickel fibers with cellulose as a binding agent using a wet-lay papermaking technique. Sintering was done at 1000 °C to remove all the cellulose giving rise to a porous material. Square sheets of 20 cm were made from three diameters of nickel fibers namely 4, 8, and 12 microns. The sheets were cut into smaller pieces to fit the requirements of a fixture specially designed for this study. The fixture was attached to a LDS V408 shaker with a mass resting on a stack of the microfibrous sheets to simulate transmitted vibration by base motion with the sheet stack acting as a damper. A series of experiments was conducted using these 3 fiber diameters, different number of layers of microfibrous sheets and varying the vibration amplitude. From the collected vibration data, the stiffness and damping ratio of the microfibrous material was characterized.
Gyroscopic stabilization and indefimite damped systems
Pommer, Christian
a class of feasibel skew-Hermitian matrices A depending on the choise of M. The theory can be applied to dynamical systems of the form x''(t) + ( dD + g G) x'(t) + K x(t) = 0 where G is a skew symmetric gyrocopic matrix, D is a symmetric indefinite damping matrix and K > 0 is a positive definite stiffness......An important issue is how to modify a given unstable matrix in such a way that the resulting matrix is stable. We investigate in general under which condition a matrix M+A is stable,where M is an arbitrary matrix and A is skew-Hermitian. We show that if trace(M) > 0 it is always possible to find...... matrix. d and g are scaling factors used to control the stability of the system. It is quite astonnishing that when the damping matrix D is indefinite the system can under certain conditions be stable even if there are no gyroscopic forces G present The Lyapunov matrix equation is used to predict...
Quantifying acoustic damping using flame chemiluminescence
Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.
2016-12-01
Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.
Pfattheicher, Stefan; Sassenrath, Claudia
2014-01-01
By applying regulatory focus theory (RFT) to the context of eating behavior, the present research examines the relations between individual differences in the two motivational orientations as conceptualized in RFT, that is, prevention-focused and promotion-focused self-regulation and emotional, external, and restrained eating. Building on a representative study conducted in the Netherlands (N = 4,230), it is documented that individual differences in prevention focus are positively related to emotional eating whereas negligible associations are found in regards to external and restrained eating. Individual differences in promotion focus are positively related to external eating whereas negligible associations are found in regards to emotional and restrained eating. In relating RFT to different eating styles we were able to document significant relations of basic self-regulatory orientations with regard to essential daily behavior associated with health and well-being. The implications for changing eating styles are discussed.
Cavanagh, Kevin V; Kruja, Blina; Forestell, Catherine A
2014-11-01
The goal of the current study was to determine whether provision of brand and caloric information affects sensory perception and consumption of a food in restrained (n=84) and unrestrained eaters (n=104). Using a between-subjects 2 × 2 × 3 design, female restrained and unrestrained eaters were asked to taste and rate a cookie that was labeled with a brand associated with healthful eating (Kashi(®)) or one associated with unhealthful eating (Nabisco(®)). Additionally, some participants were presented with a nutrition label alongside the brand name indicating that one serving contained 130 calories (Low-Calorie Condition), or 260 calories (High-Calorie Condition). The remaining participants were not shown a nutrition label (No Label Condition). Results indicated that those in the No Label or the High-Calorie Condition perceived the healthful branded cookie to have a better flavor than those who received the unhealthful branded cookie regardless of their restraint status. However, restrained eaters in the No Label Condition consumed more of the healthful than the unhealthful branded cookie, whereas those in the Low-Calorie Condition consumed more of the unhealthful than the healthful branded cookie. In contrast, unrestrained eaters ate more of the healthful branded cookie regardless of the caloric information provided. Thus, although restrained and unrestrained eaters' perceptions are similarly affected by branding and caloric information, brands and caloric information interact to affect restrained eaters' consumption. This study reveals that labeling foods as low calorie may create a halo effect which may lead to over-consumption of these foods in restrained eaters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vittes, Katherine A; Webster, Daniel W; Frattaroli, Shannon; Claire, Barbara E; Wintemute, Garen J
2013-05-01
Persons under certain domestic violence restraining orders in California are required to surrender any firearms in their possession within 24 hours of service. The California Department of Justice funded a pilot program in which Sheriff's Offices in two counties developed a system for better enforcing the firearm surrender requirement. As part of a larger process evaluation, 17 restraining order recipients were interviewed about their experiences with and feelings about the removal of firearms from their abusers. Most women surveyed wanted firearms removed and felt safer as a result of their removal. Implications of the findings are discussed.
Elfrink, R.; Renaud, M.; Kamel, T. M.; de Nooijer, C.; Jambunathan, M.; Goedbloed, M.; Hohlfeld, D.; Matova, S.; Pop, V.; Caballero, L.; van Schaijk, R.
2010-10-01
This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 µW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated. Vacuum and atmospheric pressure levels are considered for the packaged devices. When dealing with packaged devices, it is found that vacuum packaging is essential for maximizing the output power. Therefore, a wafer-scale vacuum package process is developed. The energy harvesters are used to power a small prototype (1 cm3 volume) of a wireless autonomous sensor system. The average power consumption of the whole system is less than 10 µW, and it is continuously provided by the vibration energy harvester.
Asymptotic stability of solutions to elastic systems with structural damping
Hongxia Fan
2014-11-01
Full Text Available In this article, we study the asymptotic stability of solutions for the initial value problems of second order evolution equations in Banach spaces, which can model elastic systems with structural damping. The discussion is based on exponentially stable semigroups theory. Applications to the vibration equation of elastic beams with structural damping are also considered.
Global well-posedness of damped multidimensional generalized Boussinesq equations
Yi Niu
2015-04-01
Full Text Available We study the Cauchy problem for a sixth-order Boussinesq equations with the generalized source term and damping term. By using Galerkin approximations and potential well methods, we prove the existence of a global weak solution. Furthermore, we study the conditions for the damped coefficient to obtain the finite time blow up of the solution.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Damping characteristics of a footbridge: Mysteries and truths
Cantieni, Reto; Bajric, Anela; Brincker, Rune
2016-01-01
As a consequence of a paper presented by Michael Mistler at the VDI-Baudynamik-Tagung in Kassel, Germany, in April 2015, the authors checked the damping coefficients having been estimated for a footbridge in autumn 2014. Mistler stated that the critical damping ratio estimated from a halfpower ba...
Simple model with damping of the mode-coupling instability
Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
PID motion control tuning rules in a damping injection framework
Tadele, Tadele Shiferaw; Vries, de Theo; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
Translational damping on high-frequency flapping wings
Parks, Perry A.
Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.
Interdigitated interdigital transducer for surface elastometry of soft damping tissue.
Danicki, Eugene; Nowicki, Andrzej; Tasinkevych, Yuriy
2013-06-01
Measurement of the shear elastic constant of soft and highly damping tissue of high Poisson ratio is quite a challenging task. It is proposed to evaluate shear wave velocity and damping of tissue by measuring the shear skimming bulk waves using one interdigitated interdigital transducer on a piezoelectric layer, such as polyvinylidene fluoride, applied to the surface of the small tissue sample.
The Holevo capacity of a generalized amplitude-damping channel
Hou Li-Zhen; Fang Mao-Fa
2007-01-01
The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method.It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Stéphane
2011-10-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
On aspects of boundary damping for cables and vertical beams
Hijmissen, J.W.
2008-01-01
Elastic structures are susceptible to wind- and earthquake-induced vibrations. These vibrations can damage a structure or cause human discomfort. To suppress structural vibrations, various types of damping mechanisms, active or passive, can be applied. In this thesis the model of a weakly damped, st
Complex modes and frequencies in damped structural vibrations
Krenk, Steen
2004-01-01
It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic force...
Nemeth, Michael P.
2004-01-01
An approach for synthesizing buckling results for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexural anisotropic plates that are subjected to combined mechanical loads. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. Many results are presented for some common laminates that are intended to facilitate a structural designer s transition to the use of the generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves.
Lee Kyungkoo
2008-01-01
Full Text Available An analytical method to model failure of steel beam plastic hinges due to local buckling and low-cycle fatigue is proposed herein. This method is based on the plastic collapse mechanism approach and a yield-line plastic hinge (YLPH model whose geometry is based on buckled shapes of beam plastic hinges observed in experiments. Two limit states, strength degradation failure induced by local buckling and low-cycle fatigue fracture, are considered. The proposed YLPH model was developed for FEMA-350 WUF-W, RBS and Free Flange connections and validated in comparisons to experimental data. This model can be used to estimate the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions.
Body image and restrained eating in blind and sighted women: A preliminary study.
Ashikali, Eleni-Marina; Dittmar, Helga
2010-03-01
Sociocultural theory attributes the high levels of body image concerns and disordered eating in Western women to the promotion of an unrealistically thin body ideal. This study investigated body dissatisfaction, restrained eating, and attitudes toward appearance in visually impaired and sighted women. There were 21 congenitally blind, 11 blinded later in life, and 60 sighted. Blind women were more satisfied with their body and dieted less than sighted women. Appearance attitudes, particularly thin-ideal internalization, accounted for differences in body dissatisfaction and dieting among the three groups of women. Possible explanations for our findings are considered, including the importance of visual exposure to the media's thin ideal, as well as the usefulness of future research on blind women. Copyright 2010 Elsevier Ltd. All rights reserved.
Flow-Induced Vibration of A Nonlinearly Restrained Curved Pipe Conveying Fluid
王琳; 倪樵; 黄玉盈
2004-01-01
Investigated in this study is the flow-induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton-Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures.
Size-dependent thermal buckling of heated nanowires with ends axially restrained
Wang, Yu; Wang, Zhi-Qiao; Lv, Jian-Guo
2014-02-01
Nanowires (NWs) are being actively explored for applications as nanoscale building blocks of sensors, actuators and nanoelectromechanical systems (NEMS). Temperature changes can induce an axial force within NWs due to the thermal expansion and may lead to buckling. The thermal buckling behaviors of ends-axially-restrained nanowires, subjected to a uniform temperature rise, are studied based on Bernoulli-Euler beam theory including the surface thermoelastic effects. Besides the surface elastic modulus, the influences of surface thermal expansion coefficient are incorporated into the model presented herein to describe size-dependent thermoelastic behaviors of nanowires. The results show that the critical buckling temperature and postbuckling deflection are significantly affected by surface thermoelastic effects and the influences become more prominent as the thickness of nanowire decreases. The corresponding influences of the slenderness ratio are also discussed. This research is helpful not only in understanding the thermal buckling properties of nanowires but also in designing the nanowire-based sensor and thermal actuator.
Size-dependent thermal buckling of heated nanowires with ends axially restrained
Wang, Yu [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China); Wang, Zhi-Qiao, E-mail: zqwang@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China); Lv, Jian-Guo [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China)
2014-02-01
Nanowires (NWs) are being actively explored for applications as nanoscale building blocks of sensors, actuators and nanoelectromechanical systems (NEMS). Temperature changes can induce an axial force within NWs due to the thermal expansion and may lead to buckling. The thermal buckling behaviors of ends-axially-restrained nanowires, subjected to a uniform temperature rise, are studied based on Bernoulli–Euler beam theory including the surface thermoelastic effects. Besides the surface elastic modulus, the influences of surface thermal expansion coefficient are incorporated into the model presented herein to describe size-dependent thermoelastic behaviors of nanowires. The results show that the critical buckling temperature and postbuckling deflection are significantly affected by surface thermoelastic effects and the influences become more prominent as the thickness of nanowire decreases. The corresponding influences of the slenderness ratio are also discussed. This research is helpful not only in understanding the thermal buckling properties of nanowires but also in designing the nanowire-based sensor and thermal actuator.
Cost damping and functional form in transport models
Rich, Jeppe; Mabit, Stefan Lindhard
2015-01-01
take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns......Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...
Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates
Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.
2009-01-01
Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.
Estimation of damping ratio of soil sites using microtremor
郭迅; 黄玉龍; 袁一凡
2002-01-01
It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamicproperties of the soil stratum, such as predominant frequency and damping ratio. A widely used method for estimating thepredominant frequency of a soil site by using microtremor records, proposed by Nakamura, is investigated to determine itseffectiveness in estimating the damping ratio. The authors conducted some microtremor measurements of soil sites in HongKong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site. Damping ratio datafrom several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonantcolumn tests. Regression analysis indicates that there is a strong correlation between the damping ratios derived from thesetwo different approaches.
On the Damping Properties of Modified Ground Rubber Tires
无
2002-01-01
Large amounts of used rubber tires are discarded annually. A long time is neededfor them to degrade naturally. This poses two major problems: environmental pollutionand wastage of valuable rubber. On the other hand, with the harm of vibration and noisewidely recognized, desires to control them intensify. As an important means of vibrationcontrol, viscoelastic damping technology has advanced greatly. The need for cheap andhigh quality viscoelastic damping materials increases rapidly. This paper made a trial touse ground rubber tire (GRT) recovered from old tires to make damping materials. TheGRT is treated specially first. Then it was pressed into slabs and vulcanized. Finally, theproduct was cut into test samples. An Oberst beam was used to determine the loss factor βand storage modulus E. Results show that the damping materials exhibit good damping ability.
Cost damping and functional form in transport models
Rich, Jeppe; Mabit, Stefan Lindhard
2016-01-01
Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...... take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns...
Damping strapdown inertial navigation system based on a Kalman filter
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong
2016-11-01
A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.
A new solvent suppression method via radiation damping effect
Cui Xiao-Hong; Peng Ling; Zhang Zhen-Min; Cai Shu-Hui; Chen Zhong
2011-01-01
Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal.The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping.In this paper,a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy.Compared to the WATERGATE method,the solute signals adjacent to the solvent would not be influenced by using the radiation damping method.The one-dimensional (1D) 1H NMR,two-dimensional (2D) gCOSY,and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.
Fast damping in mismatched high intensity beam transportation
V. Variale
2001-08-01
Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.
problem for the damped Boussinesq equation
Vladimir V. Varlamov
1997-01-01
Full Text Available For the damped Boussinesq equation utt−2butxx=−αuxxxx+uxx+β(u2xx,x∈(0,π,t>0;α,b=const>0,β=const∈R1, the second initial-boundary value problem is considered with small initial data. Its classical solution is constructed in the form of a series in small parameter present in the initial conditions and the uniqueness of solutions is proved. The long-time asymptotics is obtained in the explicit form and the question of the blow up of the solution in a certain case is examined. The possibility of passing to the limit b→+0 in the constructed solution is investigated.
Magnetomechanical damping and magnetoelastic hysteresis in permalloy
Ercuta, A.; Mihalca, I.
2002-11-01
The inverse Wiedemann effect (IWE) consisting in longitudinal magnetization reversals was detected with a cylindrical permalloy layer subjected to circular DC magnetic fields while performing low frequency (~1 Hz) free torsion oscillations. Hysteresis occurring in the magnetization vs elastic strain dependence (the `magnetoelastic hysteresis') suggested irreversible processes activated mechanically. Joint vibration and magnetization time records were carried out by means of an experimental set-up including inverted pendulum and conventional integrating fluxmeter, in order to compare the relative energy losses ascribed to the magnetomechanical damping (MMD) and to the magnetoelastic hysteresis, respectively. The experimental results clearly pointed out a close connection between IWE and MMD providing evidence that, when simultaneously examined, both effects reflect the same basic phenomenon: the irreversible magnetization changes induced by the elastic strain.
Radiation damping in atomic photonic crystals.
Horsley, S A R; Artoni, M; La Rocca, G C
2011-07-22
The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).
Vibration damping for the Segmented Mirror Telescope
Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.
2012-09-01
The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.
Investigating viscous damping using a webcam
Shamim, Sohaib; Anwar, Muhammad Sabieh
2011-01-01
We describe an experiment involving a mass oscillating in a viscous fluid and analyze viscous damping of harmonic motion. The mechanical oscillator is tracked using a simple webcam and an image processing algorithm records the position of the geometrical center as a function of time. Interesting information can be extracted from the displacement-time graphs, in particular for the underdamped case. For example, we use these oscillations to determine the viscosity of the fluid. Our mean value of 1.08 \\pm 0.07 mPa s for distilled water is in good agreement with the accepted value at 20\\circC. This experiment has been successfully employed in the freshman lab setting.
Magnetoacoustic heating by ion Landau damping
Turner, L.
1980-01-01
The Vlasov-fluid model of Freidberg (1972) is used to study the resonance heating of a sharp-boundary screw pinch. The analysis provides the first treatment of the magnetoacoustic heating of a cylindrical plasma by means of ion Landau damping, which was identified as a viable dissipative mechanism for the conversion of magnetoacoustic wave energy into ion thermal energy. In addition, local and global energy conservation are considered, and formulae and numerical results for the thermal energy doubling time and the associated induced rf electric fields are presented. It is shown that collisionless absorption can provide a heating mechanism when an equilibrium plasma column is pumped by oscillations of the confining magnetic field at a frequency near the oblique magnetoacoustic frequency.
Loss of Landau Damping for Bunch Oscillations
Burov, A
2012-01-01
Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increa...
Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions
Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya
2015-03-01
Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.
Bernhard, Axel; Casalbuoni, Sara; Ferracin, Paolo; Garcia Fajardo, Laura; Gerstl, Stefan; Gethmann, Julian; Grau, Andreas; Huttel, Erhard; Khrushchev, Sergey; Mezentsev, Nikolai; Müller, Anke-Susanne; Papaphilippou, Yannis; Saez de Jauregui, David; Schmickler, Hermann; Schoerling, Daniel; Shkaruba, Vitaliy; Smale, Nigel; Tsukanov, Valery; Zisopoulos, Panagiotis; Zolotarev, Konstantin
2016-01-01
In a collaboration between CERN, BINP and KIT a prototype of a superconducting damping wiggler for the CLIC damping rings has been installed at the ANKA synchrotron light source. On the one hand, the foreseen experimental program aims at validating the technical design of the wiggler, particularly the conduction cooling concept applied in its cryostat design, in a long-term study. On the other hand, the wiggler's influence on the beam dynamics particularly in the presence of collective effects is planned to be investigated. ANKA's low-alpha short-bunch operation mode will serve as a model system for these studies on collective effects. To simulate these effects and to make verifiable predictions an accurate model of the ANKA storage ring in low-alpha mode, including the insertion devices is under parallel development. This contribution reports on the first operational experience with the CLIC damping wiggler prototype in the ANKA storage ring and steps towards the planned advanced experimental program with th...
Superelastic behavior and damping capacity of CuAlBe alloys
Montecinos, Susana [Universidad de Chile and CIMAT, Blanco Encalada 2008, Santiago (Chile); Moroni, Maria Ofelia [Universidad de Chile, Depto. de Ingenieria Civil, Casilla 228/3, Santiago (Chile)]. E-mail: mmoroni@cec.uchile.cl; Sepulveda, Aquiles [Universidad de Chile, Depto. de Ingenieria Mecanica, Casilla 2777, Santiago (Chile)
2006-03-15
Shape memory alloys (SMAs) showing the superelastic effect, dissipate energy through hysteretic cycles up to large strain amplitudes, without remnant strains after unloading. This effect is associated with a reversible stress-induced martensitic transformation. In this paper, the behavior of copper-based SMAs is examined, with the perspective of potential applications in seismic-energy dissipative devices. In particular, two different compositions of CuAlBe are characterized using chemical analysis, differential scanning calorimetry (DSC), light and scanning electron microscopy and X-rays diffraction. Mechanical and hysteretic damping properties are determined from cyclic tensile and tension-compression tests, for different strain amplitudes and frequencies. Both alloys show superelastic behavior, although hysteresis loops differ, due to differences in the composition and transformation phase temperatures. Equivalent damping up to 5% was obtained for the largest strain imposed. Frequency, in the range of interest for seismic applications, had a small influence on the damping values. It is concluded that alloy Cu-11.8 wt.% Al-0.5 wt.% Be best exhibited properties for the application intended.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
Magnetic Damping of Solid Solution Semiconductor Alloys
Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar
1999-01-01
The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.
Differences in thoracic injury causation patterns between seat belt restrained children and adults.
Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R
2012-01-01
The objective of this research was to delineate age-based differences in specific thoracic injury diagnoses for seat belt restrained rear seat occupants and describe the associated injury causation in order to provide insight into how the load of the seat belt is transferred to occupants of various sizes. Using data from the Crash Investigation Research and Engineering Network (CIREN), 20 cases of rear seated, lap and shoulder belt restrained occupants with AIS2+ thoracic injuries in frontal crashes were reviewed. Seven were children and adolescents age 8-15 years, 5 were 16-24 years, 3 were 25-54 years, and 5 were 55+ years. Six of the seven 8-15 year olds sustained injuries to the lung in the form of pulmonary contusion or pneumothorax. Only three of the seven sustained a skeletal (sternum or rib) fracture; only one of these three involved multiple ribs bilaterally. In contrast, four of the five 16-24 year olds sustained at least one rib fracture - often multiple and bilateral. The adult cohort (25+ years) was involved in predominantly more minor crashes; however they all sustained complex rib fractures - seven of the eight involved multiple ribs, four of the eight were also bilateral. Belt compression - either from the shoulder belt or the lap belt - was identified as the primary cause of the thoracic injuries. Often, there was clear evidence of the location of belt loading from AIS 1 chest contusions or abrasions. These findings have implications for age-based thoracic injury criteria suggesting that that different metrics may be needed for different age groups.
Weisz, K; Shafer, R H; Egan, W; James, T L
1994-01-11
The solution structure of the DNA decamer d(CATTTGCATC)-d(GATGCAAATG), comprising the octamer motif of immunoglobulin genes, is determined by restrained molecular dynamics (rMD) simulations. The restraint data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were previously obtained by a complete relaxation matrix analysis of the two-dimensional nuclear Overhauser enhancement (2D NOE) intensities and by the quantitative simulation of cross-peaks in double-quantum-filtered correlated (2QF-COSY) spectra. The influence of torsion angles and the number of experimental distance restraints on the structural refinement has been systematically examined. Omitting part of the experimental NOE-derived distances results in reduced restraint violations and lower R factors but impairs structural convergence in the rMD refinement. Eight separate restrained molecular dynamics simulations were carried out for 20 ps each, starting from either energy-minimized A- or B-DNA. Mutual atomic root-mean-square (rms) differences among the refined structures are well below 1 A and comparable to the rms fluctuations of the atoms about their average position, indicating convergence to essentially identical structures. The average refined structure was subjected to an additional 100 ps of rMD simulations and analyzed in terms of average torsion angles and helical parameters. The B-type duplex exhibits clear sequence-dependent variations in its geometry with a narrow minor groove at the T3.A3 tract and a large positive roll at the subsequent TG.CA step. This is accompanied by a noticeable bend of the global helix axis into the major groove. There is also evidence of significant flexibility of the sugar-phosphate backbone with rapid interconversion among different conformers.
Elfhag, K; Tynelius, P; Rasmussen, F
2007-06-08
We studied sugar-sweetened soft drinks and light soft drinks in their associations to psychological constructs of eating behavior and demographic data for adults and children. Soft drink intakes were assessed by consumption of soft drinks in number of days the last week, and eating behavior was measured by the Dutch Eating Behaviour Questionnaire (DEBQ). The sample included 3265 men and women, and their 12-year old children, originating from Swedish national databases. Associations to younger age and lower education in adults were in particular apparent for sugar-sweetened soft drinks. Consumption of sugar-sweetened soft drinks was further associated to less restrained and more external eating in adults. In contrast, light soft drinks were associated with higher BMI, more restrained eating and also more emotional eating in adults. For the children these associations were generally weaker. Sugar-sweetened soft drinks are consumed by persons with a lower education, who furthermore are less prone to attempt to restrict their calorie intake, and by some of those who are sensitive to external stimuli of foods. Light soft drinks are rather chosen by the more heavy persons who try to restrict their energy intake perhaps in order to control the body weight, and more unexpectedly, by adults who eat for comfort. Being more sensitive to an external stimulus of food such as taste seems to imply proneness to consume sugar-sweetened soft drinks instead of the light versions. Light soft drinks may be perceived as an adequate substitute in the use of foods for comfort, meaning the sweet taste may be sufficient for this purpose.
On the propagation of binary signals in damped mechanical systems of oscillators
Macías-Díaz, J E; 10.1016/j.physd.2007.02.007
2011-01-01
In the present work, we explore efficient ways to transmit binary information in discrete, semi-infinite chains of coupled oscillators using the process of nonlinear supratransmission. A previous work showed that such transmission is possible and, indeed, reliable under the idealistic condition when weak or no damping is present. In this paper, we study a more realistic case and propose the design of mechanical devices in order to avoid the loss of information, consisting on the linear concatenation of several such mechanical systems. Our results demonstrate that the loss of information can be minimized or avoided using such physical structures.
Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer
Jitka eFucikova
2015-08-01
Full Text Available It is now clear that human neoplasms form, progress and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (reactivation of tumor-targeting immune response. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as „immunogenic cell death (ICD. Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as „damage-associated molecular patterns (DAMPs, may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.
Damped and sub-damped Lyman-alpha absorbers in z > 4 QSOs
Guimaraes, Rodney; De Carvalho, Reinaldo Ramos; Djorgovski, George; Noterdaeme, Pasquier; Castro, Sandra; Poppe, Paulo Da Rocha; Aghaee, Ali
2009-01-01
We present the results of a survey for damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-? systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 are detected of which 40 systems are damped Lyman-? systems for an absorption length of ?X = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and ?nd, consis- tently with previous studies at similar resolution, that ?DLA,H I decreases at z > 3.5. The overall cosmological evolution of ?HI shows a peak around this redshift. The H I column density distribution for log N(H I) ? 20.3 is ?tted, consistently with previous surveys, with a single power-law of index ? ? -1.8$\\pm$0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a ?attening of the function at lower H I column densities with an index of ? ?...
Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids
Ranganathan, Raghavan
Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with
Boyce, Jessica A; Kuijer, Roeline G; Gleaves, David H
2013-09-01
Although viewing media body ideals promotes body dissatisfaction and problematic eating among women (e.g., extreme restraint/overeating), some argue that women only report such negative effects because they think that they are meant to (i.e., demand characteristics). Because restrained eaters are trying to lose weight, they might be vulnerable to such media exposure. However, because of demand characteristics, evidence is mixed. Therefore, we minimized demand characteristics and explored whether media body ideals would trigger restrained eaters to report negative (negative mood, weight dissatisfaction) or positive (positive mood, weight satisfaction) effects. We also hypothesized that this change (negative or positive) would encourage food intake. Restrained and unrestrained eaters (n=107) memorized media or control images. Restrained eaters exposed to media images reported decreased weight satisfaction and increased negative mood, but their food intake was not significantly affected. Perhaps paying advertent attention to the images caused goal-related negative affect, which triggered restraint. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Lun; Li, Aibing; Murphy, Michael A.; Fu, Yuanyuan V.
2016-09-01
Three-dimensional shear wave velocity and radial anisotropy models of the crust and upper mantle beneath the NE Tibetan plateau are constructed from new measurements of Love wave dispersions (20-77s) and previously obtained Rayleigh wave dispersions (20-87s) using a two-plane-wave method. The mid-lower crust is characterized with positive anisotropy (VSH > VSV) with large strength beneath the Qinling and Qilian Mountains and small values beneath the Anyemaqen Mountain. The large positive anisotropy can be explained by horizontal alignment of anisotropic minerals in the mid-lower crust due to crustal flow. The mantle lithosphere above 90 km is largely isotropic while weak positive anisotropy appears beneath 90 km, which probably marks the lithosphere-asthenosphere boundary (LAB). A low shear wave velocity anomaly and relatively negative radial anisotropy are imaged in the entire lithosphere beneath the restraining bend in the eastern Kunlun fault, consistent with a weak lithosphere experiencing vertical thickening under horizontal compression. The asthenosphere at the restraining bend is characterized by significant low velocity and positive radial anisotropy, reflecting that the asthenosphere here is probably hotter, has more melts, and deforms more easily than the surrounding region. We propose that the lithosphere at the restraining bend was vertically thickened and subsequently delaminated locally, and induced asthenosphere upwelling. This model explains the observations of velocity and anisotropy anomalies in the lithosphere and asthenosphere as well as geological observations of rapid rock uplift at the restraining bend of the Kunlun fault.
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Nonlinear damping calculation in cylindrical gear dynamic modeling
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Damping of Ni-Mn-Ga epoxy resin composites
Wei Liang; He Yu; Liu Yufeng; Yang Naibin
2013-01-01
By combining the advantages of efficient damping and high mechanical properties, Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design. In this paper, a ferromagnetic shape memory alloy Ni-Mn-Ga composite is prepared. Ni-Mn-Ga particle/bisphenol-A epoxy composite cantilever beam vibration tests under a magnetic field and without the magnetic field are conducted to analyze the structural damping ratios n. Meanwhile, the damping characteristics of the Ni-Mn-Ga composite are studied through the axial loading-unloading method and the acoustic emission signals method. The damping coefficient of the composite for different Ni-Mn-Ga volume fractions is obtained. The interface properties of the composite are discussed by micro examination and axial loading. The relationships between the damping of the composite and that of the component materials are discussed. The specific damping capacity (SDC) and acoustic emission counts diagram of different specimens with different Ni-Mn-Ga volume fractions are analyzed.
Experiences with active damping and impedance-matching compensators
Betros, Robert S.; Alvarez, Oscar S.; Bronowicki, Allen J.
1993-09-01
TRW has been implementing active damping compensators on smart structures for the past five years. Since that time there have been numerous publications on the use of impedance matching techniques for structural damping augmentation. The idea of impedance matching compensators came about by considering the flow of power in a structure undergoing vibration. The goal of these compensators is to electronically dissipate as much of this flowing power as possible. This paper shows the performance of impedance matching compensators used in smart structures to be comparable to that of active damping compensators. Theoretical comparisons between active damping and impedance matching methods are made using PZT actuators and sensors. The effects of these collocated and non-collocated PZT sensors and actuators on the types of signals they sense and actuate are investigated. A method for automatically synthesizing impedance matching compensators is presented. Problems with implementing broad band active damping and impedance matching compensators on standard Digital Signal Processing (DSP) chips are discussed. Simulations and measurements that compare the performance of active damping and impedance matching techniques for a lightly damped cantilevered beam are shown.
Stämpfli, Aline E; Stöckli, Sabrina; Brunner, Thomas A
2017-03-01
Losing weight is a goal for many people, but it is hard to pursue. However, dieting cues in the environment hold promise for improving individuals' eating behavior. For example, exposure to thin, human-like sculptures by the artist Alberto Giacometti has been found to promote healthy snack choices at a vending machine. Whether health- or weight-related processes drive such effects has not yet been determined. However, a detailed understanding of the content-related drivers of environmental cues' effects provides the first indications regarding a cue's possible use. Therefore, two laboratory studies were conducted. They examined the Giacometti sculptures' effects on unhealthy and healthy food intake (Study 1) and on the completion of weight- and health-related fragmented words (Study 2). Study 1 indicated that the sculptures are weight-related by showing that they reduced food intake independent of food healthiness. Furthermore, the "Giacometti effect" was moderated by restrained eating. Restrained eaters, who are known for their weight-control goal, ate less after having been exposed to the thin sculptures. The results of Study 2 pointed in the same direction. Restrained eaters completed more weight-related words after being exposed to the sculptures. Overall, these studies suggest that the thin sculptures are primarily weight-related cues and particularly helpful for restrained eaters. Environmental weight-control cues such as the Giacometti sculptures could act as a counterforce to our obesogenic environment and help restrained eaters pursue their weight-control goal. In this way, they could nudge food decisions in a healthier direction.
Public health and economic impact of dampness and mold
Mudarri, David; Fisk, William J.
2007-06-01
The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.
Bunching for Shorter Damping Rings for the ILC
Neuffer, David V
2005-01-01
A variant rearrangement of the bunch trains for the ILC that enables much shorter damping rings is presented. In a particular example the ~2280 bunches are regrouped into ~450 subtrains of five adjacent bunches. These subtrains are extracted from the damping rings at ~2.2 ms intervals, obtaining the 1ms macrobunch length of the baseline TESLA collider scenario. If the baseline damping rf frequency is 325 MHz and the kicker rise and fall times are ~20 ns, a ring circumference of ~4.5km is required. Variations of the scheme could easily reduce the circumference to ~3km, and faster kickers could reduce it even further.
Damping and support in high-temperature superconducting levitation systems
Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Spatial Damping of Linear Compressional Magnetoacoustic Waves in Quiescent Prominences
K. A. P. Singh
2006-06-01
We study the spatial damping of magnetoacoustic waves in an unbounded quiescent prominence invoking the technique of MHD seismology. We consider Newtonian radiation in the energy equation and derive a fourth order general dispersion relation in terms of wavenumber . Numerical solution of dispersion relation suggests that slow mode is more affected by radiation. The high frequency waves have been found to be highly damped. The uncertainty in the radiative relaxation time, however, does not allow us to conclude if the radiation is a dominant damping mechanism in quiescent prominence.
Damping and support in high-temperature superconducting levitation systems
Hull, John R.; McIver, Carl R.; Mittleider, John A.
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Damping capacity in shape memory alloy honeycomb structures
Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.
2010-04-01
SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.
Linear Landau damping in strongly relativistic quark gluon plasma
Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)
2004-07-01
On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)
Frequency-dependent Drude damping in Casimir force calculations
Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)
2009-04-01
The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.
Indirect linear locally distributed damping of coupled systems
Annick BEYRATH
2004-11-01
Full Text Available The aim of this paper is to prove indirect internal stabilization results for diﬀerent coupled systems with linear locally distributed damping (coupled wave equations, wave equations with diﬀerent speeds of propagation. In our case, a linear local damping term appears only in the ﬁrst equation whereas no damping term is applied to the second one (this is indirect stabilization, see [11]. Using thepiecewise multiplier method we prove that the full system is stabilized and that the total energy of the solution of this system decays polynomially.
Comparing Sources of Damping of Cross-Wind Motion
Tarp-Johansen, Niels Jacob; Andersen, Lars; Christensen, Erik Damgaard
2009-01-01
driving if there is a significant wind-wave misalignment. In order to avoid unnecessary conservatism it is therefore important to know if there is more damping available than assumed in the today's practise. The paper treats this issue. Contents Based on engineering judgement it is expected...... assessment and load calculations. The paper proposes a strategy for analysis and demonstrates its potential considering an example site. Conclusions Damping is higher than assumed and tower dampers dominate implying damping can be stated site-independently neglecting any other contribution. Further proper...
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
H. P. Jagadish
2013-01-01
Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.
Jong Wan Hu
2015-01-01
Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.
Comportamento de restrição alimentar e obesidade Restrained eating behavior and obesity
Fabiana Bernardi
2005-02-01
Full Text Available A obesidade é uma doença de alta prevalência no mundo e é responsável por sérias repercussões orgânicas e psicossociais, desde a infância até a vida adulta. O comportamento alimentar tem bases biológicas e sociais e, associado, à obesidade, torna-se um processo ainda mais complexo pelos aspectos psicológicos envolvidos, os quais se expressam por meio de humor depressivo, ansiedade, sentimento de culpa e, também, por mecanismos fisiológicos, como a resistência ao jejum na vigência de dietas restritivas. Há evidências de que, em indivíduos obesos, comportamentos de compulsão alimentar e ou restrição são mais freqüentes e parecem ser, em parte, responsáveis pelos fracassos observados no tratamento da obesidade. As restrições e auto-imposições das pessoas que fazem dieta, parecem ter um efeito rebote, resultando em compulsão alimentar, a qual pode associar-se a conseqüências psicológicas, como a perda da auto-estima, mudanças de humor e distração. As reflexões desta revisão sugerem que os programas para redução de peso corporal devem enfocar as bases do comportamento alimentar e desenvolver, efetivamente, ações interdisciplinares que permitam obter resultados eficazes no tratamento da obesidade.Obesity is a widespread disease in the world, responsible for serious organic and psychosocial repercussions, from infancy to adulthood. Eating behavior has biological as well as social bases. Associated to obesity, it becomes an even more complex process, since it is accompanied by psychological aspects showing symptoms such as depressive moods, anxiety, feelings of guilt, and physiological mechanisms as, for instance, the resistance to fast during restrictive diets. Obese individuals prevalently present behaviors such as binge or restrained eating, both leading to failure in the treatment of obesity. Restrained eating refers to the tendency to restrict food intake consciously, in order to prevent weight gain or to
Barr, Yael; Fogarty, Jennifer
2010-01-01
During the Orion landing and recovery subsystem design review, June 2009, it was noted that the human system and various vehicle systems, the environmental control and life support (ECLSS) and guidance, navigation and control (GN&C) systems for example, are negatively affected by Orion assuming a stable 2 (upside down; Figure A) configuration post landing. The stable 2 configuration is predicted to occur about 50% of the time based on Apollo landing data and modeling of the current capsule. The stable 2 configuration will be countered by an active up-righting system (crew module up-righting system; CMUS). Post landing balloons will deploy and inflate causing the vehicle to assume or maintain the stable 1 (up-right; Figure B) configuration. During the design review it was proposed that the up-righting system could be capable of righting the vehicle within 60 seconds. However, this time limit posed a series of constraints on the design which made it less robust than desired. The landing and recovery subsystem team requested an analysis of Orion vehicle systems as well as the human system with regard to the effect of stable 2 in order to determine if an up-righting response time greater than 60 seconds could be tolerated. The following report focuses on the assessment of the human system in the posture assumed when Orion is in the stable 2 configuration. Stable 2 will place suited, seated, and restrained crewmembers in a prone (facedown), head-up position for a period of time dependent on the functionality of the up-righting systems, ability of the crew to release themselves from the seat and restraints, and/or time to arrival of rescue forces. Given that the Orion seat and restraint system design is not complete and therefore, not available for evaluation, Space Medicine assessed how long a healthy but deconditioned crewmember could stay in this prone, restrained position and the physiological consequences of this posture by researching terrestrial analogs and
Loss of Landau Damping for Bunch Oscillations
Burov, A.; /Fermilab
2011-04-11
Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.
Coherent Instabilities of ILC Damping Ring
Heifets, S.; Stupakov, G.; Bane, K.; /SLAC
2006-09-27
The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.
Ion Landau Damping on Drift Tearing Modes
Connor, J W; Zocco, A
2012-01-01
The equations governing the ion Landau damping (ILD) layers for a drift tearing mode are derived and solved to provide a matching to ideal MHD solutions at large $x$ and to the drift tearing solution emerging from the ion kinetic region, $k\\rho_{i}\\sim1$, at small $x,$ the distance from the rational surface. The ILD layers lie on either side of the mode rational surface at locations defined by $k_{y}xV_{Ti}/L_{s}=\\omega_{*e}(1+0.73\\eta_{e})$ and have been ignored in many previous analyses of linear drift tearing stability. The effect of the ILD layer on the drift tearing mode is to introduce an additional stabilizing contribution, requiring even larger values of the stability index, $\\Delta^{\\prime}$ for instability, than predicted by Connor Hastie and Zocco [PPCF,54, 035003, (2012)] and Cowley, Kulsrud and Hahm [Phys. Fluids,29, 3230, (1986)]. The magnitude and scaling of the new stabilizing effect in slab geometry is discussed.
Investigation of damping liquids for aircraft instruments
Keulegan, G H
1929-01-01
This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.
Root parsley protection against damping off
Bogdan Nowicki
2013-12-01
Full Text Available Seed treatment ofroot parsley was done to protect Petroselinum santivum seedlings against damping off. Fungicides used as seed dressers were applied in 3 doses: 3, 5 and 10 g/kg. Seeds were treated with 7 dressers (Table l used separately and in mixture with 3 g/kg of Rovral 50 WP (50% iprodione and 1 g/kg of Apron 35 SD (35% metalaxyl. Two seed samples of Berlińska cultivar were used: first sample was strongly infected by Alternaria petroselini and A.radicina both 27,6% and also by Fusarium spp. 5,4% (Test I, and second sample revealed lower percentage of infection 4,6% and 1,2%, respectively (Test II. The experiments were conducted under laboratory, glasshouse and field conditions. Complete seedlings protection in all experiments was achieved for treatments when fungicide mixture was used in the highest dose (10 g/kg. Decrease of fungicides concentrations were connected with lower effectiveness of disease control. No phytotoxic effects of the tested fungicide mixtures were observed under the glasshouse or field conditions.
Damping of forward neutrons in pp collisions
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Soffer, J.
2008-07-01
We calculate absorptive corrections to single pion exchange in the production of leading neutrons in pp collisions. Contrary to the usual procedure of convolving the survival probability with the cross section, we apply corrections to the spin amplitudes. The nonflip amplitude turns out to be much more suppressed by absorption than the spin-flip one. We identify the projectile proton Fock state responsible for the absorptive corrections as a color octet-octet 5-quarks configuration. Calculations within two very different models, color-dipole light-cone description, and in hadronic representation, lead to rather similar absorptive corrections. We found a much stronger damping of leading neutrons than in some of previous estimates. Correspondingly, the cross section is considerably smaller than was measured at ISR. However, comparison with recent measurements by the ZEUS collaboration of neutron production in deep-inelastic scattering provides a strong motivation for challenging the normalization of the ISR data. This conjecture is also supported by preliminary data from the NA49 experiment for neutron production in pp collisions at SPS.
Nonlinear Landau damping in the ionosphere
Kiwamoto, Y.; Benson, R. F.
1979-01-01
A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Evaluation of Damping Using Time Domain OMA Techniques
Bajric, Anela; Brincker, Rune; Georgakis, Christos T.
2014-01-01
. In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...... response and random response from white noise loading. Finally, the results of the numerical study are presented, in which the error of the structural damping estimates obtained by each OMA technique is shown for a range of damping levels. From this, it is clear that there are notable differences...
An Active Damping at Blade Resonances Using Piezoelectric Transducers
Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten
2008-01-01
The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.
Mooring Line Damping Estimation for a Floating Wind Turbine
Dongsheng Qiao
2014-01-01
Full Text Available The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT. Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Mooring line damping estimation for a floating wind turbine.
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Airborne Cladosporium and other fungi in damp versus reference residences
Pasanen, A.-L.; Niininen, M.; Kalliokoski, P.; Nevalainen, A.; Jantunen, M. J.
Our previous study (Nevalainen et al., 1991, Envir. Int.17, 299-302) showed that airborne counts of total viable fungal spores in damp residences did not remarkably differ from those in reference residences. The results of the present study confirmed this finding. Indoor air spore counts varied considerably from residence to residence and even within the same residence. Thus, the counts were only occasionally high in the damp residences. Counts of airborne Cladosporium spp. spores and yeast cells were significantly higher in the damp residences than in the reference ones. The difference of yeast cell counts between the residence groups was explained by the difference in outdoor air, whereas Cladosporium spp. spores were mainly derived from indoors. Prevalence of Aspergillus spp. spores was also slightly higher in the damp residences than in the reference ones.
Landau damping of Langmuir twisted waves with kappa distributed electrons
Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Mahmood, Shahzad [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)
2015-11-15
The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].
Analysis of damping characteristics of arterial catheter blood ...
part, by the damping characteristics of the arterial catheter blood pressure ... A cross-sectional, observational study of arterial line measurements in a large general ICU. ... and perfusion pressure, whilst preventing excessively high pressures.
The moment problem and vibrations damping of beams and plates
Atamuratov, Andrey G. [Pepsico Holding LTD, Leningrad Avenue, 72/4, 125315 Moscow (Russian Federation); Mikhailov, Igor E. [Dorodnicyn Computing Centre of RAS, Vavilov str., 40, 119333 Moscow (Russian Federation); Muravey, Leonid A. [Russian State Technological University, Orshanskaya str., 3, 121552 Moscow (Russian Federation)
2016-06-08
Beams and plates are the elements of different complex mechanical structures, for example, pipelines and aerospace platforms. That is why the problem of damping of their vibrations caused by unwanted perturbations is actual task.
Nonlinear damped Schrodinger equation in two space dimensions
Tarek Saanouni
2015-04-01
Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.
Jeans instability and hydrodynamic roots of Landau damping
Ershkovich, Alexander
2015-01-01
Landau damping of Langmuir waves is shown to have hydrodynamic roots, and, in principle, might have been predicted (along with Langmuir waves) several decades earlier, soon after Jeans (1902) paper appeared.
Tuned mass absorbers on damped structures under random load
Krenk, Steen; Høgsberg, Jan Becker
2008-01-01
A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent...... the classic stochastic frequency tuning gives the same standard deviation of the response amplitude within a margin of 0.001 as when using the classic frequency tuning for harmonic load variation, and then optimizing the damping separately. Simple approximate, but very accurate, expressions are obtained...
Bahrdt, J
2006-01-01
The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.
Fluid damping clearance in a control valve of injector
ZHANG Jianming; ZHANG Weigang; YANG Bing; WANG Yawei
2007-01-01
A force model of a control valve of injector is set up, and the changes of the fluid damping clearance are investigated on the basis of the results of the computational fluid dynamics (CFD) and the experiments of control valve of injector. Results indicate that a damping clearance of 0.02-0.03 mm between the poppet and the valve guide is the most sufficient to dampen any excessive control valve poppet bouncing.
Photon and electron Landau damping in quantum plasmas
Mendonça, J. T.; Serbeto, A.
2016-09-01
Using a quantum kinetic description, we establish a general expression for the dispersion relation of electron plasma waves in the presence of an arbitrary spectrum of electromagnetic waves. This includes both electron and photon Landau damping. The quantum kinetic description allows us to compare directly these two distinct processes, and to show that they are indeed quite similar. The present work also extends previous results on photon Landau damping onto the quantum domain.
Eddy damping effect of additional conductors in superconducting levitation systems
Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn
2015-12-15
Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Cao, Jintao [Bejing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
Screening and damping effects on the thermodynamic potential in QGP
王欣; 李家荣
2003-01-01
By using the spectral functions of gluons, which contain Debye screening and soft damping effects,the effective two-loop thermodynamic potential in quark-gluon plasma was evaluated via real-time temperatureQCD. The result that depends on screening and damping of gluons as physical parameters is obtained. It canbe seen that our analytical result and the recent lattice results are in agreement for T〉～2Tc.
Derivatives of repeated eigenvalues and corresponding eigenvectors of damped systems
XIE Hui-qing; DAI Hua
2007-01-01
A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.
Fermion Damping Rate Effects in Cold Dense Matter
Manuel, C
2000-01-01
We review the non-Fermi or marginal liquid behavior of a relativistic QED plasma. In this medium a quasiparticle has a damping rate that depends linearly on the distance between its energy and the Fermi surface. We stress that this dependence is due to the long-range character of the magnetic interactions in the medium. Finally, we study how the quark damping rate modifies the gap equation of color superconductivity, reducing the value of the gap at the Fermi surface.
Soil Damping at Walney 2 Offshore Wind Farm
Andersen, Lars
The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site.......The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site....
Damping rates for moving particles in hot QCD
Pisarski, R D
1993-01-01
Using a program of perturbative resummation I compute the damping rates for fields at nonzero spatial momentum to leading order in weak coupling in hot $QCD$. Sum rules for spectral densities are used to simplify the calculations. For massless fields the damping rate has an apparent logarithmic divergence in the infrared limit, which is cut off by the screening of static magnetic fields (``magnetic mass''). This demonstrates how at high temperature even perturbative quantities are sensitive to nonperturbative phenomenon.
On the role of nonsynchronous rotating damping in rotordynamics
Giancarlo Genta; Eugenio Brusa
2000-01-01
Nonsynchronous rotating damping, i.e. energy dissipations occurring in elements rotating at a speed different from the spin speed of a rotor, can have substantial effects on the dynamic behaviour and above all on the stability of rotating systems.The free whirling and unbalance response for systems with nonsynchronous damping are studied using Jeffcott rotor model. The system parameters affecting stability are identified and the threshold of instability is computed. A general model for a mult...
Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion
Nemeth, Michael P.
2003-01-01
An approach for synthesizing buckling results and behavior for thin, balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and which are fully-restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived and used to determine critical temperature changes in terms of physically intuitive mechanical buckling coefficients. The effects of membrane orthotropy and anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into buckling response and provide useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general, unifying manner.
Assessment of early-age cracking of high-performance concrete in restrained ring specimens
Quang-phu NGUYEN NGUYEN
2010-03-01
Full Text Available High-performance concrete (HPC is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mW/mB of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mW/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mW/mB = 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mW/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mW/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively.
Parametric vibrations of a restrained beam with an end mass under displacement excitation
Gürgöze, M.
1986-07-01
This paper is concerned with the stability and the steady state response of the main parametric resonance vibrations of a simply supported vertical beam. The beam carries a concentrated mass and is restrained at one end and subjected to a periodic axial displacement excitation at the other end. This system can be looked upon as a dynamic model of the vibrations of an engine valve mechanism. Non-linear terms arising from moderately large curvatures, longitudinal inertia of the beam elements and concentrated mass are included in the equation of motion. By using the one mode approximation and applying Galerkin's method, the governing partial differential equation is reduced to a non-linear ordinary differential equation with a periodic coefficient. The boundaries of the main parametric instability region of the linearized equation are obtained. The harmonic balance method is applied to solve the equation and an analytical expression for the dynamic response in the vicinity of the main parametric resonance is derived. The effects of various parameters on the boundaries of the instability region and the dynamic response are investigated.
Ductility demands on buckling-restrained braced frames under earthquake loading
Larry A. Fahnestock; Richard Sause; James M. Ricles; Le-Wu Lu
2003-01-01
Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The bucklingrestrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and timehistory analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and uscd to evaluate thc time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands oa the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studics, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. Thc results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and timehistory analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions.The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.
Debe, D.A.; Carlson, M.J.; Chan, S.I; Goddard, W.A. III [California Inst. of Tech., Pasadena, CA (United States); Sadanobu, Jiro [Teijin Limited, Iwakuni, Yamaguchi (Japan). Polymer and Materials Research Labs.
1999-04-15
The authors present the generate-and-select hierarchy for tertiary protein structure prediction. The foundation of this hierarchy is the Restrained Generic Protein (RGP) Direct Monte Carlo method. The RGP method is a highly efficient off-lattice residue buildup procedure that can quickly generate the complete set of topologies that satisfy a very small number of interresidue distance restraints. For three restraints uniformly distributed in a 72-residue protein, the authors demonstrate that the size of this set is {approximately}10{sup 4}. The RGP method can generate this set of structures in less than 1 h using a Silicon Graphics R10000 single processor workstation. Following structure generation, a simple criterion that measures the burial of hydrophobic and hydrophilic residues can reliably select a reduced set of {approximately}10{sup 2} structures that contains the native topology. A minimization of the structures in the reduced set typically ranks the native topology in the five lowest energy folds. Thus, using this hierarchical approach, the authors suggest that de novo prediction of moderate resolution globular protein structure can be achieved in just a few hours on a single processor workstation.
YY1 restrained cell senescence through repressing the transcription of p16.
Wang, Xiuli; Feng, Yunpeng; Xu, Liang; Chen, Yuli; Zhang, Yu; Su, Dongmei; Ren, Guoling; Lu, Jun; Huang, Baiqu
2008-10-01
The transcription factor YY1 has been implicated to play a role in cell growth control. In this report, we demonstrate that YY1 was able to suppress NCI-H460 cell senescence through regulating the expression of p16(INK4a), a cyclin-dependent kinase inhibitor. We also show that YY1 participated in the repression of p16(INK4a) expression in 293T cells through an epigenetic mechanism involving histone acetylation modification. Specifically, HDAC3 and HDAC4 inhibited the p16(INK4a) promoter activity. The chromatin immunoprecipitation (ChIP) assays verified that HDAC3 and HDAC4 were recruited to p16(INK4a) promoter by YY1. Moreover, co-immunoprecipitation assays revealed that these three protein factors formed a complex. Furthermore, knockdown of these factors induced cell enlargement and flattened morphology and significantly increased the SA-beta-gal activity, a biochemical marker of cell senescence. Overall, data from this study suggest that YY1, HDAC3 and HDAC4 restrained cell senescence by repressing p16(INK4a) expression through an epigenetic modification of histones.
A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation.
Atianand, Maninjay K; Hu, Wenqian; Satpathy, Ansuman T; Shen, Ying; Ricci, Emiliano P; Alvarez-Dominguez, Juan R; Bhatta, Ankit; Schattgen, Stefan A; McGowan, Jason D; Blin, Juliana; Braun, Joerg E; Gandhi, Pallavi; Moore, Melissa J; Chang, Howard Y; Lodish, Harvey F; Caffrey, Daniel R; Fitzgerald, Katherine A
2016-06-16
Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.
Messner, Simon; Schuermann, David; Altmeyer, Matthias; Kassner, Ingrid; Schmidt, Darja; Schär, Primo; Müller, Stefan; Hottiger, Michael O
2009-11-01
Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1). In proteomic studies, PARP1 was found to be modified by small ubiquitin-like modifiers (SUMOs). Here, we characterize PARP1 as a substrate for modification by SUMO1 and SUMO3, both in vitro and in vivo. PARP1 is sumoylated at the single lysine residue K486 within its automodification domain. Interestingly, modification of PARP1 with SUMO does not affect its ADP-ribosylation activity but completely abrogates p300-mediated acetylation of PARP1, revealing an intriguing crosstalk of sumoylation and acetylation on PARP1. Genetic complementation of PARP1-depleted cells with wild-type and sumoylation-deficient PARP1 revealed that SUMO modification of PARP1 restrains its transcriptional coactivator function and subsequently reduces gene expression of distinct PARP1-regulated target genes.
Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10
Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin
2014-01-01
Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the central nervous system under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T-cell population (cerebral Treg cells) in the normal rat cerebrum, constituting more than 15% of the cerebral CD4+ T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the normal rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state. PMID:25329858
Frattaroli, Shannon; McGinty, Emma E; Barnhorst, Amy; Greenberg, Sheldon
2015-06-01
The gun violence restraining order (GVRO) is a new tool for preventing gun violence. Unlike traditional approaches to prohibiting gun purchase and possession, which rely on a high threshold (adjudication by criminal justice or mental health systems) before intervening, the GVRO allows family members and intimate partners who observe a relative's dangerous behavior and believe it may be a precursor to violence to request a GVRO through the civil justice system. Once issued by the court, a GVRO authorizes law enforcement to remove any guns in the respondent's possession and prohibits the respondent from purchasing new guns. In September 2014, California's governor signed AB1014 into law, making California the first U.S. state to enact a GVRO law. This article describes the GVRO and the rationale behind the concept, considers case examples to assess the potential impact of the GVRO as a strategy for preventing gun violence, and reviews the content of the California law. Copyright © 2015 John Wiley & Sons, Ltd.
Charoenpanich, Pornsri; Soto, Maria J; Becker, Anke; McIntosh, Matthew
2015-04-01
Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.