WorldWideScience

Sample records for restored riparian forest

  1. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  2. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  3. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution ( 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon

  4. Function, Design, and Establishment of Riparian Forest Buffers: A Review

    OpenAIRE

    Klapproth, Julia Caldwell

    1999-01-01

    Through the interaction of their soils, hydrology, and biotic communities, riparian forests protect and improve water quality, provide habitat for plants and animals, support aquatic communities, and provide many benefits to humans. Virginia, along with other states in the Chesapeake Bay region, has recognized the importance of riparian forests by implementing a plan to restore forested buffers along streams, rivers, and lakes. This project reviews selected literature on riparian forest bu...

  5. Evaluation of the riparian forest state program in Pitangueiras county, Parana

    OpenAIRE

    Peres, Marli Candalaft Alcantara Parra; Universidade Estadual de Londrina/UEL; Ralisch, Ricardo; Universidade Estadual de Londrina/UEL; Ripol, Cristovon Videira; Instituto Paranaense de Assistência Técnica e Extensão Rural do Paraná/EMATER

    2009-01-01

    Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environment...

  6. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  7. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    Science.gov (United States)

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  8. Wildlife Response to Riparian Restoration on the Sacramento River

    Directory of Open Access Journals (Sweden)

    Gregory H Golet

    2008-06-01

    Full Text Available Studies that assess the success of riparian restoration projects seldom focus on wildlife. More generally, vegetation characteristics are studied, with the assumption that animal populations will recover once adequate habitats are established. On the Sacramento River, millions of dollars have been spent on habitat restoration, yet few studies of wildlife response have been published. Here we present the major findings of a suite of studies that assessed responses of four taxonomic groups (insects, birds, bats, and rodents. Study designs fell primarily into two broad categories: comparisons of restoration sites of different ages, and comparisons of restoration sites with agricultural and remnant riparian sites. Older restoration sites showed increased abundances of many species of landbirds and bats relative to younger sites, and the same trend was observed for the Valley elderberry longhorn beetle (Desmocerus californicus dimorphus, a federally threatened species. Species richness of landbirds and ground-dwelling beetles appeared to increase as restoration sites matured. Young restoration sites provided benefits to species that utilize early successional riparian habitats, and after about 10 years, the sites appeared to provide many of the complex structural habitat elements that are characteristic of remnant forest patches. Eleven-year old sites were occupied by both cavity-nesting birds and special-status crevice-roosting bats. Restored sites also supported a wide diversity of bee species, and had richness similar to remnant sites. Remnant sites had species compositions of beetles and rodents more similar to older sites than to younger sites. Because study durations were short for all but landbirds, results should be viewed as preliminary. Nonetheless, in aggregate, they provide convincing evidence that restoration along the Sacramento River has been successful in restoring riparian habitats for a broad suite of faunal species. Not only did

  9. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    Science.gov (United States)

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  10. Preliminary indicators for restoration assessment in riparian reforestations

    Directory of Open Access Journals (Sweden)

    Daniele Nogueira dos Reis

    2014-12-01

    Full Text Available The restoration success in forest ecosystems can be adequately assessed by correct selection of indicators that represent the achievement of established goals. The discriminant analysis technique on indicators selection consists of separation and classification of new observations on pre-defined groups, reducing the number of variables that are discriminant functions linearly dependent of the original variables. This study aims to define an index composed by structural attributes (number of species and individuals planted, height, basal area, number of regenerant species and individuals and chemical and pedological soil attributes to classify riparian reforested environments regarding to restoration taking as reference reforestation around the the Volta Grande reservoir, Minas Gerais State, Brazil. Eleven variables were used for previous classification of plots in partially restored or unrestored groups and also used for discriminant analysis. Variables selected by the discriminant function generated were: number of species and basal area of planted individuals, number of regenerant species and individuals litter accumulation and soil cation exchange capacity. Compatibility of 98% from previous plot classifications and after index formation, show the representativeness of the selected variables on evaluation of restoration of riparian reforestations.

  11. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    Igor do Vale

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; the areas had low richness and low diversity index of Shannon, when compared with data from the secondary forests. The floristic composition was heterogeneous, and the floristic similarity is higher between areas that are closer geographically. In the secondary forests were found 175 species; the areas showed high abundance of individuals, high species richness, diversity and evenness. Secondary forests were separated according to geographic proximity and age, which is directly linked to the successional stage. The PCA analysis established the ecological importance of 29 tree species; however only ten species had enough silvicultural information. Due to a greater ecological importance and viable silvicultural techniques available in the literature, Carapa guianensis, Pachira aquatica, Spondias mombin, Tapirira guianensis and Virola guianensis are the most suitable species to restore the degraded areas, in association with Inga edulis, Jacaranda copaia, Pseudopiptadenia psilostachya, Simarouba amara and Vismia guianensis of the secondary forests, that can be planted in the borders and in the nearby areas of igapó forests.

  12. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  13. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon.

    Science.gov (United States)

    Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de

    2014-01-27

    Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood

  14. Structure and Composition of Old-Growth and Unmanaged Second-Growth Riparian Forests at Redwood National Park, USA

    Directory of Open Access Journals (Sweden)

    Christopher R. Keyes

    2014-02-01

    Full Text Available Restoration of second-growth riparian stands has become an important issue for managers of redwood (Sequoia sempervirens [D. Don] Endl. forest reserves. Identifying differences between old-growth and second-growth forest vegetation is a necessary step in evaluating restoration needs and targets. The objective of this study was to characterize and contrast vegetation structure and composition in old-growth and unmanaged second-growth riparian forests in adjacent, geomorphologically similar watersheds at Redwood National Park. In the old-growth, redwood was the dominant overstory species in terms of stem density, basal area, and importance values. Second-growth was dominated by red alder (Alnus rubra Bong., Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco, and redwood. Understory species were similar in both forests, with several key differences: Oxalis oregana Nutt. and Trillium ovatum Pursh had greater importance values in the old-growth, and Vaccinium parvifolium Sm., Dryopteris spp. and sedges Carex spp. had greater importance values in the second-growth. Notable differences in structure and composition suggest that restoration practices such as thinning could expedite the acquisition of old-growth characteristics in second-growth riparian forests.

  15. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  16. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  17. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  18. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  19. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool

    Science.gov (United States)

    Gonzalez, Eduardo; Martinez-Fernandez, Vanesa; Shafroth, Patrick B.; Sher, Anna A.; Henry, Annie L.; Garofano-Gomez, Virginia; Corenblit, Dov

    2018-01-01

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceaeregeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component.

  20. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool.

    Science.gov (United States)

    González, Eduardo; Martínez-Fernández, Vanesa; Shafroth, Patrick B; Sher, Anna A; Henry, Annie L; Garófano-Gómez, Virginia; Corenblit, Dov

    2018-04-25

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests in

  2. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to

  3. ASSESSMENT OF A 5-YEAR-OLD REHABILITATED RIPARIAN FOREST: IS IT ALREADY SUSTAINABLE?

    Directory of Open Access Journals (Sweden)

    Vinícius Londe

    2015-08-01

    Full Text Available ABSTRACTAs important as the establishment of projects of ecological restoration is its assessment post-implementation to know whether the area is becoming self-sustainable or need to be redirected. In this way, this study aimed to know the current situation of a 5-year-old rehabilitated riparian forest,inserted in an anthropogenic impacted region,at the das Velhas River, Minas Gerais State, studying the canopy openness and recruitment of seedlings as plant indicators. 15 plots were allocated in the forest, where hemispherical photographs were taken to analyze the canopy openness and evaluate all seedlings from 0.30 m to 1.30 m height.Canopy openness ranged from 23.7% to 38.8% between seasons and only 192 seedlings were found,from 13 species, five of them exotic and aggressive. Although canopy openness was low, it seems that lateral penetration of light has been favoring the development and dominancy of plants from invasive species, whereas few native ones have been recruited. The exotic/invasive plants may compromise the success of restoration mainly by competition with native planted species. The outcomes evidenced an unsustainability of the riparian forest and the requirement of some management actions to control exotic and invasive plants and ensure the preservation of the area and its ecological roles over time.

  4. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  5. SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS

    Science.gov (United States)

    Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...

  6. Adaptation of the QBR index for use in riparian forests of central Ohio

    Science.gov (United States)

    Stephanie R. Colwell; David M. Hix

    2008-01-01

    Although high quality riparian forests are an endangered ecosystem type throughout the world, there has been no ecological index to measure the habitat quality of riparian forests in Ohio. The QBR (qualitat del bosc de ribera, or riparian forest quality) index was developed to assess the quality of habitat in Mediterranean forested riparian areas, and we have modified...

  7. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    Science.gov (United States)

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  8. 77 FR 26569 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2012-05-04

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... would occur at the Riparian Sanctuary. No active restoration of native plants would occur. Maintenance... statement and environmental impact report (EIS/EIR) for the Llano Seco Riparian Sanctuary Unit Restoration...

  9. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    Science.gov (United States)

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  10. Comparing herbaceous plant communities in active and passive riparian restoration.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding the efficacy of passive (reduction or cessation of environmental stress and active (typically involving planting or seeding restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years and revegetation technique (active, passive, or none to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states and choose restoration approaches that best facilitate the achievement of revegetation goals.

  11. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    Science.gov (United States)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  12. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China

    Science.gov (United States)

    Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping

    2017-05-01

    Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure

  13. RESTORED RIPARIAN BUFFERS AS TOOLS FOR ECOSYSTEM RESTORATION IN THE MAIA PROCESSES, ENDPOINTS, AND MEASURES OF SUCCESS FOR WATER, SOIL, FLORA AND FAUNA

    Science.gov (United States)

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts, moreover the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  14. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  15. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  16. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  17. The Pen Branch Project: Restoration of a Forested Wetland in South Carolina

    Science.gov (United States)

    Randall K. Kolka; Eric A. Nelson; Ronald E. Bonar; Neil C. Dulohery; David Gartner

    1998-01-01

    The Pen Branch Project is a program to restore a forested riparian wetland that has been subject to thermal disturbance caused by nuclear reactor operations at the Department of Energy's (DOE) Savannah River Site (SRS), an 80,200-hectare nuclear facility located in South Carolina. Various levels of thermal discharges to streams located across the US. have occurred...

  18. Case studies of riparian and watershed restoration in the southwestern United States—Principles, challenges, and successes

    Science.gov (United States)

    Ralston, Barbara E.; Sarr, Daniel A.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-07-18

    Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.

  19. A COMPARISON OF APPROACHES TO PRIORITIZING SITES FOR RIPARIAN RESTORATION

    Science.gov (United States)

    This study compares the results of Olson and Harris (1997) and Russell et al.(1997)in their work to prioritize sites for riparian restoration in the San Luis Rey River watershed. Olson and Harris defined reaches of the mainstem and evaluated the relative potential for restoration...

  20. Pavement and riparian forest shape the bird community along an urban river corridor

    Directory of Open Access Journals (Sweden)

    Christopher J.W. McClure

    2015-07-01

    Full Text Available Knowledge of habitat use by animals within urban-riparian corridors during the breeding season is important for conservation, yet remains understudied. We examined the bird community along an urban-riparian corridor through metropolitan Boise, Idaho and predicted that occupancy of individual species and species richness would be greater in forested areas than in urbanized areas. We surveyed birds throughout the summers of 2009 and 2010 and quantified the m2 of each cover-type within 50-m, 100-m, and 200-m buffers surrounding each survey location using satellite imagery. Occupancy modeling revealed that eight of 14 species analyzed were positively associated with riparian forest, and no species avoided forest. Species richness was negatively associated with the amount of paved surface within 100 m of a survey site with richness declining by more than two species for every hectare of paved surface. Most associations with cover-types–especially riparian forest–were at ⩾100 m. Therefore, the riparian forest within 100 m of a given site along an urban-riparian corridor should be the most important for maintaining species richness.

  1. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  2. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  3. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  4. Effects of river restoration on riparian ground beetles (Coleoptera Carabidae) in Europe

    NARCIS (Netherlands)

    Januschke, Kathrin; Verdonschot, R.C.M.

    2016-01-01

    Studies addressing the effects of river and floodplain restoration on riparian ground beetles mainly focus on single river sections or regions. We conducted a large-scale study of twenty paired restored and degraded river sections throughout Europe. It was tested (i) if restoration had an overall

  5. Explaining linkages (and lack of) between riparian vegetation biodiversity and geomorphic complexity in restored streams of northern Sweden

    Science.gov (United States)

    Polvi, Lina; Maher Hasselquist, Eliza; Nilsson, Christer

    2014-05-01

    Ecological theory suggests that species richness and habitat heterogeneity are positively correlated; therefore stream restoration often relies on increasing geomorphic complexity to promote biodiversity. However, past studies have failed to demonstrate a link between post-restoration biodiversity and geomorphic complexity. These studies have usually relied on only one metric for quantifying complexity, rather than a holistic metric for complexity that represents several aspects of the channel morphology, and have based their observations in catchments with widespread land-use impacts. We use a geomorphic complexity gradient based on five geomorphic aspects (longitudinal, cross-sectional, planform, sediment texture, and instream wood) to determine whether streams with higher levels of complexity also have greater riparian vegetation biodiversity. We also compare biodiversity values with the potential complexity of reaches based on the large-scale controls of valley and channel gradient and the presence of large glacial legacy sediment (boulders). We focus on tributary channels in boreal forests of northern Sweden, where stream modification associated with log-floating from the 1850s to the 1960s created highly simplified channels. Driven by concerns for fish, restoration began in the 1970s by returning large cobbles and boulders into the main channel from the channel edge, and evolved into 'demonstration restoration,' placing very large boulders and trees into the channel, reopening side channels, and constructing fish spawning areas. We evaluate 22 reaches along tributaries of the Vindel River in northern Sweden with four restoration statuses: channelized, restored, demonstration restored, and unimpacted. Detailed morphologic, sediment, and instream wood data allow calculation of 29 metrics of geomorphic complexity, from which a complexity gradient was identified using multivariate statistics. The percent cover of riparian vegetation was identified in 0.5 x 0.5 m

  6. Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects

    Science.gov (United States)

    2016-08-01

    often release seeds in periods of stress , including periods when exposed to herbicides or mechanical disturbances. Such characteristics make this...Approved for public release ; distribution is unlimited. ERDC TN-EMRRP-SI-36 August 2016 Review of Invasive Riparian Trees that Impact USACE...various spatial control methods for woody invasive plant removal in densely vegetated riparian habitats. The USACE ecosystem restoration mission has

  7. EnviroAtlas - Memphis, TN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  8. PHYTOCOENOSES OF URBAN RIPARIAN FORESTS ON THE EXAMPLE OF THE LAS OSOBOWICKI FOREST (WROCŁAW

    Directory of Open Access Journals (Sweden)

    Ewa Stefańska-Krzaczek

    2014-10-01

    Full Text Available The Las Osobowicki forest is remnant riparian woodland of the Odra valley. Floristic data were collected from circular 100m2 plots (with a radius of 5.64m which were systematically chosen in forest communities. Four plant communities were determined within data set. They were represented Fagetalia order and Querco-Fagetea class. Flood prevention caused disappearance of riparian forest species, expansion of common hornbeam and Norway maple expansion and a decrease of species richness. However, spatial distribution of phytocoenoses proves the river influence on the vegetation.

  9. Revisiting restored river reaches - Assessing change of aquatic and riparian communities after five years.

    Science.gov (United States)

    Lorenz, Armin W; Haase, Peter; Januschke, Kathrin; Sundermann, Andrea; Hering, Daniel

    2018-02-01

    Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take

  10. Evaluating the ecological economic success of riparian restoration projects in Arizona (Abstract)

    Science.gov (United States)

    Gary B. Snider

    2000-01-01

    The past 4 years the Arizona Water Protection Fund provided more than $25 million to individuals and organizations for stream and riparian restoration projects in Arizona. Information which increases the awareness of the value of Arizona's riparian systems is crucial to the incorporation of ecosystem services into decision-making frameworks, which are largely...

  11. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  13. EnviroAtlas - Austin, TX - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition

    Science.gov (United States)

    D. Max Smith; Jeffrey Kelly; Deborah M. Finch

    2006-01-01

    Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown....

  15. Morphodynamic effects of riparian vegetation growth after stream restoration

    NARCIS (Netherlands)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Antonius J.F.; Keesstra, Saskia D.; Uijttewaal, Wim S.J.

    2018-01-01

    The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of

  16. The negative influences of the new brazilian forest code on the conservation of riparian forests

    Directory of Open Access Journals (Sweden)

    Silva Normandes Matos da

    2017-12-01

    Full Text Available More than one million hectares of riparian forests were degraded or altered in Mato Grosso State (Brazil up to 2009. The aim of the research is to set a comparative scenario to show differences in the quantification of environmental liabilities in riparian forest areas resulting from the change in native vegetation protection rules due to the transition between Laws 4771/65 and 12651/2012. Data collection took place in a marginal stretch of Vermelho River in Rondonópolis County, Mato Grosso State. The following data set was taken into consideration: aerial images derived from unmanned aerial vehicle, Rapid Eye satellite images and orbital images hosted at Google Earth. The spatial resolution of those images was compared. The aerial photos composed a mosaic that was photo-interpreted to generate land use and occupation classes. The riparian forest areas of a rural property were used as parameter, and their environmental situation was compared in 05 meter and 100 meter strips. Thus, by taking into consideration the current rules, 23,501 m2 of area ceased to be an environmental liability within the riparian forest and became a consolidated rural area. According to the previous Forest Code, in a different scenario, that is, in a set of rural properties, the public authority would receive USD 68,600.00 in fines. The new Brazilian Forestry Code of 2012, which replaces the previous one made in 1965, exempts those responsible for rural property from regenerating previously deforested native vegetation - an obligation established by older Forest Code. We have shown that the new Forest Code has diminished the legal responsibility of the rural owners in relation to the maintenance of forest fragments in their properties.

  17. Hierarchical multi-taxa models inform riparian vs. hydrologic restoration of urban streams in a permeable landscape.

    Science.gov (United States)

    Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M

    2018-03-01

    The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.

  18. Greenhouse gas emissions from a Danish riparian wetland before and after restoration

    DEFF Research Database (Denmark)

    Audet, Joachim; Elsgaard, Lars; Kjærgaard, Charlotte

    2013-01-01

    Restoration of riparian wetlands often aims at increasing the removal of nitrogen and phosphorus by re-establishing the hydrological connectivity between the stream and the surrounding floodplain. However, the geochemically reduced soil conditions in the newly restored area may favor the emission...

  19. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration

    Directory of Open Access Journals (Sweden)

    Aline Luiza Tomazi

    2010-09-01

    Full Text Available Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Brazil, by the characterization of the seed rain and natural regeneration. In two years we collected 21,864 seeds of 51 morphospecies, and recorded 42 colonizing species. Zoochoric seeds belonging to 15 plant families comprised 17% of the seed rain and 19.05% of the spontaneously regenerating plant species. Asteraceae and Poaceae were the most represented families. The artificial perches performed the nucleating function through the increase of zoochoric seed rain. However, possibly due to different barriers that were not evaluated in this study, part of these seeds was not recruited. We recommend the application of this technique for the attraction of dispersers in degraded areas similar to the study site.

  20. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration.

    Directory of Open Access Journals (Sweden)

    Aline Luiza Tomazi

    2010-01-01

    Full Text Available Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Brazil, by the characterization of the seed rain and natural regeneration. In two years we collected 21,864 seeds of 51 morphospecies, and recorded 42 colonizing species. Zoochoric seeds belonging to 15 plant families comprised 17% of the seed rain and 19.05% of the spontaneously regenerating plant species. Asteraceae and Poaceae were the most represented families. The artificial perches performed the nucleating function through the increase of zoochoric seed rain. However, possibly due to different barriers that were not evaluated in this study, part of these seeds was not recruited. We recommend the application of this technique for the attraction of dispersers in degraded areas similar to the study site.

  1. EnviroAtlas - New York, NY - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  2. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  3. 78 FR 16705 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2013-03-18

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... removal and management of invasive plant species would occur at the Riparian Sanctuary. No active... impact statement and environmental impact report (EIS/EIR) for the Llano Seco Riparian Sanctuary Unit...

  4. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  5. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  6. Understanding the Science Behind Riparian Forest Buffers: Effects on Plant and Animal Communities

    OpenAIRE

    Klapproth, Julia C.; Johnson, James E. (James Eric), 1952-

    2009-01-01

    Discusses riparian forests' ability to support many species of wildlife and explains that the importance of a particular riparian area for wildlife will depend on the size of the area, adjoining land uses, riparian vegetation, features inside the area, and the wildlife species of interest.

  7. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines tree buffer for this community as only trees and forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. INFLUENCE OF ECOLOGICAL GROUP COMPOSITION, PLANTATION SPACING AND ARRANGEMENT IN THE RESTORATION OF RIPARIAN FOREST ON RESERVOIR SHORES

    Directory of Open Access Journals (Sweden)

    Alvaro Augusto Vieira Soares

    2016-01-01

    Full Text Available This work aimed to assess the effect of spacing, arrangement and ecological group composition of planted seedlings on the restoration process of artificial reservoir shores in southeastern Brazil. The assessments were performed 12 years after the settlement of the experiment in which five mixed stand models were tested. First, a general evaluation of the stand was performed when we surveyed the overstory and understory, seed bank and soil for chemical analysis.Then, the restoration indicators survival of planted trees, basal area and density of the tree community, litter accumulated on the soil and canopy closure index were utilized to compare the plantation models and to assess the influence the experimental factors on these parameters. In the general analysis, we found that the studied stand presents low diversity, poor regeneration, and seed bank dominated mostly by one planted exotic tree species and weeds, which may jeopardize the self- maintenance of the stand in the future. The factor that most influenced the models was the ecological group composition with the best performance found for models in which both pioneer and non-pioneer groups were used. Probably, the plantation arrangement and spacing did not have greater influence due to both plant mortality and natural regeneration that has developed to this age. Hence, it is not recommended the use of only pioneer species in the implantation of riparian forest and the proportion of 50% pioneers and 50% non-pioneers using as much species as possible is indicated for areas that might present constraints for the natural regeneration.

  9. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  10. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  11. Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America

    Science.gov (United States)

    Shafroth, Patrick B.; Briggs, Mark K.

    2008-01-01

    River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarixoccupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally.

  12. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  13. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  14. Linked in: connecting riparian areas to support forest biodiversity

    Science.gov (United States)

    Marie Oliver; Kelly Burnett; Deanna Olson

    2010-01-01

    Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased management—practices...

  15. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  16. EnviroAtlas - Minneapolis/St. Paul, MN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  17. Avian nest box selection and nest success in burned and unburned southwestern riparian forests

    Science.gov (United States)

    D. Max Smith; Jeffrey F. Kelly; Deborah M. Finch

    2007-01-01

    Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered...

  18. Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002-06

    Science.gov (United States)

    Landon, Matthew K.; Rus, David L.; Dietsch, Benjamin J.; Johnson, Michaela R.; Eggemeyer, Kathleen D.

    2009-01-01

    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable

  19. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Science.gov (United States)

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  20. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  1. Stream channel designs for riparian and wet meadow rangelands in the southwestern United States

    Science.gov (United States)

    Roy Jemison; Daniel G. Neary

    2000-01-01

    Inappropriate land uses have degraded wetland and riparian ecosystems throughout the Southwestern United States. In 1996, the Cibola National Forest in New Mexico implemented a channel relocation project, as part of a road improvement project, to determine the feasibility of restoring wet meadow and riparian ecosystems degraded by inappropriately located roads and...

  2. Early Response of Soil Properties and Function to Riparian Rainforest Restoration

    Science.gov (United States)

    Gageler, Rose; Bonner, Mark; Kirchhof, Gunnar; Amos, Mark; Robinson, Nicole; Schmidt, Susanne; Shoo, Luke P.

    2014-01-01

    Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2–20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates), only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives. PMID:25117589

  3. Early response of soil properties and function to riparian rainforest restoration.

    Directory of Open Access Journals (Sweden)

    Rose Gageler

    Full Text Available Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2-20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates, only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives.

  4. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  5. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  7. EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Portland, OR - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  16. Riparian restoration in the context of Tamarix control in the western United States: Chapter 23

    Science.gov (United States)

    Shafroth, Patrick B.; Merritt, David M.; Briggs, Mark K.; Beauchamp, Vanessa B.; Lair, Kenneth D.; Scott, Michael L.; Sher, Anna; Sher, Anna; Quigley, Martin F.

    2013-01-01

    This chapter focuses on the restoration of riparian systems in the context of Tamarix control—that is, Tamarix-dominated sites are converted to a replacement vegetation type that achieves specific management goals and helps return parts of the system to a desired and more natural state or dynamic. It reviews research related to restoring native riparian vegetation following tamarix control or removal. The chapter begins with an overview of objective setting and the planning of tamarix control and proceeds by emphasizing the importance of considering site-specific factors and of context in selecting and prioritizing sites for restoration. In particular, it considers valley and bottomland geomorphology, along with river flow regime and associated fluvial disturbance, surface water and groundwater availability, and soil salinity and texture. The chapter concludes with a discussion of costs and benefits associated with active, passive, and combined ecological restoration approaches, as well as the key issues to consider in carrying out restoration projects at a range of scales.

  17. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  18. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    Directory of Open Access Journals (Sweden)

    Melissa Koontz

    2016-02-01

    Full Text Available This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1, the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  19. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  20. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  1. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China.

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Zhou, Honghua; Chen, Yapeng; XinmingHao; Fu, Aihong; Ma, Jianxin

    2017-06-01

    Studying the water use processes of desert riparian vegetation in arid regions and analyzing the response and adaptation strategies of plants to drought stress are of great significance for developing ecological restoration measures. Based on field monitoring and test analyses of physiological ecological indicators of dominant species (Populus euphratica and Tamarix chinensis) in the desert riparian forest in the lower reaches of the Tarim River, the water relations of P. euphratica and T. chinensis under drought stress are discussed and some water use strategies put forward. The results show that (1) concerning plant water uptake, desert riparian forests depend mainly on groundwater to survive under long-term water stress. (2) Concerning plant water distribution, the survival of P. euphratica and nearby shallow root plants is mainly due to the hydraulic lift and water redistribution of P. euphratica under drought stress. (3) Concerning plant water transport, P. euphratica sustains the survival of competitive and advantageous branches by improving their ability to acquire water while restraining the growth of inferior branches. (4) Concerning plant transpiration, the sap flow curves of daily variations of P. euphratica and T. chinensis were wide-peak sin and narrower-peak respectively. T. chinensis has better environmental adaptability.

  2. 78 FR 76317 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2013-12-17

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... and Wildlife (CDFW), announce that the record of decision (ROD) for the Llano Seco Riparian Sanctuary...: www.fws.gov/refuge/sacramento river/ and http://www.riverpartners.org/where-we-work/sanctuary...

  3. The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna

    Directory of Open Access Journals (Sweden)

    IC Valle

    Full Text Available We assessed two dimensions of stream connectivity: longitudinal (between forest patches along the stream and lateral (riparian vegetation, using macroinvertebrate assemblages as bioindicators. Sites representing different land-uses were sampled in a lowland basin that holds a mosaic of protected areas. Land-use analysis, forest successional stages and riparian zone widths were calculated by the GIS analysis. Macroinvertebrate fauna was strongly affected by land-use. We observed a continuous decrease in the number of sensitive species, %Shredders and IBE-IOC biotic index from the upstream protected area to highly deforested sites, increasing again where the stream crosses a Biological Reserve. When analysing buffer strips, we found aquatic fauna responding to land-use alterations beyond the 30 m riparian corridor (60 m and 100 m wide. We discussed the longitudinal connectivity between forest patches and the riparian vegetation buffer strips necessary to hold high macroinvertebrate diversity. We recommend actions for the increase/maintenance of biodiversity in this and other lowland basins.

  4. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  5. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  10. TREE SPECIES DIRECT SOWING FOR FOREST RESTORATION

    Directory of Open Access Journals (Sweden)

    Robério Anastácio Ferreira

    2007-09-01

    Full Text Available The direct sowing to tropical forest restoration can be viable when the ecological and silvicultural aspects of species areknown. This work evaluated the effect of breaking seed dormancy and a physical protector on the initial growth of riparian treespecies. The experiment was carried out in a randomized blocks design, in a factorial (2x2, with four blocks and four plots for eachtreatment. The treatment to break seed dormancy used were: immersion in sulphuric acid for 20 minutes and washing in water for 1hour plus soaking for 24 hours for Trema micrantha; immersion in boiling water (100oC with following soaking until refreshing for24 hours to Senna multijuga and Senna macranthera and pre-soaking in water for 2 hours for Solanum granuloso-leprosum. Thephysical protector used was a transparent plastic cup (500mL. The breaking seed dormancy used was efficient in laboratory, exceptfor S. macranthera. In field conditions, it was efficient only for S. multijuga and S. macranthera. The physical protector did notpresented any benefit for the studied tree species regarding seedlings emergence and survival, but it provided significant differencesin height and base diameter for S. multijuga and in height for S. macranthera after three months. After 24 months, T. micranthapresented the highest values for height and basal diameter. S. macranthera presented the height relative growth and T. micrantha thehighest basal diameter. The studied species can be recommended for ecological forest restoration, using direct sowing.

  11. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  12. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  13. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  15. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    Science.gov (United States)

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  16. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  17. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  18. A phytosociological study of riparian forests in Benin (West Africa)

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2004-01-01

    Floristic ordination and classification of riparian forests in Benin were derived from a comprehensive floristic inventory. TWINSPAN classification and DCA analysis of a data set of 818 plant species and 180 releve's yielded 12 plant communities. Importance of waterways, relief, topography, latitude

  19. Resilience and Restoration of Lakes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  20. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  1. Breeding birds in riparian and upland dry forests of the Cascade Range

    Science.gov (United States)

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  2. SHRUBBY TREE COMPONENT OF RIPARIAN CORRIDORS IN RESTORATION AND NATURAL REMAINING AREAS OF MATRIX FORESTRY, RIO NEGRINHO, SC STATE

    Directory of Open Access Journals (Sweden)

    Eliziane Carla Scariot

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814578The aim of this study was to analyze the shrubby tree component in riparian corridors in restoration process and natural remainders in a matrix forestry. We identified the richness, diversity, dispersal and pollination syndromes of the individuals and estimate the floristic similarity. The study was conducted at the producing farm of Pinus spp. wood Santa Alice, located in Rio Negrinho city, Santa Catarina state, Brazil. We adopted the center-quarter method for survey the shrubby tree component in four sample groups: CA (advanced stage of riparian corridors vegetation, CR (riparian corridors in restoration, MA (advanced stage of natural remaining, MI (intermediate stage of natural remaining. We found the highest richness and diversity index in MA and CR. Regarding the number of individuals, the dispersal and pollination syndromes predominant in all sample groups were zoochory and zoophilia. CR and CA had the highest percentage of floristic similarity while MA and MI did not form clusters. The sample group CR has composition, richness and diversity more similar to CA. This indicates that the restoration of riparian zones has conditions to rescue the components and the interactions of an ecological community.

  3. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  4. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  5. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  6. Governing Forest Landscape Restoration: Cases from Indonesia

    Directory of Open Access Journals (Sweden)

    Cora van Oosten

    2014-05-01

    Full Text Available Forest landscape restoration includes both the planning and implementation of measures to restore degraded forests within the perspective of the wider landscape. Governing forest landscape restoration requires fundamental considerations about the conceptualisation of forested landscapes and the types of restoration measures to be taken, and about who should be engaged in the governance process. A variety of governance approaches to forest landscape restoration exist, differing in both the nature of the object to be governed and the mode of governance. This paper analyses the nature and governance of restoration in three cases of forest landscape restoration in Indonesia. In each of these cases, both the original aim for restoration and the initiators of the process differ. The cases also differ in how deeply embedded they are in formal spatial planning mechanisms at the various political scales. Nonetheless, the cases show similar trends. All cases show a dynamic process of mobilising the landscape’s stakeholders, plus a flexible process of crafting institutional space for conflict management, negotiation and decision making at the landscape level. As a result, the landscape focus changed over time from reserved forests to forested mosaic lands. The cases illustrate that the governance of forest landscape restoration should not be based on strict design criteria, but rather on a flexible governance approach that stimulates the creation of novel public-private institutional arrangements at the landscape level.

  7. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  8. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  9. Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden.

    Science.gov (United States)

    Helfield, James M; Engström, Johanna; Michel, James T; Nilsson, Christer; Jansson, Roland

    2012-01-01

    Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.

  10. Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?

    Science.gov (United States)

    Hunt, L.; Marrochi, N.; Bonetto, C.; Liess, M.; Buss, D. F.; Vieira da Silva, C.; Chiu, M.-C.; Resh, V. H.

    2017-12-01

    We investigated the influence and relative importance of insecticides and other agricultural stressors in determining variability in invertebrate communities in small streams in intensive soy-production regions of Brazil and Paraguay. In Paraguay we sampled 17 sites on tributaries of the Pirapó River in the state of Itapúa and in Brazil we sampled 18 sites on tributaries of the San Francisco River in the state of Paraná. The riparian buffer zones generally contained native Atlantic forest remnants and/or introduced tree species at various stages of growth. In Brazil the stream buffer width was negatively correlated with sediment insecticide concentrations and buffer width was found to have moderate importance in mitigating effects on some sensitive taxa such as mayflies. However, in both regions insecticides had low relative importance in explaining variability in invertebrate communities, while various habitat parameters were more important. In Brazil, the percent coverage of soft depositional sediment in streams was the most important agriculture-related explanatory variable, and the overall stream-habitat score was the most important variable in Paraguay streams. Paraguay and Brazil both have laws requiring forested riparian buffers. The ample forested riparian buffer zones typical of streams in these regions are likely to have mitigated the effects of pesticides on stream invertebrate communities. This study provides evidence that riparian buffer regulations in the Atlantic Forest region are protecting stream ecosystems from pesticides and other agricultural stressors. Further studies are needed to determine the minimum buffer widths necessary to achieve optimal protection.

  11. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  12. Riparian buffer and density management influences on microclimate of young headwater forests of Western Oregon.

    Science.gov (United States)

    Paul D. Anderson; David J. Larson; Samuel S. Chan

    2007-01-01

    Thinning of 30- to 70-year-old Douglas-fir (Psuedotsuga menziesii [Mirb.] Franco) stands is a common silvicultural activity on federal forest lands of the Pacific Northwest, United States. Empirical relationships among riparian functions, silvicultural treatments, and different riparian buffer widths are not well documented for small headwater...

  13. Structure, composition and regeneration of riparian forest along an altitudinal gradient in northern Iran

    Science.gov (United States)

    Mohammad Naghi Adel; Hassan Pourbabaei; Ali Salehi; Seyed Jalil Alavi; Daniel C. Dey

    2017-01-01

    In order to protect and understand the regeneration of riparian forests, it is important to understand the environmental conditions that lead to their vegetation differentiation. We evaluated the structure, composition, density and regeneration of woody species in forests along the river Safaroud in Ramsar forest in northern Iran in relation to elevation, soil...

  14. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  15. Chinese Privet (Ligustrum sinense) removal and its effect on native plant communities of Riparian Forests

    Science.gov (United States)

    James Hanula; Scott Horn; John W. Taylor

    2010-01-01

    Chinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. Weremoved privet shrubs from four riparian forests in October 2005 with a GyrotracH mulching machine or by handfelling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant...

  16. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    Science.gov (United States)

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  17. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  18. Post-wildfire natural restoration of riparian vegetation under stable hydro-geomorphic conditions: Nahal Grar, Northern Negev Desert, Israel

    Science.gov (United States)

    Egozi, Roey

    2015-04-01

    Wildfires are common to the Mediterranean region due to its defined dry season and long historical anthropogenic activities. Most of post-wildfire studies focus on mountains areas and thus refer to the hill-slope and its physical characteristics, e.g. morphology, length, angles, and aspect; its soil characteristics, e.g. type, infiltration rate, repellency; and its vegetative covers, e.g. planted trees vs. natural forest or native vs. exotic vegetation. In contrary there is very limited literature focusing on ecological and hydro-geomorphic aspects of post-wildfire of riparian vegetation / zone probably because of its negligible burned area relative to the spread of the fire, sometimes, over the whole watershed area. The limited literature on the topic is surprising given the fact that riparian vegetation zone has been acknowledged as a unique and important habitat supporting rich biodiversity. Herein we report on a wildfire event occurred on October 14th 2009 in a river section of Nahal Grar, Northern Negev Desert, Israel. The wildfire although was limited in its area (only 3 hectare) extended over the channel alone from bank to bank and thus provide a unique case study of completely burn down of riparian vegetation, mainly dense stands of Common Red (Australis Phragmites. Therefore a detailed study of this event provides an opportunity to tackle one of the basics questions which is determining the rate of natural restoration process that act at the immediate time after the wildfire event occurred. This type of information is most valuable to professional and stakeholders for better management of post-fire riparian zones. The results of the study suggest that under stable conditions, i.e. no major flood events occurred; disturbance time was short and ranged over 200 days due to, almost, immediate recovery of the riparian vegetation. However the re-growth of the riparian vegetation was not even but rather deferential and more complex then reported in the literature

  19. Forest restoration is forward thinking

    Science.gov (United States)

    R. Kasten Dumroese; Brian J. Palik; John A. Stanturf

    2015-01-01

    It is not surprising to us that the topic of forest restoration is being discussed in the Journal of Forestry. It is a topic frequently bantered about in the literature; a quick search in Google Scholar for "forest restoration" generates more than 1 million hits. A significant portion of the debate centers on the search for succinct, holistic, universally...

  20. Evaluation of the riparian forest state program in Pitangueiras county, Parana / Avaliação do programa estadual “Mata Ciliar” no município de Pitangueiras, Paraná

    Directory of Open Access Journals (Sweden)

    Cristovon Videira Ripol

    2009-10-01

    Full Text Available Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environmental preservation and law. The results by means of interviews with the farmers and county leaders. It was concluded that the reparian forest state program was efficient due to the partner ship between Pitangueiras City Hall, Government Department of Environment and Coffee Farmer Association. The installation of a native tree nursery in Pitangueiras offered plants to farmers at the opportune period for planting; the farmers have conscience about the necessity of planting riparing forests; and is necessary to do a public policy to include the farmers in the carbon credict projects created with the riparian forest restoration.O uso de extratos vegetais com propriedades nematicidas no controle de fitonematóides representa mais uma alternativa para os pequenos produtores, com valor prático e econômico, e sem riscos de contaminação do ambiente. A adição ao solo dos extratos aquosos de 20 espécies de plantas foi avaliada sobre a população de Meloidogyne javanica em plantas de tomateiro, em casa de vegetação. Estas foram divididas em dois grupos e avaliadas em dois experimentos separados. No mesmo dia em que se infestou o solo com 5.000 ovos do nematóide, adicionou-se 20 mL dos extratos aquosos obtidos de folhas de artemísia (Chrysanthemum parthenium, bardana (Arctium lappa, capim cidreira (Cymbopogon citratus, carqueja (Bacharis trimera, cavalinha (Equisetum sp., cinamomo (Melia azedarach, hortelã (Mentha sp., mamona (Ricinus communis, manjeric

  1. Thinning and riparian buffer configuration effects on down wood abundance in headwater streams in coniferous forests

    Science.gov (United States)

    Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...

  2. Restoring forests

    DEFF Research Database (Denmark)

    Jacobs, Douglass F.; Oliet, Juan A.; Aronson, James

    2015-01-01

    of land requiring restoration implies the need for spatial prioritization of restoration efforts according to cost-benefit analyses that include ecological risks. To design resistant and resilient ecosystems that can adapt to emerging circumstances, an adaptive management approach is needed. Global change......, in particular, imparts a high degree of uncertainty about the future ecological and societal conditions of forest ecosystems to be restored, as well as their desired goods and services. We must also reconsider the suite of species incorporated into restoration with the aim of moving toward more stress resistant...... and competitive combinations in the longer term. Non-native species may serve an important role under some circumstances, e.g., to facilitate reintroduction of native species. Propagation and field establishment techniques must promote survival through seedling stress resistance and site preparation. An improved...

  3. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes de Oliveira Machado Filho

    2015-09-01

    Full Text Available Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  4. The intertwining paths of the density managment and riparian buffer study and the Northwest Forest Plan

    Science.gov (United States)

    Kenneth J. Ruzicka; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Initiated simultaneously, the Density Management and Riparian Buff er Study of western Oregon and the Northwest Forest Plan have had intertwining paths related to federal forest management and policy changes in the Pacifi c Northwest over the last 15 to 20 years. We briefl y discuss the development of the Northwest Forest Plan and how it changed the way forest policy...

  5. Prioritization of Forest Restoration Projects: Tradeoffs between Wildfire Protection, Ecological Restoration and Economic Objectives

    Directory of Open Access Journals (Sweden)

    Kevin C. Vogler

    2015-12-01

    Full Text Available The implementation of US federal forest restoration programs on national forests is a complex process that requires balancing diverse socioecological goals with project economics. Despite both the large geographic scope and substantial investments in restoration projects, a quantitative decision support framework to locate optimal project areas and examine tradeoffs among alternative restoration strategies is lacking. We developed and demonstrated a new prioritization approach for restoration projects using optimization and the framework of production possibility frontiers. The study area was a 914,657 ha national forest in eastern Oregon, US that was identified as a national priority for restoration with the goal of increasing fire resiliency and sustaining ecosystem services. The results illustrated sharp tradeoffs among the various restoration goals due to weak spatial correlation of forest stressors and provisional ecosystem services. The sharpest tradeoffs were found in simulated projects that addressed either wildfire risk to the urban interface or wildfire hazard, highlighting the challenges associated with meeting both economic and fire protection goals. Understanding the nature of tradeoffs between restoration objectives and communicating them to forest stakeholders will allow forest managers to more effectively design and implement economically feasible restoration projects.

  6. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Science.gov (United States)

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  7. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  8. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  9. Quantifying change in riparian ash forests following the introduction of EAB in Michigan and Indiana

    Science.gov (United States)

    Susan J. Crocker; Dacia M. Meneguzzo

    2012-01-01

    The emerald ash borer (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae; EAB) is an introduced beetle that kills ash (Fraxinus spp.) trees. While most EAB-related ash mortality has been documented in urban areas, the effects of EAB in forested settings, particularly in riparian forests, are not well known. This study utilizes...

  10. Restoring forest ecosystems: the human dimension

    Science.gov (United States)

    Bruce R. Hull; Paul H. Gobster

    2000-01-01

    In the past two decades, ecological restoration has moved from an obscure and scientifically suspect craft to a widely practiced and respected profession with considerable scientific knowledge and refined on-the-ground practices. Concurrently, forest restoration has become a valued skill of forestry professionals and a popular goal for forest management. Politics and...

  11. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera in Cerrado areas

    Directory of Open Access Journals (Sweden)

    Helena S.R. Cabette

    Full Text Available ABSTRACT Preserved riparian vegetation usually has greater environmental complexity than the riparian vegetation modified by human actions. These systems may have a greater availability and diversity of food resources for the species. Our objective was to evaluate the effect of changes on the structure of the riparian forest on species richness, beta diversity and composition of butterfly species in the Cerrado of Mato Grosso. We tested the hypotheses that: (i higher species richness and (ii beta diversity would be recorded in more preserved environments; and (iii species composition would be more homogeneous in disturbed habitats. For hypothesis testing, the riparian vegetation of eight streams were sampled in four periods of the year in a fixed transect of 100 m along the shores. The richness of butterfly species is lower in disturbed than in preserved areas. However, species richness is not affected by habitat integrity. Beta diversity differed among sites, such that preserved sites have greater beta diversity, showing greater variation in species composition. In addition, beta diversity was positively affected by environmental heterogeneity. A total of 23 of the 84 species sampled occurred only in the changed environment, 42 were exclusive to preserved sites and 19 occurred in both environments. The environmental change caused by riparian forest removal drastically affects the butterfly community. Therefore, riparian vegetation is extremely important for butterfly preservation in the Cerrado and may be a true biodiversity oasis, especially during the dry periods, when the biome undergoes water stress and resource supply is more limited.

  12. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Chazdon, Robin L; Lindenmayer, David B; Sansevero, Jerônimo B B; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E; Strassburg, Bernardo B N

    2017-11-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.

  13. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  14. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Thiago da Silva Farias

    2015-04-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n3p23 Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  15. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  16. Removing Chinese privet from riparian forests still benefits pollinators five years later

    Science.gov (United States)

    Jacob R. Hudson; James Hanula; Scott Horn

    2014-01-01

    Chinese privet (Ligustrum sinense) is an invasive shrub of the Southeastern U.S. that forms dense stands and limits biodiversity. It was removed from heavily infested riparian forests of the Georgia Piedmont in 2005 by mulching machine or chainsaw felling and subsequent herbicide application. Abundance and species richness of bees and butterflies...

  17. Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering

    Science.gov (United States)

    Kas Dumroese; Mary I. Williams; John A. Stanturf; Brad St. Clair

    2015-01-01

    Tomorrow’s forests face extreme pressures from contemporary climate change, invasive pests, and anthropogenic demands for other land uses. These pressures, collectively, demand land managers to reassess current and potential forest management practices. We discuss three considerations, functional restoration, assisted migration, and bioengineering, which are currently...

  18. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  19. Techniques of forest restoration in restingas

    Directory of Open Access Journals (Sweden)

    Liliane Garcia da Silva Morais Rodrigues

    2016-03-01

    Full Text Available Restinga is an ecosystem of the Atlantic Forest Biome vegetation which has ecological functions and is undergoing anthropogenic occupations that result in the disturbance and its suppression of these environments. But to be the restoration of degraded restinga is necessary to know the different formations of the ecosystem and their respective characteristics. From this diagnosis, one can choose the most appropriate techniques to apply for its restoration. Thus, this study aims to conduct a literature on restoration techniques in restinga environments. It was found that forest restoration on restinga, in most cases there is use of natural regeneration techniques nucleation, and these studies highlight the successional advances and establishments of life forms preserved features of the area, thus making the restoration in these environments.

  20. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests

    OpenAIRE

    Crouzeilles, Renato; Ferreira, Mariana S.; Chazdon, Robin L.; Lindenmayer, David B.; Sansevero, Jerônimo B. B.; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E.; Strassburg, Bernardo B. N.

    2017-01-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biom...

  1. Restoration of biogeochemical function in mangrove forests

    Science.gov (United States)

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    Forest structure of mangrove restoration sites (6 and 14 years old) at two locations (Henderson Creek [HC] and Windstar [WS]) in southwest Florida differed from that of mixed-basin forests (>50 years old) with which they were once contiguous. However, the younger site (HC) was typical of natural, developing forests, whereas the older site (WS) was less well developed with low structural complexity. More stressful physicochemical conditions resulting from incomplete tidal flushing (elevated salinity) and variable topography (waterlogging) apparently affected plant survival and growth at the WS restoration site. Lower leaf fall and root production rates at the WS restoration site, compared with that at HC were partly attributable to differences in hydroedaphic conditions and structural development. However, leaf and root inputs at each restoration site were not significantly different from that in reference forests within the same physiographic setting. Macrofaunal consumption of tethered leaves also did not differ with site history, but was dramatically higher at HC compared with WS, reflecting local variation in leaf litter processing rates, primarily by snails (Melampus coffeus). Degradation of leaves and roots in mesh bags was slow overall at restoration sites, however, particularly at WS where aerobic decomposition may have been more limited. These findings indicate that local or regional factors such as salinity regime act together with site history to control primary production and turnover rates of organic matter in restoration sites. Species differences in senescent leaf nitrogen content and degradation rates further suggest that restoration sites dominated by Laguncularia racemosa and Rhizophora mangle should exhibit slower recycling of nutrients compared with natural basin forests where Avicennia germinans is more abundant. Structural development and biogeochemical functioning of restored mangrove forests thus depend on a number of factors, but site

  2. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter; Johnsen, Anders R.

    2017-01-01

    nitrate removal in groundwater primarily by two mechanisms. First, by creating a stagnant flow zone beneath the flooded area thereby increasing the residence time and leaving more time for nitrate removal. Secondly, nitrate removal is increased by enhancing upward flow into the highly reactive organic......A restored riparian zone was characterized to understand the effects of flooding on subsurface hydrological flow paths and nitrate removal in groundwater. Field and laboratory investigations were combined with numerical modeling of dynamic flow and reactive nitrate transport. Flooding enhances...

  3. Riparian forest restoration: Conflicting goals, trade-offs, and measures of success

    Science.gov (United States)

    Heather L. Bateman; David M. Merritt; J. Bradley Johnson

    2012-01-01

    Restoration projects can have varying goals, depending on the specific focus, rationale, and aims for restoration. When restoration projects use project-specific goals to define activities and gauge success without considering broader ecological context, determination of project implications and success can be confounding. We used case studies from the Middle Rio...

  4. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Science.gov (United States)

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  5. Removing an exotic shrub from riparian forests increases butterfly abundance and diversity

    Science.gov (United States)

    James Hanula; Scott Horn

    2011-01-01

    Invasive plants are one of the greatest threats to endangered insect species and a major threat to Lepidoptera in eastern North America. We investigated the effects of the invasive shrub Chinese privet (Ligustrum sinense) and two methods (mulching or hand-felling) of removing it from riparian forests on butterfly communities and compared them to untreated, heavily...

  6. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  7. The evaluation of the establishment and growth of indigenous trees to restore deforested riparian areas in the Mapungubwe National Park, South Africa / Theo Scholtz

    OpenAIRE

    Scholtz, Theo

    2007-01-01

    The deforestation of riparian areas is a major concern in southern Africa. These areas are characterized as fragile ecosystems which contribute largely to the regional and global biodiversity of the world. It is therefore important to restore these degraded areas along the natural rivers of South Africa to ensure the sustainability and biodiversity of riparian corridors. Riparian areas inside the National Parks of South Africa, and especially in Mapungubwe National Park, have a high esthetica...

  8. Variable density management in riparian reserves: lessons learned from an operational study in managed forests of western Oregon, USA.

    Science.gov (United States)

    Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson

    2004-01-01

    A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...

  9. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  10. Tribal experiences and lessons learned in riparian ecosystem restoration

    Science.gov (United States)

    Ronald K. Miller; James E. Enote; Cameron L. Martinez

    1996-01-01

    Riparian ecosystems have been part of the culture of land use of native peoples in the Southwest United States for thousands of years. The experiences of tribal riparian initiatives to incorporate modern elements of environment and development with cultural needs are relatively few. This paper describes tribal case examples and approaches in riparian management which...

  11. Effectiveness monitoring for the aquatic and riparian component of the Northwest Forest Plan: conceptual framework and options.

    Science.gov (United States)

    Gordon H. Reeves; David B. Hohler; David P. Larsen; David E. Busch; Kim Kratz; Keith Reynolds; Karl F. Stein; Thomas Atzet; Polly Hays; Michael. Tehan

    2004-01-01

    An Aquatic and Riparian Effectiveness Monitoring Plan (AREMP) for the Northwest Forest Plan is intended to characterize the ecological condition of watersheds and aquatic ecosystems. So to determine the effectiveness of the Northwest Forest Plan to meet relevant objectives, this report presents the conceptual foundation of options for use in pilot testing and...

  12. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Science.gov (United States)

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  14. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  15. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-01-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  16. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  17. An initial evaluation of potential options for managing riparian reserves of the Aquatic Conservation Strategy of the Northwest Forest Plan

    Science.gov (United States)

    Gordon H. Reeves; Brian R. Pickard; K. Norman. Johnson

    2016-01-01

    The Aquatic Conservation Strategy (ACS) of the Northwest Forest Plan guides management of riparian and aquatic ecosystems on federal lands in western Oregon, western Washington, and northern California. We applied new scientific findings and tools to evaluate two potential options, A and B, for refining interim riparian reserves to meet ACS goals and likely challenges...

  18. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  19. Sandy River Delta Habitat Restoration : Annual Report, January 2008 - March 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Robin [USDA Forest Service, Columbia River Gorge National Scenic Area

    2009-09-11

    During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additional funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are

  20. Soil and water characteristics in restored canebrake and forest riparian zones

    Science.gov (United States)

    Danielle M. Andrews; Christopher D. Barton; Randy Kolka; Charles C. Rhoades; Adam J. Dattilo

    2011-01-01

    The degradation of streams has been widespread in the United States. In Kentucky, for instance, almost all of its large streams have been impounded or channelized. A restoration project was initiated in a channelized section of Wilson Creek (Nelson Co., Kentucky) to return its predisturbance meandering configuration. A goal of the project was to restore the native...

  1. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives

    Science.gov (United States)

    Kevin C. Vogler; Alan A. Ager; Michelle A. Day; Michael Jennings; John D. Bailey

    2015-01-01

    The implementation of US federal forest restoration programs on national forests is a complex process that requires balancing diverse socioecological goals with project economics. Despite both the large geographic scope and substantial investments in restoration projects, a quantitative decision support framework to locate optimal project areas and examine...

  2. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  3. Nesting characteristics of mourning doves in central New Mexico: Response to riparian forest change

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; David L. Hawksworth

    2012-01-01

    Riparian forests of the American Southwest are especially prone to changes in composition and structure due to natural and anthropogenic factors. To determine how breeding mourning doves (Zenaida macroura) respond to these changes, we examined nest site use and nest survival in control plots, fuel reduction plots before and after mechanical thinning, and post-wildfire...

  4. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    Science.gov (United States)

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration

  5. Analyzing ecological restoration strategies for water and soil conservation

    Science.gov (United States)

    Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214

  6. Analyzing ecological restoration strategies for water and soil conservation.

    Science.gov (United States)

    Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.

  7. Analyzing ecological restoration strategies for water and soil conservation.

    Directory of Open Access Journals (Sweden)

    Sandra Isay Saad

    Full Text Available The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil, where one of first Brazilian Payment for Ecosystem Services (PES projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion, so it will be advisable to consider the two types of restoration.

  8. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Helena National Forest (HNF) is proposing on the Lincoln Ranger...

  9. Rhododendron maximum impacts seed bank composition and richness following Tsuga canadensis loss in riparian forests

    Science.gov (United States)

    Tristan M. Cofer; Katherine J. Elliott; Janis K. Bush; Chelcy F. Miniat

    2018-01-01

    Southern Appalachian riparian forests have undergone changes in composition and function from invasive pathogens and pests. Castanea dentata mortality in the 1930s from chestnut blight (Cryphonectria parasitica) and Tsuga canadensis mortality in the 2000s from the hemlock woolly adelgid (Adelges tsugae) have led to the expansion and...

  10. Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson A. Müller

    2012-03-01

    Full Text Available Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil. Human-attracted mosquitoes were collected for one hour, around sunset time (half hour before and half after, from April to December 2006, in two environments (riparian forest and near houses, in Tibagi river basin, Palmeira municipality, State of Paraná. Seven-hundred forty-nine mosquitoes, belonging to 13 species, were collected. Psorophora champerico Dyar & Knab, 1906 (42.86% and Psorophora discrucians (Walker, 1856 (40.59% were the most frequent species. No significant differences between quantities of Ps. champerico (t = -0.792; d.f. = 16; p = 0.43 and Ps. discrucians (t = 0.689; d.f. = 16; p = 0.49 obtained in riparian forest and near houses were observed, indicating similar conditions for crepuscular activity of these species in both environments. Psorophora champerico and Ps. discrucians responded (haematophagic activity to environmental stimuli associated with the twilight hours differently in distinct habitats studied. The former species is registered for the first time in the Atlantic forest biome.

  11. Forests planted for ecosystem restoration or conservation.

    Science.gov (United States)

    Constance A. Harrington

    1999-01-01

    Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...

  12. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program

    Science.gov (United States)

    Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  13. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program.

    Science.gov (United States)

    Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  14. Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China

    Directory of Open Access Journals (Sweden)

    Siegmund Missall

    2018-03-01

    Full Text Available Cities at the fringe of the Taklimakan desert in NW China are prone to dust and sand storms with serious consequences for human well-being. The Kökyar Protection Forest was established in the 1980s as an ecological engineering project with the intent of protecting the city of Aksu, NW China, from these impacts. It is designed as a combination of poplar shelterbelts and orchards, irrigated by river water from the Aksu River, the main tributary of the Tarim River. Prevalent literature describes it as an afforestation project for combatting desertification with manifold positive effects for the economic, social, and environmental dimension of sustainable development. This paper sets out to challenge these claims by a sustainability assessment in which the plantation is examined from a broader perspective, embedding it to the wider context of social and environmental problems in South Xinjiang. Methods comprise evapotranspiration calculations, interviews, a socioeconomic household survey, stakeholder dialogues, and literature research. Results affirm its economic sustainability, but see a mixed record for the social sphere. From the nature conservation point of view, it has to be classified as unsustainable because its high irrigation water consumption results in the downstream desiccation and desertification of natural riparian forests along the Tarim River, causing a forest loss in the downstream area twice the size of the forest gain in the upstream area. There is a trade-off between artificial shelterbelt plantations for urban ecosystem services on the one hand side, and natural riparian forests and their biodiversity on the other hand side. The paper recommends restricting agricultural extension, and using locally adapted less water consuming agroforestry schemes to protect urban dwellers from dust stress.

  15. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    Science.gov (United States)

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. 

  16. Forest landscape restoration in the drylands of Latin America

    OpenAIRE

    Newton, Adrian C.; Del Castillo, Rafael F.; Echeverría, Cristian; Geneletti, Davide; González Espinosa, Mario; Malizia, Lucio R.; Premoli, Andrea C.; Rey Benayas, José María; Smith Ramírez, Cecilia; Williams Linera, Guadalupe

    2012-01-01

    Forest Landscape Restoration (FLR) involves the ecological restoration of degraded forest landscapes, with the aim of benefiting both biodiversity and human well-being. We first identify four fundamental principles of FLR, based on previous definitions. We then critically evaluate the application of these principles in practice, based on the experience gained during an international, collaborative research project conducted in six dry forest landscapes of Latin America. Research highlighted t...

  17. Post-Fire Restoration Plan for Sustainable Forest Management in South Korea

    Directory of Open Access Journals (Sweden)

    Soung-Ryoul Ryu

    2017-05-01

    Full Text Available This review was to determine a standard post-fire restoration strategy for use in South Korea according to the magnitude of the damage and the condition of the affected site. The government has strongly enforced reforestation in deforested areas as well as fire prevention and suppression since the 1960s. These efforts have successfully recovered dense even-aged forests over the last five decades. However, high fuel loading and the homogeneous structure have made forests vulnerable to large fires. In recent years, large forest fires have occurred in the eastern coastal region of Korea. Forest fires can significantly influence the economic and social activities of the residents of such affected forest regions. Burned areas may require urgent and long-term restoration strategies, depending on the condition of the affected site. Erosion control is the most important component of an urgent restoration and should be completed before a rainy season to prevent secondary damage such as landslides and sediment runoff in burned areas. Long-term restoration is necessary to renew forest functions such as timber production, water conservation, ecosystem conservation, and recreation for residents. Sound restoration for burned areas is critical for restoring healthy ecological functions of forests and providing economic incentives to local residents.

  18. Black-chinned hummingbird nest-site selection and nest survival in response to fuel reduction in a southwestern riparian forest

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; David L. Hawksworth

    2009-01-01

    Despite widespread efforts to avert wildfire by reducing the density of flammable vegetation, little is known about the effects of this practice on the reproductive biology of forest birds. We examined nest-site selection and nest survival of the Black-chinned Hummingbird (Archilochus alexandri) in New Mexico riparian forests treated or not for fuel...

  19. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    Science.gov (United States)

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  20. Mechanical site preparation for forest restoration

    Science.gov (United States)

    Magnus Lof; Daniel C. Dey; Rafael M. Navarro; Douglass F. Jacobs

    2012-01-01

    Forest restoration projects have become increasingly common around the world and planting trees is almost always a key component. Low seedling survival and growth may result in restoration failures and various mechanical site preparation techniques for treatment of soils and vegetation are important tools used to help counteract this. In this article, we synthesize the...

  1. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  2. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    Science.gov (United States)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to

  3. Caloric content of leaves of five tree species from the riparian vegetation in a forest fragment from South Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Fabrício Fiori

    2015-09-01

    Full Text Available Abstract Aim: The measurement of the caloric content evidences the amount of energy that remains in the leaf and that can be released to the aquatic trophic chain. We assessed the energy content of leaves from five riparian tree species of a forest fragment in south Brazil and analyzed whether leaf caloric content varied between leaf species and between seasons (dry and wet. The studied sites are located in Northwest of Paraná State, inside a Semi-Deciduous Forest fragment beside two headwater streams. Methods Sampling sites were located along the riparian vegetation of these two water bodies, and due to its proximity and absence of statistical differences of caloric values, analyzed as one compartment. Results Caloric content varied significantly among species and among all pairs of species, with exception of Nectandra cuspidata Ness and Calophyllum brasiliensis Cambess. Two species presented significant differences between seasons, Sloanea guianensis (Aubl. Ben and Calophyllum brasiliensis Cambess. Conclusions The absence of significant seasonal differences of energy content for some species may be due to the characteristics of the tropical forest, in which temperature did not varied dramatically between seasons. However, the energy differed between species and seasons for some species, emphasizing the necessity of a preliminary inspection of energy content, before tracing energy fluxes instead of using a single value to all species from riparian vegetation.

  4. Landscape and vegetation effects on avian reproduction on bottomland forest restorations

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.

    2010-01-01

    Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas

  5. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  6. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    Science.gov (United States)

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  7. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    Science.gov (United States)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  8. Control of Tamarix in the western United States: Implications for water salvage, wildlife use, and riparian restoration

    Science.gov (United States)

    Shafroth, P.B.; Cleverly, J.R.; Dudley, T.L.; Taylor, J.P.; van Riper, Charles; Weeks, E.P.; Stuart, J.N.

    2005-01-01

    Non-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar. As a result, there is considerable debate surrounding saltcedar control efforts. We review the literature on saltcedar control, water use, wildlife use, and riparian restoration to provide resource managers, researchers, and policy-makers with a balanced summary of the state of the science. To best ensure that the desired outcomes of removal programs are met, scientists and resource managers should use existing information and methodologies to carefully select and prioritize sites for removal, apply the most appropriate and cost-effective control methods, and then rigorously monitor control efficacy, revegetation success, water yield changes, and wildlife use.

  9. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  10. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration.

    Science.gov (United States)

    Takayama, Norimasa; Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro

    2017-07-18

    We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents' impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests.

  11. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  12. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF AGRICULTURE Forest Service Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger District, Coconino County, AZ AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The U.S. Forest Service (FS) will...

  13. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.

    Science.gov (United States)

    Johnson, Lea R; Handel, Steven N

    2016-04-01

    Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be

  14. Economic opportunities and trade-offs in collaborative forest landscape restoration

    Science.gov (United States)

    Alan A. Ager; Kevin C. Vogler; Michelle A. Day; John D. Bailey

    2017-01-01

    We modeled forest restoration scenarios to examine socioeconomic and ecological trade-offs associated with alternative prioritization scenarios. The study examined four US national forests designated as priorities for investments to restore fire resiliency and generate economic opportunities to support local industry. We were particularly interested in economic trade-...

  15. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  16. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    Science.gov (United States)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  17. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Science.gov (United States)

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  18. The Importance and Future Condition of Western Riparian Ecosystems as Migratory Bird Habitat

    Science.gov (United States)

    Susan K. Skagen; Rob Hazlewood; Michael L. Scott

    2005-01-01

    Riparian forests have long been considered important habitats for breeding western landbirds, and growing evidence reinforces their importance during the migratory period as well. Extensive modification of natural flow regimes, grazing, and forest clearing along many rivers in the western U.S. have led to loss and simplification of native riparian forests and to...

  19. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  20. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  1. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  2. Forest Landscape Restoration in the Drylands of Latin America

    Directory of Open Access Journals (Sweden)

    Adrian C. Newton

    2012-03-01

    Full Text Available Forest Landscape Restoration (FLR involves the ecological restoration of degraded forest landscapes, with the aim of benefiting both biodiversity and human well-being. We first identify four fundamental principles of FLR, based on previous definitions. We then critically evaluate the application of these principles in practice, based on the experience gained during an international, collaborative research project conducted in six dry forest landscapes of Latin America. Research highlighted the potential for FLR; tree species of high socioeconomic value were identified in all study areas, and strong dependence of local communities on forest resources was widely encountered, particularly for fuelwood. We demonstrated that FLR can be achieved through both passive and active restoration approaches, and can be cost-effective if the increased provision of ecosystem services is taken into account. These results therefore highlight the potential for FLR, and the positive contribution that it could make to sustainable development. However, we also encountered a number of challenges to FLR implementation, including the difficulty of achieving strong engagement in FLR activities among local stakeholders, lack of capacity for community-led initiatives, and the lack of an appropriate institutional and regulatory environment to support restoration activities. Successful implementation of FLR will require new collaborative alliances among stakeholders, empowerment and capacity building of local communities to enable them to fully engage with restoration activities, and an enabling public policy context to enable local people to be active participants in the decision making process.

  3. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  4. Landowner and visitor response to forest landscape restoration: the Chequamegon-Nicolet National Forest Northeast Sands Project

    Science.gov (United States)

    Kristin Floress; Anna Haines; Emily Usher; Paul Gobster; Mike. Dockry

    2018-01-01

    This report is intended to support the ongoing pine barrens restoration on work in the Lakewood-Laona Ranger District on the Chequamegon-Nicolet National Forest (CNNF). The report provides the results from 2016 surveys and focus groups examining landowner and visitor attitudes toward forest management treatments, communication, and restoration project outcomes; their...

  5. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages.

    Science.gov (United States)

    Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis

    2017-12-31

    Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the

  6. GIS applications in riparian management

    Science.gov (United States)

    Carrie Christman; Douglas W. Shaw; Charles L. Spann; Penny Luehring

    1996-01-01

    GIS was used to prioritize watersheds for treatment needs across the USDA Forest Service Southwestern Region. Factors in this analysis included soil condition, riparian habitat, population centers and mining sites.

  7. Colonization by benthic macroinvertebrates in two artificial substrate types of a Riparian Forest

    Directory of Open Access Journals (Sweden)

    Lívia Borges dos Santos

    Full Text Available Abstract: Aim To analyze the efficiency of organic and inorganic substrates in samples of benthic macroinvertebrates of riparian forests from the Cerrado. Specific objectives (i characterize the ecological succession and taxonomic richness of benthic macroinvertebrates in stream affluent of a riparian forest; (ii analyze the influence of seasonality on the colonization of macroinvertebrates; and (iii determine the effect of the types of artificial substrates on the richness, composition and abundance of the benthic community. Methods Sampling was carried out in the rainy and dry seasons, and we installed in the watercourse two types of substrates: organic (leaf packs and inorganic (bricks, organized in pairs. Six samples per season were done to verify colonization, succession, richness and abundance of benthic community. The substrates were carefully sorted and the organisms were identified to the lowest possible taxonomic level. Results The ecological succession was clearly observed, with the initial occurrence of Chironomidae and Baetidae (considered early colonizers, and a late occurrence of organisms such as Helotrephidae and Trichoptera (considered late colonizers. No significant difference was found in the richness and abundance among the studied seasons (rainy and dry, but the organic substrate was significantly higher than the inorganic substrate for these parameters. Conclusion Organic artificial substrates are more efficient in characterizing the community of benthic macroinvertebrates in the study area, because they are more similar to the conditions of the substrate found naturally in the environment.

  8. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo; W. Mark Ford; ; John W. Edwards.

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinus spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.

  9. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees...... restoration agents than other remnant trees in disturbed landscapes, and therefore the conservation of these trees should be prioritized....

  10. Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil

    Directory of Open Access Journals (Sweden)

    Severino R. Pinto

    2014-09-01

    Full Text Available In many human-modified tropical landscapes, biodiversity conservation and the provision of ecosystem services require large-scale restoration initiatives. Such initiatives must be able to augment the amount and the quality of remaining natural habitats. There is thus a growing need for long-term, multi-stakeholder and multi-purpose initiatives that result in multiple ecological and socioeconomic benefits at the biome scale. The Atlantic Forest Restoration Pact (AFRP is a coalition of 260+ stakeholders, including governmental agencies, private sector, NGOs and research institutions, aimed at restoring 15 million ha of degraded and deforested lands by 2050. By articulating, and then integrating common interests, this initiative has allowed different sectors of society to implement an ambitious vision and create a forum for public and private concerns regarding forest restoration. The AFRP adopts a set of governance tools so multiple actors can implement key processes to achieve long-term and visionary restoration goals. Having overcome some initial challenges, AFRP now has to incorporate underrepresented stakeholders and enhance its efforts to make forest restoration more economically viable, including cases where restoration could be less expensive and profitable. The AFRP experience has resulted in many lessons learned, which can be shared to foster similar initiatives across tropical regions.

  11. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Science.gov (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  12. Impact of perceived importance of ecosystem services and stated financial constraints on willingness to pay for riparian meadow restoration in Flanders (Belgium).

    Science.gov (United States)

    Chen, Wendy Y; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo

    2014-08-01

    The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.

  13. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  14. Physiological responses of eastern hemlock (Tsuga Canadensis) to biological control and silvicultural release: implications for hemlock restoration

    Science.gov (United States)

    Chelcy F. Miniat; David Zeitlow; Steven T. Brantley; Albert (Bud) Mayfield; Rusty Rhea; Robert Jetton; Paul.  Arnold

    2016-01-01

    The rapid loss of eastern hemlock (Tsuga canadensis) from riparian zones in the southern Appalachian Mountains due to Hemlock Woolly Adelgid (Adelgis tsugae, HWA) infestation has resulted in changes to watershed structure and function. Several restoration strategies have been proposed, including silvicultural treatments that increase incident light in forest...

  15. Abundance and species richness of snakes along the Middle Rio Grande riparian forest in New Mexico

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell; Deborah M. Finch

    2009-01-01

    To understand the effects of removal of non-native plants and fuels on wildlife in the riparian forest of the Middle Rio Grande in New Mexico, we monitored snakes from 2000 to 2006 using trap arrays of drift fences, pitfalls, and funnel traps. We recorded 158 captures of 13 species of snakes from 12 study sites. We captured more snakes in funnel traps than in pitfalls...

  16. Initial riparian down wood dynamics in relation to thinning and buffer width

    Science.gov (United States)

    Paul D. Anderson; Deanna H. Olson; Adrian. Ares

    2013-01-01

    Down wood plays many functional roles in aquatic and riparian ecosystems. Simplifi cation of forest structure and low abundance of down wood in stream channels and riparian areas is a common legacy of historical management in headwater forests west of the Cascade Range in the US northwest. Contemporary management practices emphasize the implementation of vegetation...

  17. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    Science.gov (United States)

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf

  18. Landscaping Considerations for Urban Stream Restoration Projects

    National Research Council Canada - National Science Library

    Bailey, Pam

    2004-01-01

    ... after restoration and its functionality for public use. The landscaping component of such stream and riparian restoration projects must be emphasized given its importance of visual success and public perception. The purpose of this technical note is to address landscaping considerations associated with urban stream and riparian restoration projects, and provide ideas to managers for enhancing the visual appeal and aesthetic qualities of urban projects.

  19. Riparian zone controls on base cation concentrations in boreal streams

    Science.gov (United States)

    Ledesma, J. L. J.; Grabs, T.; Futter, M. N.; Bishop, K. H.; Laudon, H.; Köhler, S. J.

    2013-01-01

    Forest riparian zones are a major in control of surface water quality. Base cation (BC) concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM) was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  20. LERF/ESALQ/USP activities of environment restoration and recovery Atividades de adequação ambiental e restauração florestal do LERF/ESALQ/USP

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro Rodrigues

    2010-06-01

    Full Text Available

    By reason of legal and environmental constraints, actual restoration of degraded areas has been concentrated mainly in the riparian environment. In spite of protection of the riparian forests by law for almost half century, great part of these forests were degraded as occurred with other natural  formations. In the last decades as government inspection grew along with legal punishments, resulted on an increase of conservation and  restoration of these riparian formations. The perception that it was necessary to improve and round out the available scientific knowledge about the restoration of those areas, stimulated the growth of research in different knowledge areas on riparian forests. Today there are already a lot of scientific knowledge available on several aspects of the physical environment features of the riparian forests, like geomorphology, soils and hydrology, and also about the biological communities, including aspects like plant species composition, phytossociological structure, phenology and dynamics of these vegetations. Also the fauna have been studied. This article presents a succinct methodology used by the Laboratory of Ecology and Forest Restoration (LERF from University of São Paulo in the restoration of degraded areas.

    Em função de questões legais e ambientais, a restauração de áreas degradadas tem se concentrado principalmente no ambiente ciliar. Apesar das matas ciliares estarem protegidas pela legislação há quase meio século, grande parte dessas florestas foram degradadas de forma semelhante ao que ocorreu com as outras formações naturais. Nas últimas décadas, o aumento da fiscalização e das punições levaram a um aumento na conservação e restauração das formações ciliares. A percepção de que era necessário ampliar e aprofundar o conhecimento científico disponível sobre a recuperação dessas áreas  estimulou o incremento de pesquisas nas matas ciliares, nas mais

  1. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  2. From State-controlled to Polycentric Governance in Forest Landscape Restoration: The Case of the Ecological Forest Purchase Program in Yong'an Municipality of China.

    Science.gov (United States)

    Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin

    2018-07-01

    Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.

  3. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  4. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains, USA

    OpenAIRE

    Baker, W. L.; Veblen, T. T.; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  5. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  6. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...

  7. Rapid colonization of a Hawaiian restoration forest by a diverse avian community

    Science.gov (United States)

    Paxton, Eben H.; Yelenik, Stephanie G.; Borneman, Tracy E.; Rose, Eli; Camp, Richard J.; Kendall, Steve J.

    2018-01-01

    Deforestation of tropical forests has led to widespread loss and extirpation of forest bird species around the world, including the Hawaiian Islands which have experienced a dramatic loss of forests over the last 200–800 years. Given the important role birds play in forest ecosystem functions via seed dispersal and pollination, a bird community's response to forest restoration is an important measure of the success of such conservation actions. We evaluated the bird response to reforestation at an important bird sanctuary, Hakalau Forest National Wildlife Refuge, Hawai′i Island, using 26 years of bird count data. We show that most species from within the diverse avian community increased significantly, but species colonized the restoration forest at different rates. Distance from intact forest and time since restoration were both important predictors of colonization rate, interacting such that for most species it took more time to colonize areas farther from the intact forest. In addition, both forest cover and understory diversity helped to explain bird densities, but the effect varied among species, suggesting that different habitat requirements may help drive variation in colonization rates. This article provides the first detailed evaluation of how a diverse community of birds has responded to one of the largest, ongoing reforestation projects in Hawai′i.

  8. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  9. Forest products cluster development in central Arizona—implications for landscape-scale forest restoration

    Science.gov (United States)

    David. Nicholls

    2014-01-01

    Since 2004, close to 50,000 ac of hazardous fuels have been mechanically treated in east-central Arizona as part of the USDA Forest Service's first 10-year stewardship project on national forest lands. The need for coordinated wood products and biomass utilization in Arizona is likely to increase as broad-scale restoration treatments across Arizona's national...

  10. Natural forest regeneration and ecological restoration in human-modified tropical landscapes

    NARCIS (Netherlands)

    Martínez-Ramos, Miguel; Pingarroni, Aline; Rodríguez-Velázquez, Jorge; Toledo-Chelala, Lilibeth; Zermeño-Hernández, Isela; Bongers, Frans

    2016-01-01

    In human-modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of

  11. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  12. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.

    Science.gov (United States)

    Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J

    2013-04-07

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.

  13. Forestry Best Management Practices Relationships with Aquatic and Riparian Fauna: A Review

    Directory of Open Access Journals (Sweden)

    Brooke M. Warrington

    2017-09-01

    Full Text Available Forestry best management practices (BMPs were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1 a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2 data-specific relationships between forestry BMPs and reviewed species are limited; (3 forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs are important particularly for protection of water quality and aquatic species; (4 stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5 SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  14. Forestry best management practices relationships with aquatic and riparian fauna: A review

    Science.gov (United States)

    Warrington, Brooke M.; Aust, W. Michael; Barrett, Scott M.; Ford, W. Mark; Dolloff, C. Andrew; Schilling, Erik B.; Wigley, T. Bently; Bolding, M. Chad

    2017-01-01

    Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1) a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2) data-specific relationships between forestry BMPs and reviewed species are limited; (3) forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs) are important particularly for protection of water quality and aquatic species; (4) stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5) SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  15. Emergy and Eco-exergy Evaluation of Four Forest Restoration Modes

    Science.gov (United States)

    Four different forest restoration modes (Acacia mangium plantation, mixed-native species plantation, conifer plantation and Eucalyptus plantation) were evaluated using Energy System Theory and the emergy synthesis method. In addition, the eco-exergies of the four forest restorati...

  16. Assessing the Effects of Periodic Flooding on the Population Structure and Recruitment Rates of Riparian Tree Forests

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Berthelot

    2014-08-01

    Full Text Available Riparian forest stands are subjected to a variety of hydrological stresses as a result of annual fluctuations in water levels during the growing season. Spring floods create additional water-related stress as a result of a major inflow of water that floods riverside land. This exploratory study assesses the impacts of successive floods on tree dynamics and regeneration in an active sedimentation area, while determining the age of the stands using the recruitment rates, tree structure and tree rings based on dendrochronological analysis. Environmental data were also recorded for each vegetation quadrat. In total, 2633 tree stems were tallied throughout the quadrats (200 m2, and tree specimens were analyzed based on the various flood zones. A total of 720 specimens were counted (100 m2 strip to measure natural regeneration. Higher recruitment rates are noted for the no-flood zones and lower rates in active floodplains. During the period of the establishment of tree species, the survival rates are comparable between the flood zones and the no-flood zones. Tree diameter distribution reveals a strong predominance of young trees in flooded areas. Different factors appear to come into play in the dynamics of riparian forest stands, including the disruptions associated with successive flooding.

  17. A GIS Approach to Prioritizing Habitat for Restoration Using Neotropical Migrant Songbird Criteria

    Science.gov (United States)

    Holzmueller, Eric J.; Gaskins, Michael D.; Mangun, Jean C.

    2011-07-01

    Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.

  18. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  19. Population and Habitat Objectives for Avian Conservation in California's Central Valley Riparian Ecosystems

    Directory of Open Access Journals (Sweden)

    Kristen E. Dybala

    2017-03-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss1art5Riparian ecosystems provide important ecosystem services and recreational opportunities for people, and habitat for wildlife. In California’s Central Valley, government agencies and private organizations are working together to protect and restore riparian ecosystems, and the Central Valley Joint Venture provides leadership in the formulation of goals and objectives for avian conservation in riparian ecosystems. We defined a long-term conservation goal as the establishment of riparian ecosystems that provide sufficient habitat to support genetically robust, self-sustaining, and resilient bird populations. To achieve this goal, we selected a suite of 12 breeding riparian landbird focal species as indicators of the state of riparian ecosystems in each of four major Central Valley planning regions. Using recent bird survey data, we estimated that over half of the regional focal species populations are currently small (< 10,000 and may be vulnerable to extirpation, and two species have steeply declining population trends. For each focal species in each region, we defined long-term (100-year population objectives that are intended to be conservation endpoints that we expect to meet the goal of genetically robust, self-sustaining, and resilient populations. We then estimated the long-term species density and riparian restoration objectives required to achieve the long-term population objectives. To track progress toward the long-term objectives, we propose short-term (10- year objectives, including the addition of 12,919 ha (31,923 ac of riparian vegetation in the Central Valley (by planning region: 3,390 ha in Sacramento, 2,390 ha in Yolo–Delta, 3,386 ha in San Joaquin, and 3,753 ha in Tulare. We expect that reaching these population, density, and habitat objectives through threat abatement, habitat restoration, and habitat enhancement will result in improvements to riparian ecosystem function and

  20. Changes in biodiversity and ecosystem function during the restoration of a tropical forest in south China

    Institute of Scientific and Technical Information of China (English)

    REN Hai; LI ZhiAn; SHEN WeiJun; YU ZuoYue; PENG ShaoLin; LIAO ChongHui; DING MingMao; WU JianGuo

    2007-01-01

    Tropical forests continue to vanish rapidly, but few long-term studies have ever examined if and how the lost forests can be restored. Based on a 45-year restoration study in south China, we found that a tropical rain forest, once completely destroyed, could not recover naturally without deliberate restoration efforts. We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover. The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil, while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes. Our three treatment catchments (un-restored barren land, single-species plantation, and mixed-forest stand) exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades. The mixed forest, having the highest level of biodiversity and ecosystem functioning, possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.

  1. Survey of vegetation and its diametric distribution in an area of cerrado sensu stricto and riparian forest fragment at Dois Irmãos stream in the Area of Environmental Protection (APA of Cafuringa, Federal District, Brazil.

    Directory of Open Access Journals (Sweden)

    José Elias de Paula

    2009-09-01

    Full Text Available All individual trees with a diameter at breast height (DBH of over 5cm, as well as the natural succession, were identified in 2,500m2 of the savannah (cerrado sensu stricto area and in 5,000m2 of the “Dois Irmãos” riparian forest vegetation (15º30’19”S and 48º06’18”W. The floristic composition of the cerrado sensu stricto was composed by 100 trees distributed in 25 species, and the riparian forest consisted of 155 trees distributed in 55 species. The natural regeneration was formed with 211 and 287 individuals in the cerrado sensu stricto and riparian forest distributed into 38 and 55 species respectively. The basal areas of the trees occupied 3.40m2.ha-1 in the cerrado sensu stricto and 5.08m2.ha-1 in the riparian forest. The diametric distribution curves for both plant communities, adjusted by the Meyers equation, demonstrated a typical tendency of reversed-J shape with strongly antropic action in the 11 to 17cm diametric classes.

  2. Riparian adaptive management symposium: a conversation between scientists and management

    Science.gov (United States)

    Douglas F. Ryan; John M. Calhoun

    2010-01-01

    Scientists, land managers and policy makers discussed whether riparian (stream side) forest management and policy for state, federal and private lands in western Washington are consistent with current science. Answers were mixed: some aspects of riparian policy and management have a strong basis in current science, while other aspects may not. Participants agreed that...

  3. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  4. Giant cane propagation techniques for use in restoration of riparian forest ecosystems

    Science.gov (United States)

    Rebecca L. Sexton; James J. Zaczek; John W. Groninger; Stephen D. Fillmore; Karl W. J. Williard

    2003-01-01

    This study was initiated to determine factors important for rhizome cutting propagation of giant cane for use in canebreak restoration. Experiment I showed that greater numbers of culms were produced for rhizomes with more internodes especially when surface planted rather than buried. Experiment II determined that 76 percent of the 435 rhizomes tested produced at least...

  5. Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States

    Science.gov (United States)

    James L. Hanula; Scott Horn

    2011-01-01

    1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...

  6. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    Science.gov (United States)

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  7. Arthropod recolonization in the restoration of a semideciduous forest in southeastern Brazil.

    Science.gov (United States)

    Pais, Mara P; Varanda, Elenice M

    2010-01-01

    The use of arthropods for monitoring habitat changes has grown widely in the last decades. In Brazil, however, most of the studies in restored areas have involved only vegetation changes. The present study aimed at investigating recolonization patterns of epigeic arthropods in recently restored sites of semideciduous forests in southeastern Brazil. We compared the community structure of adjoining sites 5, 17, 29 and 36 months old with that at a nearby forest remnant (reference site). We also determined the most abundant species and looked for ecological indicator species of each site age. Arthropods were sampled using pitfall traps, and their assemblages were described and compared with multi- and univariate statistical methods. Species abundance and richness equivalent to the reference site were reached at five months after planting, however species composition was very distinctive not only in relation to the reference site, but also among restored sites. Some of the main species found in this restoration stage are common in agroecosystems or cerrado vegetation. Nevertheless, there was a clear trend of arthropod fauna in restored sites moving toward the fauna in the forest remnant over time. Our results also highlighted ants and termites because of their abundance and ants because of their high value as ecological indicators of restoration age.

  8. Growing Shrubs at the George O. White State Forest Nursery: What Has Worked and What Has Not

    Science.gov (United States)

    Gregory Hoss

    2006-01-01

    At the George O. White State Forest Nursery in Licking, MO, we annually grow about 20 species of shrubs. That number has been larger in some years. For most species, we purchase seeds locally and process them at our nursery. Our shrubs are used for wetland restoration, windbreaks, visual screens, riparian buffers, and wildlife plantings.

  9. Assessing the benefits and costs of dryland forest restoration in central Chile.

    Science.gov (United States)

    Schiappacasse, Ignacio; Nahuelhual, Laura; Vásquez, Felipe; Echeverría, Cristian

    2012-04-30

    Investment in natural capital restoration is increasing as a response to the widespread ecological degradation of dryland forests. However, finding efficient mechanisms to promote restoration among private landowners is a significant challenge for policy makers with limited financial resources. Furthermore, few attempts have been made to evaluate the costs and benefits of restoration interventions even though this information is relevant to orient decision making. Hence, our goal was to estimate the benefits and costs of dryland forest restoration by means of reforestation with native trees in a study area in central Chile. To determine benefits we applied a Contingent Valuation questionnaire that allowed for the calculation of willingness to pay measures. Restoration costs were calculated based on market prices following existing technical recommendations developed for the study area. The results showed that the restoration project had a negative NPV irrespective of the discount rate applied in the analysis. Thus, the NPV varied between -US$71,000 and -US$258,000. The NPV attained positive results only for negative discount rates (US$15,039 for -2%) and only when the national subsidy available for forest restoration was taken into account. This shows that landowners in Colliguay do not have incentives for carrying out restoration interventions due to a classic market failure: that in which ecosystems are mismanaged because many of their benefits are externalities from the perspective of landowners. Overall, these results stress the need for developing new compensation mechanisms and enhancing those in existence, with the aim of making restoration competitive with other land uses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Impacts of cattle on ecological restoration of coastal forests in ...

    African Journals Online (AJOL)

    Livestock from communities bordered by dune mining, urban areas and commercial forestry in northern KwaZulu-Natal spend substantial time foraging in the coastal forest that the mining company is obliged to restore. A survey of livestock owners and an experimental study of impacts of cattle on restoration processes were ...

  11. Effects of riparian buffers on hydrology of northern seasonal ponds

    Science.gov (United States)

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  12. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands

    Science.gov (United States)

    Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré

    2014-01-01

    Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State – Brazil to develop allometric equations to estimate tree biomass of...

  13. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

    Directory of Open Access Journals (Sweden)

    Tayierjiang Aishan

    2018-04-01

    Full Text Available Carbon management in forests has become the most important agenda of the first half of the 21st century in China in the context of the mitigation of climate change impact. As the main producer of the inland river basin ecosystem in arid region of Northwest China, the desert riparian forest maintains the regional environment and also holds a great significance in regulating the regional/global carbon cycle. In this study, we estimated the total biomass, carbon storage, as well as monetary ecosystem service values of desert riparian Populus euphratica Oliv. in the lower reaches of the Tarim River based on terrestrial forest inventory data within an area of 100 ha (100 plots with sizes of 100 m × 100 m and digitized tree data within 1000 ha (with 10 m × 10 m grid using a statistical model of biomass estimation against tree height (TH and diameter at breast height (DBH data. Our results show that total estimated biomass and carbon storage of P. euphratica within the investigated area ranged from 3.00 to 4317.00 kg/ha and from 1.82 to 2158.73 kg/ha, respectively. There was a significant negative relationship (p < 0.001 between biomass productivity of these forests and distance to the river and groundwater level. Large proportions of biomass (64% of total biomass are estimated within 200 m distance to the river where groundwater is relatively favorable for vegetation growth and biomass production. However, our data demonstrated that total biomass showed a sharp decreasing trend with increasing distance to the river; above 800 m distance, less biomass and carbon storage were estimated. The total monetary value of the ecosystem service “carbon storage” provided by P. euphratica was estimated to be $6.8 × 104 USD within the investigated area, while the average monetary value was approximately $70 USD per ha, suggesting that the riparian forest ecosystem in the Tarim River Basin should be considered a relevant regional carbon sink. The findings of

  14. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  15. Roles of birds and bats in early tropical-forest restoration.

    Science.gov (United States)

    de la Peña-Domene, Marinés; Martínez-Garza, Cristina; Palmas-Pérez, Sebastián; Rivas-Alonso, Edith; Howe, Henry F

    2014-01-01

    Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant.

  16. Roles of birds and bats in early tropical-forest restoration.

    Directory of Open Access Journals (Sweden)

    Marinés de la Peña-Domene

    Full Text Available Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant.

  17. 75 FR 70083 - Emergency Forest Restoration Program and Emergency Conservation Program

    Science.gov (United States)

    2010-11-17

    ... Restoration Program and Emergency Conservation Program AGENCY: Farm Service Agency, USDA. ACTION: Interim rule. SUMMARY: The Farm Service Agency (FSA) is amending regulations as required by the Food, Conservation, and... as follows: PART 701--EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...

  18. Spatial Pattern of Populus euphratica Forest Change as Affected by Water Conveyance in the Lower Tarim River

    Directory of Open Access Journals (Sweden)

    Shuhong Peng

    2014-01-01

    Full Text Available To restore declining species, including Populus euphratica and other riparian communities, in the river ecosystem of the lower Tarim River, the ecological water conveyance project (EWCP, as a part of an integrated water resource management plan, was implemented in 2000. The EWCP aims to schedule and manage the water resources in the upper reaches and transfer water to the lower reaches by a series of intermittent water deliveries. The delivered water flows along a modified river channel and nourishes riparian communities by river overflow flooding. Since it began, it has caused a fierce debate over the response of riparian vegetation to the water conveyance scheme. This study focuses on the lower Tarim River, where Populus euphratica forests have undergone watering, due to the EWCP. Twelve Landsat sensor images and one IKONOS satellite imagery acquired between 1999 and 2009 were used to monitor the change in Populus euphratica forests. Bi-temporal change detection and temporal trajectory analysis were employed to represent the spatial pattern of the forest change. Field investigations were used to analyze the driving forces behind forest change from the perspectives of anthropogenic activities and natural forces. The results showed that Populus euphratica forest have been declining in area, which implies that ecological risks have been increased during the watering process. However, forests areas have increased in the regions where the water supply is abundant, and vice versa.

  19. Forests, people, fire: Integrating the sciences to build capacity for an “All Lands” approach to forest restoration

    Science.gov (United States)

    Marie Oliver; Susan Charnley; Thomas Spies; Jeff Kline; Eric White

    2017-01-01

    Interest in landscape-scale approaches to fire management and forest restoration is growing with the realization that these approaches are critical to maintaining healthy forests and protecting nearby communities. However, coordinated planning and action across multiple ownerships have been elusive because of differing goals and forest management styles among...

  20. Restoration of native forest flora in the degraded highlands of Ethiopia

    African Journals Online (AJOL)

    Wide spread deforestation and subsequent degradation is severely threatening the natural forest resources in Ethiopia. What is imperatively and urgently needed today is ecological restoration. In order for ecological restoration to be successful and cost effective, critical analyses of possible constraints and available ...

  1. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery

    Science.gov (United States)

    Meli, Paula; Holl, Karen D.; Rey Benayas, José María; Jones, Holly P.; Jones, Peter C.; Montoya, Daniel; Moreno Mateos, David

    2017-01-01

    Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project. PMID:28158256

  2. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery.

    Directory of Open Access Journals (Sweden)

    Paula Meli

    Full Text Available Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1 To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2 Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3 Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project.

  3. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery.

    Science.gov (United States)

    Meli, Paula; Holl, Karen D; Rey Benayas, José María; Jones, Holly P; Jones, Peter C; Montoya, Daniel; Moreno Mateos, David

    2017-01-01

    Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project.

  4. VT River Restoration Data in Lamoille County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Documented river and riparian buffer restoration projects in Lamoille County, Vermont. Restoration includes buffer plantings (trees and shrubs),...

  5. Processos hidrológicos em diferentes modelos de plantio de restauração de mata ciliar em região de cerrado. Hydrological processes in different riparian forest restoration models in cerrado domain.

    Directory of Open Access Journals (Sweden)

    Karine Baldo de GÊNOVA

    2007-12-01

    Full Text Available A restauração de florestas ciliares temsido recomendada como a melhor estratégiavisando à proteção dos recursos hídricos e àrecuperação da biodiversidade. No entanto, quasenada se conhece sobre o papel hidrológico dasflorestas plantadas e seus efeitos protetores.O presente estudo teve como objetivo analisarcomparativamente alguns modelos de plantio demata ciliar em região de cerrado, para verificar sediferem quanto ao seu papel na interceptação daágua das chuvas e em sua influência na umidadedo solo, com reflexos sobre a função protetora dafloresta. Foram coletados, durante cinco meses,dados pluviométicos no interior de quatro modelosde plantio aos dezessete anos (um plantio mistocom espécies de cerrado e três plantios puros,com Pinus elliottii, Tapirira guianensis eAnadenanthera falcata e em área aberta paracomparação. Para análises de umidade, foramcoletadas amostras compostas da camada superficialdo solo (0 a 20 cm em cada uma das parcelas.Houve variação na porcentagem da água daschuvas interceptada pelas copas entre os diferentesmodelos, com o maior valor no plantio puro deTapirira guianensis (30,8%, espécie latifoliadaperenifólia e com a maior densidade de árvores.No outro extremo, o plantio de Anadenantherafalcata, uma espécie caducifólia de folhas muitopequenas, reteve apenas 12,5% da água daschuvas. A umidade do solo, como era esperado,foi inversamente proporcional à interceptação.Não se observou correlação entre a biomassaflorestal e a interceptação ou umidade do solo.Riparian forest restoration has beenreported as the most efficient strategy to protectwater resources and to recover biodiversity.However, few is known about the hydrologicalfunctioning of the planted forests and theirprotective effect. Some different riparian forestrestoration models were analized 17 years afterplanting, to verify the hypothesis that differentforest structure and composition are correlated todifferent hydrological

  6. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  7. Arthropod recolonization in the restoration of a semideciduous forest in southeastern Brazil

    OpenAIRE

    Pais, Mara P; Varanda, Elenice M

    2010-01-01

    The use of arthropods for monitoring habitat changes has grown widely in the last decades. In Brazil, however, most of the studies in restored areas have involved only vegetation changes. The present study aimed at investigating recolonization patterns of epigeic arthropods in recently restored sites of semideciduous forests in southeastern Brazil. We compared the community structure of adjoining sites 5, 17, 29 and 36 months old with that at a nearby forest remnant (reference site). We also ...

  8. Passive restoration following ungulate removal in a highly disturbed tropical wet forest devoid of native seed dispersers

    Science.gov (United States)

    Nafus, Melia; Savidge, Julie A.; Yackel Adams, Amy A.; Christy, Michelle T.; Reed, Robert

    2018-01-01

    Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5-ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non-native plants declined. Two trees, native Hibiscus tiliaceus and non-native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5-ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.

  9. Targeted habitat restoration can reduce extinction rates in fragmented forests.

    Science.gov (United States)

    Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M

    2017-09-05

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.

  10. COLLABORATIVE (PARTNERSHIP AS A FORM OF "RESTORATIVE JUSTICE" IN CONFLICT RESOLUTION FOREST RESOURCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Agus Surono

    2017-02-01

    Full Text Available Conflict management of forest resources among communities around forest areas often occur in various regions, particularly in some national parks and forest management as Perhutani in Java and Inhutani outside Java. These conflicts indicate the forest resources management has not effectively made a positive impact in improving communities welfare around forest areas. Although the provisions of Article 3 in conjunction with Article 68 of Law No. 41 of 1999 on Forestry, provide the basis for communities around the forest rights of forest areas, but in reality there are still people around forest areas that do not enjoy such rights and it is this which often leads to conflicts in the management of forest resources. In the event of conflict, the solution can be done collaboratively (partnership which is one form of restorative justice is an alternative dispute resolution (ADR. Keywords: collaborative, conflict, restorative justice, forest resources.

  11. Ecological restoration of peatlands in steppe and forest-steppe areas

    Science.gov (United States)

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  12. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    Science.gov (United States)

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  13. What Should a Restored River Look Like? (Invited)

    Science.gov (United States)

    Florsheim, J. L.; Chin, A.

    2010-12-01

    Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause

  14. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  15. Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement

    Science.gov (United States)

    Gavin Ferris; Vincent D' Amico; Christopher K. Williams

    2012-01-01

    Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...

  16. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Leonhard Suchenwirth

    2014-07-01

    Full Text Available Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM and the k-nearest neighbor (kNN algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE. Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations.

  17. Forest landscape restoration : reconciling biodiversity conservation with local livelihoods in Ecuador

    OpenAIRE

    Middendorp, Romaike Sanne

    2017-01-01

    Tropical forest conversion and agricultural intensification are important drivers of loss of biodiversity and ecosystem services on which local communities depend. Resilient agricultural landscapes are crucial to safeguard food security and adapt to environmental and climate changes. An increasing number of policies and programs target forest landscape restoration but lack the scientific basis to ensure sustainable outcomes. This dissertation explores the potential of forest landscape restora...

  18. From leaf to basin: evaluating the impacts of introduced plant species on evapotranspiration fluxes from riparian ecosystems in the southwestern U.S

    Science.gov (United States)

    Hultine, K. R.; Bush, S.; Nagler, P. L.; Morino, K.; Burtch, K.; Dennison, P. E.; Glenn, E. P.; Ehleringer, J.

    2010-12-01

    Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of introduced plant species in riparian areas along streams, canals and rivers in geographically arid regions. The question of whether these invasive species have had or will have impacts on water resources is currently under intense debate. We identify a framework for assessing when and where introduced riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semi-arid river systems. We focus on three introduced plant systems that currently dominate southwestern U.S. riparian forests: tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). Our framework focuses on two main criteria: 1) the ecophysiological traits that promote establishment of invasive species across environmental gradients, and 2) an assessment of how hydrologic fluxes are altered by the establishment of introduced species at varying scales. The framework identifies when and where introduced species should have the highest potential impact on the water cycle. This framework will assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given limited economic resources.

  19. Developing management strategies for riparian areas.

    Science.gov (United States)

    D.E. Hibbs; S. Chan

    2001-01-01

    This talk outlines four principles that are critical to successful management of a riparian area. First, given problems both with defining historic conditions and with returning to them, attaining management goals based on restoration of ecological processes and functions will be far more successful. Second, the management goals for any stream reach must be placed in a...

  20. Assessment of a subtropical riparian forest focusing on botanical, meteorological, ecological characterization and chemical analysis of rainwater

    Directory of Open Access Journals (Sweden)

    Vanessa Graeff

    2018-05-01

    Full Text Available Riparian forests are heterogeneous environments, in which epiphytes find ideal conditions to develop. These plants absorb the necessary nutrients for survival from the atmosphere, and their occurrence and distribution can be influenced by the quality and quantity of precipitation. The objective of this research was to perform an integrated analysis of botanical, meteorological and chemical precipitation parameters so as to compare them in fragments of the riparian forest in the lower (São Leopoldo-SL and upper (Caraá-CA stretches of the Rio dos Sinos Hydrographic Basin (RSHB, RS, Brazil. Rainwater was chemically analyzed, the community structure of epiphytic ferns was surveyed and the ecological characterization was evaluated through the Rapid Habitat Assessment Protocol (RHAP. The results showed that the chemical composition of rainwater is influenced by the environment of each area. In the upper stretch (CA, for instance, the main contribution is that of marine ions, while in the lower stretch (SL, the most impacting aspects are urbanization and industrialization. Similarly, the results depict a reduction of richness and a simplification of the community structure of epiphytic ferns and their environmental quality according to the RHAP categories, towards the base level of the RSHB. The integrated analysis, in which different methods were applied, proved to be an efficient tool to evaluate environmental quality. This analysis considers that a greater number of biotic and abiotic variables may be applied in different scenarios.

  1. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  2. REMM: The Riparian Ecosystem Management Model

    Energy Technology Data Exchange (ETDEWEB)

    Lowrance, R.; Altier, L.S.; Williams, R.G.; Inamdar, S.P.; Sheridan, J.M.; Bosch, D.D.; Hubbard, R.K.; Thomas, D.L.

    2000-03-01

    Riparian buffer zones are effective in mitigating nonpoint source pollution and have been recommended as a best management practice (BMP). The Riparian Ecosystem Management Model (REMM) has been developed for researchers and natural resource agencies as a modeling tool that can help quantify the water quality benefits of riparian buffers under varying site conditions. Processes simulated in REMM include surface and subsurface hydrology; sediment transport and deposition; carbon, nitrogen, and phosphorus transport, removal, and cycling; and vegetation growth. Management options, such as vegetation type, size of the buffer zone, and biomass harvesting also can be simulated. REMM can be used in conjunction with upland models, empirical data, or estimated loadings to examine scenarios of buffer zone design for a hillslope. Evaluation of REMM simulations with field observations shows generally good agreement between simulated and observed data for groundwater nitrate concentrations and water table depths in a mature riparian forest buffer. Sensitivity analysis showed that changes that influenced the water balance or soil moisture storage affected the streamflow output. Parameter changes that influence either hydrology or rates of nutrient cycling affected total N transport and plant N uptake.

  3. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  4. Riparian and Upland Restoration at the U.S. Department of Energy Rocky Flats, Colorado, Site - 12360

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Jody K. [S.M. Stoller Corporation, Contractor to the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado 80021 (United States)

    2012-07-01

    Remedial investigation and cleanup at the Rocky Flats, Colorado, Site was completed in 2005. Uplands, riparian, and wetland habitat were disturbed during cleanup and closure activities and required extensive revegetation. Unavoidable disturbances to habitat of the Preble's meadow jumping mouse (a federally listed species) and wetlands required consultation with regulatory agencies and mitigation. Mitigation wetlands were constructed in two drainages, and a third developed naturally where a soil borrow area intercepted the groundwater table. During the 50-plus years of site operations, 12 ponds were constructed in three drainages to manage and retain runoff and sewage treatment plant discharges prior to release off site. A batch-release protocol has been used for the past several decades at the terminal ponds, which has affected the riparian communities downstream. To return the hydrologic regime to a more natural flow-through system similar to the pre-industrial-use conditions, seven interior dams (of 12) have been breached, and the remaining five dams are scheduled for breaching between 2011 and 2020. At the breached dams, the former open water areas have transformed to emergent wetlands, and the stream reaches have returned to a flow-through system. Riparian and wetland vegetation has established very well. The valves of the terminal ponds were opened in fall 2011 to begin flow-through operations and provide water to the downstream plant communities while allowing reestablishment of vegetation in the former pond bottoms prior to breaching. A number of challenges and issues were addressed during the revegetation effort. These included reaching an agreement on revegetation goals, addressing poor substrate quality and soil compaction problems, using soil amendments and topsoil, selecting seeds, determining the timing and location of revegetation projects relative to continuing closure activities, weed control, erosion control, revegetation project field

  5. Instream Large Wood: Dentrification Hotspots With Low N2O Production

    Science.gov (United States)

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and nitrous oxide (N2O) production. We examined the effects of woody an...

  6. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    Science.gov (United States)

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  7. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Briggs, Jenny S.; Fornwalt, Paula J.; Feinstein, Jonas A.

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor ecological restoration treatments intended to offset the effects of many decades of anthropogenic stressors. We initiated a novel study to expand the scope of treatment effectiveness monitoring efforts in one of the first CFLR landscapes, Colorado’s Front Range. We used a Before/After/Control/Impact framework to evaluate the short-term consequences of treatments on numerous ecological properties. We collected pre-treatment and one year post-treatment data on NF and partner agencies’ lands, in 66 plots distributed across seven treatment units and nearby untreated areas. Our results reflected progress toward several treatment objectives: treated areas had lower tree density and basal area, greater openness, no increase in exotic understory plants, no decrease in native understory plants, and no decrease in use by tree squirrels and ungulates. However, some findings suggested the need for adaptive modification of both treatment prescriptions and monitoring protocols: treatments did not promote heterogeneity of stand structure, and monitoring methods may not have been robust enough to detect changes in surface fuels. Our study highlights both the effective aspects of these restoration treatments, and the importance of initiating and continuing collaborative science-based monitoring to improve the outcomes of broad-scale forest restoration efforts.

  8. Do PES Improve the Governance of Forest Restoration?

    Directory of Open Access Journals (Sweden)

    Romain Pirard

    2014-03-01

    Full Text Available Payments for Environmental Services (PES are praised as innovative policy instruments and they influence the governance of forest restoration efforts in two major ways. The first is the establishment of multi-stakeholder agencies as intermediary bodies between funders and planters to manage the funds and to distribute incentives to planters. The second implication is that specific contracts assign objectives to land users in the form of conditions for payments that are believed to increase the chances for sustained impacts on the ground. These implications are important in the assessment of the potential of PES to operate as new and effective funding schemes for forest restoration. They are analyzed by looking at two prominent payments for watershed service programs in Indonesia—Cidanau (Banten province in Java and West Lombok (Eastern Indonesia—with combined economic and political science approaches. We derive lessons for the governance of funding efforts (e.g., multi-stakeholder agencies are not a guarantee of success; mixed results are obtained from a reliance on mandatory funding with ad hoc regulations, as opposed to voluntary contributions by the service beneficiary and for the governance of financial expenditure (e.g., absolute need for evaluation procedures for the internal governance of farmer groups. Furthermore, we observe that these governance features provide no guarantee that restoration plots with the highest relevance for ecosystem services are targeted by the PES.

  9. Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa

    Science.gov (United States)

    Scott-Shaw, Bruce C.; Everson, Colin S.; Clulow, Alistair D.

    2017-09-01

    In South Africa, the invasion of riparian forests by alien trees has the potential to affect the country's limited water resources. Tree water-use measurements have therefore become an important component of recent hydrological studies. It is difficult for South African government initiatives, such as the Working for Water (WfW) alien clearing program, to justify alien tree removal and implement rehabilitation unless hydrological benefits are known. Consequently, water use within a riparian forest along the Buffeljags River in the Western Cape of South Africa was monitored over a 3-year period. The site consisted of an indigenous stand of Western Cape afrotemperate forest adjacent to a large stand of introduced Acacia mearnsii. The heat ratio method of the heat pulse velocity sap flow technique was used to measure the sap flow of a selection of indigenous species in the indigenous stand, a selection of A. mearnsii trees in the alien stand and two clusters of indigenous species within the alien stand. The indigenous trees in the alien stand at Buffeljags River showed significant intraspecific differences in the daily sap flow rates varying from 15 to 32 L day-1 in summer (sap flow being directly proportional to tree size). In winter (June), this was reduced to only 7 L day-1 when limited energy was available to drive the transpiration process. The water use in the A. mearnsii trees showed peaks in transpiration during the months of March 2012, September 2012 and February 2013. These periods had high average temperatures, rainfall and high daily vapor pressure deficits (VPDs - average of 1.26 kPa). The average daily sap flow ranged from 25 to 35 L in summer and approximately 10 L in the winter. The combined accumulated daily sap flow per year for the three Vepris lanceolata and three A. mearnsii trees was 5700 and 9200 L, respectively, clearly demonstrating the higher water use of the introduced Acacia trees during the winter months. After spatially upscaling the

  10. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  11. Effects of Construction of the Digital Multipurpose Range Complex (DMPRC) on Riparian and Stream Ecosystems at Fort Benning, Georgia. Addendum

    Science.gov (United States)

    2009-06-01

    root dynamics in riparian forests. Soil Science Society of America 69(3):729-737. Houser, J. N., P. J. Mulholland, and K. O. Maloney. 2006. Upland...Forested Wetlands, D. M. Amatya and J. Nettles (eds). New Bern, NC. American Society of Agricultural and Biological Engineers, St. Joseph, MI...primary productivity, vegetation composition, structure, and fine root dynamics in riparian forests. Kelly O. Maloney, Ph.D. in Biological Sciences

  12. Best management practices for riparian areas

    Science.gov (United States)

    Michael J. Phillips; Lloyd W. Swift; Charles R. Blinn

    2000-01-01

    Forest streams, lakes, and other water bodies create unique conditions along their margins that control and influence transfers of energy, nutrients, and sediments between aquatic and terrestrial systems. These riparian areas are among the most critical features of the landscape because they contain a rich diversity of plants and animals and help to maintain water...

  13. Participatory monitoring to connect local and global priorities for forest restoration.

    Science.gov (United States)

    Evans, Kristen; Guariguata, Manuel R; Brancalion, Pedro H S

    2018-03-13

    New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. The discursive construction of conflict in participatory forest management: the case of the Agoua forest restoration in Benin

    NARCIS (Netherlands)

    Idrissou, L.; Aarts, N.; van Paassen, A.; Leeuwis, C.

    2011-01-01

    The Agoua Forest in Benin was declared a protected area in 1953 and subsequently managed by means of a coercion system, which, however, did not prevent its deforestation. In 2002, a participatory management process was designed to restore this forest. Although the project managers and local

  15. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    Science.gov (United States)

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  16. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  17. Faces from the past: profiles of those who led restoration of the South’s forests

    Science.gov (United States)

    James P. Barnett

    2016-01-01

    Early in the 20th century, the forests in the South were devastated by aggressive harvesting and many millions of acres of forest land needed reforestation. Foresighted individuals began a committed effort to restore this land to a productive condition. This effort required dedication, cooperation, and leadership. A small cadre of individuals led the restoration of the...

  18. Implementing forest landscape restoration, a practitioner's guide

    Science.gov (United States)

    John Stanturf; Stephanie Mansourian; Michael (eds.). Kleine

    2017-01-01

    Forest landscape restoration (FLR) in a nutshell FLR was defined in 2000 by a group of 30 specialists as “a planned process that aims to regain ecological integrity and enhance human wellbeing in deforested or degraded landscapes”. It does not seek to recreate past ecosystems given the uncertainty concerning the “past”, the significantly altered conditions of the...

  19. Bird Pollinator Visitation is Equivalent in Island and Plantation Planting Designs in Tropical Forest Restoration Sites

    Directory of Open Access Journals (Sweden)

    Ginger M. Thurston

    2013-03-01

    Full Text Available Active restoration is one strategy to reverse tropical forest loss. Given the dynamic nature of climates, human populations, and other ecosystem components, the past practice of using historical reference sites as restoration targets is unlikely to result in self-sustaining ecosystems. Restoring sustainable ecological processes like pollination is a more feasible goal. We investigated how flower cover, planting design, and landscape forest cover influenced bird pollinator visits to Inga edulis trees in young restoration sites in Costa Rica. I. edulis trees were located in island plantings, where seedlings had been planted in patches, or in plantation plantings, where seedlings were planted to cover the restoration area. Sites were located in landscapes with scant (10–21% or moderate (35–76% forest cover. Trees with greater flower cover received more visits from pollinating birds; neither planting design nor landscape forest cover influenced the number of pollinator visits. Resident hummingbirds and a migratory bird species were the most frequent bird pollinators. Pollination in the early years following planting may not be as affected by details of restoration design as other ecological processes like seed dispersal. Future work to assess the quality of various pollinator species will be important in assessing this idea.

  20. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  1. Exotic Invasive Shrub Glossy Buckthorn Reduces Restoration Potential for Native Forest Herbs

    Directory of Open Access Journals (Sweden)

    Caroline Hamelin

    2017-02-01

    Full Text Available Invasive glossy buckthorn could reduce restoration potential for understory native forest herbs by compromising their growth and biodiversity. Few studies of glossy buckthorn’s effects on forest herbs exist, and none were done in early-successional, partially open hardwood forests. This study was conducted in a mature hybrid poplar plantation invaded by buckthorn, located in southeastern Québec. We tested the effect of buckthorn removal on the growth of three forest herb species, whether this effect varied among species, and if canopy type (two poplar clones influenced this effect. Forest herbs were planted in herbicide (buckthorn removed and control treatments in the plantation understory, an environment similar to that of early-successional hardwood forests. Over the first two growing seasons, species showed specific reactions to buckthorn cover. Mean relative growth rate (RGR for Asarum canadense and Polygonatum pubescens was increased in the herbicide treatment (48% and 33%, respectively and decreased in the control treatment (−35% and −33%, respectively. Sanguinaria canadensis growth was the highest among species, with no difference between treatments. No effects of canopy type were detected. Results suggest that planting forest herbs for restoration purposes may be unsuccessful if buckthorn is present. Important changes in understory flora biodiversity are likely to occur over the long term in forests invaded by buckthorn.

  2. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  3. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  4. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semi-arid forests of the southwestern U.S.

    Science.gov (United States)

    O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.

    2017-12-01

    Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on

  5. Width of riparian buffer and structure of adjacent plantations influence occupancy of conservation priority birds

    Science.gov (United States)

    Roger W. Perry; T. Bently Wigley; M. Anthony Melchiors; Ronald E. Thill; Philip A. Tappe; Darren A. Miller

    2011-01-01

    Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across...

  6. The Discursive Construction of Confl ict in Participatory Forest Management: The Case of the Agoua Forest Restoration in Benin

    NARCIS (Netherlands)

    Idrissou Aboubacary, L.; Aarts, N.; Paassen, van A.; Leeuwis, C.

    2011-01-01

    The Agoua Forest in Benin was declared a protected area in 1953 and subsequently managed by means of a coercion system, which, however, did not prevent its deforestation. In 2002, a participatory management process was designed to restore this forest. Although the project managers and local

  7. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    Directory of Open Access Journals (Sweden)

    S. Poblador

    2017-09-01

    Full Text Available Riparian zones play a fundamental role in regulating the amount of carbon (C and nitrogen (N that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2 and nitrous oxide (N2O from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1 than N2O (0.001–0.2 mg N m−2 d−1 to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  8. Dynamics of buckbrush populations under simulated forest restoration alternatives

    Science.gov (United States)

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  9. Meeting forest restoration challenges: Using the Target Plant Concept

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis; Jeremy Pinto; Diane L. Haase; Kim W. Wilkinson; Anthony S. Davis

    2016-01-01

    Meeting forest restoration challenges relies on successful establishment of plant materials (e.g., seeds, cuttings, rooted cuttings, or seedlings, etc.; hereafter simply "seedlings"). The Target Plant Concept (TPC) provides a flexible framework that nursery managers and their clients can use to improve the survival and growth of these seedlings. The...

  10. Somatic embryogenesis and cryostorage for conservation and restoration of threatened forest trees

    Science.gov (United States)

    S.A. Merkle; A.R. Tull; H.J. Gladfelter; P.M. Montello; J.E. Mitchell; C. Ahn; R.D. McNeill

    2017-01-01

    Threats to North American forest trees from exotic pests and pathogens or habitat loss, make it imperative that every available tool be employed for conservation and restoration of these at risk species. One such tool, in vitro propagation, could greatly enhance conservation of forest tree genetic material and selection and breeding of resistant or...

  11. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: the Upper San Pedro, Arizona, United States

    Science.gov (United States)

    Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2015-01-01

    The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P  0·05). NDVI and enhanced vegetation index values were positively correlated (P deterioration of the riparian forest in the northern reach.

  12. 77 FR 65167 - Blacksmith Ecological Restoration Project, Eldorado National Forest, Placer and El Dorado...

    Science.gov (United States)

    2012-10-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Blacksmith Ecological Restoration Project, Eldorado... comments to 7600 Wentworth Springs Rd., Georgetown, CA 95634 Attention: Blacksmith Ecological Restoration... (PSD). In preparation for prescribed fire, perimeter line construction would be needed where roads...

  13. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores

    Science.gov (United States)

    Nelson, S. Mark; Andersen, Douglas C.

    1994-01-01

    The butterfly community at a revegetated riparian site on the lower Colorado River near Parker, Arizona, was compared to that found in a reference riparian site. Data indicated that the herbaceous plant community, which was lacking at the revegetated site, was important to several butterfly taxa. An index using butterfly sensitivity to habitat change (species classified into risk groups) and number of taxa was developed to monitor revegetation projects and to determine restoration effectiveness.

  15. Assessing the Effects of the Urban Forest Restoration Effort of MillionTreesNYC on the Structure and Functioning of New York City Ecosystems

    Directory of Open Access Journals (Sweden)

    P. Timon McPhearson

    2010-01-01

    Full Text Available Current forest restoration practices for New York City’s (NYC MillionTreesNYC Initiative on public parkland include site preparation with extensive invasive species removal and tree and shrub planting with the goal of creating new multi-layered forests. We have launched a long-term investigation of these sites in order to understand the primary physical, chemical, and biological responses of urban ecosystems to MillionTreesNYC forest restoration practices. This research will examine high and low diversity tree and understory planting combinations in permanent experimental forest restoration plots across NYC. The study assesses how the interactions between soil heterogeneity, plant population dynamics, and forest restoration management strategies drive urban forest ecosystem structure and functioning. Working in collaboration with the NYC Department of Parks & Recreation (NYC Parks and the MillionTreesNYC tree planting campaign, we are examining different restoration strategies to assess how restoration practices affect the ecological development trajectories of newly established forests in NYC.

  16. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    Science.gov (United States)

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on

  17. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  18. BASIC CONCEPTS AND METHODS OF RESTORATION OF NATURAL FORESTS IN EASTERN EUROPE

    Directory of Open Access Journals (Sweden)

    V. N. Korotkov

    2017-03-01

    Full Text Available The modern forest in coniferous-broadleaf (hemiboreal and broadleaf zones of Eastern Europe were formed as a result of long-term human impact. This led to the loss of natural forests and total dominance of secondary forests combined with monocultures of spruce and pine that were created in clearings, burned areas and fallow lands. The reforestation model that was common in the late XIX and first half of the XX century and that was focused on the establishment of monocultures commercially valuable coniferous tree species (spruce and pine over large areas has resulted in declining biological diversity, increasing risk of tree damage due to outbreaks of pathogens and phytophagous insects, decreasing soil fertility, worsening soil and water conservation functions of forests. When restoring the prototypes of natural forests it is necessary to be guided by the modern concepts of synecology and model reconstructions of forest cover in pre-anthropogenic period that are briefly discussed in the paper. Based on the analysis of literature and research experience the author proposes the concept of natural forest restoration that can be applied primarily to the coniferous-broadleaf and broadleaf forests. The main goal is to create multiple-aged and polydominant near-natural forest ecosystems with higher resistance to fungal diseases and outbreaks of phytophagous insects. The field of concept application is specially protected natural areas (national parks, natural parks, wildlife sanctuaries, etc., different categories of protective forests located within the zones of coniferous-broadleaf and broadleaf forests on the East European Plain. The formation of multiple-aged forests is possible when group felling and group-clear felling that largely imitate the natural gap-mosaic stand are implemented. The formation of new generations of trees is possible both due to the natural regeneration and the development of forest cultures. The article provides the full set

  19. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    Science.gov (United States)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  20. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  1. Spatial and temporal analysis of the land cover in riparian buffer zones (Areas for Permanent Preservation in Sorocaba City, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Sergio Henrique Alves

    2009-08-01

    Full Text Available Considering the fundamental role that the riparian vegetation plays in relation to maintenance of the environmental health of a watershed and the necessity of restoring sectors of the buffer zone without natural vegetation, in this paper we investigated what land cover classes occur along the riparian buffer stripes considered Area for Permanent Preservation (APP in the Sorocaba municipality, SP in three periods: 1988, 1995 and 2003. Based on GIS technology and using the drainage network map, the APP stripes (riparian buffer zones map was generated, and this map was overlaid to the land cover map (1988, 1995 and 2003 to provide a land cover map specifically of the riparian buffer zones. The results show that 58.43% of the APPs have no land cover of native vegetation and therefore, need to be reforested, representing 5,400 hectares to be restored.

  2. DECISION TOOL FOR RIPARIAN ECOSYSTEM MANAGMENT IN THE MID-ATLANTIC HIGHLANDS

    Science.gov (United States)

    In the Canaan Valley Highlands of the Mid-Atlantic, riparian zone restoration has been identified as a critical watershed management practice not only for the ecosystem services provided but also for the potential socioeconomic growth from environmental investment and job creatio...

  3. Fire in upper Midwestern oak forest ecosystems: an oak forest restoration and management handbook

    Science.gov (United States)

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2015-01-01

    We reviewed the literature to synthesize what is known about the use of fire to maintain and restore oak forests, woodlands, and savannas of the upper Midwestern United States, with emphasis on Minnesota, Wisconsin, and Michigan. Included are (1) known physical and ecological effects of fire on oaks from acorn through seedling, established sapling, and mature stages of...

  4. Berenty Reserve—A Gallery Forest in Decline in Dry Southern Madagascar—Towards Forest Restoration

    Directory of Open Access Journals (Sweden)

    Vanessa Winchester

    2018-01-01

    Full Text Available Berenty Reserve, a fully protected gallery forest beside the Mandrare River is renowned for its lemurs, but the continuous canopy of the main forest is shrinking, fragmenting and degrading. The aim of this study, before any restoration can be considered, is to investigate why canopy-cover is declining and define the forest’s vegetation status and composition. Our study includes analysis of tamarind age (the dominant species and regeneration, forest extent, climate and soil. Measurement of trunk circumference and annual rings indicated a median age of 190 years, near the accepted maximum for tamarinds. There is no regeneration of tamarind seedlings under the canopy and an invasive vine, Cissus quadrangularis suffocates any regeneration on the forest margins. A vegetation survey, based on fifteen transects, broadly characterized three forest areas: continuous canopy near the river, transitional canopy with fewer tall trees, and degraded dryland; the survey also provided a list of the 18 most common tree species. Ring counts of flood-damaged roots combined with measurement to the riverbank show that erosion rates, up to 19.5 cm/year, are not an immediate threat to forest extent. The highly variable climate shows no trend and analysis of forest soil indicates compatibility with plant growth.

  5. Applying the Ecosystem Approach to Select Priority Areas for Forest Landscape Restoration in the Yungas, Northwestern Argentina

    Science.gov (United States)

    Ianni, Elena; Geneletti, Davide

    2010-11-01

    This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas—estates derived from the Spanish land tenure system—differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.

  6. Restoring bottomland hardwood forests: A comparison of four techniques

    Science.gov (United States)

    John A. Stanturf; Emile S. Cardiner; James P. Shepard; Callie J. Schweitzer; C. Jeffrey Portwood; Lamar Dorris

    2004-01-01

    Large-scale afforestation of former agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) is one of the largest forest restoration efforts in the world and continues to attract interest from landowners, policy makers, scientists, and managers. The decision by many landowners to afforest these lands has been aided in part by the increased availability of...

  7. Enhancing Quality of Life: Restorative Experience in Recreational Forests in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Norhuzailin Hussain

    2016-06-01

    Full Text Available Two recreational forests were selected as case studies: The Ampang and Kanching Recreational Forests. The recreational forests are facing pressure by surrounding developments such as highway and housing. Urban development has implications for the benefits offered by recreational forests, endangered biodiversity, water quality and wildlife to result a place that is no longer enjoyable to visit. It is important to conserve the recreational forests that can contribute to the urbanites quality of life. Based on the results from the site observations, self-administered questionnaires and in-depth interviews, this paper describes recreational forest users’ experience in the recreational forests and what makes they perceived restored while being in the forest. This study helps the recreational forest management and related organizations in conserving, planning and managing recreational forests in providing a positive experience for users that can enhance Malaysian quality of life.

  8. Restoring southern Ontario forests by managing succession in conifer plantations

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen

    2008-01-01

    Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...

  9. Increase of an introduced bird competitor in old-growth forest associated with restoration

    Directory of Open Access Journals (Sweden)

    Leonard Freed

    2012-05-01

    Full Text Available Many successful invasions involve long initial periods in which the invader exists at low densities followed by sudden population increases. The reasons for such time-lags remain poorly understood. Here we document a sudden increase in density of the introduced Japanese white-eye (Zosterops japonicus in a restoration area contiguous with old-growth forest at Hakalau Forest National Wildlife Refuge on the Island of Hawaii. The refuge, with very high density of native birds, existed in a pocket of low white-eye density that persisted for at least 20 years since the late 1970s. The refuge began an extensive native trees restoration project in 1989 within a 1314 ha abandoned pasture above old-growth forest. This area was soon colonized by white-eyes and their population grew exponentially once the trees had grown tall enough to develop a canopy. This increase was in turn followed by significantly more white-eyes in the open and closed forests adjacent to the restoration area. Competition between white-eyes and native species was documented on study sites within these forests. Density data indicate that competition was more widespread, with loss of tens of thousands of native birds in the 5371 ha area surveyed. Our results are consistent with the view that ecological barriers may delay the population increase of invaders and that human-derived activities may help invaders cross these barriers by creating new ecological opportunities. Control of white-eye numbers may be essential for recovery of native species.

  10. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  11. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  12. ANALYSIS OF GROWTH AND GAS EXCHANGE OF PLANTS Lonchocarpus sericeus (Poir. D.C. IN FLOODING FOR THE RECOVERY OF THE RIPARIAN FORESTS

    Directory of Open Access Journals (Sweden)

    Jean Marcel Sousa Lira

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812349In order to select species for using in the restoration of riparian forests on the banks of the Sao FranciscoRiver, in the state of Sergipe, an experiment was conducted to evaluate the growth and gas exchange ofplants Lonchocarpus sericeus (Poir. D.C., subject to flooding conditions in the nursery. The experimentwas conducted at Forest Nursery, Department of Forest Sciences, Federal University of Sergipe (UFS,the municipality of São Cristóvão, (11 º 01 'S latitude and 37 º 12' longitude W, altitude 20 m , stateof Sergipe, Brazil, from October 2006 to January 2007 under ambient conditions. We used a completelyrandomized design (CRD, factorial (2x7, two treatments (control - T0, plants at field capacity and flooded- T1 and days after flooding (0, 15, 30, 45, 60, 75 and 90 days. To simulate the condition of flooding,the plants were placed in plastic pots of black color with a volume of 5 L and more substrate. Followingthese pots were attached to pots with a volume of 10 L, which was added water until it reaches a waterdepth of 5 cm above the top of the plants. The control plants kept in pots with a volume of 5 L substratemaintained at field capacity. In non-destructive variables were used four replicates per treatment evaluatedevery fifteen days, where each replicate consists of six plants, totaling 24. Destructive variables used were4 replicates per treatment, determined biweekly from 15 days after flooding, where each replicate consistsof a plant totaling 24 plants. Therefore, 48 plants were used per treatment. The non-destructive variableswere height, diameter and number of leaves. While the destructive variables analyzed were dry weight ofroots, dry weight of shoots and dry weight of root / shoot ratio. In addition, we carried out analysis of gasexchange on a monthly basis and evaluated twelve plants per treatment, with two sampling leaves, fullyexpanded, per plant. The biometric variables were

  13. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  14. Restoring hydrology and old-growth structures in a former production forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik

    2016-01-01

    to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree...... characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions......-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven...

  15. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams

    Directory of Open Access Journals (Sweden)

    Cordero–Rivera, A.

    2017-01-01

    Full Text Available Land use patterns of a river basin have a significant effect on the structure and function of river ecosystems. Changes in the composition of riparian plant communities modify the quantity, quality and seasonality of leaf–litter inputs, determining changes in macroinvertebrate colonization and activity. The main goal of this study was to test the effect of land–use modifications, and particularly the impact of eucalypt plantations, on the macroinvertebrate communities of sixteen headwater streams. Macroinvertebrates were counted and identified to family level. Land uses were classified in five categories using aerial photography: native forest, eucalypt plantations, agricultural land, shrubland, and urban areas. We found that macroinvertebrate diversity increased with basin size and with the proportion of basin covered by native forest. This variable correlated negatively with the land occupied by eucalypt plantations. Macroinvertebrate richness diminished with the increase of land surface covered by eucalypt plantations, and a similar tendency was observed with diversity. Furthermore, streams whose drainage basin was mainly covered by Eucalyptus were more likely to dry up in summer. This observation adds to evidence from previous studies that concluded that fast–growing tree plantations affect hydric resources, an important ecosystem service in the context of global warming. To minimize the impact of industrial sylviculture, we suggest that maintaining and/or restoring riparian forests could mitigate the effects of intensive eucalypt monocultures.

  17. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Science.gov (United States)

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  18. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  19. Preliminary assessment of soil erosion impact during forest restoration process

    Science.gov (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  20. Quantifying flooding regime in floodplain forests to guide river restoration

    Directory of Open Access Journals (Sweden)

    Christian O. Marks

    2014-09-01

    Full Text Available Abstract Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and channel morphology, and hydrologic regime to define conditions promoting distinct floodplain forest assemblages. Species assemblages were dominated by floodplain-associated trees on surfaces experiencing flood durations between 4.5 and 91 days/year, which were generally well below the stage of the two-year recurrence interval flood, a widely-used benchmark for floodplain restoration. These tree species rarely occurred on surfaces that flooded less than 1 day/year. By contrast abundance of most woody invasive species decreased with flooding. Such flood-prone surfaces were jointly determined by characteristics of the hydrograph (high discharges of long duration and topography (low gradient and reduced valley constraint, resulting in increased availability of floodplain habitat with increasing watershed area and/or decreasing stream gradient. Downstream mainstem reaches provided the most floodplain habitat, largely associated with low-energy features such as back swamps and point bars, and were dominated by silver maple (Acer saccharinum. However, we were able to identify a number of suitable sites in the upper part of the basin and in large tributaries, often associated with in-channel islands and bars and frequently dominated by sycamore (Platanus occidentalis and flood disturbance-dependent species. Our results imply that restoring flows by modifying dam operations to benefit floodplain forests on existing surfaces need not conflict with flood protection in some regional settings. These results underscore the need to understand how flow, geomorphology, and species traits

  1. Challenges of ecological restoration

    DEFF Research Database (Denmark)

    Halme, Panu; Allen, Katherine A.; Aunins, Ainars

    2013-01-01

    we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology......The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many...... on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here...

  2. Power and Conflict in Adaptive Management: Analyzing the Discourse of Riparian Management on Public Lands

    Directory of Open Access Journals (Sweden)

    Jennifer S. Arnold

    2012-03-01

    Full Text Available Adaptive collaborative management emphasizes stakeholder engagement as a crucial component of resilient social-ecological systems. Collaboration among diverse stakeholders is expected to enhance learning, build social legitimacy for decision making, and establish relationships that support learning and adaptation in the long term. However, simply bringing together diverse stakeholders does not guarantee productive engagement. Using critical discourse analysis, we examined how diverse stakeholders negotiated knowledge and power in a workshop designed to inform adaptive management of riparian livestock grazing on a National Forest in the southwestern USA. Publicly recognized as a successful component of a larger collaborative effort, we found that the workshop effectively brought together diverse participants, yet still restricted dialogue in important ways. Notably, workshop facilitators took on the additional roles of riparian experts and instructors. As they guided workshop participants toward a consensus view of riparian conditions and management recommendations, they used their status as riparian experts to emphasize commonalities with stakeholders supportive of riparian grazing and accentuate differences with stakeholders skeptical of riparian grazing, including some Forest Service staff with power to influence management decisions. Ultimately, the management plan published one year later did not fully adopt the consensus view from the workshop, but rather included and acknowledged a broader diversity of stakeholder perspectives. Our findings suggest that leaders and facilitators of adaptive collaborative management can more effectively manage for productive stakeholder engagement and, thus, social-ecological resilience if they are more tentative in their convictions, more critical of the role of expert knowledge, and more attentive to the knowledge, interests, and power of diverse stakeholders.

  3. Riparian bird density decline in response to biocontrol of Tamarix from riparian ecosystems along the Dolores River in SW Colorado, USA

    Science.gov (United States)

    Darrah, Abigail J.; van Riper, Charles

    2018-01-01

    Biocontrol of invasive tamarisk (Tamarix spp.) in the arid Southwest using the introduced tamarisk beetle (Diorhabda elongata) has been hypothesized to negatively affect some breeding bird species, but no studies to date have documented the effects of beetle-induced defoliation on riparian bird abundance. We assessed the effects of tamarisk defoliation by monitoring defoliation rates, changes in vegetation composition, and changes in density of six obligate riparian breeding bird species at two sites along the Dolores River in Colorado following the arrival of tamarisk beetles. We conducted bird point counts from 2010 to 2014 and modeled bird density as a function of native vegetation density and extent of defoliation using hierarchical distance sampling. Maximum annual defoliation decreased throughout the study period, peaking at 32–37% in 2009–2010 and dropping to 0.5–15% from 2011–2014. Stem density of both tamarisk and native plants declined throughout the study period until 2014. Density of all bird species declined throughout most of the study, with Song Sparrow disappearing from the study sites after 2011. Blue Grosbeak, Yellow-breasted Chat, and Yellow Warbler densities were negatively related to defoliation in the previous year, while Lazuli Bunting exhibited a positive relationship with defoliation. These findings corroborate earlier predictions of species expected to be sensitive to defoliation as a result of nest site selection. Tamarisk defoliation thus had short-term negative impacts on riparian bird species; active restoration may be needed to encourage the regrowth of native riparian vegetation, which in the longer-term may result in increased riparian bird density.

  4. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    Directory of Open Access Journals (Sweden)

    Lizet Solis-Gabriel

    2017-05-01

    Full Text Available Tropical dry forests (TDFs have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  5. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure.

    Science.gov (United States)

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  6. Vegetation Succession on Degraded Sites in the Pomacochas Basin (Amazonas, N Peru—Ecological Options for Forest Restoration

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2018-02-01

    Full Text Available The Andes of northern Peru are still widely covered with forests, but increasingly suffer from habitat fragmentation. Subsequent soil degradation often leads to the abandonment of overused forests and pastures. Ecological knowledge on the restoration potential, e.g., on dependencies of soil conditions and altitude, is scarce. Therefore, we compared soil and vegetation patterns along nine transects within the upper Pomacochas Basin, which is an important biodiversity corridor along the Andes, between remaining forests, succession sites and pastures. Anthropogenic successional and disturbance levels, geological substrate, and altitude have the most important ecological impacts on vegetation and tree species composition. Species responded to sandstone versus calcareous substrates, but also to depths of the organic soil layer, and light conditions. The absence of organic layers under pastures contrasted with the accumulation of thick organic layers under forest cover. Vegetation composition at succession sites revealed certain starting points (herbal stage, bush stage, or secondary forest for restoration that will determine the length of regeneration paths. Pre-forest patches of Alchornea sp. and Parathesis sp. may act as habitat stepping stones for expeditiously restoring biocorridors for wildlife. The key findings can contribute to the sustainable use and conservation of biodiversity in a fragile ecoregion.

  7. Conservation and restoration of forested wetlands: new techniques and perspectives

    Science.gov (United States)

    James Johnston; Steve Hartley; Antonio Martucci

    2000-01-01

    A partnership of state and federal agencies and private organizations is developing advanced spatial analysis techniques applied for conservation and restoration of forested wetlands. The project goal is to develop an application to assist decisionmakers in defining the eligibility of land sites for entry in the Wetland Reserve Program (WRP) of the U.S. Department of...

  8. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  9. Surface runoff water quality in a managed three zone riparian buffer.

    Science.gov (United States)

    Lowrance, Richard; Sheridan, Joseph M

    2005-01-01

    Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.

  10. Functional species traits of carabid beetles living in two riparian alder forests of the Sila plateau subject to different disturbance factors (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Antonio Mazzei

    2015-06-01

    Full Text Available We studied carabid beetle assemblages found in riparian black alder forests in the Sila plateau (Southern Apennines. These carabid assemblages are characterized by a high incidence of endemic small-sized, low dispersal, highly stenotopic (hygrophilic, and trophycally specialized species. To evaluate the influence of anthropogenic disturbance on these insects, we compared carabid assemblage of an old undisturbed forest (65-170y, wilderness landscape with that of a younger, partly grazed stand (40-60y, cropland landscape. The carabid assemblage of the disturbed stand was characterized by a higher number of species, but showed a lower incidence of zoophagous specialists and brachypterous beetles, with many species probably coming from an adjacent cropland. However, the disturbed stand maintains almost 80% of the core species found in the older forest, which suggests that these insects are not particularly sensitive to disturbance factors represented by periodic wood harvesting and extensive cattle grazing.

  11. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Science.gov (United States)

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  12. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  13. Long-term growth and succession in restored and natural mangrove forests in southwestern Florida

    Science.gov (United States)

    Proffitt, C.E.; Devlin, D.J.

    2005-01-01

    We compared colonization, growth and succession from 1989 to 2000 in a restored mangrove site and in gap and closed canopy sites in a natural mangrove forest. The restored site was created in 1982 and planted with Rhizophora mangle (???2 m-2) propagules. By 1989, Laguncularia racemosa, with densities up to 12.9 tree m-2, was a dominant in all plots, although densities were greater at edge plots relative to inner plots, and near open water (west plots) relative to further inland (east plots), and in tall mangrove plots relative to scrub plots. Rhizophora mangle (1989 tree densities about 2 m-2) was a codominant in inner and scrub plots, while Avicennia germinans had the lowest densities (mangle and L. racemosa, rapid growth in height of all species (1989-1996), followed by a dieoff of L. racemosa in later years (1997-2000) as the canopy came to resemble that of tall mangrove plots. Colonization and growth rates were lower in gap and closed canopy regions of the natural forest relative to rates in the restored site. After 11 years, densities of L. racemosa were 10-20x lower and R. mangle slightly less in the gap relative to densities in tall mangrove plots in the restored site at the same age. Although the restored stand had converged with the natural forest by 2000 in terms of some factors such as species richness, vegetation cover, litterfall, and light penetration, trees were still much smaller and stem densities much higher. Full development of mature structure and ecological function will likely require decades more development. ?? Springer 2005.

  14. Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.

    2011-07-01

    Protecting water resources for expanding human enterprise while conserving valued natural habitat is among the greatest challenges of the 21st century. Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of non-native plant species in riparian areas along streams, canals and rivers in geographically arid regions. This paper sets out to identify when and where non-native riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semiarid river systems. We develop an ecophysiological framework that focuses on two main criteria: (1) examination of the physiological traits that promote non-native species establishment and persistence across environmental gradients, and (2) assessment of where and to what extent hydrologic fluxes are potentially altered by the establishment of introduced species at varying scales from individual plants, to small river reaches, to entire river basins. We highlight three non-native plant species that currently dominate southwestern United States riparian forests. These include tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). As with other recent reviews, we suspect that in many cases the removal of these, and other non-native species will have little or no impact on either streamflow volume or groundwater levels. However, we identify potential exceptions where the expansion of non-native plant species could have significant impact on ecohydrologic processes associated with southwestern United States river systems. Future research needs are outlined that will ultimately assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given

  15. Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)

    Science.gov (United States)

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  16. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  17. Dynamics of Plains Cottonwood ( Populus deltoides) Forests and Historical Landscape Change along Unchannelized Segments of the Missouri River, USA

    Science.gov (United States)

    Dixon, Mark D.; Johnson, W. Carter; Scott, Michael L.; Bowen, Daniel E.; Rabbe, Lisa A.

    2012-05-01

    Construction of six large dams and reservoirs on the Missouri River over the last 50-75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood ( Populus deltoides). We quantified changes in land cover from 1892-1950s and the 1950s-2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892-1950s and 1950s-2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s-2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25-50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25-50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.

  18. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest.

    Directory of Open Access Journals (Sweden)

    Scott F Pearson

    Full Text Available Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1-2 years and long-term (~10 years avian community responses (occupancy and abundance to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13 m forested buffers on each side of the stream, and sites with wider (~30 m and more variable width unharvested buffer. Buffer treatments exhibited a 31-44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63-74% relative to the controls (29%. We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29% and Wide buffers (short-term: 21%; long-term 93% relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that

  19. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified, and soil moisture is a key environmental variable controlling this functionality. Restored sections of rivers often are characterized by a dynamic mosaic of riparian zones with varying exposure to flooding. In this presentation, the spatial and temporal variability of soil moisture in riparian soils of a restored reach of the Alpine river Thur in northeastern Switzerland is shown. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three functional processing zones (FPZ) representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is loamy sand to sandy loam composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits with a loamy fine earth. (iii) The mixed forest is a mature riparian hardwood forest with ash and maple as dominant trees developed on older overbank sediments with a silty loamy fine earth. The study period was between spring 2009 and winter 2009/2010 including three flood events in June, July and December 2009. The first and third flood inundated the grass zone and lower part of the bush zone while the second flood was bigger and swept through all the FPZs. Water contents in several soil depths were measured continuously in 30 minute intervals using Decagon EC-5 and EC-TM sensors. There were six spatial

  20. Biodiversity and Phytosociological Studies of Upstream and Downstream Riparian Areas of Pakistan: Special Reference to Taunsa Wildlife Sanctuary and Keti Shah Forests

    International Nuclear Information System (INIS)

    Arfeen, R. Z.; Saleem, A.; Mirza, S. N.; Tayyab, H. M.; Akmal, M.; Afzal, O.

    2015-01-01

    Pakistan riparian zone mostly belongs to Sindh and Punjab provinces and prone to climatic problems and anthropogenic activities. The research was conduct to estimate and compare the structure and composition of riverine floral diversity in low riparian zone of River Indus. The data was collected from Keti Shah forest and Taunsa wildlife sanctuary. Total 14259 plants/individuals were recorded, which belong to 54 plant species with 18 different families. In Taunsa pre-monsoon survey, total 30 plant species were found with 4476 plants from 16 different families. In Taunsa post-monsoon survey total 3348 individuals were recorded from 20 plant species and 9 families. Similarly, in Keti Shah forest, total 3975 individual were recorded from 22 species and 11 families during the pre-monsoon season and 2460 plants were recorded in post-monsoon season, belonging to 16 species and 10 families. These species mostly belong to Fabaceae, Poaceae, Cyperaceae and Asclepiadaceae. Different phytosociological parameters indicate Tamarix dioca, Cynodon dactylon, Desmostachya bipinnata, Imperata cylindrica, Fimbristylis hispidula, Acacia nilotica, Phragmites karka, Tamarix sp. and Saccharum bengalense as dominant species. The biodiversity in upstream and downstream areas were rich in pre-monsoon season in comparison to post-monsoon season in surveyed areas. This study is useful for management of the area in the future as conservation strategies can be made through considering the adaptive tree species in future plantation and endangered species can be conserved. (author)

  1. Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson A. Müller

    2012-03-01

    Full Text Available Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil. Human-attracted mosquitoes were collected for one hour, around sunset time (half hour before and half after, from April to December 2006, in two environments (riparian forest and near houses, in Tibagi river basin, Palmeira municipality, State of Paraná. Seven-hundred forty-nine mosquitoes, belonging to 13 species, were collected. Psorophora champerico Dyar & Knab, 1906 (42.86% and Psorophora discrucians (Walker, 1856 (40.59% were the most frequent species. No significant differences between quantities of Ps. champerico (t = -0.792; d.f. = 16; p = 0.43 and Ps. discrucians (t = 0.689; d.f. = 16; p = 0.49 obtained in riparian forest and near houses were observed, indicating similar conditions for crepuscular activity of these species in both environments. Psorophora champerico and Ps. discrucians responded (haematophagic activity to environmental stimuli associated with the twilight hours differently in distinct habitats studied. The former species is registered for the first time in the Atlantic forest biome.Atividade crepuscular de culicídeos (Diptera, Culicidae no peridomicílio e remanescentes de matas ciliares do Rio Tibagi. Estado do Paraná, Brasil. Mosquitos atraídos por humanos foram coletados por uma hora em torno do crepúsculo vespertino (meia hora antes e meia hora depois, de abril a dezembro de 2006, em dois locais (mata ciliar e peridomicílio na bacia do Rio Tibagi, município de Palmeira, Estado do Paraná. Foram capturados 749 mosquitos distribuídos em 13 espécies. Psorophora champerico Dyar & Knab, 1906 (42,86% e Ps. discrucians (Walker, 1856 (40,59% foram as espécies mais freqüentes. Não foram registradas diferenças significativas entre as médias de indivíduos capturados entre os pontos de mata ciliar e peridomicílio para Ps. champerico (t = -0,792; g.l. = 16; p = 0

  2. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation

  3. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan.

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the

  4. Assessment of hydrological regimes for vegetation on riparian wetlands in Han River Basin, Korea

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-01-01

    Full Text Available Hydrological regimes are regarded as one of the major determinants for wetland ecosystems, for they influence species composition, succession, productivity, and stability of vegetation communities. Since Korea launched the Four Major River Restoration Project in 2007, the water regimes of many of the riparian wetlands have changed, that is potentially affecting vegetation properties. For ecological conservation and management, it is important to connect hydrological characteristics and vegetation properties. The objective of this study is to investigate the influence of hydrological regimes on vegetation community, and develop a methodology that can connect them. Inundated exceedance probability (IEP and its district concept are suggested to gain insights into hydrological regimes on the Binae wetland that is rehabilitated by the Restoration Project in 2012 and belong to the riparian zone. Results of this study indicate that the areas with P = 0.08 or lower IEPs should have the disturbance for vegetation communities, or could be changed to a hydrophilic vegetation in the study area, and it should be considered in the restoration and rehabilitation project to conserve legally protected or endangered vegetation.

  5. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly

  6. Forests of hope: Costa Rica. Restoring hope in the clouds.

    Science.gov (United States)

    Bowen, L

    1996-01-01

    The rapid population growth in Central America has created pressure on the largest tract of cloud forest spanning the Talamanca Mountains in Costa Rica and Panama. Of immediate concern is restoring hope in the forest and improving the standard of living among local people. Such is the goal of the Amistad Conservation and Development (AMISCONDE) project in the communities of Cerro Punta, Panama, and San Rafael in Costa Rica. Through agriculture, forestry, animal husbandry, environmental education, and community development, AMISCONDE aims to restore the degraded lands in the reserve's buffer zone and improve the income of the people. All the local people, the farmers, women and children have benefited from the project. Some of the activities carried out to meet its objectives include helping the farmers improve the productivity and marketability of their products by teaching them new technologies and giving agricultural credits to farmers, women, and youth groups. In addition, AMISCONDE conducts training courses to address the economic, social and educational needs of women and communities. It is assured that the community and the group will be prepared to continue on their own after the official AMISCONDE office is gone.

  7. From Target to Implementation: Perspectives for the International Governance of Forest Landscape Restoration

    Directory of Open Access Journals (Sweden)

    Till Pistorius

    2014-03-01

    Full Text Available Continuing depletion of forest resources, particularly in tropical developing countries, has turned vast areas of intact ecosystems into urbanized and agricultural lands. The degree of degradation varies, but in most cases, the ecosystem functions and the ability to provide a variety of ecosystem services are severely impaired. In addition to many other challenges, successful forest restoration of these lands requires considerable resources and funding, but the ecological, economic and social benefits have the potential to outweigh the investment. As a consequence, at the international policy level, restoration is seen as a field of land use activities that provides significant contributions to simultaneously achieving different environmental and social policy objectives. Accordingly, different policy processes at the international policy level have made ecological landscape restoration a global priority, in particular the Convention on Biological Diversity with the Aichi Target 15 agreed upon in 2010, which aims at restoring 15% of all degraded land areas by 2020. While such ambitious policy targets are important for recognizing and agreeing upon solutions for environmental problems, they are unlikely to be further substantiated or governed. The objective of this paper is thus to develop a complementary governance approach to the top-down implementation of the Aichi target. Drawing on collaborative and network governance theories, we discuss the potential of a collaborative networked governance approach and perspectives for overcoming the inherent challenges facing a rapid large-scale restoration of degraded lands.

  8. Regional forest landscape restoration priorities: Integrating historical conditions and an uncertain future in the northern Rocky Mountains

    Science.gov (United States)

    Barry L. Bollenbacher; Russell T. Graham; Keith M. Reynolds

    2014-01-01

    National law and policy direct the management of the National Forests, with restoring resilient forest conditions being an overarching theme. Climate is a major driver of disturbances that affect ecosystems, especially those with vegetation that show large departures from historical conditions. Drought, fire, insects, and diseases are common forest stressors whose...

  9. Ecosystem and restoration consequences of invasive woody species removal in Hawaiian lowland wet forest

    Science.gov (United States)

    R. Ostertag; S. Cordell; J. Michaud; T.C. Cole; J.R. Schulten; K.M. Publico; J.H. Enoka

    2009-01-01

    A removal experiment was used to examine the restoration potential of a lowland wet forest in Hawaii, a remnant forest type that has been heavily invaded by non-native species and in which there is very little native species regeneration. All non-native woody and herbaceous biomass (approximately 45% of basal area) was removed in four 100-m² removal plots;...

  10. Shared visions, future challenges: a case study of three Collaborative Forest Landscape Restoration Program locations

    Directory of Open Access Journals (Sweden)

    Emily H. Walpole

    2017-06-01

    Full Text Available The USDA Forest Service is encouraging the restoration of select forest ecosystems through its Collaborative Forest Landscape Restoration Program (CFLRP. Collaboration is often necessary to implement landscape-scale management projects such as these, and a substantial body of research has examined the benefits and limitations of using collaboration as a tool for improving relationships, trust, and other outcomes among stakeholder groups. However, limited research has investigated the use of collaboration to achieve large-scale ecological restoration goals. Restoration poses some unique conditions for a collaborative approach, including reaching agreement on which historic conditions to use as a reference point, the degree of departure from these reference conditions that warrants management intervention, and how to balance historic conditions with expected future conditions and current human uses of the landscape. Using a mental-models approach, semistructured interviews were conducted with a total of 25 participants at three CFLRP sites. Results indicate that collaboration contributed to improved relationships and trust among participants, even among stakeholder groups with a history of disagreement over management goals. In addition, a shared focus on improving ecosystem resilience helped groups to address controversial management topics such as forest thinning in some areas. However, there was also evidence that CFLRP partnerships in our study locations have primarily focused on areas of high agreement among their stakeholders to date, and have not yet addressed other contentious topics. Previous studies suggest that first conducting management in areas with high consensus among participating stakeholders can build relationships and advance long-term goals. Nonetheless, our results indicate that achieving compromise in less obviously departed systems will require more explicit value-based discussions among stakeholders.

  11. Germination timing and rate of locally collected western wheatgrass and smooth brome grass: the role of collection site and light sensitivity along a riparian corridor

    Science.gov (United States)

    The ecological integrity of riparian areas is reduced by biological plant invaders like smooth brome grass (Bromus inermis). Smooth brome actively invades recently disturbed riparian zones by its high seed production and fast seedling establishment. Restoring native perennial grasses to these regio...

  12. Conserving and Restoring Old Growth in Frequent-fire Forests: Cycles of Disruption and Recovery

    Directory of Open Access Journals (Sweden)

    Dave Egan

    2007-12-01

    Full Text Available I provide a synthesis of the papers in the Special Issue, The Conservation and Restoration of Old Growth in Frequent-fire Forests of the American West. These papers - the product of an Old Growth Writing Workshop, held at Northern Arizona University in Flagstaff, Arizona on 18-19 April 2006 - represent the ideas of 25 workshop participants who argue for a new attitude toward managing old growth in the frequent-fire forests of the American West. Unlike the lush, old-growth rainforests of the Pacific Northwest, the dry, frequent-fire forests of the western United States evolved with surface fires that disturbed the system with such regularity that young trees were almost always killed. When saplings did survive, they grew beyond the harm of frequent surface fires and, ultimately, attained the characteristics that define old growth in these systems. This system worked well, producing old-growth trees in abundance, until the onset of Euro-American settlement in the mid- to late-19th century. The arrival of these settlers put in motion an interplay of unprecedented social, political, economic, and ecological forces (e.g., removal of Native Americans and their fire-based land management systems, overgrazing of the understory, aggressive logging, establishment of federal land management agencies, implementation of a federal fire suppression policy. These activities have culminated in 1 overly dense forested ecosystems that are now on the verge of collapse because of catastrophic fires (i.e., crown fire at the landscape level; the Rodeo-Chediski Fire and insect outbreaks, 2 the emergence of conservation-minded environmental legislation and policy, and 3 greater levels of interaction between citizens, federal agencies, and fire-prone landscapes. Recognizing the tenuous ecological situation of these forests, restoration ecologists, foresters, and others have developed ways to return historic ecological processes and lower tree densities to these forests

  13. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    Science.gov (United States)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  14. Contribution of Forest Restoration to Rural Livelihoods and Household Income in Indonesia

    Directory of Open Access Journals (Sweden)

    Nayu Nuringdati Widianingsih

    2016-08-01

    Full Text Available Forest resources remain vital to the survival of many rural communities, though the level of forest reliance varies across a range of sites and socio-economic settings. This article investigates variation in forest utilization across households in three ethnic groups living near a forest restoration area in Sumatra, Indonesia. Survey data were collected on 268 households, with a four-month recall period and three repeat visits to each selected household within a year. Random sampling was applied to select households in five villages and five Batin Sembilan (indigenous semi-nomadic groups. Sampled households belonged to three ethnic groups: 15% were Batin Sembilan, 40% Local Malayan, and 45% Immigrant households. Indigenous households displayed the highest reliance on forests: 36% of their annual total income came from this source, as compared with 10% and 8% for Local and Immigrant households, respectively. Our findings showed that the livelihoods of indigenous groups were still intricately linked with forest resources, despite a rapid landscape-wide transition from natural forest to oil palm and timber plantations.

  15. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  16. Restoration of three forest herbs in the Liliaceae family by manipulating deer herbivory and overstorey and understorey vegetation

    Science.gov (United States)

    Cynthia D. Huebner; Kurt W. Gottschalk; Gary W. Miller; Patrick H. Brose

    2010-01-01

    Research on herbaceous vegetation restoration in forests characterised by overstorey tree harvests, excessive deer herbivory, and a dominant fern understorey is lacking. Most of the plant diversity found in Eastern hardwood forests in the United States is found in the herbaceous understorey layer. Loss of forest herbaceous species is an indicator of declining forest...

  17. Riparian influences on the biophysical characteristics of seston in headwater streams.

    Science.gov (United States)

    Scott R. Elliott; Robert J. Naiman; Peter A. Bisson

    2004-01-01

    Suspended particles (seston) in streams are an important source of nutrition for many invertebrates, forming a strong trophic link between plant and animal production. In forested regions the management of riparian corridors may alter alloehthonous and autochthonous contributions to streams, ultimately changing the biophysical characteristics of seston. This article...

  18. Density management and riparian buffer study in Western Oregon: Phase 1 results, launch of phase 2 [brochure

    Science.gov (United States)

    Rhonda Mazza

    2009-01-01

    Can we expedite the development of late-successional forest conditions by applying thinning treatments to young forest stands? What effect will these thinning treatments have on headwater ecosystems? These broad questions lie at the foundation of the Density Management and Riparian Buffer Study (DMS) of western Oregon.

  19. Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-01-01

    Full Text Available Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77–144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD and late-seral stage (high structural diversity; HiD. Following harvesting, half of each plot was treated with prescribed fire (B. A total of 16,473 trees (8.7% of all trees died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae (10,655 trees, specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say, and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19–29.2 and 29.3–39.3 cm at 1.37 m in height. Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7% than LoD (4.2%. The application of these and other results to the   management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees.

  20. Restoring tropical forests on bauxite mined lands: lessons from the Brazilian Amazon

    Science.gov (United States)

    John A. Parrotta; Oliver H. Knowles

    2001-01-01

    Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic...

  1. Architectural plasticity in young Eucalyptus marginata on restored bauxite mines and adjacent natural forest in south-western Australia.

    Science.gov (United States)

    Bleby, Timothy M; Colquhoun, Ian J; Adams, Mark A

    2009-08-01

    The aboveground architecture of Eucalyptus marginata (Jarrah) was investigated in chronosequences of young trees (2.5, 5 and 10 m height) growing in a seasonally dry climate in a natural forest environment with intact soils, and on adjacent restored bauxite mine sites on soils with highly modified A and B horizons above an intact C horizon. Compared to forest trees, trees on restored sites were much younger and faster growing, with straighter, more clearly defined main stems and deeper, narrower crowns containing a greater number of branches that were longer, thinner and more vertically angled. Trees on restored sites also had a higher fraction of biomass in leaves than forest trees, as indicated by 20-25% thicker leaves, 30-70% greater leaf area, 10-30% greater leaf area to sapwood area ratios and 5-30% lesser branch Huber values. Differences in crown architecture and biomass distribution were consistent with putatively greater soil-water, nutrient and light availability on restored sites. Our results demonstrate that under the same climatic conditions, E. marginata displays a high degree of plasticity of aboveground architecture in response to the net effects of resource availability and soil environment. These differences in architecture are likely to have functional consequences in relation to tree hydraulics and growth that, on larger scales, is likely to affect the water and carbon balances of restored forest ecosystems. This study highlights substrate as a significant determinant of tree architecture in water-limited environments. It further suggests that the architecture of young trees on restored sites may need to change again if they are to survive likely longer-term changes in resource availability.

  2. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  3. [Syntaxonomic analysis of restorative successions after cutting down light coniferous forests of South Ural Region].

    Science.gov (United States)

    Martynenko, V B; Shirokhikh, P S; Mirkin, B M; Naumova, L G

    2014-01-01

    Discussed are the possibilities of using syntaxa from floristic classification for the analysis of secondary restorative successions after forest cutting in South Ural Region. Peculiarities of secondary forest communities classification that may be viewed as subjects of indigenous vegetation syntaxa forming, sub-associations or could be systematized according to 'deductive' classification introduced by K. Kopecky and S. Heiny are considered. An example is presented of an analysis of communities succession system formed after cutting down hemiboreal pine and birch-pine herbaceous forests of Bupleuro-Pinetum association. Within this system the processes of divergence and convergence of succession series take place. Divergence occur as a result of lifting of the influence caused by dominants edificating role and manifestation of differences in soil humidification, also as a consequence of soil enrichment by mineral elements after burning down the felling debris. The reason behind convergence is grading influence of renewed forest stand. Trends in species richness changes during restorative successions may differ depending on ecotope features. In course of a succession, models of tolerance and inhibition become apparent.

  4. Valuing fire planning alternatives in forest restoration: using derived demand to integrate economics with ecological restoration.

    Science.gov (United States)

    Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J

    2014-08-01

    Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. RICHNESS AND FLORISTIC COMPOSITION OF THE FERN COMMUNITY IN RIPARIAN FOREST OF THE RIVER ‘CADEIA’, IN RIO GRANDE DO SUL STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanete Teresinha Mallmann

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813327The present study analyzed richness and specific composition of the fern community in fragments fromthe riparian forest of river ‘Cadeia’, under different levels of human impact, in Santa Maria do Herval, RioGrande do Sul state, Brazil. An amount of 120 sample units were delimited, equitably distributed in threefragments (FI, II and III in which all species were surveyed and the richness was recorded. The floristiccomposition among fragments was compared using Jaccard’s index and spatial distribution of units wasevaluated through multidimensional scaling. Richness data were presented in the form of rarefaction curvesbased on samples and non-parametric diversity estimators. A total of 40 species were found, belonging to13 families. The greater floristic similarity was between FI and FII. Sample units from FI formed the mostdefined grouping and they had more exclusive species than the others. The rarefaction curve for the totalsampling almost reached the asymptote and estimators indicated a maximum of 45 species, which meansthat the majority of species was surveyed at the study site. A decreasing gradient of mean richness per unitwas observed as the urbanization increased in the matrix habitat of the fragments. These results form a database to be used in management, conservation and reforestation measures in degraded riparian forests. Theycan be directly compared to results from other studies that used rarefaction and richness estimators, whichis not possible to do with many of the surveys accomplished in Brazil so far.

  6. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  7. Amazonian forest restoration: an innovative system for native species selection based on phenological data and performance indices

    Science.gov (United States)

    Oliver H. Knowles; John A. Parrotta

    1995-01-01

    One hundred and sixty taxa of upland moist forest trees were studied with reference to their suitability for forest restoration on bauxite mined Iands in western Para State, Brazil. Over a 14-year period, field observations in native primary forests, nursery studies, and evaluations of over 600 ha of mixed-species reforestation areas were used to characterize fruiting...

  8. The Phytophthora species assemblage and diversity in riparian alder ecosystems of western Oregon, USA.

    Science.gov (United States)

    Sims, Laura Lee; Sutton, Wendy; Reeser, Paul; Hansen, Everett M

    2015-01-01

    Phytophthora species were systematically sampled, isolated, identified and compared for presence in streams, soil and roots of alder (Alnus species) dominated riparian ecosystems in western Oregon. We describe the species assemblage and evaluate Phytophthora diversity associated with alder. We recovered 1250 isolates of 20 Phytophthora species. Only three species were recovered from all substrates (streams, soil, alder roots): P. gonapodyides, the informally described "P. taxon Pgchlamydo", and P. siskiyouensis. P. alni ssp. uniformis along with five other species not previously recovered in Oregon forests are included in the assemblage: P.citricola s.l., P. gregata, P. gallica, P. nicotianae and P. parsiana. Phytophthora species diversity was greatest in downstream riparian locations. There was no significant difference in species diversity comparing soil and unwashed roots (the rhizosphere) to stream water. There was a difference between the predominating species from the rhizosphere compared to stream water. The most numerous species was the informally described "P. taxon Oaksoil", which was mainly recovered from, and most predominant in, stream water. The most common species from riparian forest soils and alder root systems was P. gonapodyides. © 2015 by The Mycological Society of America.

  9. Columbia Estuary Ecosystem Restoration Program. 2012 Synthesis Memorandum

    Science.gov (United States)

    2013-01-01

    LCFRB Lower Columbia Fish Recovery Board LCRE lower Columbia River and estuary LCREP Lower Columbia River Estuary Partnership LWD large woody debris...hydraulic reconnections, channel creation, large woody debris [ LWD ] placement) have restored a total of 3152 acres since 2001. If land acquisition...fencing, invasive plant removal, native replanting. Mirror Lake 208 Culvert replaced with a bridge, riparian restoration, LWD enhancement, culvert

  10. Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-11

    The Bonneville Power Administration is proposing to fund the restoration of approximately 500 feet of streambank along the Yakima River at river mile 8, upstream of the Van Giesen Bridge on SR 224, in and between Richland and West Richland, Washington. This project will also result in the acquisition of Fox Island, a 12-acre island directly across the river from the restoration area. There is no development planned for the island. The proposed project includes: The installation of a bio-engineered streambank that incorporates barbs to capture silt and deflect flow, roughened rock or log toes, a riparian buffer, soil reinforcement, and bank grading. Long-term photo-point and plot sampling will also be implemented to evaluate the effectiveness and success of the restoration project. The NEPA compliance checklist for this project was completed by Darrel Sunday, a contractor with Sunday and Associates, Inc. (April 4, 2004), and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are the pygmy rabbit, bald eagle, bull trout, Ute ladies'-tresses, and mid-Columbia Steelhead. The pygmy rabbit, bald eagle, and Ute ladies'Tresses are not known to occur in the immediate project vicinity, and it was determined that the proposed restoration project would have no effect on these species. It is difficult to determine if bull trout occur within the Tapteal project area and Dave Carl of the Washington Department of Fish & Wildlife was contacted and concurred with this assumption. It was determined that the project may affect, but is not likely to adversely affect bull trout, and the U.S. Fish & Wildlife Service has concurred with that determination (July 28, 2004). For the mid-Columbia Steelhead, an anadromous fish species, BPA has determined that if conducted in accordance with

  11. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  12. Changing Forestry Policy by Integrating Water Aspects into Forest/Vegetation Restoration in Dryland Areas in China

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; Mike Bonell; Karl-Heinz Feger; YU Pengtao; XIONG Wei; XU Lihong

    2012-01-01

    Restoration forestry (forest rehabilitation) or re-vegetation is one effective measure to solve environmental problems, notably soil erosion. It may be further stimulated by the Clean Development Mechanism for carbon sequestration. However, there is an intensive and on-going debate about the adverse effects arising from afforestation in dryland areas, such as soil drying up which may cause further damage to the success of forest restoration, and the water yield reduction from watershed which may harm the regional development. On other hand, some preliminary studies showed a possibility that these adverse effects may be diminished more or less by properly designing the system structure and spatial distribution of forest/vegetation in a watershed. However, it is urgent to develop an evidence-based and sustainable new forestry policy for harmonizing forest-water interrelation. As a leading country in afforestation, China is beginning to develop a more trans-disciplinary and cross-sectoral forestry policy for harmonizing forestry development with water management. The main points of the changing new forestry policy should include: (1) Establishing a regional development strategy focusing on harmonized forest-water relations; (2) Taking forest-water interactions as an important part of evaluation; (3) Reducing the 'eco-water' quota of forests through technical advancement; (4) Developing and extending water-adaptive forest management practices; (S) Strengthening forest ecohydrological research and decision support ability.

  13. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    OpenAIRE

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mini...

  14. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  15. Proceedings of a symposium on the reclamation and restoration of boreal peatland and forest ecosystems : towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. [Natural Resources Canada, Ottawa, ON (Canada); Foote, L.; Moran, S. [Alberta Univ., Edmonton, AB (Canada); Nadeau, L. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Rochefort, L. [Laval Univ., Quebec City, PQ (Canada); Short, P. [Canadian Sphagnum Peat Moss Association, St. Albert, AB (Canada); Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States); Wieder, K. [Villanova Univ., Villanova, PA (United States)] (comps.)

    2010-07-01

    Disturbances in Canada's boreal forest occur in both upland forests and in peatlands. These disturbances originate from both anthropogenic and natural causes, particularly fire. Techniques for the restoration, as well as the reclamation of peatlands and forests impacted by agriculture, urban development, or oil and gas activities, have made significant advancement over the last decade and these techniques need to be incorporated into the regulation and management of peatland and forest ecosystems. This symposium addressed the issue of how this research is affected by climate change. The sessions were entitled: (1) reclaiming forest and forest soils impacted by oil and gas production, (2) influence of oil sands development on forest communities, (3) understanding the importance of peatland and forest carbon in the twenty-first century, (4) reclaiming wetlands on mined oil sands tailing, (5) disturbance in peatlands and its relevance to minimizing disturbance footprints and informing reclamation efforts, and (6) restoration and management of harvested peatlands. The symposium featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  16. Evaluation of sampling methods to quantify abundance of hardwoods and snags within conifer-dominated riparian zones

    Science.gov (United States)

    Theresa Marquardt; Hailemariam Temesgen; Paul D. Anderson; Bianca. Eskelson

    2012-01-01

    Six sampling alternatives were examined for their ability to quantify selected attributes of snags and hardwoods in conifer-dominated riparian areas of managed headwater forests in western Oregon. Each alternative was simulated 500 times at eight headwater forest locations based on a 0.52-ha square stem map. The alternatives were evaluated based on how well they...

  17. High temporal resolution photography for observing riparian area use and grazing behavior

    Science.gov (United States)

    In 2014, a 2.4 hectare site within the Apache-Sitgreaves National Forest in northeastern Arizona, USA was selected to characterize temporal and spatial patterns of riparian area use. Three consecutive 30, 8, and 46 day time periods representing 1) unrestricted access, 2) prescribed cattle use, and 3...

  18. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  19. A decision tree approach using silvics to guide planning for forest restoration

    Science.gov (United States)

    Sharon M. Hermann; John S. Kush; John C. Gilbert

    2013-01-01

    We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....

  20. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests.

    Science.gov (United States)

    Krofcheck, Daniel J; Hurteau, Matthew D; Scheller, Robert M; Loudermilk, E Louise

    2018-02-01

    In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels reduction approaches that include mechanical thinning followed by regular prescribed fire are one approach to restore the ability of the ecosystem to tolerate episodic fire and still sequester C. Yet, the spatial extent of the area requiring treatment makes widespread treatment implementation unlikely. We sought to determine if a priori knowledge of where uncharacteristic wildfire is most probable could be used to optimize the placement of fuels treatments in a Sierra Nevada watershed. We developed two treatment placement strategies: the naive strategy, based on treating all operationally available area and the optimized strategy, which only treated areas where crown-killing fires were most probable. We ran forecast simulations using projected climate data through 2,100 to determine how the treatments differed in terms of C sequestration, fire severity, and C emissions relative to a no-management scenario. We found that in both the short (20 years) and long (100 years) term, both management scenarios increased C stability, reduced burn severity, and consequently emitted less C as a result of wildfires than no-management. Across all metrics, both scenarios performed the same, but the optimized treatment required significantly less C removal (naive=0.42 Tg C, optimized=0.25 Tg C) to achieve the same treatment efficacy. Given the extent of western forests in need of fire restoration, efficiently allocating treatments is a critical task if we are going to restore adaptive capacity in frequent-fire forests. © 2017 John Wiley & Sons Ltd.

  1. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Riparian rehabilitation planning in an urban-rural gradient: Integrating social needs and ecological conditions.

    Science.gov (United States)

    Guida-Johnson, Bárbara; Zuleta, Gustavo A

    2017-09-01

    In the present context of global change and search for sustainability, we detected a gap between restoration and society: local communities are usually only considered as threats or disturbances when planning for restoration. To bridge this gap, we propose a landscape design framework for planning riparian rehabilitation in an urban-rural gradient. A spatial multi-criteria analysis was used to assess the priority of riversides by considering two rehabilitation objectives simultaneously-socio-environmental and ecological-and two sets of criteria were designed according to these objectives. The assessment made it possible to identify 17 priority sites for riparian rehabilitation that were associated with different conditions along the gradient. The double goal setting enabled a dual consideration of citizens, both as beneficiaries and potential impacts to rehabilitation, and the criteria selected incorporated the multi-dimensional nature of the environment. This approach can potentially be adapted and implemented in any other anthropic-natural interface throughout the world.

  3. Study on the forest vegetation restoration monitoring using HJ-1A hyperspectral data

    International Nuclear Information System (INIS)

    Chuan, Zhang; Fawang, Ye; Hongcheng, Liu; Haixia, He

    2014-01-01

    In this paper, Xunke County was studied using HJ-1A hyperspectral data for monitoring vegetation restoration after forest fires. The pre-processing procedure including data format conversion, image mosaicing and atmospheric correction. Support vector machine classification was used to perform surface feature identification based on the extracted spectral end-members. On that basis, the image area was divided into seven categories and statistical analysis of classification types was performed. The results showed that HJ-1A hyperspectral data had great potential in fine classification of surface features and the accuracy of classification was 91.8%. The mild and severe fire-affected area extraction provided useful reference for disaster recovery monitoring. Furthermore, the distinction between coniferous forest and broadleaved forest can offer useful information for forest fire prevention and early warning to some extent

  4. [Distribution pattern of rare plants along riparian zone and its implication for conservation in Shennongjia area].

    Science.gov (United States)

    Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua

    2002-11-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.

  5. The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration

    Science.gov (United States)

    Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro

    2017-12-01

    We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the

  6. Restoring oak ecosystems on national forest system lands in the eastern region: an adaptive management approach

    Science.gov (United States)

    Gregory Nowacki; Michael Ablutz; Dan Yaussy; Thomas Schuler; Dan Dey

    2009-01-01

    The U.S. Forest Service has recently completed an ecosystem restoration framework and enacted accompanying policy to help guide its nationwide efforts. The Eastern Region is in the midst of translating the general guidance set forth in these documents to actual on-the-ground restoration. We envision a set of coordinated field demonstrations that will initially focus on...

  7. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Science.gov (United States)

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  8. Landscape evaluation for restoration planning on the Okanogan-Wenatchee National Forest, USA

    Science.gov (United States)

    Paul F. Hessburg; Keith M. Reynolds; R. Brion Salter; James D. Dickinson; William L. Gaines; Richy J. Harrod

    2013-01-01

    Land managers in the western US are beginning to understand that early 20th century forests displayed complex patterns of composition and structure at several different spatial scales, that there was interplay between patterns and processes within and across scales, and that these conditions have been radically altered by management. Further, they know that restoring...

  9. Quantifying the contribution of riparian soils to the provision of ecosystem services.

    Science.gov (United States)

    de Sosa, Laura L; Glanville, Helen C; Marshall, Miles R; Prysor Williams, A; Jones, Davey L

    2018-05-15

    Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research

  10. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  11. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones

    Science.gov (United States)

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitrogen...

  12. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  13. NATURAL REGENERATION STRATUM AS AN INDICATOR OF RESTORATION IN AREA OF ENVIRONMENTAL COMPENSATION FOR MINING LIMESTONE, MUNICIPALITY OF BARROSO, MG, BRAZIL

    Directory of Open Access Journals (Sweden)

    Wanuza Helena Campos

    2016-04-01

    Full Text Available ABSTRACT This study was conducted in a forest under restoration process, which belongs to the company Holcim Brasil S/A, in the municipality of Barroso, state of Minas Gerais (21º00'to 22º00'S and 43º00' to 44º00'W, where 40 plots (2 x 2 m were set, spaced at 10 m, forming eight strata parallel to the watercourse present in the area. Floristic composition and natural regeneration stratum were characterized, and the formed strata allowed evaluating whether the riparian vegetation and watercourse influence on the local regeneration. It was found 162 individuals of 13 families, 18 genera and 22 species, and 10,125 individuals/ha were estimated. Successional classes from pioneer and early secondary and zoochory dispersion syndrome prevailed among species and individuals. The watercourse and riparian vegetation did not exercise significant influence (p> 0.05 on the number of species and regenerating individuals among the different strata of the forest. The diversity index of Shannon-Wiener (H' and equability of Pielou (J' were 2.691 and 0.870, respectively. The species Psidium guajava and Myrtaceae families presented the highest VI (value of importance. Natural regeneration analysis showed the low floristic diversity in the area, suggesting that corrective management actions should be adopted.

  14. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  15. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    Directory of Open Access Journals (Sweden)

    Andimuthu Ramachandran

    2016-01-01

    Full Text Available Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB, with the addition of small amounts of compost and a chemical fertilizer (NPK. The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  16. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  17. Restoration Plan for Degraded Forest in The Democratic People’s Republic of Korea Considering Suitable Tree Species and Spatial Distribution

    Directory of Open Access Journals (Sweden)

    Sle-gee Lee

    2018-03-01

    Full Text Available The ecosystem across the Democratic People’s Republic of Korea (DPRK is threatened by deforestation. However, there is very little attention being given to government efforts for afforestation and rehabilitation plan. The most significant barriers to addressing this problem are technique limitations, availability of information, and lack of a stepwise forest management plan. This study identifies spatially suitable tree species, and establishes a stepwise restoration plan to support decision making for restoring degraded forest in the DPRK throughout a suitable restoration map. First off, target species were chosen from reference data, and spatial distribution maps for each tree species were prepared based on social needs as well as natural conditions in the DPRK. The suitable restoration map was calculated by two priorities in a weighting method; suitable priority, and distributional clustering level. Finally, the 23 afforestation species were selected for the suitable restoration map, including 11 coniferous and 12 deciduous tree species. We introduced a stepwise afforestation/restoration plan of degraded forest in the DPRK; general (long-term, detailed (medium-term, implementation (short-term plans. Maps with different spatial resolutions were prepared for each of the plans. A restoration map with 12.5 km spatial resolution can be used for the general plan at the national level, and maps with 5 km and 1 km spatial resolutions can be used for detailed plan at the local level and implementation plan at the site level, respectively.

  18. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  19. Forest restoration at Redwood National Park: exploring prescribed fire alternatives to second-growth management: a case study

    Science.gov (United States)

    Engber, Eamon; Teraoka, Jason; van Mantgem, Phillip J.

    2017-01-01

    Almost half of Redwood National Park is comprised of second-growth forests characterized by high stand density, deficient redwood composition, and low understory biodiversity. Typical structure of young redwood stands impedes the recovery of old-growth conditions, such as dominance of redwood (Sequoia sempervirens (D. Don) Endl.), distinct canopy layers and diverse understory vegetation. Young forests are commonly comprised of dense, even-aged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and redwood stump sprouts, with simple canopy structure and little understory development. Moreover, many of these young stands are believed to be vulnerable to disturbance in the form of drought, disease and fire. Silvicultural practices are increasingly being employed by conservation agencies to restore degraded forests throughout the coast redwood range; however, prescribed fire treatments are less common and potentially under-utilized as a restoration tool. We present an early synthesis from three separate management-scale prescribed fire projects at Redwood National Park spanning 1to 7 years post-treatment. Low intensity prescribed fire had minimal effect on overstory structure, with some mortality observed in trees smaller than 30 cm diameter. Moderate to high intensity fire may be required to reduce densities of larger Douglas-fir, the primary competitor of redwood in the Park’s second growth forests. Fine woody surface fuels fully recovered by 7 years post-burn, while recruitment of larger surface fuels was quite variable. Managers of coastal redwood ecosystems will benefit by having a variety of tools at their disposal for forest restoration and management.

  20. Applying management modeling to assess the feasibility of accelerating landscape restoration on federal forests in Eastern Oregon

    Science.gov (United States)

    Sara Loreno; Jeremy S. Fried; Andrew. Yost

    2015-01-01

    The state of Oregon recently invested in exploring options for increasing the extent of forest restoration activity. This initiative aims to reduce the incidence, effects, and expense of catastrophic fire events and restore economic stability to rural communities by enhancing the supply of raw materials for wood processing facilities and wood-based, renewable energy...

  1. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  2. Restoring the rare Kentucky lady's slipper orchid to the Kisatchie National Forest

    Science.gov (United States)

    James P. Barnett; Kevin Allen; David Moore

    2012-01-01

    The Kentucky lady’s slipper (Cypripedium kentuckiense C.F. Reed [Orchidaceae]) is a spectacular orchid native to the southeastern US. Although its range includes much of the Southeast, it is rare due to loss of appropriate edaphic and climatic habitats. Efforts to restore this species to the Kisatchie National Forest in Louisiana were initiated by a high school student...

  3. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  4. [Characterization of High Andean forest edges and implications for their ecological restoration (Colombia)].

    Science.gov (United States)

    Montenegro, Alba Lucía; Vargas Ríos, Orlando

    2008-09-01

    The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis

  5. Bird community structure in riparian environments in Cai River, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline Brummelhaus

    2012-06-01

    Full Text Available Urbanization produces changes in riparian environments, causing effects in the structure of bird communities, which present different responses to the impacts. We compare species richness, abundance, and composition of birds in riparian environments with different characteristics in Cai River, Rio Grande do Sul, Brazil. We carried out observations in woodland, grassland, and urban environments, between September 2007 and August 2008. We listed 130 bird species, 29 species unique to woodland environment, and an endangeredspecies: Triclaria malachitacea. Bird abundance differed from woodland (n = 426 individuals to urban environments (n = 939 individuals (F2,6 = 7.315; P = 0.025. Species composition and feeding guilds differed significantly in the bird community structures among these three riparian environments. In the grassland and urban environments there were more generalist insectivorous species, while in the woodland environments we find more leaf and trunk insectivorous species and frugivorous species, sensitive to human impacts. Bird species can be biological quality indicators and they contribute to ecosystems performing relevant functions. With the knowledge on bird community structure and their needs, it is possible to implement management practices for restoration of degraded riparian environments.

  6. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    Science.gov (United States)

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Landscape modeling for forest restoration planning and assessment: lessons from the Southern Appalachian Mountains

    Science.gov (United States)

    Weimin Xi; Robert N. Coulson; John D. Waldron; Maria D. Tchakerian; Charles W. Lafon; David M. Cairns; Andrew G. Birt; Kier D. Klepzig

    2009-01-01

    Restoration planning, evaluation, and implementation are important in areas where abiotic disturbances (e.g., wildfires, hurricanes, and ice storms), biotic disturbances (e.g., outbreaks of native and exotic invasive pests and diseases), and anthropogenic disturbances (e.g., harvesting, planting, and fire exclusion) have altered forest...

  8. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  9. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    Science.gov (United States)

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short ( 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  11. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    Energy Technology Data Exchange (ETDEWEB)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  12. Multi-Scalar Governance for Restoring the Brazilian Atlantic Forest: A Case Study on Small Landholdings in Protected Areas of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Alaine A. Ball

    2014-04-01

    Full Text Available Implementation of forest restoration projects requires cross-scale and hybrid forms of governance involving the state, the market, civil society, individuals, communities, and other actors. Using a case study from the Atlantic Forest Hotspot, we examine the governance of a large-scale forest restoration project implemented by an international non-governmental organization (NGO on family farmer landholdings located within protected areas of sustainable development. In addition to forest restoration, the project aims to provide an economic benefit to participating farmers by including native species with market potential (fruits, timber in restoration models and by contracting farmers in the planting phase. We employed qualitative methods such as structured interviews and participant observation to assess the effect of environmental policy and multi-scalar governance on implementation and acceptability of the project by farmers. We demonstrate that NGO and farmer expectations for the project were initially misaligned, hampering farmer participation. Furthermore, current policy complicated implementation and still poses barriers to project success, and projects must remain adaptable to changing legal landscapes. We recommend increased incorporation of social science methods in earlier stages of projects, as well as throughout the course of implementation, in order to better assess the needs and perspectives of participants, as well as to minimize trade-offs.

  13. Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

    Science.gov (United States)

    Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta

    2011-01-01

    Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...

  14. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  15. Assessing critical source areas in watersheds for conservation buffer planning and riparian restoration.

    Science.gov (United States)

    Qiu, Zeyuan

    2009-11-01

    A science-based geographic information system (GIS) approach is presented to target critical source areas in watersheds for conservation buffer placement. Critical source areas are the intersection of hydrologically sensitive areas and pollutant source areas in watersheds. Hydrologically sensitive areas are areas that actively generate runoff in the watershed and are derived using a modified topographic index approach based on variable source area hydrology. Pollutant source areas are the areas in watersheds that are actively and intensively used for such activities as agricultural production. The method is applied to the Neshanic River watershed in Hunterdon County, New Jersey. The capacity of the topographic index in predicting the spatial pattern of runoff generation and the runoff contribution to stream flow in the watershed is evaluated. A simple cost-effectiveness assessment is conducted to compare the conservation buffer placement scenario based on this GIS method to conventional riparian buffer scenarios for placing conservation buffers in agricultural lands in the watershed. The results show that the topographic index reasonably predicts the runoff generation in the watershed. The GIS-based conservation buffer scenario appears to be more cost-effective than the conventional riparian buffer scenarios.

  16. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    ter Heerdt, Gerard N. J.; Veen, Ciska G.F.; van der Putten, Wim H.; Bakker, Jan P.

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  17. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Heerdt, ter Gerard N.J.; Veen, Ciska G.F.; Putten, van der Wim H.; Bakker, Jan P.

    2017-01-01

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  18. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Ter Heerdt, Gerard N.J.; Veen, G.F.; Van der Putten, Wim H.; Bakker, Jan P.

    Abstract Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in

  19. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River

    Science.gov (United States)

    Ferrari, Stephen F.; Vasconcelos, Huann C. G.; Mendes-Junior, Raimundo N. G.; Araújo, Andrea S.; Costa-Campos, Carlos Eduardo; Nascimento, Walace S.; Isaac, Victoria J.

    2016-01-01

    Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation) along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization. PMID:27699201

  20. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River

    Directory of Open Access Journals (Sweden)

    Júlio C. Sá-Oliveira

    2016-01-01

    Full Text Available Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization.

  1. Planning for and implementing an emerald ash borer-induced forest restoration program in municipal woodlands in Oakville, Ontario

    Science.gov (United States)

    Peter A. Williams; Candace. Karandiuk

    2017-01-01

    Oakville is an urban municipality with 846 ha of woodland. Management priorities are to maintain forest health, environmental health, and safety; wood production is a minor objective. The town developed a comprehensive strategy to plan for emerald ash borer (EAB; Agrilus planipennis) induced ash mortality and forest restoration. Oakville has begun...

  2. Successional position of dry Andean dwarf forest species as a basis for restoration trials

    NARCIS (Netherlands)

    Groenendijk, J.P.; Duivenvoorden, J.F.; Cleef, A.M.; Rietman, N.

    2005-01-01

    The successional affinity of nine woody species was inferred from the structure, diversity and disturbance history of the vegetation where these occurred. This was done in order to obtain a basis for a restoration experiment, currently in execution, in the dry Andean dwarf forest zone on the edge of

  3. Quantifying Phosphorus Retnention in Soils of Riparian Buffers Influenced by Different Land Use Practices

    Science.gov (United States)

    Lancellotti, B.; Ross, D. S.; Adair, C.; Schroth, A. W.; Perdrial, J. N.

    2017-12-01

    Excess phosphorus (P) loading to freshwater systems can lead to eutrophication, resulting in algal blooms and subsequent fish kills. Lake Champlain, located between Vermont, New York, and Quebec, has historically exhibited negative effects of eutrophication due to P overloading from non-point sources. To reduce P inputs to the Lake, the Vermont Agency of Natural Resources requires and provides guidelines for the management of riparian buffers, which help protect adjacent water bodies from nutrient and sediment runoff. To better understand how phosphorous retention in riparian buffers is influenced by soil wetness and adjacent land use, we explored differences in P content between riparian buffers located in forested and agricultural watersheds. Within each land use type, we focused on two paired riparian buffers with contrasting soil moisture levels (one wet transect and one dry transect). At each of the four sites, soil pits were dug along a transect perpendicular to the streambank and were placed strategically to capture convergent and divergent landscape positions. Soil samples were collected from each horizon within 0-30cm. In each of these samples, we measured orthophosphate, degree of phosphorus saturation (DPS), and trace elements. We investigated the relationship between DPS and aluminum (Al) and iron (Fe) concentrations to determine how much of the variability in DPS was explained by Al and Fe concentrations, and compared these relationships between the four riparian buffer sites. We also assessed how these relationships varied with depth in the soil profile. The results of these analyses allow us to identify the characteristics of riparian buffers that promote the most effective P sequestration, which is beneficial to the effective management of riparian areas within the Lake Champlain basin.

  4. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning

    Science.gov (United States)

    Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.

    2011-01-01

    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970

  5. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  6. Phenology of Guarea macrophylla Vahl (Meliaceae in subtropical riparian forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    A. Müller

    2017-08-01

    Full Text Available Abstract Climate is one of the main factors that affect plant behavior. The phenology of Guarea macrophylla Vahl, which is a small tree used for reforestation of degraded areas, was monitored for 18 months in a riparian forest at the Schmidt Stream, Campo Bom, in the state of Rio Grande do Sul, southern Brazil. Vegetative (leaf fall and leaf flushing and reproductive events were observed, with the latter divided into flowering (flower buds and anthesis and fruiting (unripe, ripening and ripe fruit. Phenological events were related to temperature, photoperiod and precipitation and their seasonality was verified by circular statistical analysis. Vegetative phenophases were continuous; they were not related to climate factors and presented low intensity, emphasizing the perennial aspect of the species. Flowering occurred during spring and summer. Both flower buds and anthesis were related to temperature and photoperiod. Fruiting was constant and went through all stages of development. Unripe fruits developed during the months with the lowest photoperiod and ripen more intensely in winter, on colder days. Ripe fruit became available for dispersal in spring, in times of longer photoperiod and higher temperatures. Except for leaf fall, all other phenological events showed seasonality in their manifestation. The one-month difference between the onsets of the flowering phases observed in this study indicated that local climate changes induced the early occurrence of this phenophase.

  7. Comparing the effect of naturally restored forest and grassland on carbon sequestration and its vertical distribution in the Chinese Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Jie Wei

    Full Text Available Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2 and restored grassland (RG-1 and RG-2 sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ(13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg(-1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0-100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ(13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of (13C atmospheric CO(2 values with the burning of fossil fuel since the Industrial Revolution was minimal. The soil δ(13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ(13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP.

  8. Effect of urbanization on bird community in riparian environments in Caí River, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline Brummelhaus

    2012-02-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2012v25n2p81 Urbanization produces changes in riparian environments causing effects in the structure of bird communities, which respond differently to impacts. We compare richness, abundance and composition of birds in riparian environments with different urbanization gradients in Caí River, Rio Grande do Sul. We conducted observations in woodland, grassland and urban environments, between September/2007 and August/2008. We recorded 130 bird species, 29 species unique to woodland environments, including an endangered species: Triclaria malachitacea. Bird abundance differed between woodland and urban environments (426 individuals in woodland, 721 in grassland and 939 in urban. Species composition and feeding guilds contributed significantly to differentiation of bird community structures in these three riparian environments. In open environments (grassland and urban we recorded more generalist feeding guilds and bird species, while in riparian woodland environments, we find guilds and species more sensitive to human impacts. Bird species may be biological quality indicators and contribute to natural economy. With the knowledge of bird community structure and their needs, it is possible to establish management practices for riparian restoration of degraded environments in the region.

  9. Influence of restored koa in supporting bird communities

    Science.gov (United States)

    Camp, Richard J.; Paxton, Eben H.; Yelenik, Stephanie G.

    2017-01-01

    Deforestation of Hawaiian forests has adversely impacted native wildlife, including forest birds, bats and arthropods. Restoration activities have included reforestation with the native koa (Acacia koa), a dominant canopy tree species that is easy to propagate, has high survivorship, and has fast growth rates. We review recent research describing the ecological benefits of koa restoration on wildlife colonization/use, plant dispersal, and native plant recruitment. In general, planting monotypic koa stands can provide forest habitats for species that need them but does not automatically lead to natural regeneration of a diverse forest species assemblage and may require additional restoration activities such as outplanting of other native plants and alien grass control to achieve more natural forest systems. Although early signs of forest and wildlife recovery have been encouraging, the goals of restoration for wildlife conservation versus commercial grade harvesting require different restoration methods.

  10. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Dwire

    2018-04-01

    Full Text Available Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that a warmer climate may bring. Areas associated with springs and small streams will probably experience near-term changes, and some riparian areas and wetlands may decrease in size over time. A warmer climate and reduced soil moisture could lead to a transition from riparian hardwood species to more drought tolerant conifers and shrubs. Increased frequency and spatial extent of wildfire spreading from upland forests could also affect riparian species composition. The specific effects of climate change will vary, depending on local hydrology (especially groundwater, topography, streamside microclimates, and current conditions and land use. Keywords: Climate change, Groundwater-dependent ecosystems, Riparian areas, Springs, Wetlands

  11. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  12. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  13. Proactive restoration: planning, implementation, and early results of silvicultural strategies for increasing resilience against gypsy moth infestation in upland oak forests on the Daniel Boone National Forest, Kentucky

    Science.gov (United States)

    Callie Schweitzer; Stacy L. Clark; Kurt W. Gottschalk; Jeff Stringer; Robbie Sitzlar

    2014-01-01

    Determining targets in forest restoration is a complicated task that can be facilitated by cooperative partnerships. Too often restoration plans are implemented after adverse events that cause widespread tree mortality, such as drought or insect outbreaks, have occurred. Reactive management precludes the use of preemptive management techniques that can result in more...

  14. Conservation and restoration of forest trees impacted by non-native pathogens: the role of genetics and tree improvement

    Science.gov (United States)

    R.A. Sniezko; L.A. Winn

    2017-01-01

    North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...

  15. Where are the forests in the United States "not disturbed" over a quarter century?

    Science.gov (United States)

    Huang, C.; Zhao, F. A.; Goward, S. N.; Schleeweis, K.; Michaelis, A.; Masek, J. G.; Dungan, J. L.; Cohen, W. B.; Moisen, G.; Rishmawi, K.

    2015-12-01

    Forests provide many important ecosystem services. Logging, fire, and other disturbances can disrupt or even diminish the provision of these services. Although many map products and inventory data can be used to estimate the total forested area in the United States, it is not clear how much of the country's forest remained undisturbed in recent decades. Through the North American Forest Dynamics (NAFD) study, we have mapped both disturbed and undisturbed forests over the conterminous United States (CONUS) using sub-annual time series of Landsat observations. The results revealed that 33.6% of the land area of CONUS had forest cover during some or all of the years between 1986 and 2010. About two thirds of the nation's forests remained undisturbed during the 25-year period. Most of these undisturbed forests were distributed in western and northern parts of the eastern US. The percentage of undisturbed forest in the southeastern states were lower, about 50% or less. In these states, much of the undisturbed forest was distributed along riparian zones or in protected areas, including national parks and national forests. In the northeastern and western US, riparian zones did not have a significantly higher proportion of undisturbed forests than non-riparian areas. While most protected areas had a high percentage of undisturbed forests, some of them had lower percentages than the average values of their surrounding regions. Topography may also have played a role in keeping forests "undisturbed". Many ecoregions in the western and northern US had a substantially higher percentage of undisturbed forests at high elevations than at low elevations.

  16. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.

    Science.gov (United States)

    Godoi, Mauricio N; Souza, Edivaldo O DE

    2016-01-01

    Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.

  17. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J. Boone

    2002-09-17

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 indicated ''The council shall properly develop and adopt a program to protect, mitigate, and enhance fish and wildlife, including related spawning grounds and habitat on the Columbia River and its tributaries.'' As a result, the Bonneville Power Administration (BPA) has spent millions of dollars on various instream projects throughout the Columbia Basin with the goal of increasing system-wide production of anadromous fisheries through a combination of habitat restoration and enhancement measures. For two decades, numerous BPA-funded projects have been initiated in the upper Columbia River Basin for the express intent of improving the aquatic habitats of anadromous salmonids. Largely missing from most of these projects has been any rigorous evaluation of project success or failure. Some field reviews of some habitat projects have been undertaken (e.g., Beschta et al. 1991, Kauffman et al. 1993) and provide an overview of major problems and opportunities associated with selected projects. However, there continues to be a lack of quantifiable information, collected in a systematic manner that could be used as the basis for scientifically assessing the effects of individual projects on riparian/aquatic habitats, functions, or processes. Recent publications (e.g., NRC 1992, ISG 1996, NRC 1996, Beschta 1997, and Kauffman et al. 1997) have identified and summarized important concepts associated with the restoration and improvement of aquatic ecosystems. While such conceptual approaches provide an important structure for those undertaking restoration efforts, there remains a paucity of basic information throughout the upper Columbia Basin on the hydrologic, geomorphic, and biologic responses that occur from various enhancement approaches. Basic data on the spatial and temporal responses of restoration approaches would provide: (1) a better understanding of project effects upon

  18. 77 FR 21721 - Sierra National Forest, Bass Lake Ranger District, California, Whisky Ecosystem Restoration Project

    Science.gov (United States)

    2012-04-11

    ... and vigor of conifer stands, reduce the spread and intensity of wildfires within and outside of the Wildland Urban Interface (WUI) and restore other ecological processes. DATES: Comments concerning the scope... on these federal and formerly private lands, combined with the exclusion of fire, have altered forest...

  19. Where the Rubber Meets the Road; Varied Techniques for Measuring the Land-Atmosphere Exchange of Water and Energy in a California Watershed and the Driving Influences on this Exchange

    Science.gov (United States)

    Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.

    2005-12-01

    In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.

  20. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2017-06-01

    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  1. Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain

    Science.gov (United States)

    Fournier, B.; Guenat, C.; Bullinger-Weber, G.; Mitchell, E. A. D.

    2013-10-01

    Floodplains have been intensively altered in industrialized countries, but are now increasingly being restored. It is therefore important to assess the effect of these restoration projects on the aquatic and terrestrial components of ecosystems. However, despite being functionally crucial components of terrestrial ecosystems, soils are generally overlooked in floodplain restoration assessments. We studied the spatio-temporal heterogeneity of soil morphology in a restored (riverbed widening) river reach along the River Thur (Switzerland) using three criteria (soil diversity, dynamism and typicality) and their associated indicators. We hypothesized that these criteria would correctly discriminate the post-restoration changes in soil morphology, and that these changes correspond to patterns of vascular plant diversity. Soil diversity and dynamism increased 5 yr after the restoration, but some typical soils of braided rivers were still missing. Soil typicality and dynamism were correlated to vegetation changes. These results suggest a limited success of the project, in agreement with evaluations carried out at the same site using other, more resource-demanding, methods (e.g., soil fauna, fish diversity, ecosystem functioning). Soil morphology provides structural and functional information on floodplain ecosystems. The spatio-temporal heterogeneity of soil morphology represents a cost-efficient ecological indicator that could easily be integrated into rapid assessment protocols of floodplain and river restoration projects. The follow-up assessment after several major floods (≥ HQ20) should take place to allow for testing the longer-term validity of our conclusion for the River Thur site. More generally, it would be useful to apply the soil morphology indicator approach in different settings to test its broader applicability.

  2. Early ecosystem responses to watershed restoration along a headwater stream

    DEFF Research Database (Denmark)

    Kallenbach, Emilie M.F.; Sand-Jensen, Kaj; Morsing, Jonas

    2018-01-01

    Along many streams, natural riparian vegetation has been replaced by agricultural fields or plantations resulting in ecosystem alterations due to changes of the interactions across the land-water ecotone. We studied the effect of restoration interventions by removing a dense spruce plantation in ...

  3. Soil microbial community successional patterns during forest ecosystem restoration.

    Science.gov (United States)

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  4. River food web response to large-scale riparian zone manipulations.

    Directory of Open Access Journals (Sweden)

    J Timothy Wootton

    Full Text Available Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks.

  5. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the kerian river basin, perak, malaysia.

    Science.gov (United States)

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-12-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.

  6. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  7. Integrating Stakeholder Preferences and GIS-Based Multicriteria Analysis to Identify Forest Landscape Restoration Priorities

    Directory of Open Access Journals (Sweden)

    David Uribe

    2014-02-01

    Full Text Available A pressing question that arises during the planning of an ecological restoration process is: where to restore first? Answering this question is a complex task; it requires a multidimensional approach to consider economic constrains and the preferences of stakeholders. Being the problem of spatial nature, it may be explored effectively through Multicriteria Decision Analysis (MCDA performed in a Geographical Information System (GIS environment. The proposed approach is based on the definition and weighting of multiple criteria for evaluating land suitability. An MCDA-based methodology was used to identify priority areas for Forest Landscape Restoration in the Upper Mixtec region, Oaxaca (Mexico, one of the most degraded areas of Latin America. Socioeconomic and environmental criteria were selected and evaluated. The opinions of four different stakeholder groups were considered: general public, academic, Non-governmental organizations (NGOs and governmental officers. The preferences of these groups were spatially modeled to identify their priorities. The final result was a map that identifies the most preferable sites for restoration, where resources and efforts should be concentrated. MCDA proved to be a very useful tool in collective planning, when alternative sites have to be identified and prioritized to guide the restoration work.

  8. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    Science.gov (United States)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  9. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  10. Polimorfismo molecular em Lonchocarpus cultratus (Fabaceae de áreas ripárias de reflorestamento natural no alto rio Paraná, Brasil - DOI: 10.4025/actascibiolsci.v26i3.1596 Molecular polymorphism in Lonchocarpus cultratus (Fabaceae from riparian areas of natural reforesting in Upper Paraná River, Brazil - DOI: 10.4025/actascibiolsci.v26i3.1596

    Directory of Open Access Journals (Sweden)

    Léia Carolina Lucio

    2004-04-01

    Full Text Available No Sul e Sudeste do Brasil, Lonchocarpus cultratus (Vell. A.M.G. Azevedo e H.C. Lima é uma espécie arbórea importante para o reflorestamento natural, incluindo áreas ripárias. Em florestas regeneradas, diferentemente de florestas não perturbadas, esta espécie tem sido observada como agregados de plantas semelhantes entre si, ao ponto de ter sido formulada a hipótese de serem clones. Em um estudo prévio, brotamento de raízes foi observado em L. cultratus, em uma floresta afetada pelo fogo. No presente estudo, análises de polimorfismo de RAPD revelaram alta diversidade genética entre as plantas de agregados de L. cultratus, em uma floresta ripária afetada pelo fogo, no alto rio Paraná. Os dados permitem sugerir que reprodução sexual tem sido a usual estratégia reprodutiva de colonização de L. cultratus, nesta área de reflorestamento naturalLonchocarpus cultratus (Vell. A.M.G. Azevedo and H.C. Lima is an important plant species in areas of natural reforesting in South and Southeastern Brazil, including riparian areas. This arboreous species seems to reproduce by seeds in undisturbed forests. In regenerating forests, however, L. cultratus has been observed mostly as patches of aggregates, consisting of highly similar plants, resembling clones. Sprouting from root buds had been previously observed in L. cultratus in a forest affected by fire. In the present study, RAPD polymorphism revealed high genetic diversity among plants from L. cultratus aggregates in a natural restoring riparian forest affected by fires, in the Upper Paraná River, Brazil. These data allow the suggestion that sexual reproduction has been the L. cultratus usual reproductive strategy to colonize the reforesting riparian area

  11. Legal ecotones: A comparative analysis of riparian policy protection in the Oregon Coast Range, USA.

    Science.gov (United States)

    Boisjolie, Brett A; Santelmann, Mary V; Flitcroft, Rebecca L; Duncan, Sally L

    2017-07-15

    Waterways of the USA are protected under the public trust doctrine, placing responsibility on the state to safeguard public resources for the benefit of current and future generations. This responsibility has led to the development of management standards for lands adjacent to streams. In the state of Oregon, policy protection for riparian areas varies by ownership (e.g., federal, state, or private), land use (e.g., forest, agriculture, rural residential, or urban) and stream attributes, creating varying standards for riparian land-management practices along the stream corridor. Here, we compare state and federal riparian land-management standards in four major policies that apply to private and public lands in the Oregon Coast Range. We use a standard template to categorize elements of policy protection: (1) the regulatory approach, (2) policy goals, (3) stream attributes, and (4) management standards. All four policies have similar goals for achieving water-quality standards, but differ in their regulatory approach. Plans for agricultural lands rely on outcome-based standards to treat pollution, in contrast with the prescriptive policy approaches for federal, state, and private forest lands, which set specific standards with the intent of preventing pollution. Policies also differ regarding the stream attributes considered when specifying management standards. Across all policies, 25 categories of unique standards are identified. Buffer widths vary from 0 to ∼152 m, with no buffer requirements for streams in agricultural areas or small, non-fish-bearing, seasonal streams on private forest land; narrow buffer requirements for small, non-fish-bearing perennial streams on private forest land (3 m); and the widest buffer requirements for fish-bearing streams on federal land (two site-potential tree-heights, up to an estimated 152 m). Results provide insight into how ecosystem concerns are addressed by variable policy approaches in multi-ownership landscapes, an

  12. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  13. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci.

    Science.gov (United States)

    Mitsui, Yuki; Setoguchi, Hiroaki

    2012-12-28

    Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian

  14. Bat Response To Carolina Bays and Wetland Restoration in the Southeastern U.S. Coastal Plain

    Science.gov (United States)

    Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John W. Edwards

    2005-01-01

    Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist...

  15. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape

    Science.gov (United States)

    Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett

    2012-01-01

    Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...

  17. Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications

    Science.gov (United States)

    Paula M. Pijut; Keith E. Woeste; G. Vengadesan

    2007-01-01

    Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to...

  18. The riparian ecosystem management study: response of small mammals to streamside buffers in western Washington

    Science.gov (United States)

    Martin G. Raphael; Randall J. Wilk

    2013-01-01

    One of the fundamental concepts behind the conservation strategy in the U.S. federal Northwest Forest Plan is the importance of habitat buff ers in providing functional stream and streamside ecosystems. To better understand the importance of riparian buff ers in providing habitat for associated organisms, we investigated responses of small mammals to various streamside...

  19. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Science.gov (United States)

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  20. Revisiting the Factors Shaping Outcomes for Forest and Landscape Restoration in Sub-Saharan Africa : A Way Forward for Policy, Practice and Research

    NARCIS (Netherlands)

    Djenontin, I.N.S.; Foli, S.; Zulu, L.C.

    2018-01-01

    A lack of systematic understanding of the elements that determine the success of forest and landscape restoration (FLR) investments leads to the inability to clearly articulate strategic and practical approaches to support natural resource restoration endeavors across Sub-Saharan Africa (SSA). This