WorldWideScience

Sample records for restored california grassland

  1. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  2. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  3. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  4. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  5. Long-term after-effects of fertilisation on restoration of calcareous grasslands

    NARCIS (Netherlands)

    Smits, N.A.C.; Bobbink, R.; Willems, J.H.

    2008-01-01

    Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of

  6. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  7. Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction

    NARCIS (Netherlands)

    Kardol, P.; Van der Wal, A.; Bezemer, T.M.; De Boer, W.; Duyts, H.; Holtkamp, R.; Van der Putten, W.H.

    2008-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods

  8. Spontaneous colonization of restored dry grasslands by target species: restoration proceeds beyond sowing regional seed mixtures

    Czech Academy of Sciences Publication Activity Database

    Johanidesová, E.; Fajmon, K.; Jongepierová, I.; Prach, Karel

    2015-01-01

    Roč. 70, č. 4 (2015), s. 631-638 ISSN 0142-5242 Institutional support: RVO:67985939 Keywords : restoration * grasslands * spontaneous colonization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.617, year: 2015

  9. Grassland habitat restoration: lessons learnt from long term monitoring of Swanworth Quarry, UK, 1997–2014

    Directory of Open Access Journals (Sweden)

    Barbara Maria Smith

    2017-11-01

    Full Text Available Habitat restoration projects are often conducted when prior use or extraction of natural resources results in land degradation. The success of restoration programmes, however, is variable, and studies that provide evidence of long term outcomes are valuable for evaluation purposes. This study focused on the restoration of vegetation within a limestone quarry in Dorset, UK between 1997 and 2014. Using a randomised block design, the effect of seed mix and seed rate on the development of community assemblage was investigated in comparison to a nearby target calcareous grassland site. We hypothesised that seed mix composition and sowing rate would influence both the trajectory of the grassland assemblage and final community composition. We found that species composition (in relation to both richness and community assemblage was strongly influenced by time and to some extent by seed rate and seed mix. However, no treatments achieved strong resemblance to the calcareous grassland target vegetation; rather they resembled mesotrophic communities. We conclude that (as with previous studies there is no “quick fix” for the establishment of a grassland community; long-term monitoring provides useful information on the trajectory of community development; sowing gets you something (in our case mesotrophic grassland, but, it may not be the target vegetation (e.g., calcicolous grassland you want that is difficult to establish and regenerate; it is important to sow a diverse mix as subsequent recruitment opportunities are probably limited; post-establishment management should be explored further and carefully considered as part of a restoration project.

  10. Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats

    OpenAIRE

    Harzé, Mélanie; Mahy, Grégory; Bizoux, Jean-Philippe; Piqueray, Julien; Monty, Arnaud

    2015-01-01

    Background and aims_Calcareous grasslands are local biodiversity hotspots in temperate regions that suffered intensive fragmentation. Ecological restoration projects took place all over Europe. Their success has traditionally been assessed using a plant community approach. However, population ecology can also be useful to assess restoration success and to understand underlying mechanisms. Methods_We took advantage of three calcareous grassland sites in Southern Belgium, where reference p...

  11. Threshold responses to interacting global changes in a California grassland ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Field, Christopher [Carnegie Inst. of Science, Stanford, CA (United States); Mooney, Harold [Stanford Univ., CA (United States); Vitousek, Peter [Stanford Univ., CA (United States)

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place in the context of 4 global change factors – warming, elevated CO2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.

  12. Vegetation recovery in slash-pile scars following conifer removal in a grassland-restoration experiment

    Science.gov (United States)

    Charles B. Halpern; Joseph A. Antos; Liam M. Beckman

    2014-01-01

    A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded...

  13. Distribution modelling of pre-Columbian California grasslands with soil phytoliths: New insights for prehistoric grassland ecology and restoration.

    Science.gov (United States)

    Fick, Stephen E; Evett, Rand R

    2018-01-01

    Historical reconstructions of plant community distributions are useful for biogeographic studies and restoration planning, but the quality of insights gained depends on the depth and reliability of historical information available. For the Central Valley of California, one of the most altered terrestrial ecosystems on the planet, this task is particularly difficult given poor historical documentation and sparse relict assemblages of pre-invasion plant species. Coastal and interior prairies were long assumed to have been dominated by perennial bunchgrasses, but this hypothesis has recently been challenged. We evaluated this hypothesis by creating species distribution models (SDMs) using a novel approach based on the abundance of soil phytoliths (microscopic particles of biogenic silica used as a proxy for long-term grass presence) extracted from soil samples at locations statewide. Modeled historical grass abundance was consistently high along the coast and to a lesser extent in higher elevation foothills surrounding the Central Valley. SDMs found strong associations with mean temperature, temperature variability, and precipitation variability, with higher predicted abundance in regions with cooler, equable temperatures and moderated rainfall, mirroring the pattern for modern perennial grass distribution across the state. The results of this study strongly suggest that the pre-Columbian Central Valley of California was not dominated by grasses. Using soil phytolith data as input for SDMs is a promising new method for predicting the extent of prehistoric grass distributions where alternative historical datasets are lacking.

  14. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  15. Composition, phenology and restoration of campo rupestre mountain grasslands - Brazil

    OpenAIRE

    Le Stradic, Soizig

    2012-01-01

    Global environmental changes, especially land-use changes, have profound effects on both ecosystem functioning and biodiversity, having already altered many ecosystem services. These losses emphasize the need to preserve what remains; however when conservation programs are not sufficient, restoring areas that have been destroyed or disturbed can improve conservation efforts and mitigate damages. This work focuses on campos rupestres, Neotropical grasslands found at altitudes, which are part o...

  16. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  17. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  18. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  19. Comparing the effect of naturally restored forest and grassland on carbon sequestration and its vertical distribution in the Chinese Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Jie Wei

    Full Text Available Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2 and restored grassland (RG-1 and RG-2 sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ(13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg(-1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0-100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ(13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of (13C atmospheric CO(2 values with the burning of fossil fuel since the Industrial Revolution was minimal. The soil δ(13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ(13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP.

  20. Past tree influence and prescribed fire mediate biotic interactions and community reassembly in a grassland-restoration experiment

    Science.gov (United States)

    Charles B. Halpern; Joseph A. Antos; Donald McKenzie; Annette M. Olson; Lara Souza

    2016-01-01

    1. Woody plant encroachment of grasslands is occurring globally, with profound ecological consequences. Attempts to restore herbaceous dominance may fail if the woody state is resilient or if intervention leads to an alternate, undesirable state. Restoration outcomes often hinge on biotic interactions – particularly on priority effects that inhibit or promote community...

  1. Effects of hay management and native species sowing on grassland community structure, biomass, and restoration.

    Science.gov (United States)

    Foster, Bryan L; Kindscher, Kelly; Houseman, Greg R; Murphy, Cheryl A

    2009-10-01

    Prairie hay meadows are important reservoirs of grassland biodiversity in the tallgrass prairie regions of the central United States and are the object of increasing attention for conservation and restoration. In addition, there is growing interest in the potential use of such low-input, high-diversity (LIHD) native grasslands for biofuel production. The uplands of eastern Kansas, USA, which prior to European settlement were dominated by tallgrass prairie, are currently utilized for intensive agriculture or exist in a state of abandonment from agriculture. The dominant grasslands in the region are currently high-input, low-diversity (HILD) hay fields seeded to introduced C3 hay grasses. We present results from a long-term experiment conducted in a recently abandoned HILD hay field in eastern Kansas to evaluate effects of fertilization, haying, and native species sowing on community dynamics, biomass, and potential for restoration to native LIHD hay meadow. Fertilized plots maintained dominance by introduced grasses, maintained low diversity, and were largely resistant to colonization throughout the study. Non-fertilized plots exhibited rapid successional turnover, increased diversity, and increased abundance of C4 grasses over time. Haying led to modest changes in species composition and lessened the negative impact of fertilization on diversity. In non-fertilized plots, sowing increased representation by native species and increased diversity, successional turnover, and biomass production. Our results support the shifting limitations hypothesis of community organization and highlight the importance of species pools and seed limitations in constraining successional turnover, community structure, and ecosystem productivity under conditions of low fertility. Our findings also indicate that several biological and functional aspects of LIHD hay meadows can be restored from abandoned HILD hay fields by ceasing fertilization and reintroducing native species through

  2. Studying long-term, large-scale grassland restoration outcomes to improve seeding methods and reveal knowledge gaps

    Science.gov (United States)

    1) Considerable research is currently focused on restoring the World’s degraded grasslands by introducing species from seed. The research is continually providing valuable new insights into early seeded plant establishment, but more emphasis on longer, larger studies is needed to better quantify s...

  3. Restoring grassland on arable land: an example of a fast spontaneous succession without weed-dominated stages

    Czech Academy of Sciences Publication Activity Database

    Jongepierová, I.; Jongepier, J. W.; Klimeš, Leoš

    2004-01-01

    Roč. 76, č. 4 (2004), s. 361-369 ISSN 0032-7786 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/01/1037 Institutional research plan: CEZ:AV0Z6005908 Keywords : Czech Republic * divergent successin * grassland restoration Subject RIV: EF - Botanics

  4. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field {sup 13}C pulse labeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Chen, Dongdong; Zhao, Liang [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Yang, Xue [Department of Education of Qinghai Province, Xining 810008, Qinghai (China); Xu, Shixiao [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Zhao, Xinquan, E-mail: xqzhao@nwipb.cas.cn [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 10041, Sichuan (China)

    2016-04-15

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ {sup 13}C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO{sub 2} uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered {sup 13}C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m{sup −2} yr{sup −1} significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by {sup 13}CO{sub 2} pulse labeling. • Different mass of {sup 13}C in excess, similar {sup 13}C partitioning are shown in grasslands. • Soil organic carbon of

  5. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field "1"3C pulse labeling

    International Nuclear Information System (INIS)

    Li, Qi; Chen, Dongdong; Zhao, Liang; Yang, Xue; Xu, Shixiao; Zhao, Xinquan

    2016-01-01

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ "1"3C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO_2 uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered "1"3C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m"−"2 yr"−"1 significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by "1"3CO_2 pulse labeling. • Different mass of "1"3C in excess, similar "1"3C partitioning are shown in grasslands. • Soil organic carbon of cropland will be restored to natural

  6. Arbuscular mycorrhiza fungi mediate soil respiration response to climate change in California grasslands

    Science.gov (United States)

    Estruch, Carme; Mcfarland, Jack; Haw, Monica P.; Schulz, Marjorie S.; Pugnaire, Francisco I.; Waldrop, Mark P.

    2017-04-01

    California grasslands store ca. 100 Tg of soil organic carbon (SOC) and almost 40% of those ecosystems are prone to land use changes. The fate of these carbon pools will largely depend on how the main components of soil respiration - i.e., roots, mycorrhiza, and 'bulk soil' communities- respond to such changes. In order to determine the sensitivity to environmental drivers we set up an experiment to address the effect of plant community composition, soil age and warming on soil respiration rate during the 2014-2015 winter. We tested differences among microbial, fungal and root respiration using an exclusion technique to assess the effect of plant community (open grasslands vs oak woodland) in two field sites differing in soil properties as nutrient content, related to geologic soil age (92 and 137 kyr). We also used open top chambers (OTC) to simulate global change effects on grasslands. Our results showed that arbuscular mycorrhizal fungi were the main drivers of differences recorded between soils of different age, and that those differences were linked to nutrient availability. Bulk soil respiration was more sensitive to environmental variation than mycorrhizal or root respiration, indicating that the presence of mycorrhizae and roots can regulate the capacity of CO2 emission to the atmosphere. Soil age affected CO2 flux from grasslands but not under oak canopies, likely due to the high concentration of SOM in oak canopies which moderated any affect of soil mineralogy on nutrient availability. Overall our study shows that the ability of grasslands to mitigate CO2 emissions depends on interactions between vegetation and their rhizosphere on soil microbial communities.

  7. The Evaluation of Disturbed Grassland After the Ecological Restoration and Phytoremediation in the Low Tatras National Park

    Directory of Open Access Journals (Sweden)

    Ján Novák

    2016-01-01

    Full Text Available At present the grasslands in the conservation areas are often degraded folowing the abandonment of the pasture and it is necessary to restore them. The aim of this paper was to evaluate the grasslands after the ecological restoration and phytoremediation by different methods. In 2004 the experiment was established on degraded sites at locality Low Tatras National Park (1 126 m a.s.l. with three treatments (U – unmanaged control, C – managed by cutting, CS – managed by seeding and cutting. In 2013 on C treatment we noticed the increase of the number of species (threefold, the increase of the coverage of plants (twofold and also the significant increase of the species diversity in comparison with the year 2004. On CS treatment the species diversity has decreased slightly but the forage value has increased more than twofold since 2004. U treatment has remained without changes. The results show the method of seeding the autochthonous species is highly appropriate to increase the forage value of grassland. Spearman correlations between environmental factors (p ≤ 0.05 prove the effect of treatment on the amount of P-soil, P-fyt, K-soil and K-fyt, which show strong negative correlation with the time. On the other hand number of species and EGQ (The evaluation of the grassland qualitycorrelate with time positively (p ≤ 0.05. The restoration by the mowing is recommended on sites, where the increase of diversity is important. Legumes, C, grasses, K-soil, EGQ, number of species, P-soil, time, dry matter hit the variability of the species significantly (to 96.80% of the total variability. The strongest effect on the overall variability of species had legumes, which is 61% of the total variability. Cutting explain 26% of the variability. The soil in the Low Tatras National Park was recovered to the original state through the reduction of soil nutrient – phytoremediation.

  8. Social and Ecological Factors Influencing Attitudes Toward the Application of High-Intensity Prescribed Burns to Restore Fire Adapted Grassland Ecosystems

    Directory of Open Access Journals (Sweden)

    David Toledo

    2013-12-01

    Full Text Available Fire suppression in grassland systems that are adapted to episodic fire has contributed to the recruitment of woody species in grasslands worldwide. Even though the ecology of restoring these fire prone systems back to grassland states is becoming clearer, a major hurdle to the reintroduction of historic fires at a landscape scale is its social acceptability. Despite the growing body of literature on the social aspects of fire, an understanding of the human dimensions of applying high-intensity prescribed burns in grassland and savanna systems is lacking. We used structural equation modeling to examine how landowners' attitudes toward high-intensity prescribed burns are affected by previous experience with burning, perceptions of brush encroachment, land condition, proximity constraints, risk orientation, fire management knowledge and skill, access to fire management equipment, and subjective norms. Our results suggest that experience, risk taking orientation, and especially social norms, i.e., perceived support from others, when implementing prescribed burns play an important role in determining the attitudes of landowners toward the use of high-intensity prescribed burns. Concern over lack of skill, knowledge, and insufficient resources have a moderately negative effect on these attitudes. Our results highlight the importance of targeted engagement strategies to address risk perceptions, subjective norms, and landowner's concerns. With these concerns allayed, it is possible to increase the adoption of high-intensity prescribed burns that lead to landscape-scale grassland restoration and conservation.

  9. The European Native Seed Industry: Characterization and Perspectives in Grassland Restoration

    Directory of Open Access Journals (Sweden)

    Marcello De Vitis

    2017-09-01

    Full Text Available The European Union committed to restore 15% of degraded ecosystems by 2020, and to comply with this goal, native plant material, such as seeds, is needed in large quantities. The native seed production of herbaceous species plays a critical role in supplying seed for restoration of a key ecosystem: grasslands. The objective of this work is to provide for the first time a characterization of the sector at a multi-country European level together with key information about the community of native seed users via intensive web-based research and a direct survey of industry participants. Based on more than 1300 contacts and direct surveying of more than 200 stakeholders across Europe, responses indicated that: the European native seed industry consists primarily of small to medium enterprises; responding native seed users purchase annually an average of 3600 kg of seeds with an average expenditure of €17,600; the industry (suppliers and consumers favours development of seed zones and would participate in a European network for knowledge sharing. This study provides framework principles that can guide decisions in this sector, critical for fulfilling the growing demand for native seed as a primary tool for large-scale restoration on the continent.

  10. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  11. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    Science.gov (United States)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  12. Wilderness restoration: Bureau of Land Management and the Student Conservation Association in the California Desert District

    Science.gov (United States)

    J. Dan Abbe

    2007-01-01

    The California Desert Protection Act of 1994 was the largest park and wilderness legislation passed in the Lower 48 States since the Wilderness Act of 1964. It designated three national parks and 69 Bureau of Land Management wilderness areas. The California Desert and Wilderness Restoration Project is working to restore and revitalize these lands through a public/...

  13. Using plant functional traits to guide restoration: A case study in California coastal grassland

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Corbin, Jeffrey; Krupa, Monica

    2011-01-01

    Restoration ecology can benefit greatly from developments in trait-based ecology that enable improved predictions of how the composition of plant communities will respond to changes in environmental conditions. Plant functional traits can be used to guide the restoration of degraded habitats...... generally from the treatments. Carbon addition led to large intraspecific trait shifts, with individuals in C addition plots having smaller, denser leaves and shorter stature. Species' trait plasticity, however, was not related to the community composition response to C addition.   Our study indicates...

  14. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  15. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: Successional trajectories and changes in species richness

    Czech Academy of Sciences Publication Activity Database

    Prach, Karel; Jongepierová, I.; Řehounková, Klára; Fajmon, K.

    2014-01-01

    Roč. 182, Jan 2014 (2014), s. 131-136 ISSN 0167-8809 R&D Projects: GA ČR(CZ) GAP505/11/0256 Institutional support: RVO:67985939 Keywords : dry grasslands * restoration * target species Subject RIV: EH - Ecology, Behaviour Impact factor: 3.402, year: 2014

  16. Predicting the establishment success of introduced target species in grassland restoration by functional traits.

    Science.gov (United States)

    Engst, Karina; Baasch, Annett; Bruelheide, Helge

    2017-09-01

    Species-rich semi-natural grasslands are highly endangered habitats in Central Europe and numerous restoration efforts have been made to compensate for the losses in the last decades. However, some plant species could become more easily established than others. The establishment success of 37 species was analyzed over 6 years at two study sites of a restoration project in Germany where hay transfer and sowing of threshing material in combination with additional sowing were applied. The effects of the restoration method applied, time since the restoration took place, traits related to germination, dispersal, and reproduction, and combinations of these traits on the establishment were analyzed. While the specific restoration method of how seeds were transferred played a subordinate role, the establishment success depended in particular on traits such as flower season or the lifeform. Species flowering in autumn, such as Pastinaca sativa and Serratula tinctoria , became established better than species flowering in other seasons, probably because they could complete their life cycle, resulting in increasingly stronger seed pressure with time. Geophytes, like Allium angulosum and Galium boreale , became established very poorly, but showed an increase with study duration. For various traits, we found significant trait by method and trait by year interactions, indicating that different traits promoted establishment under different conditions. Using a multi-model approach, we tested whether traits acted in combination. For the first years and the last year, we found that models with three traits explained establishment success better than models with a single trait or two traits. While traits had only an additive effect on the establishment success in the first years, trait interactions became important thereafter. The most important trait was the season of flowering, which occurred in all best models from the third year onwards. Overall, our approach revealed the

  17. Stereo photo series for quantifying natural fuels.Volume XIII: grasslands, shrublands, oak-bay woodlands, and eucalyptus forests in the East Bay of California.

    Science.gov (United States)

    Clinton S. Wright; Robert E. Vihnanek

    2014-01-01

    Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...

  18. Passive restoration augments active restoration in deforested landscapes: the role of root suckering adjacent to planted stands of Acacia koa

    Science.gov (United States)

    Paul G. Scowcroft; Justin T. Yeh

    2013-01-01

    Active forest restoration in Hawaii’s Hakalau Forest National Wildlife Refuge has produced a network of Acacia koa tree corridors and islands in deforested grasslands. Passive restoration by root suckering has potential to expand tree cover and close gaps between planted stands. This study documents rates of encroachment into grassland, clonal...

  19. 75 FR 6058 - Federal Sport Fish Restoration; California Department of Fish and Game Fish Hatchery and Stocking...

    Science.gov (United States)

    2010-02-05

    ...] Federal Sport Fish Restoration; California Department of Fish and Game Fish Hatchery and Stocking Program... (NEPA) of 1969, as amended, for the EIR/EIS jointly prepared with CDFG. Under the Sport Fish Restoration... has authority to grant Federal funds from the Sport Fish Restoration and Boating Trust Fund to support...

  20. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  1. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Baldocchi, D

    2004-05-01

    Understanding how environmental variables affect the processes that regulate the carbon flux over grassland is critical for large-scale modeling research, since grasslands comprise almost one-third of the earth's natural vegetation. To address this issue, fluxes of CO{sub 2} (F{sub c}, flux toward the surface is negative) were measured over a Mediterranean, annual grassland in California, USA for 2 years with the eddy covariance method. To interpret the biotic and abiotic factors that modulate F{sub c} over the course of a year we decomposed net ecosystem CO{sub 2} exchange into its constituent components, ecosystem respiration (R{sub eco}) and gross primary production (GPP). Daytime R{sub eco} was extrapolated from the relationship between temperature and nighttime F{sub c} under high turbulent conditions. Then, GPP was estimated by subtracting daytime values of F{sub c} from daytime estimates of R{sub eco}. Results show that most of carbon exchange, both photosynthesis and respiration, was limited to the wet season (typically from October to mid-May). Seasonal variations in GPP followed closely to changes in leaf area index, which in turn was governed by soil moisture, available sunlight and the timing of the last frost. In general, R{sub eco} was an exponential function of soil temperature, but with season-dependent values of Q{sub 10}. The temperature-dependent respiration model failed immediately after rain events, when large pulses of R{sub eco} were observed. Respiration pulses were especially notable during the dry season when the grass was dead and were the consequence of quickly stimulated microbial activity. Integrated values of GPP, R{sub eco}, and net ecosystem exchange (NEE) were 867, 735, and -132g C m{sup -2}, respectively, for the 2000-2001 season, and 729, 758, and 29g C m{sup -2} for the 2001-2002 season. Thus, the grassland was a moderate carbon sink during the first season and a weak carbon source during the second season. In contrast to a

  2. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    Science.gov (United States)

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  3. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China

    NARCIS (Netherlands)

    Liu, Min; Dries, Liesbeth; Heijman, Wim; Huang, Jikun; Zhu, Xueqin; Hu, Yuanning; Chen, Haibin

    2018-01-01

    A series of Ecological Construction Programs have been initiated to protect the condition of grasslands in China during recent decades. However, grassland degradation is still severe, and conditions have not been restored as intended. This paper aims to empirically examine the effectiveness of these

  4. 7 CFR 1415.11 - Restoration agreements.

    Science.gov (United States)

    2010-01-01

    ... functions and values of the grassland to meet both USDA and the participant's objective and the purposes of... restoration agreement at that time to improve the functions and values with USDA approval and when funds are... grassland resources are adequate to meet the participant's objectives and the purposes of the program, or if...

  5. Effects of eradication and restoration treatments on Italian thistle (Carduus pycnocephalus)

    Science.gov (United States)

    McGinnis, Thomas; Keeley, Jon

    2011-01-01

    Low elevation grasslands in California long have been dominated by Mediterranean grasses, but many areas still have large native forb populations. Alien forbs invade these grasslands, displacing both native and other alien species. Italian thistle is a noxious alien herb that has recently invaded these grasslands, including ungrazed blue oak (Quercus douglassii) and interior live oak (Quercus wislizenii) stands in Sequoia National Park. Here, Italian thistle tends to dominate under oaks and has the potential to substantially alter the foothill ecosystem by displacing native plants and acting as a ladder fuel that can carry fires into the oak canopy. We tested the effects of selectively reducing Italian thistle populations alone and in combination with restoration of native species. Two thistle eradication techniques (clipping and the application of clopyralid herbicide) and two restoration techniques (addition of native forb seeds or planting native grass plugs) were used. After two consecutive years of treatment we found: a) clipping was not effective at reducing Italian thistle populations (clipping reduced Italian thistle density in some areas, but not vegetative cover), b) herbicide reduced both Italian thistle density and vegetative cover for the first two growing seasons after application, but cover rebounded in the third growing season, c) native forb cover and species richness were not significantly affected by clipping or spot-treating with herbicide, d) the grass and forb addition treatments by themselves were not effective at reducing Italian thistle during the course of this study and e) sowing annual forb seeds after clipping resulted in greater forb cover and moderately reduced Italian thistle vegetative cover in the short term.

  6. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. degrade these critical ecosystems further. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.

  7. Mechanical restoration of California mixed-conifer forests: does it matter which trees are cut?

    Science.gov (United States)

    Jessica Miesel; Ralph Boerner; Carl Skinner

    2009-01-01

    The montane ecosystems of northern California have been subjected to repeated manipulation and active fire suppression for over a century, resulting in changes in community structure that contribute to increased wildfire hazard. Ecosystem restoration via reduction of stand density for wildfire hazard mitigation has received substantial attention in recent years;...

  8. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  9. Rapid genetic restoration of a keystone species exhibiting delayed demographic response

    Science.gov (United States)

    Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner-tailed kangaroo rats (Dipodomys spectabilis) to landscape-scale grassland restor...

  10. Changing patterns of basic household consumption in the Inner Mongolian grasslands: a case study of policy-oriented adoptive changes in the use of grasslands

    NARCIS (Netherlands)

    Du, B.; Zhen, L.; Groot, de R.S.; Goulden, C.E.; Long, X.; Cao, X.; Wu, R.; Sun, C.

    2014-01-01

    Grassland ecosystems, as the basic natural resources in the Inner Mongolia Autonomous Region, are becoming increasingly sensitive to human intervention, leading to deterioration in fragile ecosystems. The goal of this study was to describe the restoration policy-oriented adoptive changes to basic

  11. First detection in the USA: new plant pathogen, Phytophthora tentaculata, in native plant nurseries and restoration sites in California

    Science.gov (United States)

    S. Rooney-Latham; C. L. Blomquist; T. Swiecki; E. Bernhardt; S.J. Frankel

    2015-01-01

    Phytophthora tentaculata Kröber & Marwitz, has been detected in several native plant nurseries in 4 California counties and in restoration sites on orange sticky monkey flower (Diplacus aurantiacus subsp. aurantiacus (W. Curtis) Jeps. [Scrophulariaceae]), toyon (Heteromeles...

  12. The role of grasslands in food security and climate change.

    Science.gov (United States)

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and

  13. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  14. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Valoppi, Laura

    2018-04-02

    Executive SummaryThe South Bay Salt Pond Restoration Project (Project) is one of the largest restoration efforts in the United States. It is located in South San Francisco Bay of California. It is unique not only for its size—more than 15,000 acres—but also for its location adjacent to one of the nation’s largest urban areas, home to more than 4 million people (Alameda, Santa Clara, and San Mateo Counties). The Project is intended to restore and enhance wetlands in South San Francisco Bay while providing for flood management, wildlife-oriented public access, and recreation. Restoration goals of the project are to provide a mosaic of saltmarsh habitat to benefit marsh species and managed ponds to benefit waterbirds, throughout 3 complexes and 54 former salt ponds.Although much is known about the project area, significant uncertainties remain with a project of this geographic and temporal scale of an estimated 50 years to complete the restoration. For example, in order to convert anywhere from 50 to 90 percent of the existing managed ponds to saltmarsh habitat, conservation managers first enhance the habitat of managed ponds in order to increase use by waterbirds, and provide migratory, wintering, and nesting habitat for more than 90 species of waterbirds. Project managers have concluded that the best way to address these uncertainties is to carefully implement the project in phases and learn from the outcome of each phase. The Adaptive Management Plan (AMP) identifies specific restoration targets for multiple aspects of the Project and defines triggers that would necessitate some type of management action if a particular aspect is trending negatively. U.S. Geological Survey (USGS) biologist Laura Valoppi served as the project Lead Scientist and oversaw implementation of the AMP in coordination with other members of the Project Management Team (PMT), comprised of representatives from the California State Coastal Conservancy, California Department of Fish and

  15. Quantifying establishment limitations during the ecological restoration of species-rich Nardus grassland

    NARCIS (Netherlands)

    Daele, Van Frederik; Wasof, Safaa; Demey, Andreas; Schelfhout, Stephanie; Schrijver, De A.; Baeten, Lander; Ruijven, van Jasper; Mertens, Jan; Verheyen, Kris

    2017-01-01

    Aims: Successful establishment of species-rich Nardus grasslands on ex-agricultural land requires identification and removal of barriers to effective seed germination and seedling survival. Therefore, we investigate how germination and early development are affected by soil conditions from

  16. Restoring Complexity to Industrially Managed Timberlands: The Mill Creek Interim Management Recommendations and Early Restoration Thinning Treatments

    Science.gov (United States)

    Dan Porter; Valerie Gizinski; Ruskin Hartley; Sharon Hendrix Kramer

    2007-01-01

    The Mill Creek Property was a commercial timberland acquired by the State of California to protect and restore local and regional ecological values and provide opportunities for compatible recreation. Interim Management Recommendations (IMR) were developed to guide protection, restoration, and public access of the Property until the California Department of Parks and...

  17. A Tale of Two Thresholds: Mistakes and Serendipity in a Desert Grassland

    Science.gov (United States)

    Semiarid grasslands have crossed thresholds to shrub-dominated states due to heavy grazing episodes and their after-effects. Extreme weather events and restoration actions can catalyze varying degrees of grass recovery. While we understand these thresholds in biophysical terms, we have scarcely expl...

  18. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2014-01-01

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  19. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  20. Introduction to proceedings of a workshop on science considerations in functional restoration

    Science.gov (United States)

    Carlos Rodriguez-Franco

    2014-01-01

    There has been a great deal of discussion in the scientific literature and in traditional forest management literature about forest restoration, ecological restoration, adaptive and active management for restoring forest ecosystems, and a variety of linked topics. The USDA Forest Service manages 193 million acres of forest and grasslands for a variety of uses, and...

  1. Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland

    NARCIS (Netherlands)

    Albrecht, M.; Duelli, P.; Obrist, M.K.; Müller, C.; Schüpbach, B.; Kleijn, D.; Schmid, B.

    2010-01-01

    An important goal of ecological compensation areas (ECAs) is to increase biodiversity in adjacent intensively managed farmland and the agricultural landscape at large. We tested whether this goal can be achieved in the case of the agri-environmental restoration scheme implemented for Swiss grassland

  2. Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2018-06-01

    Full Text Available Soil erosion is one of the most severe problems facing environments and has increased throughout the 20th century. Soil erodibility (K-factor is one of the important indicators of land degradation, and many models have been used to estimate K values. Although soil erodibility has been estimated, the comparison of different models and their usage at a regional scale and, in particular, for different land use types, need more research. Four of the most widely distributed land use types were selected to analyze, including introduced and natural grassland, as well as introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil properties were measured to estimate soil erodibility in the Loess Plateau. The results show that: (1 the erosion productivity impact calculator (EPIC model and SHIRAZI model are both suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters; (2 introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the differences between introduced and natural shrubland are not obvious at a catchment scale; (3 the K values of introduced grassland, natural grassland, introduced shrubland and natural shrubland in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2, while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2 in the 5–20 cm layer. The areas with a mean multiyear precipitation of 370–440 mm are the most important places for vegetation restoration construction management at a regional scale. A comprehensive balance between water conservation and soil conservation is needed and important when selecting the species used to vegetation restoration. This study provides suggestions for ecological restoration and provides a case study for the estimate of soil erodibility in arid and semiarid

  3. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  4. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island.

    Science.gov (United States)

    Arasumani, M; Khan, Danish; Das, Arundhati; Lockwood, Ian; Stewart, Robert; Kiran, Ravi A; Muthukumar, M; Bunyan, Milind; Robin, V V

    2018-01-01

    Tropical montane habitats, grasslands, in particular, merit urgent conservation attention owing to the disproportionate levels of endemic biodiversity they harbour, the ecosystem services they provide, and the fact that they are among the most threatened habitats globally. The Shola Sky Islands in the Western Ghats host a matrix of native forest-grassland matrix that has been planted over the last century, with exotic timber plantations. The popular discourse on the landscape change is that mainly forests have been lost to the timber plantations and recent court directives are to restore Shola forest trees. In this study, we examine spatiotemporal patterns of landscape change over the last 40 years in the Palani Hills, a significant part of the montane habitat in the Western Ghats. Using satellite imagery and field surveys, we find that 66% of native grasslands and 31% of native forests have been lost over the last 40 years. Grasslands have gone from being the dominant, most contiguous land cover to one of the rarest and most fragmented. They have been replaced by timber plantations and, to a lesser extent, expanding agriculture. We find that the spatial pattern of grassland loss to plantations differs from the loss to agriculture, likely driven by the invasion of plantation species into grasslands. We identify remnant grasslands that should be prioritised for conservation and make specific recommendations for conservation and restoration of grasslands in light of current management policy in the Palani Hills, which favours large-scale removal of plantations and emphasises the restoration of native forests.

  5. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    Science.gov (United States)

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  6. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  7. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  8. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

    Energy Technology Data Exchange (ETDEWEB)

    St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

    2009-03-15

    Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

  9. Grassland response to herbicides and seeding of native grasses 6 years posttreatment

    Science.gov (United States)

    Bryan A. Endress; Catherine G. Parks; Bridgett J. Naylor; Steven R. Radosevich; Mark. Porter

    2012-01-01

    Herbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram...

  10. Fisheries Restoration Grant Program Projects [ds168

    Data.gov (United States)

    California Natural Resource Agency — This shapefile (FRGP_All_020209.shp) represents the locations of all ongoing and completed salmonid restoration projects in California with existing records in the...

  11. High potential of sub-Mediterranean dry grasslands for sheep epizoochory

    Directory of Open Access Journals (Sweden)

    Kaligarič Mitja

    2016-01-01

    Full Text Available There is a general decline of grasslands across Europe due to habitat loss and degradation. Ensuring plant dispersal thus becomes a key process for preserving grassland patches in all scales. We examined diaspore dispersal by sheep epizoochory in the pastures of the North Adriatic Karst (NW Slovenia and determined the qualitative and quantitative features of diaspores in fur. We recorded 25,650 diaspores of 141 plant taxa (with 107 taxa and 23,350 diaspores determined to species level, using three different methods: (i the “whole-coat method”, (ii the “part-of-thecoat method” and (iii a “seedling emergence method”. A comparison of these techniques revealed that the “wholecoat method” provided the highest number of diaspores and plant species. All diaspores were clustered into five emergent groups based on seven functional traits (diaspore weight, length, width, height, volume, specific weight and the diaspore surface structure. Our research revealed that sheep represent an important dispersal vector, since about half of the plant species recorded in the pastures were found as diaspores in fur. This study contributes to knowledge about the modes of seed dispersal in seminatural grasslands. Taking into account that livestock play a key role in vegetation dynamics, understanding their effects on seed dispersal is essential for conservation and restoration of these species-rich grassland communities.

  12. Ecosystem Management and Land Conservation Can Substantially Contribute to California's Climate Mitigation Goals

    Science.gov (United States)

    Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.

    2017-12-01

    California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible

  13. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants.

    Science.gov (United States)

    Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette

    2006-08-01

    Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.

  14. Fate of semi-natural grassland in England between 1960 and 2013: A test of national conservation policy

    Directory of Open Access Journals (Sweden)

    Lucy E. Ridding

    2015-07-01

    Full Text Available It is well documented that significant losses in semi-natural grassland occurred across Europe during the second half of the twentieth century. However, comparatively few studies have investigated and quantified the fate of large numbers of individual grassland areas. This is important for understanding the causes of decline, and consequently establishing new policies to conserve and restore lost habitats. This study addresses this problem; GIS was used to compare historic survey data collected between 1960 and 1981 with two contemporary spatial datasets of habitats in England. The datasets included the Priority Habitats Inventory 2013 and the Land Cover Map 2007 and this was undertaken for different types of semi-natural grassland across England. Considerable decreases occurred across the different grassland types, with a loss of 47% of studied semi-natural grasslands sites in England over 32–53 years. Of this, the majority of grassland was lost to conversion to agriculturally-improved grassland or arable cultivation, 45% and 43% respectively. Changes to woodland and urban areas were also evident, but on a much smaller scale. Sites receiving statutory protection as a Site of Special Scientific Interest were found to have retained more grassland (91%, compared with non-protected sites (27%, thus highlighting the effectiveness of this aspect of current conservation policy in England, and the need for this to continue in the future.

  15. Endangered species management and ecosystem restoration: Finding the common ground

    Science.gov (United States)

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  16. Endangered species management and ecosystem restoration: finding the common ground

    Directory of Open Access Journals (Sweden)

    Michael L. Casazza

    2016-03-01

    Full Text Available Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway's Rail (Rallus obsoletus obsoletus; hereafter, California rail, a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora. California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora à - S. foliosa readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict

  17. Vegetation in clear-cuts depends on previous land use: a century-old grassland legacy

    Science.gov (United States)

    Jonason, Dennis; Ibbe, Mathias; Milberg, Per; Tunér, Albert; Westerberg, Lars; Bergman, Karl-Olof

    2014-01-01

    Plant species richness in central and northern European seminatural grasslands is often more closely linked to past than present habitat configuration, which is indicative of an extinction debt. In this study, we investigate whether signs of historical grassland management can be found in clear-cuts after at least 80 years as coniferous production forest by comparing floras between clear-cuts with a history as meadow and as forest in the 1870s in Sweden. Study sites were selected using old land-use maps and data on present-day clear-cuts. Species traits reflecting high capacities for dispersal and persistence were used to explain any possible links between the plants and the historical land use. Clear-cuts that were formerly meadow had, on average, 36% higher species richness and 35% higher richness of grassland indicator species, as well as a larger overall seed mass and lower anemochory, compared to clear-cuts with history as forest. We suggest that the plants in former meadows never disappeared after afforestation but survived as remnant populations. Many contemporary forests in Sweden were managed as grasslands in the 1800s. As conservation of remaining grassland fragments will not be enough to reduce the existing extinction debts of the flora, these young forests offer opportunities for grassland restoration at large scales. Our study supports the concept of remnant populations and highlights the importance of considering historical land use for understanding the distribution of grassland plant species in fragmented landscapes, as well as for policy-making and conservation. PMID:25540690

  18. Landscape and vegetation effects on avian reproduction on bottomland forest restorations

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.

    2010-01-01

    Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas

  19. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland

    DEFF Research Database (Denmark)

    Schnoor, Tim Krone; Lekberg, Ylva; Rosendahl, Søren

    2011-01-01

    an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three...

  20. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  1. The role of the California Base Closure Environmental Committee's (CBCEC) Radioactive and Mixed Waste Process Action Team (RMWPAT) in expediting site restoration and reuse

    International Nuclear Information System (INIS)

    Laudon, L.S.

    1994-01-01

    The Base Realignment and Closure Act (BRAC) mandated the closing and transfer of Department of Defense (DoD) properties within specific timeframes. Due to requirements of federal and state laws, closing bases must be environmentally remediated to alleviate threats to human health and the environment upon transfer. Certain barriers such as legislative, regulatory, administrative, and technical issues, have been identified which threaten the timely restoration and transfer of these BRAC properties. The state of California, faced with the scheduled closure or realignment of 26 military bases, recognized the need to establish a base closure environmental committee to address issues affecting the timely cleanup and reuse of DoD properties and promote accelerated restoration. Accordingly, the California Base Closure Environmental Committee (CBCEC) was formed by executive order of Governor Pete Wilson. One of the barriers identified by the CBCEC is the potential contamination of DoD facilities with radioactive materials. As a result of the difficulties encountered in assessing the nature and extent of radioactive contamination at DoD sites in California, the CBCEC formed the Radioactive and Mixed Waste Process Action Team (RMWPAT). The RMWPAT was tasked with ''demystifying'' and working to address issues associated with radioactive contamination

  2. Habitat use of radio-tracked Spotted Crakes Porzana porzana at a restored wetland in northeast Jutland, Denmark

    DEFF Research Database (Denmark)

    Fox, Anthony David; Desholm, Mark; Rasmussen, Palle A.F.

    2013-01-01

    present in most of the wetland vegetation types present, excluding very dry restored grazed grassland, areas dominated by Purple Moor-grass Molinia caerulea and Soft Rush Juncus effusus/Flote-grass Glyceria fluitans wet acidic grassland. In each of the areas used by tagged birds, quadrats within......Singing Spotted Crakes Porzana porzana were surveyed across c.16 km2 of restored peat cuttings in Lille Vildmose, northern Jutland, Denmark during summer 2013. Mapping of singing birds on 16 nights between 16 April and 9 July confirmed nine occupied “territories” based on the presence of between 0......–6 birds on any one date. Singing Spotted Crakes were associated with shallower parts of peat extraction areas and flat restored areas with shallow (> 40 cm) water and dense vegetation. Singing birds were never heard in deep water channels, raised mire, dry peat cuttings, deep water peat cuttings, restored...

  3. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Science.gov (United States)

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of...: Background Information: The Grey's Mountain Ecosystem Restoration Project (Madera County, California) lies... vegetation. Currently, vegetation within the Grey's Mountain Ecosystem Restoration Project has changed from...

  4. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China.

    Science.gov (United States)

    Jin, Zhao; Dong, Yunshe; Wang, Yunqiang; Wei, Xiaorong; Wang, Yafeng; Cui, Buli; Zhou, Weijian

    2014-07-01

    Natural vegetation restoration and tree plantation are the two most important measures for ecosystem restoration on the Loess Plateau of China. However, few studies have compared the effects of the two contrasting measures on soil organic and inorganic carbon (SOC and SIC) sequestration or have further used SOC and SIC isotopes to analyze the inherent sequestration mechanism. This study examined a pair of neighboring small watersheds with similar topographical and geological backgrounds. Since 1954, natural vegetation restoration has been conducted in one of these watersheds, and tree plantation has been conducted in the other. The two watersheds have now formed completely different landscapes (naturally restored grassland and artificial forestland). Differences in soil bulk density, SOC and SIC content and storage, and SOC and SIC δ(13)C values were investigated in the two ecosystems in the upper 1m of the soil. We found that SOC storage was higher in the grassland than in the forestland, with a difference of 14.90 Mg ha(-1). The vertical changes in the δ(13)CSOC value demonstrated that the two ecosystems have different mechanisms of soil surface organic carbon accumulation. The SIC storage in the grassland was lower than that in the forestland, with a difference of 38.99 Mg ha(-1). The δ(13)CSIC values indicated that the grassland generates more secondary carbonate than the forestland and that SIC was most likely transported to the rivers from the grassland as dissolved inorganic carbon (DIC). The biogeochemical characteristics of the grassland were favorable for the formation of bicarbonate. Thus, more DIC derived from the dissolution of root and microbial respired CO2 into soil water could have been transported to the rivers through flood runoff. It is necessary to study further the transportation of DIC from the grassland because this process can produce a large potential carbon sink. Copyright © 2014. Published by Elsevier B.V.

  5. Demographic processes limiting seedling recruitment in arid grassland restoration

    Science.gov (United States)

    Jeremy J. James; Tony J. Svejcar; Matthew J. Rinella

    2011-01-01

    Seeding is an important management tool in aridland restoration, but seeded species often fail to establish. Previous research has largely focused on the technical aspects of seeding with little effort directed at identifying demographic processes driving recruitment failures.

  6. Waterbird egg mercury concentrations in response to wetland restoration in south San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Watts, Trevor C.; Barr, Jarred R.

    2014-01-01

    The conversion of 50–90 percent of 15,100 acres of former salt evaporation ponds to tidal marsh habitat in the south San Francisco Bay, California, is planned as part of the South Bay Salt Pond Restoration Project. This large-scale habitat restoration may change the bioavailability of methylmercury. The South Bay already is known to have high methylmercury concentrations, with methylmercury concentrations in several waterbirds species more than known toxicity thresholds where avian reproduction is impaired. In this 2013 study, we continued monitoring bird egg mercury concentrations in response to the restoration of the Pond A8/A7/A5 Complex to a potential tidal marsh in the future. The restoration of the Pond A8/A7/A5 Complex began in autumn 2010, and the Pond A8 Notch was opened 5 feet (one of eight gates) to muted tidal action on June 1, 2011, and then closed in the winter. In autumn 2010, internal levees between Ponds A8, A7, and A5 were breached and water depths were substantially increased by flooding the Pond A8/A7/A5 Complex in February 2011. In June 2012, 15 feet (three of eight gates) of the Pond A8 Notch was opened, and then closed in December 2012. In June 2013, 15 feet of the Pond A8 Notch again was opened, and the Pond A8/A7/A5 Complex was a relatively deep and large pond with muted tidal action in the summer. This report synthesizes waterbird data from the 2013 breeding season, and combines it with our prior study’s data from 2010 and 2011.

  7. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    Science.gov (United States)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  8. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  9. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  10. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010.

    Science.gov (United States)

    Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Zheng, Xiao; Cao, Jiansheng; Huang, Yao; He, Nianpeng; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Tang, Zhiyao; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui

    2018-04-17

    The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 10 12 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO 2 mitigation in China.

  11. Changes in grassland management and plant diversity in a marginal region of the Carpathian Mts. in 1999-2015.

    Science.gov (United States)

    Halada, Ľuboš; David, Stanislav; Hreško, Juraj; Klimantová, Alexandra; Bača, Andrej; Rusňák, Tomáš; Buraľ, Miroslav; Vadel, Ľuboš

    2017-12-31

    The political change from socialism to democracy in countries of Central and Eastern Europe at the end of the 20th century induced broad changes in agriculture mostly due to land ownership changes and strong reduction of subsidies to agriculture. This resulted in agricultural decline, including grassland abandonment, which influenced grassland biodiversity and conservation. Between 1999 and 2015 we studied the grasslands in the area depopulated in the early 1980's in the Poloniny National Park (NE Slovakia, Carpathian Mts.). The aim of the study was to examine influence of environmental factors and grassland management driven by the Common Agricultural Policy (CAP) to plant community structure and taxonomical diversity. We identified altitude and soil properties as the main environmental factors: altitude determines climate gradient and probably also management intensity gradient and soil properties express soil fertility via A-horizon depth. We identified remarkable increase of proportion of managed grasslands from only 8% in 1999 to 40% in 2012-2015; other 7% of sampled grasslands were recently restored and prepared for future management. The average species richness in grasslands managed in 2012-2015 increased from 47.5 species per record in 1999 to 54.2 species in 2012-2015, the increase was found statistically significant. In 2012-2015, we observed statistically significant difference in the average species richness between managed (54.2) and abandoned grasslands (46.3). The agricultural subsidies of the CAP drive the grassland management in the study area. Therefore, we conclude that CAP enabled grassland biodiversity maintenance in significant part of the Poloniny National Park following start of its application in 2004 and above provided figures can be considered as indicators of the CAP effectiveness in our study area. However, the conservation of mountain meadows remains a challenge because of their poor accessibility. Copyright © 2017 Elsevier B.V. All

  12. Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertiliser application to mown grassland.

    NARCIS (Netherlands)

    Olff, H.; Berendse, F.; Visser, de W.

    1994-01-01

    1 Nitrogen mineralization was studied in four grasslands (fields A-D), which had not been fertilized for 2, 6, 19 and 45 years, respectively, thereby forming a chrono-sequence. Fertilizer application was stopped in these fields in order to restore former species-rich communities characteristic of

  13. Progress report: baseline monitoring of indicator species (butterflies) at tallgrass prairie restorations

    Science.gov (United States)

    Allain, Larry; Vidrine, Malcolm

    2014-01-01

    This project provides baseline data of butterfly populations at two coastal prairie restoration sites in Louisiana, the Duralde Unit of Lacassine National Wildlife Refuge (hereafter, the Duralde site) and the Cajun Prairie Restoration Project in Eunice (hereafter, the Eunice site). In all, four distinct habitat types representing different planting methods were sampled. These data will be used to assess biodiversity and health of native grasslands and also provide a basis for adaptive management.

  14. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  15. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California

    Science.gov (United States)

    Moseman, Serena M.; Levin, Lisa A.; Currin, Carolyn; Forder, Charlotte

    2004-08-01

    Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S. foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index ( H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes ( Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched δ 13C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in δ 15N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal

  16. Mine tailings composition in a historic site: implications for ecological restoration.

    Science.gov (United States)

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.

  17. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    Science.gov (United States)

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management

  18. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Van Dasselaar, A. [Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands); Oenema, O. [NMI, Wageningen (Netherlands)

    1995-11-01

    Net methane (CH{sub 4}) emissions from managed grassland on peat soils in the Netherlands have been monitored with vented closed flux chambers in the period January - June 1994. Net CH{sub 4} emissions from two intensively managed grasslands were low, in general less than 0.1 mg CH{sub 4} m{sup -2} d{sup -l}. On these sites, the effect of management was negligibly small. CH{sub 4} emission from three extensively managed grasslands in a nature preserve ranged from 0 to 185 mg CH{sub 4} m{sup -2} d{sup -l}. The results presented here indicate that CH{sub 4} emissions are 2-3 orders of magnitude higher on extensively managed grasslands than on intensively managed grasslands. 2 figs., 6 refs.

  19. Native Seed Supply and the Restoration Species Pool.

    Science.gov (United States)

    Ladouceur, Emma; Jiménez-Alfaro, Borja; Marin, Maria; De Vitis, Marcello; Abbandonato, Holly; Iannetta, Pietro P M; Bonomi, Costantino; Pritchard, Hugh W

    2018-01-01

    Globally, annual expenditure on ecological restoration of degraded areas for habitat improvement and biodiversity conservation is approximately $18bn. Seed farming of native plant species is crucial to meet restoration goals, but may be stymied by the disconnection of academic research in seed science and the lack of effective policies that regulate native seed production/supply. To illustrate this problem, we identified 1,122 plant species important for European grasslands of conservation concern and found that only 32% have both fundamental seed germination data available and can be purchased as seed. The " restoration species pool," or set of species available in practice, acts as a significant biodiversity selection filter for species use in restoration projects. For improvement, we propose: (1) substantial expansion of research and development on native seed quality, viability, and production; (2) open-source knowledge transfer between sectors; and (3) creation of supportive policy intended to stimulate demand for biodiverse seed.

  20. Methodology for the elaboration of Natura 2000 sites designation acts in the Walloon Region (Belgium: calcareous grasslands in the Lesse-and-Lomme area

    Directory of Open Access Journals (Sweden)

    Mahy G.

    2005-01-01

    Full Text Available In the Walloon Region (Belgium, 239 sites have been selected to be included in the Natura 2000 network. The next step is to write designation acts in order to legally protect these 221,000 ha. In this pilot study, a designation act was elaborated for a Natura 2000 site of 2,569 ha and located in the Lesse-and-Lomme area within the Calestienne region. Although the site includes 40 ha of calcareous grasslands, characterised by an exceptional flora and fauna, this habitat is very threatened by abandonment and fragmentation.The methodology used to elaborate the designation act is presented with respect to calcareous grassland. Firstly, in spring and summer 2003, an accurate map of natural habitats was produced, with every single patch of calcareous grassland being mapped. Information was also collected in order to evaluate conservation status. Based on this information, conservation status was then assessed with respect to three different criteria: (1 integrity of the cortege species, (2 habitat structure and (3 degradations. Thirdly, the site was divided into objective zones according to the different habitats and species of Community interest found in the site. Hence, an objective zone was delineated for calcareous grasslands. This objective zone was then divided in several management units. Finally, at these different spatial levels (site, objective zone, management unit, management measures were suggested. As a result, in the draft designation act, the target is to maintain or restore 230 ha of calcareous grassland, instead of the existing 40 ha. This ambitious target requires large-scale restoration and an efficient grazing scheme. These will need important resources for their successful implementation

  1. The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands.

    Science.gov (United States)

    Power, Alison G; Borer, Elizabeth T; Hosseini, Parviez; Mitchell, Charles E; Seabloom, Eric W

    2011-08-01

    Research on plant viruses in natural ecosystems has been increasing rapidly over the past decade. This paper reviews recent research on the barley and cereal yellow dwarf viruses (B/CYDVs) in grasslands of the western US, beginning with the evidence that the disease caused by these viruses facilitated the invasion of western US grasslands by European annual grasses. Observational and experimental studies of B/CYDVs were carried out along a latitudinal gradient (33.8-48.8°N) from southern California to southern Canada. The prevalence and community composition of B/CYDVs were assessed over a variety of scales and under a range of biotic and abiotic conditions. The findings indicate that both biotic and abiotic factors are important influences on virus ecology and epidemiology. Introduced annual grasses are high-quality hosts that amplify both virus and vector populations in this system, but our research suggests that endemic perennial grasses are critically important for sustaining virus populations in contemporary grasslands largely composed of introduced species. Experiments indicated that increased phosphorus supply to hosts resulted in greater host biomass and higher virus prevalence. Using experimental exclosures, it was found that the presence of grazing vertebrate herbivores increased the abundance of annual grasses, resulting in increased virus prevalence. The results of these studies suggest that patterns of B/CYDV prevalence and coinfection in western US grasslands are strongly shaped by the interactions of host plants, vectors, vertebrate herbivores, and abiotic drivers including nutrients. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Investing carbon offsets in woody forests - the best solution for California?

    Science.gov (United States)

    Dass, P.; Houlton, B. Z.; Warlind, D.

    2016-12-01

    Increasing atmospheric carbon dioxide (CO2) concentrations from fossil fuel combustion, land conversion and biomass burning are principal to climate change and its manifolds risks on human health, the environment and the global economy. Effective mitigation of climate change thereby involves cutting fossil-fuel emissions at the source or capturing CO2 in engineered or natural ecosystem stocks, or both. The lifetime of CO2 in the atmosphere exceeds 100 years; thus, in the case of CO2 sequestration by natural ecosystems, the residence time of soil and vegetation carbon(C) is a critical component of the efficacy of C offsets in the marketplace, particularly in local to global Cap and Trade frameworks. Here we use a land-surface model to analyze trade-offs in C investment into natural forest vs. grassland sinks and the role of fire in driving the most sustained pathways of CO2 sequestration under Cap and Trade policies. We focus on the California Climate Exchange and AB32 as the model system for examining risks of CO2 offset investments by considering model-based scenarios of (a.) natural woody forests (mixture of trees, shrubs and grasslands) or (b.) pure grasslands (no woody vegetation allowed) under conditions of drought and changes in fire frequency. While forests capture more carbon than grasslands, the latter stores a greater fraction of C in below ground stocks, making it less vulnerable to climate-driven disturbances. Preliminary results for simulations carried out for the last century for the state of California corroborate this hypothesis: while trees capture 100 GgCyr-1 more than grasses, CO2 emissions due to fire is less by 20 GgCyr-1 from grasslands when compared to forest environments. Since policies need to regard potential future scenarios, we present results that investigate how the alternate systems of trees and grasses respond to (i.) the environmental conditions of the no-mitigation scenario (RCP 8.5) through the year 2100, (ii.) periods of extended

  3. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  5. Assessing estuarine biota in southern California

    Science.gov (United States)

    Kevin D. Lafferty

    2005-01-01

    In southern California, most estuarine wetlands are gone, and what little habitat remains is degraded. For this reason, it is often of interest to assess the condition of estuaries over time, such as when determining the success of a restoration project. To identify impacts or opportunities for restoration, we also may want to know how a particular estuary, or area...

  6. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  7. Assessing the role of conspecific attraction in habitat restoration for Henslow's sparrows in Iowa

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Otis, David L.

    2011-01-01

    The presence of conspecific individuals may provide important cues about habitat quality for territorial songbirds. We tested the ability of a conspecific song playback system to attract Henslow’s sparrows to previously unoccupied restored habitat. We successfully attracted Heslow’s sparrows to 3 of 7 treatment plots using conspecific song playbacks and we found no Henslow’s sparrows in control plots. The addition of social cues using playback systems in restored grassland habitats may aid conservation efforts of Henslow’s sparrows to available habitat.

  8. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  9. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  10. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  11. Social-ecological dynamics of change and restoration attempts in the Chihuahuan Desert grasslands of Janos Biosphere Reserve, Mexico

    Science.gov (United States)

    Shrub encroachment and grassland loss are widespread throughout the US-Mexico borderlands with negative consequences for production of livestock and ecosystem services. In this paper we detail the complex social and ecological phenomena associated with this pattern of degradation in a large area in ...

  12. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    NARCIS (Netherlands)

    Du, Bingzhen; Zhen, Lin; Yan, Huimin; Groot, de Dolf

    2016-01-01

    Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998) a series of grassland conservation and management policies that restrict the use of

  13. Appreciation of grassland functions by European stakeholders

    NARCIS (Netherlands)

    Pol, van den A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.

    2014-01-01

    In order to promote sustainable and competitive ruminant production systems, the European Multisward project was aimed at improving farmer trust in grassland and grassland mixtures. A questionnaire on grassland functions was submitted in eight languages, in order to better understand the importance

  14. Do large scale restoration projects reduce within-species traits variability? - Présentées à 2 congrès

    OpenAIRE

    Harzé, Mélanie; Monty, Arnaud; Mahy, Grégory

    2015-01-01

    Dry calcareous grasslands represent local biodiversity hotspots of European temperate regions. They have suffered intensive fragmentations due to due to the abandonment of traditional agropastoral systems and the resulting encroachment, reforestation, urbanization or transformation into arable lands. In order to preserve and enhance their ecological value, a series of ecological restoration projects have been implemented throughout Europe (LIFE+). As habitats restoration costs can be prohibit...

  15. Restoring species-rich meadow by means of turf transplantation: long-term colonization of ex-arable land

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; Fajmon, K.; Jongepierová, I.; Doležal, Jiří

    2017-01-01

    Roč. 20, č. 1 (2017), s. 62-73 ISSN 1402-2001 R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : Turf transfer * Grassland restoration * Spontaneous colonization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.474, year: 2016

  16. Research on the Mechanism of Cross Regional Grassland Ecological Compensation

    Science.gov (United States)

    Yang, Ran; Ma, Jun

    2018-01-01

    In recent years, grassland environmental damage has become serious, and grassland resources protection task has become heavy, grassland ecological compensation has become an effective way to solve this problem; but the current grassland ecological compensation standards were low, the effect is poor. The fundamental reason is the model of administrative division destroys the integrity of grassland. Based on the analysis of the status quo of grassland compensation, this paper tries to protect the grassland integrity, breaks the administrative division restriction, implements the space regulation, constructs the framework of cross-regional grassland ecological compensation mechanism, describes its operation process. It provides new way to realize the sustainable development of the grassland environment.

  17. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2016-12-01

    Full Text Available Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998 a series of grassland conservation and management policies that restrict the use of grasslands. To ease the impact on the residents’ livelihoods, the national and regional governments have offered a series of top-down arrangements to stimulate sustainable use of the grasslands. Simultaneously, local households spontaneously developed bottom-up countermeasures. To determine the effects of these processes, we interviewed members of 135 households using a mix of qualitative and quantitative methods. We analyzed the effects on household dependence on local grasslands and on perceptions of the future of grassland use. Our findings show that the implementation of the grassland conservation policies significantly affected household livelihoods, which in turn affected household use of natural assets (primarily the land, their agricultural assets (farming and grazing activities and their financial assets (income and consumption, resulting in fundamental transformation of their lifestyles. The households developed adaptation measures to account for the dependence of their livelihood on local ecosystems by initializing strategies, such as seeking off-farm work, leasing pasture land, increasing purchases of fodder for stall-fed animals and altering their diet and fuel consumption to compensate for their changing livelihoods.

  18. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  19. Some insights on grassland health assessment based on remote sensing.

    Science.gov (United States)

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  20. Looking beyond rare species as umbrella species: Northern Bobwhites (Colinus virginianus) and conservation of grassland and shrubland birds

    Science.gov (United States)

    Crosby, Andrew D.; Elmore, R.D.; Leslie,, David M.; Will, Rodney E.

    2015-01-01

    Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bell), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.

  1. Benefits of investing in ecosystem restoration.

    Science.gov (United States)

    DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua

    2013-12-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.

  2. Digital collection of aerial photographs from the Common Murre Restoration Project, 1996 (NODC Accession 0015544)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  3. Digital collection of aerial photographs from the Common Murre Restoration Project, 1997 (NODC Accession 0037159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  4. Digital collection of aerial photographs from the Common Murre Restoration Project, 2005 (NODC Accession 0057025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  5. Digital collection of aerial photographs from the Common Murre Restoration Project, 1998 (NODC Accession 0037160)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  6. Digital collection of aerial photographs from the Common Murre Restoration Project, 2006 (NODC Accession 0058096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  7. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  8. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  9. Ecological and Social Dimensions of Ecosystem Restoration in the Nordic Countries

    Directory of Open Access Journals (Sweden)

    Dagmar Hagen

    2013-12-01

    Full Text Available An international overview of the extent and type of ecological restoration can offer new perspectives for understanding, planning, and implementation. The Nordic countries, with a great range of natural conditions but historically similar social and political structures, provide an opportunity to compare restoration approaches and efforts across borders. The aim of this study was to explore variation in ecological restoration using the Nordic countries as an example. We used recent national assessments and expert evaluations of ecological restoration. Restoration efforts differed among countries: forest and peatland restoration was most common in Finland, freshwater restoration was most common in Sweden, restoration of natural heathlands and grasslands was most common in Iceland, restoration of natural and semi-cultural heathlands was most common in Norway, and restoration of cultural ecosystems, mainly abandoned agricultural land, was most common in Denmark. Ecological restoration currently does not occur on the Faroe Islands. Economic incentives influence ecological restoration and depend on laws and policies in each country. Our analyses suggest that habitat types determine the methods of ecological restoration, whereas socio-economic drivers are more important for the decisions concerning the timing and location of restoration. To improve the understanding, planning, and implementation of ecological restoration, we advocate increased cooperation and knowledge sharing across disciplines and among countries, both in the Nordic countries and internationally. An obvious advantage of such cooperation is that a wider range of experiences from different habitats and different socio-economic conditions becomes available and thus provides a more solid basis for developing practical solutions for restoration methods and policies.

  10. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    encroachment is associated with changes in both behaviour and species composition of rodents. Given that rodents play the role of ecosystem engineers in grasslands, these results underscore the need to conserve and restore the grasslands of Banni which are facing increasing encroachment by woodland species and are also subject to afforestation schemes.

  11. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.

    2007-01-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  12. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...

  13. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  14. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    Science.gov (United States)

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  15. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  16. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  17. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  18. Importance and functions of European grasslands.

    Science.gov (United States)

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  19. Revamping California's Education Finance System.

    Science.gov (United States)

    McFadden, Brett

    2003-01-01

    Describes reasons for California's budget deficits and their impact on school finance. Offers five possible solutions to the school funding crises: Restructure the state's tax and revenue system, restore school district revenue-sharing abilities, initiate a top-to-bottom mandate review, provide greater fiscal and program flexibility, and revamp…

  20. [Research progress and trend on grassland agroecology].

    Science.gov (United States)

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  1. Is it restoration or reconciliation? California's experience restoring the Sacramento - San Joaquin River Delta provides lessons learned and pathways forward to sustain critical ecosystem functions and services in a highly managed riverine delta.

    Science.gov (United States)

    Viers, J. H.; Kelsey, R.

    2014-12-01

    Reconciling the needs of nature and people in California's Sacramento - San Joaquin River Delta represents one of the most critical ecosystem management imperatives in western North America. Over 150 years the Delta has been managed for near-term human benefits and in the process 95% of riverine and deltaic wetlands have been lost throughout the region. Despite extensive land conversion and alteration of hydrological and physical processes, the Delta remains important habitat for migratory birds and is home to over 60% of California's native fish species. It is also the waterwheel for the state's vast water distribution network and is maintained by a system of constructed levees that are at risk from catastrophic failure due to sea level rise, floods, and/or seismic activity. Such a collapse would have dire consequences for > 25M humans and world's 10th largest economy that depend on its freshwater. Thus, the ultimate cost of this ecosystem alteration and simplification is a riverscape that is no longer reliable for nature or people. For 30 years, attempts to 'restore' Delta ecosystems and improve reliability have met with mixed results. For example, reconnection of floodplains to floodwaters has resulted in improved ecological health for native fishes and recharge to localized aquifers. Uncoordinated releases of discharges below dams, however, have resulted in diminished water quality and populations of indicator species. Attempts to create wildlife friendly farms have been countered by an increase in perennial agriculture and commensurate increases in irrigation water demand. From these lessons learned, we demonstrate three key components of a reconciled Delta that will be necessary in the future: 1) full restoration of critical habitats, reconnecting land and water to rebuild ecosystem function; 2) landscape redesign, incorporating natural and engineered infrastructure to create a biologically diverse, resilient landscape to support both agriculture and natural

  2. Supplemental Environmental Assessment Anti-Terrorism/Force Protection Upgrades at Beale Air Force Base, California

    Science.gov (United States)

    2010-05-01

    anatum) • California black rail (Laterallus jamaicensis coturniculus) • Greater sandhill crane (Grus canadensis tabida) • Bank swallow ( Riparia ... riparia ) The Swainson’s hawk prefers to nest in riparian areas with isolated trees bordered by open foraging habitat (grasslands, agricultural lands...Fault Zones . The projects will not be located on soils that are unstable or expansive, and will not cause seismic activities or landslides. The

  3. Incorporating grassland management in a global vegetation model

    Science.gov (United States)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  4. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    OpenAIRE

    Jens L. Hollberg; Jürgen Schellberg

    2017-01-01

    Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to contribute to solving these ...

  5. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  6. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  7. Protecting Mongolia's grassland steppes | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... windy grassland region is severely damaged, desertification can quickly set in. ... to marketing to the sound use of (grassland) resources," explains Ykhanbai, who ... is going to require improvement in the skills of researchers, adds Ykhanbai.

  8. Appreciation of the functions of grasslands by Irish stakeholders

    NARCIS (Netherlands)

    Hennessy, D.; Pol-van Dasselaar, van den A.

    2014-01-01

    The European project MultiSward studied the appreciation of different functions of grasslands by European stakeholders. This paper describes the importance of grasslands for stakeholders in Ireland. Ireland currently has approximately 4.6 million ha of grassland, which is 90% of the total utilized

  9. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    Directory of Open Access Journals (Sweden)

    Jens L. Hollberg

    2017-01-01

    Full Text Available Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs has the potential to contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing five differently-fertilized grassland communities. Therefore, we collected spectral signatures of these communities in a long-term fertilization experiment (since 1941 in Germany throughout the growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies throughout the growing season. Thus, the selection of the most promising single VI for grassland mapping was dependent on the date of the spectra acquisition. A random forests classification using all calculated VIs reduced variations in classification accuracy within the growing season and provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in the random forests algorithm.

  10. The Changing California Coast: The Effect of a Variable Water Budget on Coastal Vegetation Succession

    Science.gov (United States)

    Hsu, Wei-Chen; Remar, Alex; McClure, Adam; Williams, Emily; Kannan, Soumya; Steers, Robert; Schmidt, Cindy; Skiles, Joseph W.; Hsu, Wei-Chen

    2011-01-01

    The land-ocean interface along the central coast of California is one of the most diverse biogeographic regions of the state. This area is composed of a species-rich mosaic of coastal grassland, shrubland, and forest vegetation types. An acceleration of conifer encroachment into shrublands and shrub encroachment into grasslands along the coast has been recently documented. These vegetation changes are believed to be driven primarily by fire suppression and changing grazing patterns. Climatic variables such as precipitation, fog, cloud cover, temperature, slope, and elevation also play an important role in vegetation succession. Our study area is located along the central California coast, which is characterized by a precipitation gradient from the relatively wetter and cooler north to the drier and warmer south. Some studies indicate changing fog patterns along this coast, which may greatly impact vegetation. A decrease in water availability could slow succession processes. The primary objective of this project is to determine if vegetation succession rates are changing for the study area and to identify climate and ecosystem variables which contribute to succession, specifically the transition among grassland, shrubland, and forest. To identify vegetation types and rates of succession, we classified two Landsat TM 5 scenes from 1985 to 2010 with a resulting overall accuracy of 82.4%. Vegetation succession was correlated to changes in maximum and minimum temperatures, precipitation, and elevation for each sub-region of the study area. Fog frequency was then compared between the northern and southern regions of the study area for determining the spatial relation between fog frequency and the percent of vegetation change.

  11. Perceptions of Restorative Justice in Urban High Schools

    Science.gov (United States)

    Crowe, Kathy R.

    2018-01-01

    Purpose: The purpose of this qualitative study was to examine, understand, and describe the elements of restorative justice programs (relationships, community building, accountability, empathy) that high school principals and teachers in public school districts located in San Bernardino County, California perceive as most beneficial for changing…

  12. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  13. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  14. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  15. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    Science.gov (United States)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  16. Changes in productivity of grassland with ageing

    NARCIS (Netherlands)

    Hoogerkamp, M.

    1984-01-01

    The productivity of grassland may change greatly with ageing. Frequently, a productive ley period, occurring in the first time after (re)seeding, is followed by a period in which productivity decreases. Under conditions favourable to grassland this may be temporary. A production level

  17. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  18. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  19. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  20. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness.

    Science.gov (United States)

    Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia

    2014-04-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. © 2014 John Wiley & Sons Ltd/CNRS.

  1. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  2. Sex-related differences in habitat associations of wintering American Kestrels in California's Central Valley

    Science.gov (United States)

    Pandolfino, E.R.; Herzog, M.P.; Smith, Z.

    2011-01-01

    We used roadside survey data collected from 19 routes over three consecutive winters from 200708 to 200910 to compare habitat associations of male and female American Kestrels (Falco sparverius) in the Central Valley of California to determine if segregation by sex was evident across this region. As a species, American Kestrels showed positive associations with alfalfa and other forage crops like hay and winter wheat, as well as grassland, irrigated pasture, and rice. Habitat associations of females were similar, with female densities in all these habitats except rice significantly higher than average. Male American Kestrels showed a positive association only with grassland and were present at densities well below those of females in alfalfa, other forage crops, and grassland. Males were present in higher densities than females in most habitats with negative associations for the species, such as orchards, urbanized areas, and oak savannah. The ratio of females to males for each route was positively correlated with the overall density of American Kestrels on that route. Our findings that females seem to occupy higher quality habitats in winter are consistent with observations from elsewhere in North America. ?? 2011 The Raptor Research Foundation, Inc.

  3. Developing a unified monitoring and reporting system: a key to successful restoration of mixed-oak forests throughout the central hardwood region

    Science.gov (United States)

    Daniel A. Yaussy; Gregory J. Nowacki; Thomas M. Schuler; Daniel C. Dey

    2008-01-01

    Many national forests and grasslands in the Central Hardwoods region of the United States recently have undergone Land Management Plan revision, which include management areas that promote restoration through a variety of management activities. Monitoring is a vital component of adaptive management whereby the effects from a variety of treatments (including controls)...

  4. Spatiotemporal dynamics of carbon dioxide and methane fluxes from agricultural and restored wetlands in the California Delta

    Science.gov (United States)

    Hatala, Jaclyn Anne

    The Sacramento-San Joaquin Delta in California was drained for agriculture and human settlement over a century ago, resulting in extreme rates of soil subsidence and release of CO2 to the atmosphere from peat oxidation. Because of this century-long ecosystem carbon imbalance where heterotrophic respiration exceeded net primary productivity, most of the land surface in the Delta is now up to 8 meters below sea level. To potentially reverse this trend of chronic carbon loss from Delta ecosystems, land managers have begun converting drained lands back to flooded ecosystems, but at the cost of increased production of CH4, a much more potent greenhouse gas than CO2. To evaluate the impacts of inundation on the biosphere-atmophere exchange of CO2 and CH4 in the Delta, I first measured and analyzed net fluxes of CO2 and CH4 for two continuous years with the eddy covariance technique in a drained peatland pasture and a recently re-flooded rice paddy. This analysis demonstrated that the drained pasture was a consistent large source of CO2 and small source of CH 4, whereas the rice paddy was a mild sink for CO2 and a mild source of CH4. However more importantly, this first analysis revealed nuanced complexities for measuring and interpreting patterns in CO2 and CH4 fluxes through time and space. CO2 and CH4 fluxes are inextricably linked in flooded ecosystems, as plant carbon serves as the primary substrate for the production of CH4 and wetland plants also provide the primary transport pathway of CH4 flux to the atmosphere. At the spatially homogeneous rice paddy during the summer growing season, I investigated rapid temporal coupling between CO2 and CH4 fluxes. Through wavelet Granger-causality analysis, I demonstrated that daily fluctuations in growing season gross ecosystem productivity (photosynthesis) exert a stronger control than temperature on the diurnal pattern in CH4 flux from rice. At a spatially heterogeneous restored wetland site, I analyzed the spatial coupling

  5. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    Science.gov (United States)

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  6. Grassland ecology and population growth: striking a balance.

    Science.gov (United States)

    Hou, D; Duan, C; Zhang, D

    2000-06-01

    Degradation of forest and grasslands in western China attributes to the soil erosion and desertification in the country. Researchers have established that the primary reason for the degradation of grasslands is overgrazing, which in turn is caused by a number of factors, including over-population and over-reliance on animal husbandry. In addition, the existing administrative system has also proved ineffective in ensuring sustainable development. On contrary, many local governments even encourage exploitative development of grassland; thus, localities opened up grassland for growing crops in an effort to increase income. According to estimates, degraded grassland accounts for more than one-third of utilizable acreage and another one-third suffers from a profusion of rats and pests. To redress the situation, central government should implement strategies in achieving sustainable development, such as providing banking and tax incentives for the development of the secondary and tertiary industries, and supporting education and training of youths from herding areas. Moreover, government should increase spending on infrastructural construction and ecological preservation. Finally, the family planning program needs to be enforced to control population growth and improve the quality of peoples¿ lives.

  7. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation

    DEFF Research Database (Denmark)

    Acharya, Bharat Sharma; Rasmussen, Jim; Eriksen, Jørgen

    2012-01-01

    Grasslands are potential carbon sinks to reduce unprecedented increase in atmospheric CO2. Effect of age (1–4-year-old) and management (slurry, grazing multispecies mixture) of a grass phase mixed crop rotation on carbon sequestration and emissions upon cultivation was compared with 17-year...... biomass was highest in 4-year-old grassland, but all 1–4-year-old grasslands were in between the pea field (0.81 ± 0.094 g kg−1 soil) and the 17-year-old grassland (3.17 ± 0.22 g kg−1 soil). Grazed grasslands had significantly higher root biomass than cut grasslands. There was no significant difference...... in the CO2 emissions within 1–4-year-old grasslands. Only the 17-year-old grassland showed markedly higher CO2 emissions (4.9 ± 1.1 g CO2 kg−1 soil). Differences in aboveground and root biomass did not affect CO2 emissions, and slurry application did not either. The substantial increase in root biomass...

  8. Large-scale restoration mitigate land degradation and support the establishment of green infrastructure

    Science.gov (United States)

    Tóthmérész, Béla; Mitchley, Jonathan; Jongepierová, Ivana; Baasch, Annett; Fajmon, Karel; Kirmer, Anita; Prach, Karel; Řehounková, Klára; Tischew, Sabine; Twiston-Davies, Grace; Dutoit, Thierry; Buisson, Elise; Jeunatre, Renaud; Valkó, Orsolya; Deák, Balázs; Török, Péter

    2017-04-01

    Sustaining the human well-being and the quality of life, it is essential to develop and support green infrastructure (strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services). For developing and sustaining green infrastructure the conservation and restoration of biodiversity in natural and traditionally managed habitats is essential. Species-rich landscapes in Europe have been maintained over centuries by various kinds of low-intensity use. Recently, they suffered by losses in extent and diversity due to land degradation by intensification or abandonment. Conservation of landscape-scale biodiversity requires the maintenance of species-rich habitats and the restoration of lost grasslands. We are focusing on landscape-level restoration studies including multiple sites in wide geographical scale (including Czech Republic, France, Germany, Hungary, and UK). In a European-wide perspective we aimed at to address four specific questions: (i) What were the aims and objectives of landscape-scale restoration? (ii) What results have been achieved? (iii) What are the costs of large-scale restoration? (iv) What policy tools are available for the restoration of landscape-scale biodiversity? We conclude that landscape-level restoration offers exciting new opportunities to reconnect long-disrupted ecological processes and to restore landscape connectivity. Generally, these measures enable to enhance the biodiversity at the landscape scale. The development of policy tools to achieve restoration at the landscape scale are essential for the achievement of the ambitious targets of the Convention on Biological Diversity and the European Biodiversity Strategy for ecosystem restoration.

  9. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  10. Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau?

    Science.gov (United States)

    Zhao, Zhenzhen; Dong, Shikui; Jiang, Xiaoman; Zhao, Jinbo; Liu, Shiliang; Yang, Mingyue; Han, Yuhui; Sha, Wei

    2018-06-01

    Fencing and grass plantation are two key interventions to preserve the degraded grassland on the Qinghai-Tibetan Plateau (QTP). Climate warming and N deposition have substantially affected the alpine grassland ecosystems. However, molecular composition of soil organic carbon (SOC), the indicator of degradation of SOC, and its responses to climate change are still largely unclear. In this study, we conducted the experiments in three types of land use on the QTP: alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) under 2°C climatic warming, 5 levels of nitrogen deposition rates at 8, 24, 40, 56, and 72kg N ha -1 year -1 , as well as a combination of climatic warming and N deposition (8kg N ha -1 year -1 ). Our findings indicate that all three types of land use were dominated by O-alkyl carbon. The alkyl/O-alkyl ratio, aromaticity and hydrophobicity index of the CG were larger than those of the AM and AS, and this difference was generally stable under different treatments. Most of the SOC in the alpine grasslands was derived from fresh plants, and the carbon in the CG was more stable than that in the AM and AS. The compositions of all the alpine ecosystems were stable under short-term climatic changes, suggesting the short-term climate warming and nitrogen deposition likely did not affect the molecular composition of the SOC in the restored grasslands. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Eurasian Dry Grassland Group (EDGG in 2016–2017

    Directory of Open Access Journals (Sweden)

    Venn Stephen

    2018-06-01

    Full Text Available This report summarizes the activities and achievements of the Eurasian Dry Grassland Group (EDGG from mid-2016 through to the end of 2017. During this period, the 13th Eurasian Grassland Conference took place in Sighişoara, Romania, and the 14th conference was held in Riga, Latvia. The 10th EDGG Field Workshop on Biodiversity patterns across a precipitation gradient in the Central Apennine mountains was conducted in the Central Apennines, Italy, this time in addition to multi-scale sampling of vascular plants, bryophytes and lichens, also including one animal group (leaf hoppers. Apart from the quarterly issues of its own electronic journal (Bulletin of the Eurasian Dry Grassland Group, EDGG also finalised five grassland-related Special Features/Issues during the past 1.5 years in the following international journals: Applied Vegetation Science, Biodiversity and Conservation, Phytocoenologia, Tuexenia and Hacquetia. Beyond that, EDGG facilitated various national and supra-national vegetationplot databases of grasslands and established its own specialised database for standardised multi-scale plot data of Palaearctic grasslands (GrassPlot.

  12. Soil invertebrate fauna enhances grassland succession and diversity.

    Science.gov (United States)

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  13. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R. [and others

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides.

  14. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    International Nuclear Information System (INIS)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R.

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides

  15. Assessing geomorphic change along the Trinity River downstream from Lewiston Dam, California, 1980-2011

    Science.gov (United States)

    Curtis, Jennifer A.; Wright, Scott A.; Minear, Justin T.; Flint, Lorraine E.

    2015-01-01

    The Trinity River Restoration Program, one of the nation’s largest adaptively managed river restoration programs, requires periodic assessment to determine the effectiveness of management actions in restoring channel dynamics and habitat features. This study documents riparian and channel changes along an intensively managed 65-kilometer reach of the Trinity River in California, downstream from Lewiston Dam. The two primary periods of interest, from 1980 to 2001 and from 2001 to 2011, are separated by a shift in restoration activities mandated by the U.S. Department of the Interior December 2000 Record of Decision. The post-2001 restoration strategy increased managed-flow releases, gravel augmentation, watershed restoration, and mechanical channel rehabilitation.

  16. Comparing the effects of different land management strategies across several land types on California's landscape carbon and associated greenhouse gas budgets

    Science.gov (United States)

    Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.

    2017-12-01

    Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly

  17. Resilience and stability of the grasslands of the Transkei | B | African ...

    African Journals Online (AJOL)

    In spite of very high stocking rates the grasslands of Transkei still have in many areas a high cover and many climax species. The concepts of resilience and stability are used in an attempt to explain dynamics of the grasslands. Keywords: resiliences|stabilities|grasslands|Transkei|stocking rates|basal covers|grass ...

  18. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  19. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  20. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  1. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  2. Variation in soil organic carbon within highland grasslands of Langtang National Park, Nepal

    Directory of Open Access Journals (Sweden)

    Keshab Shrestha

    2016-09-01

    Full Text Available Grassland also plays important role in food security. The estimated grassland area in Nepal is about 1.75 million ha. Most of the grassland in Nepal is located in higher elevation above, 2000 meter. The aim of this research is to observe difference in SOC of grassland in different altitude. Soil samples were collected from grasslands of altitude: 1500- 2000m, 2001- 2500m, 2501-3000m, 3001- 3500m and 3501- 4000m. The soil samples were collected at successive depths in each grassland i.e. 0 – 10 cm, 10 – 20 cm and 20 – 30 cm. The maximum SOC was found in grassland at altitude 3001 m- 3500m. The lowest was SOC was found in grassland at altitude 3051m – 4000m. Correlation analysis between altitude and SOC shows that SOC is positively correlated with altitude with correlation coefficient 0.850 (significant at P<0.05 level. But SOC decreases sharply in treeline with negative correlation (Significant at P<0.05.International Journal of Environment Vol.5(3 2016, pp.57-65

  3. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-12-01

    Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  4. Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"

    Science.gov (United States)

    Gerald J. Gottfried

    2004-01-01

    Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...

  5. Grassland futures in Great Britain - Productivity assessment and scenarios for land use change opportunities.

    Science.gov (United States)

    Qi, Aiming; Holland, Robert A; Taylor, Gail; Richter, Goetz M

    2018-09-01

    To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961-1990) at 1km 2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO 2 ] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO 2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72milliontonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21∗10 6 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effects of haying on breeding birds in CRP grasslands

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  7. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  8. California Bus Aid Still in Budget Cross Hairs

    Science.gov (United States)

    Fleming, Nora

    2012-01-01

    California legislators swiftly passed a budget bill last week aimed at sheltering school busing dollars from a midyear budget cut many districts and advocates said particularly hurt rural school systems, along with urban districts with desegregation plans. While the measure, which Gov. Jerry Brown was expected to sign into law, would restore $248…

  9. Using Calibrated RGB Imagery from Low-Cost Uavs for Grassland Monitoring: Case Study at the Rengen Grassland Experiment (rge), Germany

    Science.gov (United States)

    Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.

    2017-08-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  10. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE, GERMANY

    Directory of Open Access Journals (Sweden)

    U. Lussem

    2017-08-01

    Full Text Available Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999. Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  11. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  12. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  13. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  14. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  15. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  16. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  17. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  18. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    Science.gov (United States)

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.

  19. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Science.gov (United States)

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  20. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Directory of Open Access Journals (Sweden)

    Kevin S Ellison

    Full Text Available Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus] at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow and nesting densities increased (all 3 species in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor] at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]. Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116 and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  1. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Brader, A.B.; Oenema, O. [NMI, Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands)

    1995-11-01

    In the Netherlands, managed grasslands are potentially a large source of nitrous oxide (N{sub 2}O), because of the large nitrogen (N) input and the relatively high ground water levels. To provide insight into the major factors that contribute to N{sub 2}O emission from grassland and to provide quantitative N{sub 2}O emission rates, a monitoring study was carried out on four sites, during March 1992 to March 1994. Fluxes of N{sub 2}O increased after N fertilizer application and grazing, especially during wet conditions. Fluxes were higher from peat soils than from sand and clay soils. Fluxes were low during the winter periods. Total N{sub 2}O losses were 2 to 4.5 times higher on grassland fertilized with 160-460 kg N ha{sup -1} yr{sup -1} than on unfertilized grassland. Losses from grazed grasslands were 1.5 to 3.5 times higher than losses from mown grassland. This study shows that management practice of grassland and soil type are major factors controlling N{sub 2}O emission from grasslands. 2 figs., 3 refs.

  2. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    Science.gov (United States)

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  3. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  4. Habitat selection by female northern pintails wintering in the Grassland Ecological Area, California

    Science.gov (United States)

    Fleskes, Joseph P.; Gilmer, David S.; Jarvis, Robert L.

    2004-01-01

    To determine relative importance of habitats available in the Grassland Ecological Area (GEA) to wintering female northern pintails, Anas acuta, we studied habitat use relative to availability (i.e., habitat selection) in the GEA during September through March, 1991-94 for 196 Hatch-Year (HY) and 221 After-Hatch-Year (AHY) female pintails that were radio tagged during August-early October in the GEA (n = 239), other San Joaquin Valley areas (n = 132), or other Central Valley areas (n = 46). Habitat availability and use varied among seasons and years, but pintails always selected shallow and, except on hunting days, open habitats. Swamp timothy, Heleochloa schoenoides, marsh was the most available, used, and selected habitat. Watergrass, Echinochloa crusgalli, marsh in the GEA was used less than available at night in contrast to previous studies in other SJV areas. Preferred late-winter habitats were apparently lacking in the GEA, at least relative to in the Sacramento Valley and Delta where most pintails moved to in December each year. Impacts on pintails of the increasing practice of managing marshes for increased emergent vegetation to attract other species should be monitored. Shallow, open habitats that produce seeds and invertebrates available to pintails in late winter would help maintain pintail abundance in the GEA.

  5. Expedited Remedial Action Program (SB 923): A California Brownfields initiative

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge, M.; Wolfenden, A.K.

    1996-12-31

    California`s Expedited Remedial Action Program (ERAP) created a comprehensive program that promotes an equitable and expedited approach for redevelopment of properties contaminated with hazardous substances. This bill embodies an emerging trend in environmental policy that permits flexibility, cooperation and creativity without compromising protection to public health or the environment. Within the California Environmental Protection Agency, the Department of Toxic Substances Control (DTSC) is promoting a number of programs to facilitate the restoration of contaminated properties as part of its Brownfields initiative. ERAP represents a potentially more efficient process to remediate sites by minimizing economic risks through a clearly identified liability scheme, indemnifying future owners through a covenant not to sue, and providing risk based cleanups that are based on the permanent use of the site.

  6. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  7. Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California

    Directory of Open Access Journals (Sweden)

    Gregory H. Golet

    2013-10-01

    Full Text Available Large-scale ecosystem restoration projects seldom undergo comprehensive evaluation to determine project effectiveness. Consequently, there are missed opportunities for learning and strategy refinement. Before our study, monitoring information from California’s middle Sacramento River had not been synthesized, despite restoration having been ongoing since 1989. Our assessment was based on the development and application of 36 quantitative ecological indicators. These indicators were used to characterize the status of terrestrial and floodplain resources (e.g., flora and fauna, channel dynamics (e.g., planform, geomorphology, and the flow regime. Indicators were also associated with specific goal statements of the CALFED Ecosystem Restoration Program. A collective weight of evidence approach was used to assess restoration success. Our synthesis demonstrates good progress in the restoration of riparian habitats, birds and other wildlife, but not in restoration of streamflows and geomorphic processes. For example, from 1999 to 2007, there was a > 600% increase in forest patch core size, and a 43% increase in the area of the river bordered by natural habitat > 500 m wide. Species richness of landbirds and beetles increased at restoration sites, as did detections of bats. However, degraded post-Shasta Dam streamflow conditions continued. Relative to pre-dam conditions, the average number of years that pass between flows that are sufficient to mobilize the bed, and those that are of sufficient magnitude to inundate the floodplain, increased by over 100%. Trends in geomorphic processes were strongly negative, with increases in the amount of bank hardened with riprap, and decreases in the area of floodplain reworked. Overall the channel simplified, becoming less sinuous with reduced overall channel length. Our progress assessment presents a compelling case for what needs to be done to further advance the ecological restoration of the river. The most

  8. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  9. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  10. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    Science.gov (United States)

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  11. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    Directory of Open Access Journals (Sweden)

    John Y Takekawa

    Full Text Available Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus, and chick survival of Forster's Tern (Sterna forsteri. Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction

  12. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    Science.gov (United States)

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  13. Research priorities for grassland science: the need of long term integrated experiments networks

    Directory of Open Access Journals (Sweden)

    G. Lemaire

    2007-07-01

    Full Text Available Grasslands have to be considered not only as a mean for providing foods for domestic herbivore but also as an important biome of terrestrial biosphere. This function of grasslands as an active component of our environment requires specific studies on the role and impact of this ecosystem on soil erosion and soil quality, quality and quantity of water resources, atmosphere composition and greenhouse gas emission or sequestration, biodiversity dynamics at different scales from field plot to landscape. All these functions have to be evaluated in conjunction with the function of providing animal products for increasing human population. So multifunctionality of grasslands become a new paradigm for grassland science. Environmental and biodiversity outputs require long term studies, being the long term retro-active processes within soil, vegetation and micro-organism communities in relation to changes in management programme. So grassland science needs to carry on long term integrated experimentation for studying all the environmental outputs and ecological services associated to grassland management systems.

  14. Factors affecting the ozone sensitivity of temperate European grasslands: An overview

    International Nuclear Information System (INIS)

    Bassin, S.; Volk, M.; Fuhrer, J.

    2007-01-01

    This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected. - An overview of experimentally induced ozone effects suggests that temperate grasslands could be separated into broad classes of ozone sensitivity based on physiological and ecological principles

  15. Factors affecting the ozone sensitivity of temperate European grasslands: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, S. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)]. E-mail: seraina.bassin@fal.admin.ch; Volk, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)

    2007-04-15

    This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected. - An overview of experimentally induced ozone effects suggests that temperate grasslands could be separated into broad classes of ozone sensitivity based on physiological and ecological principles.

  16. Biodiversity in temperate European grasslands: origin and conservation.

    OpenAIRE

    Pärtel, Meelis; Bruun, Hans Henrik; Sammul, Marek

    2005-01-01

    Northern Europe is in the forest zone, but wild megaherbivores have maintained grass-dominated vegetation here for the last 1.8 million years. Continuity of the grassland biome through glacialinterglacial cycles and connection to steppe vegetation has resulted in the evolution, immigration, and survival of a large number of grassland species. During the last millennia the effect of wild ungulates has been replaced by domestic grazers and hay making, and the persistence of grasslan...

  17. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacramento Valley, California

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Empirical observations on the ground and examination of aerial color IR photographs indicate that in grassland terrain, the vegetation overlying sandstone tends to become less vigorous sooner in the late spring season than does the area overlain by an adjacent shale unit. The reverse relationship obtains in the fall. These relationships are thought to be a reflection of the relative porosity of each of the units and hence of their ability to retain or lose soil moisture. A comparison of the optically enlarged day and nite IR imagery of the Late Mesozoic interbedded sandstone and shale units along the western margin of the Sacramento Valley, California, taken at seasonally critical times of the year (late spring/early summer and late fall/early winter) reveals subtle seasonal variations of graytone which tend to support the empirical observations after consideration of Sun angle and azimuth, and the internal consistency of the data on each set of satellite imagery.

  18. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Zhang

    2010-06-01

    Full Text Available As one of the largest land cover types, grassland can potentially play an important role in the ecosystem services of natural resources in China. Nitrous oxide (N2O is a major greenhouse gas emitted from grasslands. Current N2O inventory at a regional or national level in China relies on the emission factor method, which is based on limited measurements. To improve the accuracy of the inventory by capturing the spatial variability of N2O emissions under the diverse climate, soil and management conditions across China, we adopted an approach by utilizing a process-based biogeochemical model, DeNitrification-DeComposition (DNDC, to quantify N2O emissions from Chinese grasslands. In the present study, DNDC was tested against datasets of N2O fluxes measured at eight grassland sites in China with encouraging results. The validated DNDC was then linked to a GIS database holding spatially differentiated information of climate, soil, vegetation and management at county-level for all the grasslands in the country. Daily weather data for 2000–2007 from 670 meteorological stations across the entire domain were employed to serve the simulations. The modelled results on a national scale showed a clear geographic pattern of N2O emissions. A high-emission strip showed up stretching from northeast to central China, which is consistent with the eastern boundary between the temperate grassland region and the major agricultural regions of China. The grasslands in the western mountain regions, however, emitted much less N2O. The regionally averaged rates of N2O emissions were 0.26, 0.14 and 0.38 kg nitrogen (N ha−1 y−1 for the temperate, montane and tropical/subtropical grasslands, respectively. The annual mean N2O emission from the total 337 million ha of grasslands in China was 76.5 ± 12.8 Gg N for the simulated years.

  19. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  20. Distribution and movements of female northern pintails radiotagged in San Joaquin Valley, California

    Science.gov (United States)

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2002-01-01

    To improve understanding of northern pintail (Anas acuta) distribution in central California (CCA), we radiotagged 191 Hatch-Year (HY) and 228 After-Hatch-Year (AHY) female northern pintails during late August-early October, 1991-1993, in the San Joaquin Valley (SJV) and studied their movements through March each year. Nearly all (94.3%) wintered in CCA, but 5.7% went to southern California, Mexico, or unknown areas; all that went south left before hunting season. Of the 395 radiotagged pintails that wintered in CCA, 83% flew from the SJV north to other CCA areas (i.e., Sacramento Valley [SACV], Sacramento-San Joaquin River Delta [Delta], Suisun Marsh, San Francisco Bay) during September-January; most went during December. Movements coincid- ed with start of hunting seasons and were related to pintail age, mass, capture location, study year, and weather. Among pintails with less than average mass, AHY individuals tended to leave the SJV earlier than HY individuals. Weekly distribution was similar among capture locations and years but a greater percentage of pintails radiotagged in Tulare Basin (south part of SJV) were known to have (10.3% vs. 0.9%) or probably (13.8% vs. 4.6%) wintered south of CCA than pintails radiotagged in northern SJV areas (i.e., Grassland Ecological Area [EA] and Mendota Wildlife Area [WA]). Also, a greater percentage of SJV pintails went to other CCA areas before hunting season in the drought year of 1991-1992 than later years (10% vs. 3-5%). The percent of radiotagged pintails from Grass- land EA known to have gone south of CCA also was greater during 1991-1992 than later years (2% vs. 0%), but both the known (19% vs. 4%) and probable (23% vs. 12%) percent from Tulare Basin that went south was greatest during 1993-1994, when availability of flooded fields there was lowest. The probability of pintails leaving the SJV was 57% (95% CI = 8-127%) greater on days with than without rain, and more movements per bird out of SJV occurred in years

  1. Bird monitoring as an aid to riparian restoration: Findings from the Trinity River in northwestern California

    Science.gov (United States)

    C. Klamath Bird Observatory and USFS Pacific Southwest Research Station

    2013-01-01

    The Trinity River Restoration Program began in 2000 with the goal of restoring the Trinity River's salmon and steelhead fisheries, which were severely degraded during the last half-century as a result of dams, water diversions under the Central Valley Project, and land-use practices such as gold mining. The restoration program, as outlined in the U.S. Department...

  2. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  3. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  4. Forest and grassland carbon in North America: A short course for land managers

    Science.gov (United States)

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  5. Literature Review on the Effects of Prescription Fire on theEcology of Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R

    2011-03-14

    Lawrence Livermore National Laboratory has historically conducted prescription burns across approximately 2,000 acres of Site 300 on an annual basis to safeguard test facilities and operations from the risk of wildfire encroachment. Prescription burns began in 1960, and although fire frequency varies among the designated burn areas, all have been burned at least once. A patchwork of native perennial grassland communities and associated special-status plant and animal populations occur onsite in many areas that have been receiving these treatments. Because the size and locations of prescription burns may shift in coming years, an evaluation is warranted to determine how these shifts may affect listed biota, including rare plants, and the distinct ecological conditions present on the site. This report presents the results of a literature review conducted by ICF International (ICF) to collect basic information on native perennial grasslands in California, the influence of fire on these grasslands, and management tools for restoring and maintaining them. The objective of this study was to review the scientific literature on California native grasslands and summarize the current state of knowledge pertaining to the possible effects -- both beneficial and detrimental -- of prescribed fire on the ecology of Site 300. The results of this review are intended to inform future management practices that may be carried out at Site 300 to maintain the plant and wildlife communities and to ensure that the ecological conditions benefit the special-status species that inhabit the Site. This review is also intended to identify a study approach to investigate changes over the next 10 years in the burned areas and in areas where burning will be discontinued.

  6. Monitoring in South African grasslands

    CSIR Research Space (South Africa)

    Mentis, MT

    1984-12-01

    Full Text Available The main purpose of this document is to propose how ecological monitoring might be developed in the Grassland Biome of South Africa. Monitoring is defined as the maintenance of regular surveillance to test the null hypothesis of no change...

  7. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  8. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Science.gov (United States)

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  9. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  10. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  11. The influence of boundary features on grassland-edge communities of Alta Murgia

    OpenAIRE

    Cassano, Stefania; Alignier, Audrey; Forte, Luigi; Labadessa, Rocco; Mairota, Paola

    2016-01-01

    Many studies suggest the importance of boundary features on plant community dynamics. Our aim was to investigate the influence of boundary features on edge plant assemblages in semi-natural dry grasslands. For this purpose we selected 16 grassland edges in the central portion of the Natura 2000 site Murgia Alta, in southeastern Italy. These sites were selected according to a combination of boundary features, i.e. the adjoining land use type (road or cereal crop), slope (grassland tilted towar...

  12. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor...

  13. Balance matters : N:P stoichiometry and plant diversity in grassland ecosystems

    NARCIS (Netherlands)

    Fujita, Y.

    2010-01-01

    Eutrophication of Nitrogen (N) and Phosphorus (P) is threatening the functioning and biodiversity of grassland ecosystems. A well known effect of eutrophication on grasslands is an increase of above-ground productivity, which intensifies light competition and allows only a few competitive species to

  14. Secondary succession after fire in Imperata grasslands of East Kalimantan Indonesia

    NARCIS (Netherlands)

    Yassir, I.; Kamp, van der J.; Buurman, P.

    2010-01-01

    Regeneration of grassland areas is becoming increasingly important, not only to create new secondary forest and recover the original biodiversity, but also recover for agriculture. We studied an early succession in Imperata grasslands in East Kalimantan, Indonesia, using plots that last burned 3

  15. Patterns in the Use of a Restored California Floodplain by Native and Alien Fishes

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    2007-07-01

    Full Text Available Fishes were sampled on the restored floodplain of the Cosumnes River in Central California in order to determine patterns of floodplain use. The floodplain was sampled for seven years (1998-2002, 2004-2005 during the winter-spring flooding season. The fishes fell into five groups: (1 floodplain spawners, (2 river spawners, (3 floodplain foragers, (4 floodplain pond fishes, and (5 inadvertent users. Eight of the 18 abundant species were natives, while the rest were aliens. There was a consistent pattern of floodplain use, modified by timing and extent of flooding. The first fishes to appear were floodplain foragers, inadvertent users, and juvenile Chinook salmon (river spawners. Next were floodplain spawners, principally Sacramento splittail and common carp. At the end of the season, in ponds of residual water, non-native annual fishes, mainly inland silverside and western mosquitofish, became abundant. Adult spawners left when inflow decreased; their juveniles persisted as long as flood pulses kept water levels up and temperatures low. Juvenile splittail and carp quickly grew large enough to dominate floodplain fish samples, along with smaller numbers of juvenile Sacramento sucker and pikeminnow (river spawners. Such juveniles left the Relatively few fishes that used the floodplain for spawning or rearing became stranded, except late season alien fishes. Most alien fishes had resident populations in adjacent river, sloughs, and ditches and were not dependent on the floodplain for persistence. This indicates that Central Valley floodplains managed to favor native fishes should have the following char- acteristics: (1 extensive early season flooding, (2 complete drainage by the end of the flooding season, (3 few areas with permanent water, (4 a mosaic of physical habitats, (5 regular annual flooding but with high variability in flood regime.

  16. Energy analysis of various grassland utilisation systems

    Directory of Open Access Journals (Sweden)

    Jozef Ržonca

    2005-01-01

    Full Text Available In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average. The highest value of energy efficiency (13.23% was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days or two cuts per year (first cut on July 15th, next cuts after 90 days.

  17. Influence of density on the seasonal utilization of broad grassland ...

    African Journals Online (AJOL)

    We monitored seasonal use of grassland types by white rhinos at two sites within the Hluhluwe iMfolozi Park (HiP). Thirty-two rhinos were removed from one site to reduce rhino density. Seasonal use of grassland types was similar at both sites, but differed to what a previous study reported. This was likely due to higher food ...

  18. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  19. Impact of Climate Change on Temperate and Alpine Grasslands in China during 1982–2006

    Directory of Open Access Journals (Sweden)

    Xiangjin Shen

    2015-01-01

    Full Text Available Based on GIMMS NDVI and climate data from 1982 to 2006, this study analyzed the impact of climate change on grassland in China. During the growing season, there were significant effects of precipitation on the growth of all the grassland types (P<0.05, except for meadow vegetation. For the air temperatures, there existed asymmetrical effects of maximum temperature (Tmax and minimum temperature (Tmin on grassland vegetation, especially for the temperate grasslands and alpine steppe. The growing season NDVI correlated negatively with Tmax but positively with Tmin for temperate grasslands. Seasonally, these opposite effects were only observed in summer. For alpine steppe, the growing season NDVI correlated positively with Tmax but negatively with Tmin, and this pattern of asymmetrical responses was only obvious in spring and autumn. Under the background of global asymmetric warming, more attention should be paid to this asymmetric response of grassland vegetation to daytime and night-time warming, especially when we want to predict the productivity of China’s grasslands in the future.

  20. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    Science.gov (United States)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  1. Restoring monarch butterfly habitat in the Midwestern US: 'All hands on deck'

    Science.gov (United States)

    Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Rohweder, Jason; Diffendorfer, James E.; Drum, Ryan G.; Semmens, Darius J.; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steven B.; Howard, Elizabeth; Oberhauser, Karen S.; Pleasants, John M.; Semmens, Brice X.; Taylor, Orley R.; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-01-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  2. Environmental restoration with forest trees in the Southern State of Parana grasslands Recuperação ambiental em áreas de estepe do Primeiro Planalto Paranaense, mediante plantio de espécies arbóreas

    Directory of Open Access Journals (Sweden)

    Letícia Penno de Sousa

    2010-06-01

    Full Text Available Human development activities as water reservoir construction have great impact on the vegetation, thus changing its floristic, as well as its structure and ecology functions. Parana Pine Forest alongside with grasslands have been highly modified and in particular to the last one, there are few works related to its restoration. In the border of Irai water reservoir (Metropolitan Region of Curitiba, PR, where occurs grasslands associated to the Parana Pine Forest, where it were established
    tree plantations aiming rescue tree vegetation lost due to the flooding. Inside these plantations, an experiment was established to compare growth and survival of eight local native species in 12 months, in single species plots and under the same environmental conditions. Results for the species Escallonia  montevidensis, Lafoensia pacari, Lithraea molleoides, Luehea divaricata, Mimosa scabrella, Podocarpus lambertii and Vitex megapotamica presented very undesirable attributes, where height ranged between 10 cm and 33 cm, diameter ranged between 2.5 mm a 6.6 mm and survival percentage was between 9.1 and 66. 7 . It was possible to claim these results to water deficit, soil with low base saturation, to delayed planting
    and to high plant evapotranspiration. Actions dealing with restoration must consider limits and possibilities concerning each phytoecological region and proper restoration techniques as well.A diversidade e a intensidade das atividades antrópicas implicam em grandes impactos sobre a vegetação,
    alterando sua florística, estrutura e funções. A Floresta Ombrófila Mista, assim como as estepes, estão fortemente descaracterizadas, tendo essas últimas poucas e incipientes informações sobre recuperação ambiental. Às margens da Represa do Iraí (Região Metropolitana de Curitiba, PR, em área de estepe associada à Floresta Ombrófila Mista, foram realizados plantios com espécies arbóreas como forma de dar início

  3. PV water pumping systems for grassland and farmland conservation

    OpenAIRE

    Campana, Pietro Elia

    2013-01-01

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of th...

  4. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Quansheng Ge

    2014-01-01

    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  5. Grassland simulation with the LPJmL model : version 3.4.018

    NARCIS (Netherlands)

    Boons-Prins, E.R.

    2010-01-01

    One third of the land surface is covered with natural and cultivated grasslands. Most of these grasslands are intensively or extensively exploited by humans to feed animals. With growing wealth, causing an increase of meat consumption, there is a need to better understand the processes that

  6. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  7. Voluntary intake and in vivo digestibility of forages from semi-natural grasslands in dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Valk, H.; Struik, P.C.

    2003-01-01

    To study in vivo digestibility of forages from semi-natural grasslands two experiments were carried out. In the first experiment lactating dairy cows were offered three different silage-based diets. Silage originated from intensively managed grassland (IM), extensively managed species-poor grassland

  8. Environmental Assessment: Western Snowy Plover Habitat Restoration, Vandenberg Air Force Base, California

    Science.gov (United States)

    2008-08-01

    during low tide periods, and then allow it to wash out into the ocean with the ensuing high tide. Salt water may render seeds and vegetation...Archaeological Society Occasional Paper No. 7. Greenwood, R.S. 1978. Obispeño and Purisimeño Chumash. In California, edited by Robert F. Heizer , pp. 520–523

  9. Energy production from grassland - Assessing the sustainability of different process chains under German conditions

    International Nuclear Information System (INIS)

    Roesch, Christine; Skarka, J.; Raab, K.; Stelzer, V.

    2009-01-01

    In many regions of Europe, grassland shapes the landscape and fulfils important functions in protecting nature, soil, and water. However, the traditional uses of grassland for forage production are vanishing with progress in breeding and structural adaptations in agriculture. On the other hand, the demand for biomass energy is rising due to political sustainability goals and financial measures to support renewable energy. Against this background, the Institute for Technology Assessment and Systems Analysis investigated the applicability, economic efficiency, and sustainability of different techniques for energy production from grassland as well as from grassland converted into maize fields or short-rotation poplars under German conditions. The results show that despite relatively high energy prices and the financial support for bioenergy, the effects of energy production from grassland on employment in agriculture and farmers' income are modest. What is beneficial are savings in non-renewable energy, reductions in greenhouse gas emissions, and local provision of energy carriers. If grassland biomass (grass silage or hay) is used for energy purposes, this brings the further advantages of preserving biodiversity and the cultural landscape and protecting of soil and groundwater. Negative impacts on sustainable development result from an increase in emissions, which leads to acidification, eutrophication, and risks to human health. The overall evaluation indicates that short-rotation poplars are comparatively advantageous from the economic and ecological point of view. Therefore, a development plan for grassland is required to identify areas where grassland could be used as an energy resource or where it would be favourable to install energy plantations with fast-growing perennial plants

  10. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  11. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  12. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  13. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review

    Directory of Open Access Journals (Sweden)

    Tianjie Lei

    2016-10-01

    Full Text Available In recent years, the increased intensity and duration of droughts have dramatically altered the structure and function of grassland ecosystems, which have been forced to adapt to this change in climate. Combinations of global change drivers such as elevated atmospheric CO2 concentration, warming, nitrogen (N deposition, grazing, and land-use change have influenced the impact that droughts have on grassland C cycling. This influence, to some extent, can modify the relationship between droughts and grassland carbon (C cycling in the multi-factor world. Unfortunately, prior reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current state of the study on the interactive impacts of multiple factors under drought scenarios in grassland C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling in a multi-factor world. Currently, adequate information is not available on the interaction between droughts and global change drivers, which would advance our understanding of grassland C cycling responses. It was determined that future experiments and models should specifically test how droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of current and future global change conditions have studied various drought scenarios poorly, including changes in precipitation frequency and amplitude, timing, and interactions with other global change drivers. Multi-factor experiments have contributed to quantifying these potential changes and have provided important information on how water affects ecosystem processes under global change. There is an urgent need to establish a systematic framework that can assess ecosystem dynamic responses to droughts under current and future global change and human activity, with a focus on the combined effects of droughts, global change drivers, and the corresponding hierarchical responses of an ecosystem.

  14. Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands.

    Science.gov (United States)

    Lucas, Andrew; Bull, James C; de Vere, Natasha; Neyland, Penelope J; Forman, Dan W

    2017-10-01

    Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically-rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum . Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator

  15. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  16. DYNAMICS OF CARBON SEQUESTRATION IN ABANDONED GRASSLANDS OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    José Israel Yerena Yamallel

    2014-04-01

    Full Text Available Livestock activities due to the improper handling of the load capacity, suffer from low productivity in their grasslands, which are abandoned giving rise to the appearance of species considered invasive and undesirable for producers, without knowing the qualities of these as mitigating of climate change. The objective of the present study was to estimate the carbon content in tamaulipan thornscrub and three abandoned grasslands with a time of abandonment of 10, 20 and 30 years. For the estimation of the carbon content was used a systematic sampling design, in each area were established four sampling sites of 1,600 m2. The primary scrub is the system that resulted in the largest value of carbon content of 14.25 Mg ha-1, followed by the grasslands of 30, 20 and 10 years with 8.03, 7.33 and 4.13 Mg ha-1 respectively. It was concluded that recovering the initial state of the primary scrub take many years, as can be seen in the grasslands system 30 years reaching only 56% of what it had in reserves of primary scrub.

  17. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    Directory of Open Access Journals (Sweden)

    Ryan G Drum

    Full Text Available Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  18. Strategic Grassland Bird Conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes

    Science.gov (United States)

    Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C.; Rideout, Catherine; Sample, David W.

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  19. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  20. The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Bruce Herbold

    2014-03-01

    Full Text Available   Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary. Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011. Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha and the Bay Delta Conservation Plan (26,305 ha. In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012. In the Sacramento–San Joaquin Delta (Delta, one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013. The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010. This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium. 

  1. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  2. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Science.gov (United States)

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  3. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  4. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    Science.gov (United States)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  5. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’

    Science.gov (United States)

    Thogmartin, Wayne E.; López-Hoffman, Laura; Rohweder, Jason; Diffendorfer, Jay; Drum, Ryan; Semmens, Darius; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steve; Howard, Elizabeth; Oberhauser, Karen; Pleasants, John; Semmens, Brice; Taylor, Orley; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-07-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  6. Identifying priority areas for ecosystem service management in South African grasslands.

    Science.gov (United States)

    Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M

    2011-06-01

    Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All

  7. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  8. Are Agrofuels a conservation threat or opportunity for grassland birds in the United States?

    Science.gov (United States)

    Robertson, Bruce A.; Rice, Robert A.; Ribic, Christine; Babcock, Bruce A.; Landis, Douglas A.; Herkert, James R.; Fletcher, Robert J.; Fontaine, Joseph J; Doran, Patrick J.; Schemske, Douglas W.

    2012-01-01

    In the United States, government-mandated growth in the production of crops dedicated to biofuel (agrofuels) is predicted to increase the demands on existing agricultural lands, potentially threatening the persistence of populations of grassland birds they support. We review recently published literature and datasets to (1) examine the ability of alternative agrofuel crops and their management regimes to provide habitat for grassland birds, (2) determine how crop placement in agricultural landscapes and agrofuel-related land-use change will affect grassland birds, and (3) identify critical research and policy-development needs associated with agrofuel production. We find that native perennial plants proposed as feedstock for agrofuel (switchgrass, Panicum virgatum, and mixed grass—forb prairie) have considerable potential to provide new habitat to a wide range of grassland birds, including rare and threatened species. However, industrialization of agrofuel production that maximizes biomass, homogenizes vegetation structure, and results in the cultivation of small fields within largely forested landscapes is likely to reduce species richness and/or abundance of grassland-dependent birds. Realizing the potential benefits of agrofuel production for grassland birds' conservation will require the development of new policies that encourage agricultural practices specifically targeting the needs of grassland specialists. The broad array of grower-incentive programs in existence may deliver new agrofuel policies effectively but will require coordination at a spatial scale broader than currently practiced, preferably within an adaptive-management framework.

  9. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  10. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  11. Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California

    OpenAIRE

    Gregory H. Golet; David L. Brown; Melinda Carlson; Thomas Gardali; Adam Henderson; Karen D. Holl; Christine A. Howell; Marcel Holyoak; John W. Hunt; G. Mathias Kondolf; Eric W. Larsen; Ryan A. Luster; Charles McClain; Charles Nelson; Seth Paine

    2013-01-01

    Large-scale ecosystem restoration projects seldom undergo comprehensive evaluation to determine project effectiveness. Consequently, there are missed opportunities for learning and strategy refinement. Before our study, monitoring information from California’s middle Sacramento River had not been synthesized, despite restoration having been ongoing since 1989. Our assessment was based on the development and application of 36 quantitative ecological indicators. These indicators were used to ch...

  12. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  13. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  14. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    Science.gov (United States)

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  15. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis.

    Directory of Open Access Journals (Sweden)

    Stephanie S Porter

    Full Text Available Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.

  16. 77 FR 23658 - Six Rivers National Forest, Gasquet Ranger District, California, The Smith River National...

    Science.gov (United States)

    2012-04-20

    ... National Forest, Gasquet Ranger District, California, The Smith River National Recreation Area [email protected] . Please insure that ``Smith River NRA Restoration and Motorized Travel Management'' occurs... UARs totaling 80 miles. The project encompasses the Smith River NRA and Gasquet Ranger District...

  17. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  18. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model

    NARCIS (Netherlands)

    Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.K.; Wang, T.

    2012-01-01

    Accurate estimates of the quantity and quality of grasslands, as they vary in space and time and from regional to global scales, furthers our understanding of grassland ecosystems. The Medium Resolution Imaging Spectrometer (MERIS) is a promising sensor for measuring and monitoring grasslands due to

  19. Carbon dynamics in an Imperata grassland in Northeast India

    Directory of Open Access Journals (Sweden)

    Amrabati Thokchom

    2016-01-01

    Full Text Available Carbon stocks and soil CO2 flux were assessed in an Imperata cylindrica grassland of Manipur, Northeast India. Carbon stocks in the vegetative components were estimated to be 11.17 t C/ha and soil organic carbon stocks were 55.94 t C/ha to a depth of 30 cm. The rates of carbon accumulation in above-ground and below-ground biomass were estimated to be 11.85 t C/ha/yr and 11.71 t C/ha/yr, respectively. Annual soil CO2 flux was evaluated as 6.95 t C/ha and was highly influenced by soil moisture, soil temperature and soil organic carbon as well as by C stocks in above-ground biomass. Our study on the carbon budget of the grassland ecosystem revealed that annually 23.56 t C/ha was captured by the vegetation through photosynthesis, and 6.95 t C/ha was returned to the atmosphere through roots and microbial respiration, with a net balance of 16.61 t C/ha/yr being retained in the grassland ecosystem. Thus the present Imperata grassland exhibited a high capacity to remove atmospheric CO2 and to induce high C stocks in the soil provided it is protected from burning and overgrazing.Keywords: Above-ground biomass, below-ground biomass, carbon stocks, carbon storage, net primary productivity, soil CO2 flux.DOI: 10.17138/TGFT(419-28  

  20. [Edge influence of soil moisture at farmland-grassland boundary in agriculture-pasturage ecotone of northern China].

    Science.gov (United States)

    Liu, Hong-lai; Zhang, Wei-hua; Wang, Kun; Zhao, Na

    2009-03-01

    In the agriculture-pasturage ecotone of Northern China, a typical zone with linear boundary of cropland and grassland was chosen to investigate its soil moisture regime, and the moving split-window technique was adopted to study the edge influence of soil moisture at the boundary. The results showed that the edge influence was 10 m, from 6 m within grassland and 4 m within cropland, and was categorized as the acute change type boundary. Accordingly, the farmland-grassland landscape boundary could be divided into three functional zones, i.e., grassland zone, farmland zone, and compositional ecotone zone. Soil moisture content varied abruptly in the ecotone zone, but presented linear distribution in both grassland zone and farmland zone. The average soil moisture content in grassland was about 1 g x g(-1) higher than that in farmland, which was mainly caused by the decreased capillary moisture capacity of farmland. Owing to the different vegetation cover, farmland and grassland had different transpiration and evaporation, which led to the diverse soil moisture regime, making soil water potential changed and water movement from one ecosystem to another possible.

  1. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  2. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  3. Striking a balance: socioeconomic development and conservation in grassland through community-based zoning.

    Directory of Open Access Journals (Sweden)

    Craig Leisher

    Full Text Available The goal of preserving nature is often in conflict with economic development and the aspirations of the rural poor. Nowhere is this more striking than in native grasslands, which have been extensively converted until a mere fraction of their original extent remains. This is not surprising; grasslands flourish in places coveted by humans, primed for agriculture, plantations, and settlements that nearly always trump conservation efforts. The Umgano grassland conservation and poverty reduction project in KwaZulu-Natal Province, South Africa uses community-based spatial planning to balance the conversion of its lower-conservation value grasslands to a timber plantation, while conserving higher-value grasslands for heritage purposes and managed livestock grazing. Ten years after project launch, we measured the ecological and socioeconomic impacts of the project using Normalized Differential Vegetation Index remote sensing data and over 500 household interviews, as compared with similar non-conserved areas. Zoned management of the Umgano area had resulted in between 9% and 17% greater average peak production in the grassland areas compared to control sites. There was also a 21% gain in incomes for the roughly one hundred people employed by the forestry efforts, when compared to others in their village. Community-based spatial zoning is an overlooked tool for balancing conservation and development but may require, as we found in Umgano, certain critical factors including strong local leadership, an accountable financial management mechanism to distribute income, outside technical expertise for the zoning design, and community support.

  4. Soil seed-bank composition reveals the land-use history of calcareous grasslands

    Science.gov (United States)

    Karlík, Petr; Poschlod, Peter

    2014-07-01

    We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz). Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively). Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland. The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use - in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.

  5. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Horswill, Paul [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: paul.horswill@naturalengland.org.uk; O' Sullivan, Odhran; Phoenix, Gareth K.; Lee, John A.; Leake, Jonathan R. [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-09-15

    Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10 years with 35-140 kg N ha{sup -2} y{sup -1} as NH{sub 4}NO{sub 3}. Historic data suggests both grasslands have acidified over the past 50 years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes. - Nitrogen deposition causes base cation depletion, acidification and eutrophication of semi-natural grassland soils.

  6. On the stability of mixed grasslands

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2001-01-01

    Recent years have seen a renewed interest in the use of white clover (Trifolium repens) in grasslands, as a more sustainable alternative to fertiliser nitrogen inputs. However, mixtures of grasses and white clover have frequently been associated with unstable and hence unreliable herbage

  7. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Science.gov (United States)

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  8. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus

    Directory of Open Access Journals (Sweden)

    Jorge Luis Becerra-López

    2017-08-01

    Full Text Available The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

  9. Greenhouse Gas Emission from Beef Cattle Grazing Systems on Temperate Grasslands

    Science.gov (United States)

    Rice, C. W.; Rivera-Zayas, J.

    2017-12-01

    At a global scale, cattle production is responsible for 65% of GHG emissions. During 2014 cattle management was the largest emitters of methane (CH4) representing a 23.2% of the total CH4 from anthropogenic activities. Since 2014, gas samples have been gathered and analyzed for carbon dioxide (CO2), CH4 and nitrous oxide (N2O) from three grazing areas under three different burning regimes at the temperate grassland of Konza Prairie Biological Station in Kansas. Burning regimes included one site in annually burned, and two sites with patch burned every three years on offset years. Burning regimes showed no effect in N2O emissions (pconsumed on grazed grassland soils; with an increase in consumption with patch burning. Results quantify the role of temperate grasslands as a sink of CH4, and a possible sink of N2O. This experiment evidence CO2, CH4 and N2O emissions behavior as a consequence of burning regimes, and quantify the role of temperate grasslands as a sink of CH4 and N2O in order to understand best practice for resilience of beef cattle management.

  10. Grassland/atmosphere response to changing climate: Coupling regional and local scales

    International Nuclear Information System (INIS)

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C 3 temperate grasslands wig respond more strongly to elevated CO 2 than temperate C 4 grasslands in the short-term while a large positive N-PP response was predicted for a C 4 Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO 2 is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO 2 GCM Simulations revealed relatively small differences

  11. Prescribed burning to affect a state transition in a shrub-encroached desert grassland

    Science.gov (United States)

    Prescribed burning is a commonly advocated and historical practice for control of woody species encroachment into grasslands on all continents. However, desert grasslands of the southwestern United States often lack needed herbaceous fuel loads for effective prescriptions, dominant perennial gramin...

  12. Association of wintering raptors with Conservation Reserve Enhancement Program grasslands in Pennsylvania

    Science.gov (United States)

    Wilson, A.; Brittingham, M.; Grove, G.

    2010-01-01

    Conservation grasslands can provide valuable habitat resource for breeding songbirds, but their value for wintering raptors has received little attention. We hypothesized that increased availability of grassland habitat through the Conservation Reserve Enhancement Program (CREP) has resulted in an increase or redistribution in numbers of four species of raptors in Pennsylvania since 2001. We tested this by analyzing winter raptor counts from volunteer surveys, conducted from 2001 to 2008, for Red-tailed Hawks (Buteo jamaicensis), Rough-legged Hawks (Buteo lagopus), Northern Harriers (Circus cyaneus), and American Kestrels (Falco sparverius). During that period, numbers of wintering Northern Harriers increased by more than 20% per year. Log-linear Poisson regression models show that all four species increased in the region of Pennsylvania that had the most and longest-established conservation grasslands. At the county scale (N= 67), Bayesian spatial models showed that spatial and temporal population trends of all four species were positively correlated with the amount of conservation grassland. This relationship was particularly strong for Northern Harriers, with numbers predicted to increase by 35.7% per year for each additional 1% of farmland enrolled in CREP. Our results suggest that conservation grasslands are likely the primary cause of the increase in numbers of wintering Northern Harriers in Pennsylvania since 2001. ?? 2010 The Authors. Journal of Field Ornithology ?? 2010 Association of Field Ornithologists.

  13. Inverse relationship between urban green space and childhood autism in California elementary school districts.

    Science.gov (United States)

    Wu, Jianyong; Jackson, Laura

    2017-10-01

    Green space has a variety of health benefits. However, little is known about its impact on autism, the fastest-growing neurodevelopmental disorder in children. This study examined the relationship between green space and childhood autism prevalence. Autism count data in 2010 were obtained for 543 of ~560 public elementary school districts in California. Multiple types of green space were measured in each school district, including percentages of forest, grassland, and average tree canopy and near-road tree canopy. Their associations with autism prevalence were evaluated with negative binomial regression models and spatial regression models. We observed inverse associations between several green space metrics and autism prevalence in school districts with high road density, the highly urbanized areas, but not in others. According to negative binomial regression models, adjusted rate ratios (RR) for the relationships in these school districts between autism prevalence and green space metrics in 10% increments were as follows: for forest, RR=0.90 (95% confidence interval [CI]: 0.84-0.95); for grassland, RR=0.90 (95% CI: 0.83-0.97); for average tree canopy, RR=0.89 (95% CI: 0.83-0.95), and for near-road tree canopy, RR=0.81 (95% CI: 0.73-0.91). These results suggest that increases of 10% in forest, grassland, average tree canopy and near-road tree canopy are associated with a decrease in autism prevalence of 10%, 10% 11% and 19%, respectively. In contrast, urban land and road density were positively associated with autism prevalence. The results of spatial regression models were consistent with those obtained by negative binomial models, except for grassland. Our study suggests that green space, specifically tree cover in areas with high road density, may influence autism prevalence in elementary school children beneficially. Further studies are needed to investigate a potential causal relationship, and the major mechanisms that may underlie the beneficial associations

  14. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  15. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  16. Linear objects impact on grassland degradation in the typical steppe region of China

    NARCIS (Netherlands)

    Li, Suying; Verburg, Peter H.; Lv, Shihai; Gao, Shangyu; Wu, Jingle

    2011-01-01

    Despite growing recognition of the issue of grassland degradation, few regional estimates of linear object impacts on grassland degradation [1]. We presented a methodology for evaluating regional impacts on steppe degradation from linear objects which were two uppermost types, rivers and roads, in

  17. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  18. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  19. Intensive management in grasslands causes diffuse water pollution at the farm scale.

    Science.gov (United States)

    Peukert, Sabine; Griffith, Bruce A; Murray, Phillip J; Macleod, Christopher J A; Brazier, Richard E

    2014-11-01

    Arable land use is generally assumed to be the largest contributor to agricultural diffuse pollution. This study adds to the growing evidence that conventional temperate intensively managed lowland grasslands contribute significantly to soil erosion and diffuse pollution rates. This is the first grassland study to monitor hydrological characteristics and multiple pollutant fluxes (suspended sediment [SS] and the macronutrients: total oxidized nitrogen-N [TON], total phosphorus [TP], and total carbon [TC]) at high temporal resolution (monitoring up to every 15 min) over 1 yr. Monitoring was conducted across three fields (6.5-7.5 ha) on the North Wyke Farm Platform, UK. The estimated annual erosion rates (up to 527.4 kg ha), TP losses (up to 0.9 kg ha), and TC losses (up to 179 kg ha) were similar to or exceeded the losses reported for other grassland, mixed land-use, and arable sites. Annual yields of TON (up to 3 kg ha) were less than arable land-use fluxes and earlier grassland N studies, an important result as the study site is situated within a Nitrate Vulnerable Zone. The high-resolution monitoring allowed detailed "system's functioning" understanding of hydrological processes, mobilization- transport pathways of individual pollutants, and the changes of the relative importance of diffuse pollutants through flow conditions and time. Suspended sediment and TP concentrations frequently exceeded water quality guidelines recommended by the European Freshwater Fisheries Directive (25 mg L) and the European Water Framework Directive (0.04 mg soluble reactive P L), suggesting that intensively managed grasslands pose a significant threat to receiving surface waters. Such sediment and nutrient losses from intensively managed grasslands should be acknowledged in land management guidelines and advice for future compliance with surface water quality standards. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of

  20. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  1. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    Directory of Open Access Journals (Sweden)

    Péter Török

    Full Text Available Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i How does cattle grazing affect species composition and diversity of the grasslands? (ii What are the effects of grazing on short-lived and perennial noxious species? (iii Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable

  2. Evaluating the Impacts of Grassland Conversions to Experimental Forest on Groundwater Recharge in the Nebraska Sand Hills

    Science.gov (United States)

    Adane, Zablon A.

    The Nebraska Sand Hills grasslands provide the greatest groundwater recharge rates in the High Plains Aquifer. However, the grasslands and their ecological services have become vulnerable to land use change and degradation. This study used a series of field data to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest in the Sand Hills. The results show that the impact of grassland conversion on recharge was dependent on the species and plantation density. Estimated recharge rates beneath the dense plantations represent reductions of 86-94% relative to the native grassland. Results of 1H Nuclear Magnetic Resonance spectral analysis suggested that the surface soil organic carbon beneath pine plantations also contain up to 3 times the ratio of hydrophobic components than the native grasslands and may alter the soil hydraulic properties. This investigation further uncovered a previously overlooked feedback between the effect of soil organic carbon chemical shift generated by the ponderosa pine needle litter decomposition; namely that the alteration may have a link to reduced groundwater recharge rates. Thus, a global optimizer algorithm was used to estimate the effective soil hydraulic parameters from monthly soil moisture contents and recharge rates were then estimated through HYDRUS 1-D numerical modeling for grassland and pine forest soils. The impact of grassland conversion to pine was an overall reduction of groundwater recharge by nearly 100%. These outcomes highlight the significance of the grasslands for recharge, in the Sand Hills and the sustainability of the High Plains Aquifer.

  3. Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: A case of enhanced N inputs?

    Science.gov (United States)

    Perakis, S.S.; Kellogg, C.H.

    2007-01-01

    Woody vegetation is distributed patchily in many arid and semi-arid ecosystems, where it is often associated with elevated nitrogen (N) pools and availability in islands of fertility. We measured N availability and δ15N in paired blue-oak versus annual grass dominated patches to characterize the causes and consequences of spatial variation in N dynamics of grassland-savanna in Sequoia-Kings Canyon National Park. We found significantly greater surface soil N pools (0–20 cm) in oak patches compared to adjacent grass areas across a 700 m elevation gradient from foothills to the savanna-forest boundary. N accumulation under oaks was associated with a 0.6‰ depletion in soil δ15N relative to grass patches. Results from a simple δ15N mass balance simulation model, constrained by surface soil N and δ15N measured in the field, suggest that the development of islands of N fertility under oaks can be traced primarily to enhanced N inputs. Net N mineralization and percent nitrification in laboratory incubations were consistently higher under oaks across a range of experimental soil moisture regimes, suggesting a scenario whereby greater N inputs to oak patches result in net N accumulation and enhanced N cycling, with a potential for greater nitrate loss as well. N concentrations of three common herbaceous annual plants were nearly 50% greater under oak than in adjacent grass patches, with community composition shifted towards more N-demanding species under oaks. We find that oaks imprint distinct N-rich islands of fertility that foster local feedback between soil N cycling, plant N uptake, and herbaceous community composition. Such patch-scale differences in N inputs and plant–soil interactions increase biogeochemical heterogeneity in grassland-savanna ecosystems and may shape watershed-level responses to chronic N deposition.

  4. Greenhouse gas emissions and carbon sequestration potential in restored freshwater marshes in the Sacramento San-Joaquin Delta, California

    Science.gov (United States)

    Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.

    2015-12-01

    Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.

  5. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  6. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    Science.gov (United States)

    Waterloo, M. J.; Bruijnzeel, L. A.; Vugts, H. F.; Rawaqa, T. T.

    1999-07-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of 1926 and 1717 mm were derived for the 6- and the 15-year-old stands, respectively. Transpiration made up 72% and 70% of annual ET, and modeled rainfall interception by the trees and litter layer was 20-22% and 8-9% in the young and the mature stands respectively. Monthly ET was related to forest leaf area index and was much higher than that for the kind of tall fire-climax Pennisetum polystachyon grassland replaced by the forests. Grassland reforestation resulted in a maximum decrease in annual water yield of 1180 mm on a plot basis, although it is argued that a reduction of (at least) 500-700 mm would be more realistic at the catchment scale. The impact of reforesting grassland on the water resources in southwest Viti Levu is enhanced by its location in a maritime, seasonal climate in the outer tropics, which favors a larger difference between annual forest and grassland evaporation totals than do equatorial regions.

  7. Trajectories of grassland ecosystem change in response to experimental manipulations of precipitation

    Science.gov (United States)

    Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John

    2010-05-01

    Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was

  8. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    Directory of Open Access Journals (Sweden)

    Renaud eBerlemont

    2014-11-01

    Full Text Available In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of two years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and constituted ~18.2% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.

  9. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  10. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    Science.gov (United States)

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  11. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach.

    Directory of Open Access Journals (Sweden)

    Szabolcs Lengyel

    Full Text Available Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals showed that the wet-dry gradient (compositional HD at the between-patch scale was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve

  12. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  13. Brownfields Samoa Peninsula, CA: Sustainable Solutions for Historic Houses in Northern California, A Voluntary Green Code & Green Rehabilitation Manual

    Science.gov (United States)

    This manual was created to help homeowners choose sustainable strategies for restoring and rehabilitating many of the smaller, Victorian-style, wood-framed houses built in Northern California during the late 1800s and early 1900s.

  14. A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands

    Directory of Open Access Journals (Sweden)

    Rong Ge

    2018-01-01

    Full Text Available It is important to accurately evaluate ecosystem respiration (RE in the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau, as it serves as a sensitivity indicator of regional and global carbon cycles. Here, we combined flux measurements taken between 2003 and 2013 from 16 grassland sites across northern China and the corresponding MODIS land surface temperature (LST, enhanced vegetation index (EVI, and land surface water index (LSWI to build a satellite-based model to estimate RE at a regional scale. First, the dependencies of both spatial and temporal variations of RE on these biotic and climatic factors were examined explicitly. We found that plant productivity and moisture, but not temperature, can best explain the spatial pattern of RE in northern China’s grasslands; while temperature plays a major role in regulating the temporal variability of RE in the alpine grasslands, and moisture is equally as important as temperature in the temperate grasslands. However, the moisture effect on RE and the explicit representation of spatial variation process are often lacking in most of the existing satellite-based RE models. On this basis, we developed a model by comprehensively considering moisture, temperature, and productivity effects on both temporal and spatial processes of RE, and then, we evaluated the model performance. Our results showed that the model well explained the observed RE in both the alpine (R2 = 0.79, RMSE = 0.77 g C m−2 day−1 and temperate grasslands (R2 = 0.75, RMSE = 0.60 g C m−2 day−1. The inclusion of the LSWI as the water-limiting factor substantially improved the model performance in arid and semi-arid ecosystems, and the spatialized basal respiration rate as an indicator for spatial variation largely determined the regional pattern of RE. Finally, the model accurately reproduced the seasonal and inter-annual variations and spatial variability of RE, and it avoided

  15. A study of the carbon dynamics of Japanese grassland and forest using 14C and 13C

    International Nuclear Information System (INIS)

    Katsuno, Kazumi; Miyairi, Yosuke; Tamura, Kenji; Matsuzaki, Hiroyuki; Fukuda, Kenji

    2010-01-01

    We quantified the carbon contents of grassland and forest soil using conventional methods and studied the changes in their dynamics by measuring δ 13 C and Δ 14 C. Soil samples were taken from a neighboring Miscanthus sinensis grassland and Pinus densiflora forest in central Japan. Both had been maintained as grassland until the 1960s, when the latter was abandoned and became a pine forest by natural succession. The soil carbon content of the forest was much lower than that of the grassland, implying that the soil carbon decreased as the grassland became forest. The δ 13 C values were very similar in the grassland and forest, at approximately -20 per mille , suggesting that M. sinensis (a C4 plant) contributed to carbon storage, whereas there was little carbon accumulation from P. densiflora (a C3 plant) in forest soil. The Δ 14 C values and calculated soil carbon mean residence time (MRT) showed that the soil carbon in the upper A horizon was older, and that in the lower A horizon was younger in forest than in grassland. From these results, we conclude that young, fast-MRT soil carbon is decomposed in the upper A horizon, and old, stable soil carbon was decomposed in the lower A horizon after the pine invasion.

  16. Combining social policy and scientific knowledge with stakeholder participation can benefit on salted grassland production in Northeast China

    Science.gov (United States)

    Wang, Deli; Yang, Zhiming; Wang, Ling; Sun, Wei

    2015-04-01

    Soil salinization is a serious environmental problem across the Eurasian steppes, where millions people have been living for at least five thousand years and will still depend on it in the near future. During the last several decades, ecologists and grassland scientists have done much research on rational grassland utilization avoiding land degradation and reduction in ecological services. Meanwhile, the central and local governments took some attempts of agricultural policy and ecological subsidy to mitigate large scale land salinization in Northeast China. Fortunately, more and more farmers and stakeholders begin to adopt rational grassland management with the guidance of scientists and the help of local governments. However, up to date, there is still a gap between farmers, scientists and governments, which often negatively affect grassland production and remission of soil salinization in these areas. We conducted a case study on sustainable grassland production adapted to steppe salinization funded by EC project from 2011 to 2013. Our goal is trying to establish a mode of adaptive grassland management integrating previous scientific knowledge (grazing and seeding), current agricultural policies (ecological subsidy) and stakeholders' participation or performance. The study showed that: A. Despite of some grassland utilization techniques available for stakeholders (regulating stocking rate and seeding in pastures, or planting high quality forages), they tended to take the simplest action to enhance animal production and prevent grassland salinization; B. Compared to educating or training stakeholders, demonstration of grazing management is the most effective mean for knowledge dissemination or technology transfer; C. Ecological subsidy is absolutely welcome to the local people, and technology transfer became easier when combined with ecological subsidy; D. There was a contrasting effect in grassland production and land degradation mitigation for experimental farm

  17. Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; hide

    2016-01-01

    Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global

  18. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Arundhati Das

    Full Text Available The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic

  19. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Science.gov (United States)

    Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind

    2015-01-01

    The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the

  20. Monitoring aeolian desertification process in Hulunbir grassland during 1975-2006, Northern China.

    Science.gov (United States)

    Guo, Jian; Wang, Tao; Xue, Xian; Ma, Shaoxiu; Peng, Fei

    2010-07-01

    The Hulunbir grassland experienced aeolian desertification expansion during 1975-2000, but local rehabilitation during 2000-2006. Northern China suffered severe aeolian desertification during the past 50 years. Hulunbir grassland, the best stockbreeding base in Northern China, was also affected by aeolian desertification. To evaluate the evolution and status of aeolian desertification, as well as its causes, satellite images (acquired in 1975, 1984, 2000, and 2006) and meteorological and socioeconomic data were interpreted and analyzed. The results show there was 2,345.7, 2,899.8, 4,053.9, and 3,859.6 km(2) of aeolian desertified land in 1975, 1984, 2000, and 2006, respectively. The spatial pattern dynamic had three stages: stability during 1975-1984, fast expansion during 1984-2000, and spatial transfer during 2000-2006. The dynamic degree of aeolian desertification is negatively related to its severity. Comprehensive analysis shows that the human factor is the primary cause of aeolian desertification in Hulunbir grassland. Although aeolian desertified land got partly rehabilitated, constant increase of extremely severe aeolian desertified land implied that current measures were not effective enough on aeolian desertification control. Alleviation of grassland pressure may be an effective method.

  1. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Richard J., E-mail: r.payne@mmu.ac.uk [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Stevens, Carly J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ (United Kingdom); Dise, Nancy B. [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Gowing, David J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pilkington, Michael G.; Phoenix, Gareth K. [Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN (United Kingdom); Emmett, Bridget A. [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Ashmore, Michael R. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2011-10-15

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: > Ozone exposure, N and base cation deposition modify UK acid grassland composition. > Ozone influences community composition without reducing species richness. > Nitrogen and base cation deposition have interacting impacts. > Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  2. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    International Nuclear Information System (INIS)

    Payne, Richard J.; Stevens, Carly J.; Dise, Nancy B.; Gowing, David J.; Pilkington, Michael G.; Phoenix, Gareth K.; Emmett, Bridget A.; Ashmore, Michael R.

    2011-01-01

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: → Ozone exposure, N and base cation deposition modify UK acid grassland composition. → Ozone influences community composition without reducing species richness. → Nitrogen and base cation deposition have interacting impacts. → Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  3. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  4. Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits.

    NARCIS (Netherlands)

    Kuiters, A.T.; Huiskes, H.P.J.

    2010-01-01

    Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples

  5. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus

    Directory of Open Access Journals (Sweden)

    Anja Magiera

    2018-02-01

    Full Text Available Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum was dominant in biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species, Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of

  6. Ecological Restoration of Coastal Sage Scrub and Its Potential Role in Habitat Conservation Plans.

    Science.gov (United States)

    BOWLER

    2000-07-01

    Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes

  7. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  8. [Effects of desertification on C and N storages in grassland ecosystem on Horqin sandy land].

    Science.gov (United States)

    Zhao, Ha-lin; Li, Yu-qiang; Zhou, Rui-lian

    2007-11-01

    Sandy grassland is widespread in northern China, where desertification is very common because of overgrazing and estrepement. However, little is known about the effects of desertification on grassland C and N storages in this region. A field survey was conducted on Horqin sandy grassland, and desertification gradients were established to evaluate the effects of desertification on C and N storages in soil, plant, and litter. The results showed that desertification had deep effects on the contents and storages of grassland C and N. The C and N contents and storages in the grassland decreased significantly with increasing desertification degree. Comparing with those in un-desertified grassland, the C and N contents in lightly, moderately, heavily, and severely desertified grasslands decreased by 56.06% and 48.72%, 78.43% and 74.36%, 88.95% and 84.62%, and 91.64% and 84.62% in 0-100 cm soil layer, and by 8.61% and 6.43%, 0.05% and 25.71%, 2.58% and 27.14%, and 8. 61% and 27. 86% in plant components, respectively. Relevantly, the C and N storages decreased by 50.95% and 43.38%, 75.19% and 71.04%, 86.76% and 81.48%, and 91.17% and 83.17% in plant underground components in 0-100 cm soil layer, and by 25.08% and 27.62%, 30.90% and 46.55%, 73.84% and 80.62%, and 90.89% and 87.31% in plant aboveground components, respectively. In 2000, the total area of desertified grassland in Horqin sandy land was 30152. 7 km2, and the C and N loss via desertification reached up to 107.53 and 9.97 Mt, respectively. Correlation analysis indicated that the decrease of soil C and N contents was mainly come from the decreased soil fine particles caused by wind erosion in the process of desertification, and the degradation of soil texture- and nutrient status led finally to the rapid decrease of C and N storages in plant biomass and litter.

  9. 78 FR 56921 - South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19...

    Science.gov (United States)

    2013-09-16

    ...-F2013227943] South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19... South Bay Salt Pond Restoration Project and consists of restoring and enhancing over 2,000 acres of... Pollution Control Plant located at 700 Los Esteros Road, San Jose, California. The details of the public...

  10. Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling (PLS-SEM)

    Institute of Scientific and Technical Information of China (English)

    SHA Zongyao; XIE Yichun; TAN Xicheng; BAI Yongfei; LI Jonathan; LIU Xuefeng

    2017-01-01

    The cause-effect associations between geographical phenomena are an important focus in ecological research.Recent studies in structural equation modeling (SEM) demonstrated the potential for analyzing such associations.We applied the variance-based partial least squares SEM (PLS-SEM) and geographically-weighted regression (GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass (AGB).The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia,China.Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction.The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure.The alleviation may be attributable to vegetation adaptation to high human-climate stresses,to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas.Furthermore,the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations.This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.

  11. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  12. Air quality and human health impacts of grasslands and shrublands in the United States

    Science.gov (United States)

    Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.

    2018-06-01

    Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.

  13. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil.

    Science.gov (United States)

    Overbeck, G E; Müller, S C; Pillar, V D; Pfadenhauer, J

    2006-11-01

    In regularly burned grassland on Morro Santana, Porto Alegre, RS, Brazil, we investigated differences in the floristic composition and their relation to soil properties, aspect and distance from the forest border. In 48 plots of 0.75 m2, we identified a total of 201 species from a local species pool of approximately 450 to 500 species. Most species occurred in low frequencies, showing clumpy distribution patterns in the studied area. Multivariate analysis showed that plots close to the forest edge clearly differed from plots in the open grassland concerning composition and structure. Plots exposed to the north differed from plots on the top of the hill both in the composition of species as well as in soil variables, mainly due to shallower soil in the former. No strong relation between soil properties and variation in vegetation composition could be detected at a finer scale. The studied grassland, as all grassland vegetation in southern Brazil, is very rich in species compared to other grassland formations worldwide. However, this high biodiversity and conservational value of Campos vegetation in general has so far not been recognized properly. Disturbance is essential to maintain this open vegetation type and its species richness. Fire should be considered as a management option in the absence of grazing.

  14. Assessment of Grassland Health Based on Spatial Information Technology in Changji Autonomous Prefecture, Xinjiang

    Science.gov (United States)

    Du, M. J.; Zheng, J. H.; Mu, C.

    2018-04-01

    Based on the "pressure-state-response" (PSR) model, comprehensively applied GIS and RS techniques, 20 evaluation indicators were selected based on pressure, state and response, the entropy weight method was used to determine the weight of each index and build a grassland health evaluation system in Changji Prefecture, Xinjiang. Based on this, evaluation and dynamic analysis of grassland health in Changji Prefecture from 2000 to 2016, using GIS/RS technology, the trend of grassland health status in Changji is analyzed and studied. The results show that: 1) Grassland with low health leveld, lower health level, sub-health level, health level and high health level accounts for 1.46 %,27.67 %,38.35 %,29.21 % and 3.31 % of the total area of Changji. Qitai County, Hutubi County, and Manas County are lower health levels, Jimsar County, Changji City, and Mulei County are at a relatively high level, and Fukang City has a healthy level of health. 2) The level of grassland health in Changji County decreased slightly during the 17 years, accounting for 38.42 % of the total area. The area of 23,87 % showed a stable trend, and the improved area accounted for 37.31 % of the vertical surface area.

  15. Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands.

    Science.gov (United States)

    Fox-Dobbs, Kena; Nelson, Abigail A; Koch, Paul L; Leonard, Jennifer A

    2012-10-23

    Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.

  16. State Water Resources Control Board, California Agreement in Principle 1995 summary report

    International Nuclear Information System (INIS)

    Laudon, L.

    1996-03-01

    The Agreement in Principle (AIP) was established as part of the Secretary of Energy's Ten-Point Initiative which was announced in 1989. One of the Secretary's goals was to integrate the Department of Energy's (DOE) national security mission with their environmental restoration and compliance responsibilities. In an effort to accomplish this goal, DOE increased the role of the states in the oversight of DOE's monitoring programs through AIPs. The State of California and DOE negotiated the California AIP beginning in 1989 and signed the Agreement in September 1990. The AIP identified six DOE facilities to be evaluated under the program. The six facilities evaluated by the AIP program were: (1) Lawrence Livermore National Laboratory (LLNL) including LLNL's Site 300; (2) Sandia National Laboratories, California (SNL/CA); (3) Lawrence Berkeley Laboratory (LBL); (4) Stanford Linear Accelerator Center (SLAC); (5) Energy Technology Engineering Center (ETEC); and (6) Laboratory for Energy-Related Health Research (LEHR)

  17. State Water Resources Control Board, California Agreement in Principle 1995 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, L.

    1996-03-01

    The Agreement in Principle (AIP) was established as part of the Secretary of Energy`s Ten-Point Initiative which was announced in 1989. One of the Secretary`s goals was to integrate the Department of Energy`s (DOE) national security mission with their environmental restoration and compliance responsibilities. In an effort to accomplish this goal, DOE increased the role of the states in the oversight of DOE`s monitoring programs through AIPs. The State of California and DOE negotiated the California AIP beginning in 1989 and signed the Agreement in September 1990. The AIP identified six DOE facilities to be evaluated under the program. The six facilities evaluated by the AIP program were: (1) Lawrence Livermore National Laboratory (LLNL) including LLNL`s Site 300; (2) Sandia National Laboratories, California (SNL/CA); (3) Lawrence Berkeley Laboratory (LBL); (4) Stanford Linear Accelerator Center (SLAC); (5) Energy Technology Engineering Center (ETEC); and (6) Laboratory for Energy-Related Health Research (LEHR).

  18. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    Science.gov (United States)

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  19. Temporal and spatial changes of land use and landscape in a coal mining area in Xilingol grassland

    Science.gov (United States)

    Guan, Chunzhu; Zhang, Baolin; Li, Jiannan; Zhao, Junling

    2017-01-01

    Coal mining, particularly surface mining, inevitably disturbs land. According to Landsat images acquired over Xilingol grassland in 2005, 2009 and 2015, land uses were divided into seven classes, i. e., open stope, stripping area, waste-dump area, mine industrial area, farmland, urban area and the original landscape (grassland), using supervised classification and human-computer interactive interpretation. The overall classification accuracies were 97.72 %, 98.43 % and 96.73 %, respectively; the Kappa coefficients were 0.95, 0.97 and 0.95, respectively. Analysis on LUCC (Land Use and Cover Change) showed that surface coal mining disturbed grassland ecosystem: grassland decreased by 8661.15 hm2 in 2005-2015. The area and proportion of mining operation areas (open stope, stripping area, waste-dump area, mine industrial field) increased, but those of grassland decreased continuously. Transfer matrix of land use changes showed that waste-dump had the largest impacts in mining disturbance, and that effective reclamation of waste-dump areas would mitigate eco-environment destruction, as would be of great significance to protect fragile grassland eco-system. Six landscape index showed that landscape fragmentation increased, and the influences of human activity on landscape was mainly reflected in the expansion of mining area and urban area. Remote sensing monitoring of coal surface mining in grassland would accurately demonstrate the dynamics and trend of LUCC, providing scientific supports for ecological reconstruction in surface mining area.

  20. Response of predominant soil bacteria to grassland succession as monitored by ribosomal RNA analyses

    NARCIS (Netherlands)

    Felske, A.

    1999-01-01

    The research described in this thesis was aimed to provide insight into the effects of grassland succession on the composition of the soil bacteria community in the Drentse A agricultural research area. The Drentse A meadows represent grassland succession at different stages. Since 30 years

  1. Breeding Biology of Grassland Birds in Western New York: Conservation and Management Implications

    Directory of Open Access Journals (Sweden)

    Christopher J. Norment

    2010-12-01

    Full Text Available Declining grassland breeding bird populations have led to increased efforts to assess habitat quality, typically by estimating density or relative abundance. Because some grassland habitats may function as ecological traps, a more appropriate metric for determining quality may be breeding success. Between 1994 and 2003 we gathered data on the nest fates of Eastern Meadowlarks (Sturnella magna, Bobolinks (Dolichonyx oryzivorous, and Savannah Sparrows (Passerculus sandwichensis in a series of fallow fields and pastures/hayfields in western New York State. We calculated daily survival probabilities using the Mayfield method, and used the logistic-exposure method to model effects of predictor variables on nest success. Nest survival probabilities were 0.464 for Eastern Meadowlarks (n = 26, 0.483 for Bobolinks (n = 91, and 0.585 for Savannah Sparrows (n = 152. Fledge dates for first clutches ranged between 14 June and 23 July. Only one obligate grassland bird nest was parasitized by Brown-headed Cowbirds (Molothrus ater, for an overall brood parasitism rate of 0.004. Logistic-exposure models indicated that daily nest survival probabilities were higher in pastures/hayfields than in fallow fields. Our results, and those from other studies in the Northeast, suggest that properly managed cool season grassland habitats in the region may not act as ecological traps, and that obligate grassland birds in the region may have greater nest survival probabilities, and lower rates of Brown-headed Cowbird parasitism, than in many parts of the Midwest.

  2. The Effects of Timing of Grazing on Plant and Arthropod Communities in High-Elevation Grasslands

    Science.gov (United States)

    Davis, Stacy C.; Burkle, Laura A.; Cross, Wyatt F.; Cutting, Kyle A.

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season. PMID:25338008

  3. Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012

    International Nuclear Information System (INIS)

    Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun

    2014-01-01

    The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR

  4. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    M. CUTINI

    2010-01-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  5. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    F. SPADA

    2010-04-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  6. Relationships between botanical and chemical composition of forages: a multivariate approach to grasslands in the Western Italian Alps.

    Science.gov (United States)

    Ravetto Enri, Simone; Renna, Manuela; Probo, Massimiliano; Lussiana, Carola; Battaglini, Luca M; Lonati, Michele; Lombardi, Giampiero

    2017-03-01

    Plant composition of species-rich mountain grasslands can affect the sensorial and chemical attributes of dairy and meat products, with implications for human health. A multivariate approach was used to analyse the complex relationships between vegetation characteristics (botanical composition and plant community variables) and chemical composition (proximate constituents and fatty acid profile) in mesophilic and dry vegetation ecological groups, comprising six different semi-natural grassland types in the Western Italian Alps. Mesophilic and dry grasslands were comparable in terms of phenology, biodiversity indices and proportion of botanical families. The content of total fatty acids and that of the most abundant fatty acids (alpha-linolenic, linoleic and palmitic acids) were mainly associated to nutrient-rich plant species, belonging to the mesophilic grassland ecological group. Mesophilic grasslands showed also higher values of crude protein, lower values of fibre content and they were related to higher pastoral values of vegetation compared to dry grasslands. The proximate composition and fatty acid profile appeared mainly single species dependent rather than botanical family dependent. These findings highlight that forage from mesophilic grasslands can provide higher nutritive value for ruminants and may be associated to ruminant-derived food products with a healthier fatty acid profile. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Conserving Prairie Pothole Region wetlands and surrounding grasslands: evaluating effects on amphibians

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.

    2014-01-01

    The maintenance of viable and genetically diverse populations of amphibians in the Prairie Pothole Region of the United States depends on upland as well as wetland over-wintering and landscape level habitat features.Prairie pothole wetlands provide important amphibian breeding habitat while grasslands surrounding these wetlands provide foraging habitat for adults, overwintering habitat for some species, and important connectivity among breeding wetlands.Grasslands surrounding wetlands were found to be especially important for wood frogs and northern leopard frogs, while croplands dominated habitat utilized by Great Plains toads and Woodhouse’s toads.Habitat suitability mapping highlighted (1) the influence of deep-water overwintering wetlands on suitable habitat for four of five anuran species encountered; (2) the lack of overlap between areas of core habitat for both the northern leopard frog and wood frog compared to the core habitat for both toad species; and (3) the importance of conservation programs in providing grassland components of northern leopard frog and wood frog habitat.Currently, there are approximately 7.2 million acres (2.9 million hectares, ha) of habitat in the PPR identified as suitable for amphibians. WRP and CRP wetland and grassland habitats accounted for approximately 1.9 million acres (0.75 million ha) or 26 percent of this total area.Continued loss of amphibian habitat resulting from an ongoing trend of returning PPR conservation lands to crop production, will likely have significant negative effects on the region’s ability to maintain amphibian biodiversity. Conversely, increases in conservation wetlands and surrounding grasslands on the PPR landscape have great potential to positively influence the region’s amphibian populations.

  8. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  9. No Significant Changes in Topsoil Carbon in the Grasslands of Northern China Between the 1980s and 2000s

    Science.gov (United States)

    Liu, S.; Yang, Y.; Shen, H.; Hu, H.; Zhao, X.; Li, H.; Liu, T.; Fang, J.

    2017-12-01

    The grasslands of northern China store a large amount of soil organic carbon (SOC), and the small changes in SOC stock could significantly affect the regional C cycle. However, recent estimates of SOC changes in this region are highly controversial. In this study, we examined and mapped the changes in the SOC density (SOCD) in the upper 30 cm of the grasslands of northern China between the 1980s and 2000s, using an improved approach that integrates field-based measurements into machine learning algorithms (artificial neural network and random forest). The random forest-generated SOCD averaged 5.55 kg C m-2 in the 1980s and 5.53 kg C m-2 in the 2000s. The change ranged between -0.17 and 0.22 kg C m-2 at the 95% confidence level, suggesting that the overall SOCD did not change significantly during the study period. However, the change in SOCD exhibited large regional variability. The topsoil of the Inner Mongolian grasslands experienced a significant C loss (4.86 vs. 4.33 kg C m-2), whereas that of the Xinjiang grasslands exhibited an accumulation of C (5.55 vs. 6.46 kg C m-2). In addition, the topsoil C in the Tibetan alpine grasslands remained relatively stable (6.12 vs. 6.06 kg C m-2). A comparison of different grassland types indicated that SOCD exhibited significant decreases in typical steppe, whereas showed increases in mountain meadow, and were stable in the remaining grasslands (alpine meadow, alpine steppe, mountain steppe and desert steppe). Climate variables were shown to be the main determines of the change of SOCD. Increases in precipitation could lead to SOC increase in temperate grasslands and SOC loss in alpine grasslands, while climate warming is likely to cause SOC loss in temperate grasslands. Overall, our study shows that northern grasslands in China remained a neutral SOC sink between the 1980s and 2000s.

  10. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  11. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  12. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  13. Temporal patterns of vegetation phenology and their responses to climate change in mid-latitude grasslands of the Northern Hemisphere

    Science.gov (United States)

    Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.

    2017-12-01

    Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (PSOS/EOS (PSOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, PSOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, PSOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (PSOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (PSOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.

  14. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Baldocchi, Dennis [Univ. of California, Berkeley, CA (United States)

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  15. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.

    2013-01-01

    This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.

  16. Ecological restoration of peatlands in steppe and forest-steppe areas

    Science.gov (United States)

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  17. Assessing data quality for a federal environmental restoration project: Rationalizing the requirements of multiple clients

    International Nuclear Information System (INIS)

    Kiszka, V.R.; Carlsen, T.M.

    1994-07-01

    Most environmental restoration projects at federal facilities face the difficult task of melding the quality assurance (QA) requirements of multiple clients, as well as dealing with historical data that are often of unknown quality. At Lawrence Livermore National Laboratory (LLNL), we have successfully integrated the requirements of our multiple clients by carefully developing a QA program that efficiently meets our clients' needs. The Site 300 Experimental Test Site is operated by LLNL in support of its national defense program. The responsibility for conducting environmental contaminant investigations and restoration at Site 300 is vested in the Site 300 Environmental Restoration Project (Site 300 ERP) of LLNL's Environmental Restoration Division. LLNL Site 300 ERP must comply with the QA requirements of several clients, which include: the LLNL Environmental Protection Department, the DOE, the US Environmental Protection Agency-Region IX (EPA), the California Regional Water Quality Control Board -- Central Valley Region, and the California Department of Toxic Substances Control. This comprehensive QA program was used to determine the acceptability of historical data. The Site 300 ERP began soil and ground water investigations in 1982. However, we did not begin receiving analytical quality assurance/quality control (QA/QC) data until 1989; therefore, the pre-1989 data that were collected are of unknown quality. The US EPA QAMS-005/80 defines data quality as the totality of features and characteristics of data that bears on its ability to satisfy a given purpose. In the current context, the characteristics of major importance are accuracy, precision, completeness, representativeness, and comparability. Using our established QA program, we determined the quality of this historical data based on its comparability to the post-1989 data. By accepting this historical data, we were able to save a considerable amount of money in recharacterization costs

  18. Impact of Restoration of Soil in a Humid Tropical Region on Storage of Organic Carbon in a Recalcitrant Pool

    Science.gov (United States)

    Jyoti Nath, Arun; Brahma, Biplab; Lal, Rattan; Das, Ashesh Kumar

    2017-04-01

    Quantifying soil organic carbon (SOC) changes through restoration of degraded lands is important to assessing the changes in soil properties. However, SOC measures all C fractions and its assessment is not adequate to distinguish between the more dynamic or active C (AC) fractions and the recalcitrant or passive C (PC) form. SOC fractions comprising of the recalcitrant pools have been suggested as a driver for long term soil C sink management. Therefore, the present study was undertaken at a site within the North Eastern India (NEI) region with an objective to explore whether or not SOC fractions change with restoration of degraded lands under humid tropical climate. An age-chronosequence study was established comprising of four different aged rubber plantations (6, 15, 27 and 34 yr. old) planted on Imperata grasslands. The site was selected to study changes in the different fractions of SOC and total SOC stock, and the data were compared with that of a native forest. The data indicated that the SOC stock increased from 106 Mg ha-1 under 6 yr. to 130 Mg ha-1 under 34 yr. old plantations. The SOC stock after 34 yr. of plantation was 20% higher than that under Imperata grassland, but was 34% lower than that under the native forest soil. With respect to lability of C fractions, proportion of AC pool decreased linearly with increase in plantation age from 59 % under 6 yr to 33 % under 34 yr. old plantations. In contrast, proportion of PC pool increased from 41 % of SOC stock under 6 yr. to 67 % of SOC under 34 yr. old plantations, suggesting the significant role of old aged plantation in C sink management.

  19. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  20. Estimates of grassland biomass and turnover time on the Tibetan Plateau

    Science.gov (United States)

    Xia, Jiangzhou; Ma, Minna; Liang, Tiangang; Wu, Chaoyang; Yang, Yuanhe; Zhang, Li; Zhang, Yangjian; Yuan, Wenping

    2018-01-01

    The grassland of the Tibetan Plateau forms a globally significant biome, which represents 6% of the world’s grasslands and 44% of China’s grasslands. However, large uncertainties remain concerning the vegetation carbon storage and turnover time in this biome. In this study, we quantified the pool size of both the aboveground and belowground biomass and turnover time of belowground biomass across the Tibetan Plateau by combining systematic measurements taken from a substantial number of surveys (i.e. 1689 sites for aboveground biomass, 174 sites for belowground biomass) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is effective tool for upscaling local biomass observations to the regional scale, and for producing continuous biomass estimates of the Tibetan Plateau. On average, the models estimated 46.57 Tg (1 Tg = 1012g) C of aboveground biomass and 363.71 Tg C of belowground biomass in the Tibetan grasslands covering an area of 1.32 × 106 km2. The turnover time of belowground biomass demonstrated large spatial heterogeneity, with a median turnover time of 4.25 years. Our results also demonstrated large differences in the biomass simulations among the major ecosystem models used for the Tibetan Plateau, largely because of inadequate model parameterization and validation. This study provides a spatially continuous measure of vegetation carbon storage and turnover time, and provides useful information for advancing ecosystem models and improving their performance.

  1. Multiscale Trend Analysis for Pampa Grasslands Using Ground Data and Vegetation Sensor Imagery

    Directory of Open Access Journals (Sweden)

    Fernando C. Scottá

    2015-07-01

    Full Text Available This study aimed to evaluate changes in the aboveground net primary productivity (ANPP of grasslands in the Pampa biome by using experimental plots and changes in the spectral responses of similar vegetation communities obtained by remote sensing and to compare both datasets with meteorological variations to validate the transition scales of the datasets. Two different geographic scales were considered in this study. At the local scale, an analysis of the climate and its direct influences on grassland ANPP was performed using data from a long-term experiment. At the regional scale, the influences of climate on the grassland reflectance patterns were determined using vegetation sensor imagery data. Overall, the monthly variations of vegetation canopy growth analysed using environmental changes (air temperature, total rainfall and total evapotranspiration were similar. The results from the ANPP data and the NDVI data showed the that variations in grassland growth were similar and independent of the analysis scale, which indicated that local data and the relationships of local data with climate can be considered at the regional scale in the Pampa biome by using remote sensing.

  2. Grassland Aboveground Biomass in Inner Mongolia: Dynamics (2001-2016) and Driving force

    Science.gov (United States)

    Li, F.; Zeng, Y.; Chen, J.; Wu, B.

    2017-12-01

    Plant biomass is the most critical measure of carbon stored in an ecosystem, yet it remains imprecisely modeled for many terrestrial biomes. This lack of modeling capacity for biomass and its change through time and space has impeded scientists from making headway concerning issues in the geographic and social sciences. Satellite remote sensing techniques excel at detecting changes in the Earth's surface; however, accurate estimates of biomass for the heterogeneous biome landscapes based on remote sensing techniques are few and far between, which has led to many repetitive studies. Here, we argued that our ability to assess biomass in a heterogeneous landscape using satellite remote sensing techniques would be effectively enhanced through a stratification of landscapes, i.e homogenizing landscapes. Specifically, above-ground biomass (AGB) for an extended heterogeneous grassland biome over the entirety of Inner Mongolia during the past 16 years (2001-2016) was explored using remote sensing time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Massive and extensive in-situ measurement AGB data and pure vegetation index (PVI) models, developed from normal remote sensing vegetation indices such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were highlighted in the accomplishment of this study. Taking into full consideration the landscape heterogeneity for the grassland biome over Inner Mongolia, we achieved a series of AGB models with high R2 (>0.85) and low RMSE ( 20.85 g/m2). The total average amount of fresh AGB for the entirety of Inner Mongolia grasslands over the past 16 years was estimated as 87 Tg with an inter-annual standard deviation of 9 Tg. Overall, the grassland AGB for Inner Mongolia increased sporadically. We found that the dynamics of AGB in the grassland biome of Inner Mongolia were substantially dominated by variation in precipitation despite the accommodation of a huge

  3. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  4. Reptile and amphibian responses to large-scale wildfires in southern California

    Science.gov (United States)

    Rochester, C.J.; Brehme, C.S.; Clark, D.R.; Stokes, D.C.; Hathaway, S.A.; Fisher, R.N.

    2010-01-01

    In 2003, southern California experienced several large fires that burned thousands of hectares of wildlife habitats and conserved lands. To investigate the effects of these fires on the reptile and amphibian communities, we compared the results from prefire herpetofauna and vegetation sampling to two years of postfire sampling across 38 burned and 17 unburned plots. The sampling plots were spread over four vegetation types and four open space areas within San Diego County. Our capture results indicated that burned chaparral and coastal sage scrub plots lost herpetofaunal species diversity after the fires and displayed a significant shift in overall community structure. Shrub and tree cover at the burned plots, averaged across the second and third postfire years, had decreased by 53 in chaparral and 75 in coastal sage scrub. Additionally, postfire herpetofauna community structure at burned plots was more similar to that found in unburned grasslands. In grassland and woodland/riparian vegetation plots, where shrub and tree cover was not significantly affected by fires, we found no differences in the herpetofaunal species diversity or community composition. At the individual species level, Sceloporus occidentalis was the most abundant reptile in these areas both before and after the fires. We saw increases in the net capture rates for several lizard species, including Aspidoscelis tigris, Phrynosoma coronatum, and Uta stansburiana in burned chaparral plots and Aspidoscelis hyperythra and U. stansburiana in burned coastal sage scrub plots. The toad, Bufo boreas, was detected at significantly fewer burned plots in chaparral after the fires. Additionally, we documented decreases in the number of plots occupied by lizards (Elgaria multicarinata), salamanders (Batrachoseps major), and snakes (Coluber constrictor, Lampropeltis getula, Pituophis catenifer, and Masticophis lateralis) in coastal sage scrub and chaparral after the fires. We discuss the individual species

  5. Grassland bird productivity in warm season grass fields in southwest Wisconsin

    Science.gov (United States)

    Byers, Carolyn M.; Ribic, Christine; Sample, David W.; Dadisman, John D.; Guttery, Michael

    2017-01-01

    Surrogate grasslands established through federal set-aside programs, such as U.S. Department of Agriculture's Conservation Reserve Program (CRP), provide important habitat for grassland birds. Warm season grass CRP fields as a group have the potential for providing a continuum of habitat structure for breeding birds, depending on how the fields are managed and their floristic composition. We studied the nesting activity of four obligate grassland bird species, Bobolink (Dolichonyx oryzivorus), Eastern Meadowlark (Sturnella magna), Grasshopper Sparrow (Ammodramus savannarum), and Henslow's Sparrow (A. henslowii), in relation to vegetative composition and fire management in warm season CRP fields in southwest Wisconsin during 2009–2011. Intraspecific variation in apparent nest density was related to the number of years since the field was burned. Apparent Grasshopper Sparrow nest density was highest in the breeding season immediately following spring burns, apparent Henslow's Sparrow nest density was highest 1 y post burn, and apparent Bobolink and Eastern Meadowlark nest densities were higher in post fire years one to three. Grasshopper Sparrow nest density was highest on sites with more diverse vegetation, specifically prairie forbs, and on sites with shorter less dense vegetation. Bobolink, Eastern Meadowlark, and Henslow's Sparrow apparent nest densities were higher on sites with deeper litter; litter was the vegetative component that was most affected by spring burns. Overall nest success was 0.487 for Bobolink (22 d nesting period), 0.478 for Eastern Meadowlark (25 d nesting period), 0.507 for Grasshopper Sparrow (22 d nesting period), and 0.151 for Henslow's Sparrow (21 d nesting period). The major nest predators were grassland-associated species: thirteen-lined ground squirrel (Ictidomys tridecemlineatus), striped skunk (Mephitis mephitis), milk snake (Lampropeltis triangulum), American badger (Taxidea taxus), and western fox snake (Elaphe vulpina). Overall

  6. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands

    Science.gov (United States)

    Donald L. Hazlett; Michael H. Schiebout; Paulette L. Ford

    2009-01-01

    Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of...

  7. Spatial and temporal patterns of water availability in a grass-shrub ecotone and implications for grassland recovery in arid environments

    Science.gov (United States)

    Encroachment of woody shrubs into historic desert grasslands is a major problem throughout the world. Conversion of grasslands to shrub-dominated systems may result in significant alteration of biogeochemical processes and reduced resource availability in shrub interspaces, making grassland recover...

  8. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia

    International Nuclear Information System (INIS)

    Dai, G.S.; Ulgiati, S.; Zhang, Y.S.; Yu, B.H.; Kang, M.Y.; Jin, Y.; Dong, X.B.; Zhang, X.S.

    2014-01-01

    The grasslands of Inner Mongolia are not only the source of the necessary resources for the survival and development of herdsmen, but also represent a significant green ecological barrier in North China. Coal-mining production is important in maintaining GDP growth in Inner Mongolia. However, over-exploitation has created serious problems, such as pollution of the environment and significant decreases in grassland ecosystem services, in addition to impacting the well-being of herdsmen and other humans. Based on questionnaires survey performed among 864 herdsmen addressing the relationship between coal exploitation in grasslands and human well-being in Xilinguole League in Inner Mongolia, we found that (1) coal resource exploitation in these grasslands does not benefit the herdsmen by increasing their income; (2) the rapid development of this resource has not obviously materially improved the life of the herdsmen; and (3) these activities have increased the risks that herdsman will have to endure in the future. Overall, coal resource exploitation in grasslands has more negative than positive effects on the well-being of herdsmen. We propose the conservation of coal resources and improvement of ecological compensation should be carried out without blindly pursuing economic growth, instead of focusing on economic development and structural adjustments. - Highlights: • Evaluation of the human well-being of the Xilinguole grassland, Inner Mongolia, China. • Impact of mining affects herdsmen well-being in grassland ecosystem. • Quantity of questionnaires survey. • Addressing the relationship between coal exploitation in grasslands and human well-being

  9. Restoring proximal caries lesions conservatively with tunnel restorations.

    Science.gov (United States)

    Chu, Chun-Hung; Mei, May L; Cheung, Chloe; Nalliah, Romesh P

    2013-07-30

    The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED) and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations.

  10. The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands

    Directory of Open Access Journals (Sweden)

    S. Wehn

    2018-04-01

    Full Text Available Land use change can affect biodiversity, and this has an impact on ecosystem services (ESs, but the relationships between biodiversity and ESs are complex and poorly understood. Biodiversity is declining due to the abandonment of extensively grazed semi-natural grasslands.We therefore aim to explore relationships between biodiversity and ESs provided by extensively managed semi-natural grasslands. Focusing on vascular plant species richness, as well as the ESs fodder quantity, quality, and stability, allergy control, climate regulation, nutrient cycling, pollination, and aesthetic appreciation, we carried out botanical field surveys of 28 paired extensively grazed and abandoned semi-natural grassland plots, with four subplots of 4 m2 in each plot. The management of the semi-natural grasslands is and has been at low intensity. We calculated the influence of abandonment on the ES indicators, measured the correlation between the biodiversity measure of vascular plant species richness and ES indicators, and finally determined how the relationships between plant species richness and the ES indicators were affected by the cessation of the extensive management.ES indicators are often, but not always, positively correlated with species richness. Cessation of extensive grazing has both negative and positive effects on ES indicators but the relationships between species richness and ES indicators are often different in extensively managed and abandoned semi-natural grasslands. The relationships between species richness and ES indicators are less pronounced in the extensively managed semi-natural grassland than for the abandoned. One possible reason for this outcome is high functional redundancy in the extensively managed semi-natural grasslands.

  11. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    Science.gov (United States)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA aggregates aggregate SOC contents. The woodland and grassland facilitated WSA stability and SOC protection, thus, promoting the natural restoration of vegetation by reducing artificial disturbances could effectively restore the ecology

  12. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Science.gov (United States)

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  13. [Diversity and distribution of grasshoppers (Orthoptera: Acridoidea) in grasslands of the Southern Pampas region, Argentina].

    Science.gov (United States)

    Mariottini, Yanina; De Wysiecki, María Laura; Lange, Carlos Ernesto

    2013-03-01

    In Argentina, the grasslands of Pampas region comprise approximately 15% of the country. As in other grasslands of the world, grasshoppers are among the most important native herbivores. Their economic importance has been recognized in Argentina since the mid to late nineteenth century, since outbreaks of different species have become recurrent phenomena. Therefore, the main objective of this work was to study their diversity and distribution in grasslands of the Southern Pampas region (Laprida county, Buenos Aires province), as one of the most affected areas. The study was conducted during five seasons (2005-10). Sampling sites were represented by the most common plant communities in this area, classified in four categories: native grasslands, disturbed grasslands, implanted pastures and halophilous grasslands. The samplings were conducted from mid-spring to early autumn, with five or six samples per season. We estimated the following population descriptors: species richness (S), eveness (E), dominance (J), and diversity index (H'). In order to evaluate the similitude of the grasshopper communities present in the different plant communities, we used qualitative and quantitative coefficients of similitude. A total of 22 species of grasshoppers were collected, of which 21 belong to the family Acrididae. The subfamily Melanoplinae was the most diverse with eight species. The largest species richness was recorded in native grasslands (18). The different communities of grasshoppers had similar indices of evenness and dominance (p>0.05). Considering all plant communities, the average value of Shannon-Wiener index was 1.58+/-0.075. There was a positive correlation between evenness index and species richness (pgrasshoppers species richness, and diversity of grasshoppers. According to the qualitative indices applied, the similitude between different grasshopper communities was higher than 60%. In general, the species that had a higher frequency of occurrence showed greater

  14. Habitat fragmentation effects on birds in grasslands and wetlands: A critique of our knowledge

    Science.gov (United States)

    Johnson, D.H.

    2001-01-01

    Habitat fragmentation exacerbates the problem of habitat loss for grassland and wetland birds. Remaining patches of grasslands and wetlands may be too small, too isolated, and too influenced by edge effects to maintain viable populations of some breeding birds. Knowledge of the effects of fragmentation on bird populations is critically important for decisions about reserve design, grassland and wetland management, and implementation of cropland set-aside programs that benefit wildlife. In my review of research that has been conducted on habitat fragmentation, I found at least five common problems in the methodology used. The results of many studies are compromised by these problems: passive sampling (sampling larger areas in larger patches), confounding effects of habitat heterogeneity, consequences of inappropriate pooling of data from different species, artifacts associated with artificial nest data, and definition of actual habitat patches. As expected, some large-bodied birds with large territorial requirements, such as the northern harrier (Circus cyaneus), appear area sensitive. In addition, some small species of grassland birds favor patches of habitat far in excess of their territory size, including the Savannah (Passerculus sandwichensis), grasshopper (Ammodramus savannarum) and Henslow's (A. henslowii) sparrows, and the bobolink (Dolichonyx oryzivorus). Other species may be area sensitive as well, but the data are ambiguous. Area sensitivity among wetland birds remains unknown since virtually no studies have been based on solid methodologies. We need further research on grassland bird response to habitat that distinguishes supportable conclusions from those that may be artifactual.

  15. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    Grasslands occupy some 40% of the terrestrial land surface. They are generally categorised as natural (occurring mainly in those regions where the rainfall is too low to support forest ecosystems), semi-natural (where management, mainly by grazing, has changed the vegetation composition), and artificial (where forests have been cleared to create new pasture land). The soils of the natural and semi-natural grasslands constitute a large reservoir of carbon, and make a substantial contribution to the soil sink for atmospheric CH_4. The conversion of much of the natural temperate grassland to arable agriculture, e.g. in North America and Europe, resulted in a considerable decrease in soil organic carbon, and its release to the atmosphere as CO_2 has made a substantial contribution to the total atmospheric concentration of this gas. The associated increase in cycling of soil N (released from the organic matter) will have contributed to N_2O emissions, and land disturbance and fertilisation has resulted in a depletion of the soil CH_4 sink. Conversion of tropical forests to pastures has also been a major source of CO_2, and these pastures show elevated emissions of N_2O for some years after conversion. Seasonally flooded tropical grasslands are a significant source of CH_4 emissions. Consideration of grassland ecosystems in their entirety, in relation to GHG exchange, necessitates the inclusion of CH_4 production by fauna - domesticated livestock and wild herbivores, as well as some species of termites - in the overall assessment. Stocking rates on pasture land have increased, and the total CH_4 emissions likewise. The relationship between animal production and CH_4 emissions is dependent on the nutritional quality of the vegetation, as well as on animal numbers. In both temperate and tropical regions, increased N inputs as synthetic fertilisers and manures (and increased N deposition) are producing possibly a more-than-linear response in terms of emissions of N_2O. In

  16. Avian response to early tidal salt marsh restoration at former commercial salt evaporation ponds in San Francisco Bay, California, USA

    Science.gov (United States)

    Athearn, Nicole D.; Takekawa, John Y.; Shinn, Joel

    2009-01-01

    Restoration of former commercial salt evaporation ponds in the San Francisco Bay estuary is intended to reverse a severe decline (>79%) in tidal salt marshes. San Francisco Bay is a critical migratory stopover site and wintering area for shorebirds and waterfowl, and salt ponds are important high tide roosting and foraging areas. Conservation of past bird abundance is a stated goal of area restoration projects, and early adaptive management will be critical for achieving this objective. However, initial avian response at sites restored to tidal flow may not be indicative of long-term results. For example, winter shorebirds at a 529 ha pond breached in 2002 showed a marked increase in shorebird abundance following breaching. Shorebirds comprised 1% of area totals during 1999-2002 and increased to 46% during 2003-2008. These changes accompanied increased tidal range and sedimentation, but minimal vegetation establishment. Conversely, a fully vegetated, restored 216 ha pond in the same system consistently supported less than 2% of all waterbirds in the region. Early restoration may temporarily increase habitat, but managed ponds will be needed for long-term waterbird abundance within a restored pond-marsh system.

  17. Carbon balance of renovated grasslands: input- or output-driven?

    Science.gov (United States)

    Choncubhair, Órlaith Ní; Osborne, Bruce; Lanigan, Gary

    2015-04-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. In permanent temperate grasslands, biomass production and sward quality can deteriorate over time and periodic renovation activities, involving soil tillage and reseeding, are commonly carried out to halt this decline. Long-term cultivation of agricultural land has been associated with soil aggregate degradation and reduced soil carbon storage. However, the impact of these single tillage disturbances on C cycling in grasslands is less clear. This study evaluated gaseous and dissolved organic carbon (DOC) losses following a single tillage event by subjecting grassland lysimeters with contrasting soil drainage characteristics to simulated conventional inversion or minimum tillage. Field-scale CO2 emissions after conventional tillage were also quantified and empirically modelled over short- and medium-term timeframes to delineate the ecosystem response to environmental variables. Soil moisture was the limiting determinant of ecosystem carbon release following conventional tillage. Freshly-tilled soils were associated with reduced water retention and increased sensitivity to soil moisture, which was particularly pronounced following rewetting events. Significantly elevated but ephemeral CO2 effluxes were detected in the hours following inversion ploughing, however tillage disturbance did not generate significantly enhanced C emission rates in the medium term. Equally, DOC losses were not significantly amplified by conventional tillage compared with conservative minimum tillage and were predominantly controlled by soil drainage across tillage regimes. Our results suggest that a net ecosystem source of 120 to 210 g C m-2 over an approximately two-month period was most likely a consequence of reduced productivity and C input rather than enhanced soil CO2

  18. Analysis of the production stability of mixed grasslands. II. A mathematical framework for the quantification of production stability of grassland ecosystems

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2003-01-01

    The analysis of the intrinsic properties and processes of ecosystems, which regulate the production stability of mixed grasslands, has been complicated by the environmental noise caused by stochastic weather fluctuations. A mathematical framework is presented to deduct the actual, the extrinsic and

  19. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  20. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

    Science.gov (United States)

    Rolinski, Susanne; Müller, Christoph; Heinke, Jens; Weindl, Isabelle; Biewald, Anne; Bodirsky, Benjamin Leon; Bondeau, Alberte; Boons-Prins, Eltje R.; Bouwman, Alexander F.; Leffelaar, Peter A.; te Roller, Johnny A.; Schaphoff, Sibyll; Thonicke, Kirsten

    2018-02-01

    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe. We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities (management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.

  1. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  2. Estuarine Sediment Deposition during Wetland Restoration: A GIS and Remote Sensing Modeling Approach

    Science.gov (United States)

    Newcomer, Michelle; Kuss, Amber; Kentron, Tyler; Remar, Alex; Choksi, Vivek; Skiles, J. W.

    2011-01-01

    Restoration of the industrial salt flats in the San Francisco Bay, California is an ongoing wetland rehabilitation project. Remote sensing maps of suspended sediment concentration, and other GIS predictor variables were used to model sediment deposition within these recently restored ponds. Suspended sediment concentrations were calibrated to reflectance values from Landsat TM 5 and ASTER using three statistical techniques -- linear regression, multivariate regression, and an Artificial Neural Network (ANN), to map suspended sediment concentrations. Multivariate and ANN regressions using ASTER proved to be the most accurate methods, yielding r2 values of 0.88 and 0.87, respectively. Predictor variables such as sediment grain size and tidal frequency were used in the Marsh Sedimentation (MARSED) model for predicting deposition rates for three years. MARSED results for a fully restored pond show a root mean square deviation (RMSD) of 66.8 mm (<1) between modeled and field observations. This model was further applied to a pond breached in November 2010 and indicated that the recently breached pond will reach equilibrium levels after 60 months of tidal inundation.

  3. Grasslands of Mexico: A perspective on their conservation (Los pastizales del norte de Mexico: Una perspectiva para su conservacion)

    Science.gov (United States)

    Patricia Manzano; Rurik List

    2006-01-01

    Grasslands are areas dominated by grasses and herbs with few or no trees. Grasslands receive too much rain for a desert environment and too little for a forest. Temperate North American grasslands, especially, have undergone changes on a continental level. Their high productivity and fertility, added to their level topography and lack of trees, make them ideal sites...

  4. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA.

    Science.gov (United States)

    McPherson, G R; Boutton, T W; Midwood, A J

    1993-02-01

    In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. δ 13 C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C 3 ) are recent components of former grasslands (C 4 ), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.

  5. Restoring proximal caries lesions conservatively with tunnel restorations

    Directory of Open Access Journals (Sweden)

    Chu CH

    2013-07-01

    Full Text Available Chun-Hung Chu1, May L Mei,1 Chloe Cheung,1 Romesh P Nalliah2 1Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China; 2Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA Abstract: The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations. Keywords: operative, practice, tunnel preparation, composite, amalgam, glass ionomer

  6. Agricultural Set-aside Programs and Grassland Birds: Insights from Broad-scale Population Trends

    Directory of Open Access Journals (Sweden)

    S. Riffell

    2008-10-01

    Full Text Available The Conservation Reserve Program (CRP is a voluntary set-aside program in the United States designed to amelioratesoil erosion, control crop overproduction, enhance water quality, and provide wildlife habitat by replacing crops with other forms of land cover. Because CRP includes primarily grass habitats, it has great potential to benefitdeclining North American grassland bird populations. We looked at the change in national and state population trends of grassland birds and related changes to cover-specific CRP variables (previous research grouped all CRP practices. Changes in national trends after the initiation of the CRP were inconclusive, but we observed signficant bird-CRP relations at the state level. Most bird-CRP relations were positive, except for some species associated with habitats that CRP replaced. Practice- and configuration-specific CRP variables were related to grassland bird trends, rather than a generic measure of all CRP types combined. Considering all CRP land as a single, distinct habitat type may obscure actual relations between birds and set-aside characteristics. Understanding and predictingthe effects of set-aside programs (like CRP or agri-environment schemes on grassland birds is complex and difficult. Because available broad-scale datasets are less than adequate, studies should be conducted at a variety of spatial and temporal scales.

  7. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  8. Modified Light Use Efficiency Model for Assessment of Carbon Sequestration in Grasslands of Kazakhstan: Combining Ground Biomass Data and Remote-sensing

    Science.gov (United States)

    Propastin, Pavel A.; Kappas, Martin W.; Herrmann, Stefanie M.; Tucker, Compton J.

    2012-01-01

    A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (en) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of en suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.

  9. 78 FR 19444 - Pawnee National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement

    Science.gov (United States)

    2013-04-01

    ... Leasing Analysis on the Pawnee National Grassland (PNG), was signed. That decision determined which Lands... National Grassland. Much of the PNG's federal mineral estate made available per the 1997 ROD has already... [36 CFR 228.102(e)]. Accordingly, the PNG finds it is necessary to disclose the potential effects of...

  10. Purpose and Need for a Grassland Assessment

    Science.gov (United States)

    Deborah M. Finch; Cathy W. Dahms

    2004-01-01

    This report is volume 1 of an ecological assessment of grassland ecosystems in the Southwestern United States, and it is one of a series of planned publications addressing major ecosystems of the Southwest. The first assessment, General Technical Report RM-GTR- 295, An Assessment of Forest Ecosystem Health in the Southwest (by Dahms and Geils, technical editors,...

  11. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  12. Effects of human disturbance on waterbird nesting and reproductive success at restoration pond SF2, south San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.

    2014-01-01

    To offset for the loss of managed pond habitat during restoration of wetlands to tidal marsh, the South Bay Salt Pond (SBSP) Restoration Project is enhancing some of the remaining ponds by constructing islands for roosting and nesting waterbirds. Among these wetland habitats, the SBSP Restoration Project also is installing walking trails and viewing platforms in an effort to bring the public closer to nature. In winter of 2010–11, the SBSP Restoration Project constructed 30 islands in Pond SF2 and walking trails and viewing platforms around the edge of the pond. The restoration project partners acknowledged that human disturbance could detrimentally affect nesting and roosting waterbirds. Although optimal buffer distances and potential for human disturbance were unknown, islands in Pond SF2, nevertheless, were designed with built-in buffers of greater than 300 feet (91 meters) from a trail and 600 feet (182 meters) from a viewing platform in order to minimize potential human disturbances.

  13. Everglades Restoration: Competing Societal Factors Versus Good Science

    Science.gov (United States)

    Armstrong, T. R.

    2002-05-01

    For the most part, it is agreed that the future health and welfare of the Greater Everglades ecosystem relies on the critical timing and delivery of freshwater in a manner that simulates historical sheetflow (non-channelized flow). Successful restoration of sheetflow might be defined as getting the right volume of water to the right places at the right time; however, in order to achieve this a delicate balance of scientific, political and economic factors, many of which have competing interests, must be achieved. These factors include: 1) population growth and urban sprawl in south Florida. Increased demand for land and water to sustain sprawl will have some degree of detrimental impact on the time- and volume-critical delivery of water needed for restoration of essential habitat in both the terrestrial (tree islands, grasslands and marshes) and marine (Florida and Biscayne Bays and related estuaries) environments. 2) Increased demand for agriculture within south Florida requires significant management, sequestration, and diversion of surface and ground-water resources, as well as the acquisition of lands amenable to crop production. Since a large part of the agricultural area lies within the confines of the natural Everglades ecosystem, and "upstream" from Everglades National Park, impacts upon the surface and ground-water (agriculture-induced soil erosion, fertilization, pesticide practices, and surface and ground-water withdrawal) tend to have substantial impacts on the progress of natural ecosystem restoration. 3) Continued growth in the tourism and recreation markets will require concomitant growth in the development and acquisition of lands and resultant land-use changes that may have adverse impact on the natural ecosystem. Since the timing and delivery of water to the Everglades comes from recharge areas outside the boundaries of managed public lands, land-use practices within privately owned lands could have serious "downstream" impacts on the timing and

  14. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  15. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  16. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  17. Restorative Yoga and Metabolic Risk Factors: The Practicing Restorative Yoga vs. Stretching for the Metabolic Syndrome (PRYSMS) randomized trial

    Science.gov (United States)

    Kanaya, Alka M.; Araneta, Maria Rosario G.; Pawlowsky, Sarah B.; Barrett-Connor, Elizabeth; Grady, Deborah; Vittinghoff, Eric; Schembri, Michael; Chang, Ann; Carrion-Petersen, Mary Lou; Coggins, Traci; Tanori, Daniah; Armas, Jean M.; Cole, Roger J.

    2014-01-01

    Aims Intensive lifestyle change prevents type 2 diabetes but is difficult to sustain. Preliminary evidence suggests that yoga may improve metabolic factors. We tested a restorative yoga intervention vs. active stretching for metabolic outcomes. Methods In 2009–2012, we conducted a 48-week randomized trial comparing restorative yoga vs. stretching among underactive adults with the metabolic syndrome at the Universities of California, San Francisco and San Diego. We provided lifestyle counseling and a tapering series of 90-minute group classes in the 24-week intervention period and 24-week maintenance period. Fasting and 2-hour glucose, HbA1c, triglycerides, HDL-cholesterol, insulin, systolic blood pressure, visceral fat, and quality of life were assessed at baseline, 6- and 12-months. Results 180 participants were randomized and 135 (75%) completed the trial. At 12 months, fasting glucose decreased more in the yoga group than in the stretching group (−0.35 mmol/L vs. −0.03 mmol/L; p=0.002); there were no other significant differences between groups. At 6 months favorable changes within the yoga group included reductions in fasting glucose, insulin, and HbA1c and an increase in HDL-cholesterol that were not sustained at 1 year except changes in fasting glucose. The stretching group had a significant reduction in triglycerides at 6 months which was not sustained at 1 year but had improved quality of life at both time-points. Conclusions Restorative yoga was marginally better than stretching for improving fasting glucose but not other metabolic factors. PMID:24418351

  18. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    Science.gov (United States)

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  19. Private lands habitat programs benefit California's native birds

    Directory of Open Access Journals (Sweden)

    Ryan T. DiGaudio

    2015-10-01

    Full Text Available To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites.

  20. Modelling the carbon cycle of grassland in the Netherlands under various management strategies and environmental conditions.

    NARCIS (Netherlands)

    Pol-van Dasselaar, van den A.; Lantinga, E.A.

    1995-01-01

    A simulation model of the grassland carbon cycle (CCGRASS) was developed to evaluate the long-term effects of different management strategies and various environmental conditions on carbon sequestration in a loam soil under permanent grassland in the Netherlands. The model predicted that the rate of

  1. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  2. Aggregation and C dynamics along an elevation gradient in carbonate-containing grassland soils of the Alps

    Science.gov (United States)

    Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid

    2017-04-01

    C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.

  3. Efficacy of exclosures in conserving local shrub biodiversity in xeric sandy grassland, Inner Mongolia, China

    Science.gov (United States)

    Feng-Rui Li; Zhi-Yu Zhou; Li-Ya Zhao; Ai-Sheng Zhang; Ling-Fen Kang

    2007-01-01

    This study investigated the abundance and frequency of occurrence of all shrub species present in the standing vegetation at four sites, including a 5-year exclosure (protected grassland) and three adjacent unprotected grazing sites that had been subjected to different levels of degradation (light, moderate and severe), in xeric sandy grassland of Inner Mongolia for...

  4. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A; Naess, L O; Sutamihardja, R T.M.; Gintings, N

    1997-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  5. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  6. Restoration of Black Oak (Quercus velutina) Sand Barrens via Three Different Habitat Management Approaches

    Science.gov (United States)

    Kriska, David John

    Disturbance regimes, i.e. frequent fires, historically maintained oak barrens until European settlement patterns, and eventually, Smoky the Bear and the fire suppression campaign of the U.S. Forest Service snuffed out the periodic flames. In the absence of a disturbance regime, ground layer floral composition at many historical oak sand barrens will change predominantly because of a buildup of leaf litter and shading of the soils. Termed mesophication, this process of ecological succession will drive Black Oak Sand Barrens to an alternate steady state. A survey conducted on Singer Lake Bog in Green, Ohio, demonstrated that succession shifted the community to red maple-black cherry woodlands more typical of a dry southern forest. In an attempt to revive disturbance, three restoration techniques were applied at ten degraded northeast Ohio oak barrens to contrast their effectiveness in restoring black oak sand barren flora. The three restoration treatments were select canopy tree reduction favoring 5% to 30% tree canopy cover, forest floor leaf litter removal, and prescribed fire. Vegetation responses to manipulations were monitored prior to and following treatment applications, and were compared against both baseline data from before-treatment surveys and paired control sites adjacent treated areas. Imposing disturbance successfully increased species diversity and abundance above that found across Singer Lake Bog compared to sampling made prior to and adjacent to treated areas. Select canopy tree removal exhibited the largest floral responses from targeted barrens species, i.e. graminoids. A forest floor invertebrate family (Carabidea: Coleoptera) was measured for species richness and abundance pre and post treatment, where a noticeable shift occurred away from woodland obligate ground beetles toward open grassland species. Replicating oak barren structure, prior to replicating disturbance processes, is the first step in the ecological restoration of these systems.

  7. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Sawaid Abbas

    2015-08-01

    Full Text Available Grasslands in the upper Indus basin provide a resource base for nomadic livestock grazing which is one of the major traditional livelihood practices in the area. The study presents climate patterns, grassland phenology, productivity and spatio-temporal climate controls on grassland growth using satellite data over the upper Indus basin of the Himalayan region, Pakistan. Phenology and productivity metrics of the grasses were estimated using a combination of derivative and threshold methods applied on fitted seasonal vegetation indices data over the period of 2001–2011. Satellite based rainfall and land surface temperature data are considered as representative explanatory variables to climate variability. The results showed distinct phenology and productivity patterns across four bioclimatic regions: (i humid subtropical region (HSR—late start and early end of season with short length of season and low productivity (ii temperate region (TR—early start and late end of season with higher length of season and moderate productivity (iii sub alpine region (SAR—late start and late end of season with very high length of season and the most productive grasses, and (iv alpine region (AR—late start and early end of season with small length of season and least productive grasses. Grassland productivity is constrained by temperature in the alpine region and by rainfall in the humid sub-tropical region. Spring temperature, winter and summer rainfall has shown significant and varied impact on phenology across different altitudes. The productivity is being influenced by summer and annual rainfall in humid subtropical regions, spring temperature in alpine and sub-alpine regions and both temperature and rainfall are contributing in temperate regions. The results revealing a strong relationship between grassland dynamics and climate variability put forth strong signals for drawing more scientific management of rangelands in the area.

  8. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data

    Science.gov (United States)

    Pitkänen, T. P.; Käyhkö, N.

    2017-08-01

    Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to

  9. Nesting success of grassland and savanna birds on reclaimed surface coal mines of the midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Galligan, E.W.; DeVault, T.L.; Lima, S.L. [Indiana State University, Terre Haute, IN (United States)

    2006-12-15

    Reclaimed surface coal mines in southwestern Indiana support many grassland and shrub/savanna bird species of conservation concern. We examined the nesting success of birds on these reclaimed mines to assess whether such 'unnatural' places represent productive breeding habitats for such species. We established eight study sites on two large, grassland-dominated mines in southwestern Indiana and classified them into three categories (open grassland, shrub/savanna, and a mixture of grassland and shrub/savanna) based on broad vegetation and landscape characteristics. During the 1999 and 2000 breeding seasons, we found and monitored 911 nests of 31 species. Daily nest survival for the most commonly monitored grassland species ranged from 0.903 (Dickcissel, Spiza americana) to 0.961 (Grasshopper Sparrow, Ammodramus savannarum). Daily survival estimates for the dominant shrub/savanna nesting species ranged from 0.932 (Brown Thrasher, Toxostoma rufum) to 0.982 (Willow Flycatcher, Empidonax traillii). Vegetation and landscape effects on nesting success were minimal, and only Eastern Meadowlarks (Sturnella magna) showed a clear time-of-season effect, with greater nesting success in the first half of the breeding season. Rates of Brown-headed Cowbird (Molothrus ater) parasitism were only 2.1% for grassland species and 12.0% for shrub/savanna species. The nesting success of birds on reclaimed mine sites was comparable to that in other habitats, indicating that reclaimed habitats on surface mines do not necessarily represent reproductive traps for birds.

  10. 77 FR 7176 - Great Bay National Wildlife Refuge, Rockingham County, NH

    Science.gov (United States)

    2012-02-10

    ... disturbances to restore the biological integrity, diversity, and ecological health of the refuge. All grassland... construct two new trails, and after shrubland and grassland habitats transition to forest, we would open up...

  11. Quantifying the effect of ecological restoration on soil erosion in China's Loess Plateau region: an application of the MMF approach.

    Science.gov (United States)

    Li, Changbin; Qi, Jiaguo; Feng, Zhaodong; Yin, Runsheng; Guo, Biyun; Zhang, Feng; Zou, Songbing

    2010-03-01

    Land degradation due to erosion is one of the most serious environmental problems in China. To reduce land degradation, the government has taken a number of conservation and restoration measures, including the Sloping Land Conversion Program (SLCP), which was launched in 1999. A logical question is whether these measures have reduced soil erosion at the regional level. The objective of this article is to answer this question by assessing soil erosion dynamics in the Zuli River basin in the Loess Plateau of China from 1999 to 2006. The MMF (Morgan, Morgan and Finney) model was used to simulate changes in runoff and soil erosion over the period of time during which ecological restoration projects were implemented. Some model variables were derived from remotely sensed images to provide improved land surface representation. With an overall accuracy rate of 0.67, our simulations show that increased ground vegetation cover, especially in forestlands and grasslands, has reduced soil erosion by 38.8% on average from 1999 to 2006. During the same time period, however, the change in rainfall pattern has caused a 13.1% +/- 4.3% increase in soil erosion, resulting in a net 25.7% +/- 8.5% reduction in soil erosion. This suggests that China's various ecological restoration efforts have been effective in reducing soil loss.

  12. Ten Years of Vegetation Change in Northern California Marshlands Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in perennial vegetation cover at marshland sites in Northern California reported to have undergone restoration between 1999 and 2009. Results showed extensive contiguous areas of restored marshland plant cover at 10 of the 14 sites selected. Gains in either woody shrub cover and/or from recovery of herbaceous cover that remains productive and evergreen on a year-round basis could be mapped out from the image results. However, LEDAPS may not be highly sensitive changes in wetlands that have been restored mainly with seasonal herbaceous cover (e.g., vernal pools), due to the ephemeral nature of the plant greenness signal. Based on this evaluation, the LEDAPS methodology would be capable of fulfilling a pressing need for consistent, continual, low-cost monitoring of changes in marshland ecosystems of the Pacific Flyway.

  13. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  14. Conservation reserve program: benefit for grassland birds in the northern plains

    Science.gov (United States)

    Reynolds, R.E.; Shaffer, T.L.; Sauer, J.R.; Peterjohn, B.G.

    1994-01-01

    During the past few decades numbers of some species of upland-nesting birds in North America have declined. Duck species such as mallard (Anas platyrhynchos), northern pintail (A. acuta) and blue-winged teal (A. discors) have declined since the early 1970s and have remained low since 1985 (Caithamer et al. 1993). Some grassland-dependent nonwaterfowl species also have declined since 1966, as indicated by the North American Breeding Bird Survey (BBS) (Robbins et al. 1986). For prairie-nesting ducks, population declines can be attributed mostly to low recruitment, partially as a result of low nest success. Klett et al. (1988) concluded that nest success (probability of ≥1 egg of clutch hatches) in much of the U.S. Prairie Pothole Region was inadequate to maintain populations of the five most common upland-nesting duck species studied, and that predators were the most important cause of nest failure. Over the years, as grassland areas have been converted to cropland, ducks have concentrated their nesting in the remaining areas of available habitat, where predators such as red fox (Vulpes vulpes), striped skunk (Mephitis mephitis) and badger (Taxidea taxus) forage (Cowardin et al. 1983). The reasons for declining populations of grassland nonwaterfowl birds are not clear but the loss of suitable grassland-nesting habitat probably is an important factor. Currently, approximately 95 percent of the land in North Dakota is used for agricultural purposes, of which over 60 percent is used for annual crop production (Haugse 1990). Of the grassland that remains, 95 percent is used for livestock production. This probably had a severe impact on grassland bird species that seek idle grass cover for nesting. The 1985 and 1990 U.S. Farm Bills include provisions under the Food Security Act to fund a cropland-idling program called the Conservation Reserve Program (CRP). Over 36 million acres have been enrolled nationwide in the CRP since 1985 (Osborn 1993), and up to 25 percent of

  15. Farming for pests? Local and landscape-scale effects of grassland management on rabbit densities

    OpenAIRE

    Petrovan , Silviu O.; Barrio , Isabel C.; Ward , Alastair I.; Wheeler , Philip M.

    2010-01-01

    Abstract In recent decades in the UK, there has been an increasing trend in numbers of the European wild rabbit, a significant agricultural pest typically associated with grassland habitats. However, the relationship between rabbit abundance and grassland management, in particular grazing, has not been sufficiently explained. We studied rabbit densities in seven pasture-dominated sites in north-east England between autumn and spring in two consecutive years, and used generalised li...

  16. Carbohydrates and thermal analysis reflects changes in soil organic matter stability after forest expansion on abandoned grassland

    Science.gov (United States)

    Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco

    2014-05-01

    Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars

  17. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  18. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  19. Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward.

    Science.gov (United States)

    Martin, G; Duprat, A; Goby, J-P; Theau, J-P; Roinsard, A; Descombes, M; Legendre, H; Gidenne, T

    2016-10-01

    Organic agriculture is developing worldwide, and organic rabbit production has developed within this context. It entails raising rabbits in moving cages or paddocks, which enables them to graze grasslands. As organic farmers currently lack basic technical information, the objective of this article is to characterize herbage intake, feed intake and the growth rate of rabbits raised on grasslands in different environmental and management contexts (weather conditions, grassland type and complete feed supplementation). Three experiments were performed with moving cages at an experimental station. From weaning, rabbits grazed a natural grassland, a tall fescue grassland and a sainfoin grassland in experiments 1, 2 and 3, respectively. Rabbit diets were supplemented with a complete pelleted feed limited to 69 g dry matter (DM)/rabbit per day in experiment 1 and 52 g DM/rabbit per day in experiments 2 and 3. Herbage allowance and fiber, DM and protein contents, as well as rabbit intake and live weight, were measured weekly. Mean herbage DM intake per rabbit per day differed significantly (P<0.001) between experiments. It was highest in experiment 1 (78.5 g DM/day) and was 43.9 and 51.2 g DM/day in experiments 2 and 3, respectively. Herbage allowance was the most significant determinant of herbage DM intake during grazing, followed by rabbit metabolic weight (live weight0.75) and herbage protein and fiber contents. Across experiments, a 10 g DM increase in herbage allowance and a 100 g increase in rabbit metabolic weight corresponded to a mean increase of 6.8 and 9.6 g of herbage DM intake, respectively. When including complete feed, daily mean DM intakes differed significantly among experiments (P<0.001), ranging from 96.1 g DM/rabbit per day in experiment 2 to 163.6 g DM/rabbit per day in experiment 1. Metabolic weight of rabbits raised on grasslands increased linearly over time in all three experiments, yielding daily mean growth rates of 26.2, 19.2 and 28.5 g/day in

  20. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    Science.gov (United States)

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  1. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  2. Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment

    Science.gov (United States)

    Firn, Jennifer

    2017-04-01

    Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment Jennifer Firn1, James McGree2, Eric Lind3, Elizabeth Borer3, Eric Seabloom3, Lauren Sullivan3, Kimberly Lapierre4 and the Nutrient Network 1Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 2Queensland University of Technology (QUT), School of Mathematical Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 3Universtiy of Minnesota, Department of Ecology, Evolution, and Behavior, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN 55108 USA 4Department of integrative Biology, University of California, Berkeley, CA 94720 USA Functional trait research has developed with the aim of finding general patterns in how the function of plant assemblages changes with respect to different land-uses. Most studies have compared sites within and across regions with variations in land-use history, but not necessarily with standardized treatments in an experimental framework. The trends that have emerged from this research is that characteristics of leaf traits such as specific leaf area (SLA) correlate with carbon acquisition strategies known to influence ecosystem functioning. SLA has been found to represent a plant's investment in growing light-capturing area per dry mass content. Species with a relatively high SLA tend to have a higher rate of return on the resources invested into making tissue (cheaper leaves in terms of energy and resources needed to produce them) when compared to species with a lower SLA (more expensive leaves to produce). Few studies have examined quantitatively measured traits in an experimental framework. The Nutrient Network experiment, globally distributed experiment, presents a unique opportunity to examine the response of functional traits across grassland ecosystems characterised by a diverse range of

  3. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  4. Understanding the causes of changing grassland use and productivity in Inner Mongolia, China

    Science.gov (United States)

    Zhang, Y.; Gao, L.; Qiao, G.; Chen, J.

    2012-12-01

    Some dramatic changes of grassland use and productivity have been taking place in Inner Mongolia in the past half century. While the changes are apparently driven by both socio-economic factors and climate, their contribution and interaction are largely unknown. We hypothesize that population growth is an important driving force behind the loss and degradation of the grassland, the market forces and institutional factors such as de-collectivization are become more important factors as the economy is moving from planned economy to market economy. This paper assesses the effects of socio-economic, demographic, institutional and climate factors on grassland use and productivity using a panel data set. The panel data compose the years from 1970s to 2000s and all prefectures in Inner Mongolia. A generalized least squares estimation method, allowing individual effects for prefecture level are applied to the examination. The effect of climate change is tested as well and the coupled socio-economic system and the natural system are investigated.

  5. Seasonal and Interannual Variation in Energy Balance in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2015-01-01

    Full Text Available Near surface energy budget changes have been proved to be induced by the land cover conversion through changing the surface physical properties, which can further impact the regional climate change. This study applies the DLS model to simulate the land cover under the business as usual (BAU scenario and then analyses the seasonal and interannual variation of energy balance in the semiarid grassland area of China based on the simulated land cover with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a growing trend under the BAU scenario. Downward long wave radiation and downward short wave radiation will all have small-scale increase with time going by, while the surface net radiation will decrease from 2030 to 2050. However, there is obvious seasonal variation. Summer has the highest downward long wave radiation and downward short wave radiation, followed by spring and autumn. The lowest are in winter. As for the net surface radiation, there is obvious decrease in southeast of study area due to returning cropland to grassland. Those research conclusions can offer valuable information for the land use planning and relieving the effects of land cover change on climate change at the semiarid grassland area.

  6. DIVERSITY OF PLANT COMMUNITIES IN SECONDARY SUCCESSION OF IMPERATA GRASSLANDS IN SAMBOJA LESTARI, EAST KALIMANTAN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Ishak Yassir

    2016-06-01

    Full Text Available Regeneration of  Imperata grassland areas is becoming increasingly important, both to create new secondary forest and to recover the original biodiversity. The diversity of  plant communities in secondary succession of  Imperata grasslands was studied using 45 subplots of  9 linear transects (10 m x 100 m. Data was collected and all stems over 10 cm dbh were identified, the Importance Values Index (IVI for all trees were calculated, saplings and seedlings were counted  and analysed, and soil samples were taken and analysed. Results showed that  after more than 10 years of  regeneration, 65 families were encountered consisting of  164 species, which were dominated by Vernonia arborea Buch.-Ham, Vitex pinnata L., Macaranga gigantea (Reichb.f. & Zoll. Muell.Arg., Symplocos crassipes C.B. Clarke, Artocarpus odoratissimus Miq., and Bridelia glauca Blume. The effects of  regeneration, from Imperata grassland to secondary forest, on soil were the strongest in the A-horizon where an increase in carbon, N content, and pH were observed. Our result shows that Imperata grasslands appear to be permanent because of  frequent fires and human interferences and so far few efforts have been made to promote sustainable rehabilitation. If  protected from fire and other disturbances, such as shifting cultivation, Imperata grassland will grow and develop into secondary forest.

  7. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  8. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    Directory of Open Access Journals (Sweden)

    Jussi Lampinen

    Full Text Available Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  9. Indirect Effects of Energy Development in Grasslands

    Science.gov (United States)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not

  10. Linking restoration ecology with coastal dune restoration

    Science.gov (United States)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  11. Direct effects of cattle on grassland birds in Canada.

    Science.gov (United States)

    Bleho, Barbara I; Koper, Nicola; Machtans, Craig S

    2014-06-01

    Effects of grazing on grassland birds are generally thought to be indirect, through alteration of vegetation structure; however, livestock can also affect nest survival directly through trampling and other disturbances (e.g., livestock-induced abandonment). We extracted data on nest fates from 18 grazing studies conducted in Canada. We used these data to assess rates of nest destruction by cattle among 9 ecoregions and between seasonal and rotational grazing systems. Overall, few nests were destroyed by cattle (average 1.5% of 9132 nests). Nest destruction was positively correlated with grazing pressure (i.e., stocking rate or grazing intensity), but nest survival was higher in more heavily grazed areas for some species. Because rates of destruction of grassland bird nests by cattle are low in Canada, management efforts to reduce such destruction may not be of ecological or economic value in Canada. © 2014 Society for Conservation Biology.

  12. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  13. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  14. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  15. China's Grassland Contract Policy and its Impacts on Herder Ability to Benefit in Inner Mongolia: Tragic Feedbacks

    Directory of Open Access Journals (Sweden)

    Wenjun Li

    2011-06-01

    Full Text Available Northern China's grasslands have been losing productivity since the 1980s, when a policy known as the "grassland contracting policy" allocated commonly used grazing lands to individual herder households. Examined here is the connection between implementation of the grassland contracting policy and the loss of grassland production using the analytic concepts of ability to benefit and community failure. A gacha (village of the Sunite Left Banner of the Xilingol League in Inner Mongolia is used as a case study to compare herder ability to benefit from rangeland resources during adverse climate events before and after policy implementation. Social-ecological resilience, access to social and ecological assets, and institutions supporting crisis relief have been affected. We find that the privatization of grassland use rights has weakened pastoralist ability to benefit from rangelands by weakening or dismantling what are identified as the rights-, structure-, and relations-based abilities that enabled pastoralists to cope with nonequilibrium conditions. This has led to a community failure that engenders feedbacks of increased impoverishment and environmental deterioration. The inflexible boundaries of quasi-private household property rights have caused the pastoral system to lose capacity to respond to drought and weather events through the flexibility of "otor" and other forms of herd movement, increasing vulnerability to environmental change.

  16. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia

    Science.gov (United States)

    Liu, D.; Li, Y.; Wang, T.; Peylin, P. P.; MacBean, N.; Ciais, P.; Jia, G.; Ma, M.; Ma, Y.; Shen, M.; Zhang, X.; Piao, S.

    2017-12-01

    he grassland in Tibetan Plateau (TP) and Inner Mongolia (IM) of China play important roles in climate change mitigation. These two regions have increasingly experienced warming and changing precipitation regimes over the past three decades. However, it remains uncertain to what extent temperature and water availability regulate the water and carbon fluxes across alpine (TP) and temperate (IM) grasslands. Here, we optimize a process-based model of carbon and water fluxes using eddy covariance (EC) data and analyze the simulated results based upon the optimized model exposed to a range of annual temperature and precipitation anomalies. We found that the changes of NEE of TP grassland are relatively small because of compatible increasing rate of ecosystem respiration (Re) and the gross primary productivity (GPP) under warming. The NEE of IM grassland increases with warming due to faster reduction of GPP than Re under warm-induced drought. We also found suppression of plant transpiration as the primary cause for the muted response of evapotranspiration to warming in IM, which is in contrast to enhanced transpiration in TP. We therefore highlight that the underlying processes regulating the responses of water and carbon cycles to warming are fundamentally different between TP and IM grasslands.

  17. 77 FR 21721 - Sierra National Forest, Bass Lake Ranger District, California, Whisky Ecosystem Restoration Project

    Science.gov (United States)

    2012-04-11

    ... and vigor of conifer stands, reduce the spread and intensity of wildfires within and outside of the Wildland Urban Interface (WUI) and restore other ecological processes. DATES: Comments concerning the scope... on these federal and formerly private lands, combined with the exclusion of fire, have altered forest...

  18. Migrating Seals on Shifting Sands: Testing Alternate Hypotheses for Holocene Ecological and Cultural Change on the California Coast

    Science.gov (United States)

    Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.

    2001-12-01

    The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has

  19. Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland

    Science.gov (United States)

    Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.

    2018-04-01

    Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.

  20. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  1. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  2. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  3. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2017-03-01

    Full Text Available Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra and MYD14A1 (Aqua and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578, which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly

  4. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Le, C; Ikazaki, K; Siriguleng; Kosaki, T; Kadono, A

    2014-01-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia

  5. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    Science.gov (United States)

    Le, C.; Ikazaki, K.; Siriguleng; Kadono, A.; Kosaki, T.

    2014-02-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia.

  6. Nearly Increased Dry-season Flows after Reforesting Degraded Fire-climax Grassland in the Philippines

    Science.gov (United States)

    van Meerveld, I. H. J.; Zhang, J.; Bruijnzeel, L. A.; Tripoli, R.; Quiñones, C. M. O.

    2017-12-01

    After decades of logging and shifting cultivation, vast tracts in tropical SE Asia have turned to fire-climax grassland. Whilst the hydrological functioning of Imperata grasslands has been studied little, the general perception is they are major contributors to downstream flooding and siltation. As such, Imperata grasslands are targeted widely for reforestation in the expectation to improve regional hydrology. Yet, numerous small catchment studies within and outside the tropics have typically shown decreased annual water yield after reforestation of grass- or cropland, with the bulk of the decrease observed during times of baseflow. Yet, it is theoretically possible that the higher water use of the planted trees is compensated by improved soil infiltration capacity after reforestation which should lead to higher baseflows, the so-called infiltration trade-off. To examine a rare claim of increased baseflow after reforesting an Imperata grassland in northern Leyte (Philippines) we compared a 3.2 ha degraded headwater catchment under Imperata with a nearby 8.7 ha catchment under 23-year-old reforestation. Both catchments were underlain by mafic rock, had perennial flow and were demonstrably watertight, thus allowing comparisons to be made. Grassland saturated soil hydraulic conductivity (Ksat) decreased from 10 mm h-1 at the surface to 2.9 mm h-1 at 20-40 cm depth and <1 mm h-1 below 60 cm, suggesting not only possibly frequent overland flow but also perched groundwater conditions at 20 cm depth. By contrast, Ksat of the forest soil decreased from 370 mm h-1 in the top 5 cm via 60 mm h-1 at 20 cm, with lower values found only deeper in the profile (7.3 and 2.6 mm h-1 at 60 and 90 cm, respectively). Thus, stormflows Qq for the reforestation were smaller and less `flashy' compared to the grassland catchment. Depending on how the annual reduction in catchment-wide infiltration (assumed equal to the difference in total Qq between catchments) was estimated, the trade

  7. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    Science.gov (United States)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides

  8. [Fractal features of soil particle size in the process of desertification in desert grassland of Ningxia, China].

    Science.gov (United States)

    Yan, Xin; An, Hui

    2017-10-01

    The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles 50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.

  9. NPP Grassland: Beacon Hill, U.K., 1972-1993, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two ASCII text files, one providing productivity measurements for a chalk grassland on Beacon Hill, West Sussex, U.K. (50.92 N, -0.85 W) and...

  10. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    Science.gov (United States)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited

  11. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006

    Directory of Open Access Journals (Sweden)

    Jiangzhou Xia

    2014-02-01

    Full Text Available Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production. The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  12. California Bioregions

    Data.gov (United States)

    California Natural Resource Agency — California regions developed by the Inter-agency Natural Areas Coordinating Committee (INACC) were digitized from a 1:1,200,000 California Department of Fish and...

  13. The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2017-10-01

    Full Text Available Wildfire often causes tremendous changes in ecosystems, particularly in subalpine and alpine areas, which are vulnerable due to severe climate conditions such as cold temperature and strong wind. This study aimed to clarify the effect of tree re-planting on ecosystem services such as the soil microbial community after several decades. We compared the re-planted forest and grassland with the mature forest as a reference in terms of soil microbial biomass C and N (Cmic and Nmic, enzyme activities, phospholipid fatty acids (PLFA composition, and denaturing gradient gel electrophoresis (DGGE. The Cmic and Nmic did not differ among the grassland, re-planted forest and mature forest soil; however, ratios of Cmic/Corg and Nmic/Ntot decreased from the grassland to re-planted forest and mature forest soil. The total PLFAs and those attributed to bacteria and Gram-positive and Gram-negative bacteria did not differ between the re-planted forest and grassland soil. Principle component analysis of the PLFA content separated the grassland from re-planted forest and mature forest soil. Similarly, DGGE analysis revealed changes in both bacterial and fungal community structures with changes in vegetation. Our results suggest that the microbial community structure changes with the re-planting of trees after a fire event in this subalpine area. Recovery of the soil microbial community to the original state in a fire-damaged site in a subalpine area may require decades, even under a re-planted forest.

  14. Density and success of bird nests relative to grazing on western Montana grasslands

    Science.gov (United States)

    Fondell, Thomas F.; Ball, I.J.

    2004-01-01

    Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid

  15. Ornamental Eudicotyledons from grasslands of Pampa biome in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Ana De Araújo Carrion

    2012-10-01

    Full Text Available The present study aims at investigating the group of Eudicotyledons native plants with ornamental potential of grasslands from the Pampa biome in the south of Brazil. The Pampa presents a high level of biodiversity; however, it requires studies related to the richness of vascular plants and its biological and ecological knowledge. The purpose of this work is to elaborate a preliminary inventory of this group of plants, analyzing the ornamental potential of each specie and indicating those that could be considered as being priorities for the purpose of sustainable use with this objective. Some grassland species were selected through the search for information in herbarium registers, national and international works about decorative plants, floristic surveys, besides the authors´ practical knowledge. Some parameters and values were associated, aiming at reducing the subjectivity of the choice. The survey resulted in a list of 177 species distributed in 36 families and 101 genera. Among these species, ten presented high ornamental potential. These data show that the richness of the grassland native ornamental flora is high, even though its use is poorly known. The use of these plants, if in a sustainable manner, can produce economic and ecological benefits.

  16. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  17. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community.

    Directory of Open Access Journals (Sweden)

    Jana Knappová

    Full Text Available The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood.The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities.The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes

  18. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  19. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  20. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  1. Possible environmental effects of increased coal use in California

    Science.gov (United States)

    Carey, D. L.

    1978-01-01

    If coal is to be utilized in California it must be made compatible with the state's drive toward restoring environmental quality. The impacts resulting from coal's mining and transportation, or from water consumption, water quality degradation and electric transmission line routing can probably be adequately mitigated through strong and early planning efforts, the use of improved control and process technologies, and sincere utility commitment. The socioeconomic impacts may prove somewhat more difficult to satisfactorily mitigate. Of greatest concern is adequate control of generated air pollutants and disposal of solid and liquid wastes since acceptable technologies or handling techniques have yet to be conclusively demonstrated.

  2. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for N2O mitigation after grassland cultivation

    DEFF Research Database (Denmark)

    Kong, Xianwang

    Temporary grasslands cover ca. 11 million ha and constitute more than 10% of the total arable land within EU-28; in Denmark, ca. 60% of the grasslands are included in crop rotations. The high productivity and the positive residual effect on succeeding crops are the main reasons of placing...... archaea (AOA), as revealed by mRNA transcripts of amoA gene. This inhibitory effect could be limited to the soil volume in close contact with residues, where residue decomposition and subsequent nitrification took place. In the field study, there was a trend towards lower biomass yield and N...... grasslands in crop rotations. At the transition phase, the mineralization of grass and clover residues incorporated by grassland cultivation can supply nitrogen to a succeeding crop; however, the plant N-uptake is low for several weeks at the early growth stage. During this period, as a result of increasing...

  3. Achieving grassland production and quality that matches animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different
    constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of
    Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the

  4. Achieving grassland production and quality that matching animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the most relevant

  5. Crude protein changes on grassland along a degradation gradient ...

    African Journals Online (AJOL)

    Evapotranspiration was determined by quantifying the soil-water balance equation with the aid of runoff plots and soil-water content measurements. Crude protein ... The study shows that it is important to keep grassland in optimal condition to utilize limited soil water for sustainable plant and therefore animal production.

  6. The usefullness of ERTS-1 and supporting aircraft data for monitoring plant development in rangeland environments

    Science.gov (United States)

    Carneggie, D. M.; Degloria, S. D.

    1972-01-01

    The author has identified the following significant results. Preliminary analysis of ERTS-1 MSS imagery of annual and perennial rangeland in California yields the following observations: (1) Sufficient geomorphological detail can be resolved to differentiate upland and bottomland range sites in the foothill range areas. (2) Dry and green meadowland can be differentiated on MSS band 5. (3) Color composites prepared by NASA-Goddard were useful for locating perennial rangeland with varying amounts of herbaceous ground cover. (4) The ERTS-1 images received and interpreted cover nearly 50% of the state of California and show nearly two-thirds of the annual grassland type. (5) Satellite imagery obtained during the late summer season should be optimum for differentiating grassland from brushland and forested land. (6) The ERTS-1 imagery clearly shows areas which at one time were part of the annual grassland but which are now used for dry land farming (cropping of cereal grains). Similarly, the imagery show areas which have been converted from brushland to grassland.

  7. Use of the Cropland Data Layer to monitor grassland conversion in the U.S. Western Corn Belt (Invited)

    Science.gov (United States)

    Wright, C.; Wimberly, M. C.

    2013-12-01

    The U.S. Department of Agriculture's Cropland Data Layer (CDL) provides new opportunities for monitoring land cover/land use change (LCLUC) related to U.S. agricultural policy, bioenergy development, and recent commodity price increases. We used the CDL to assess the conversion of grasslands to corn/soy cultivation along the western periphery of the U.S. Corn Belt. Here, we find rapid grassland conversion (1-5% annually) as the Corn Belt expands westward and northward into North Dakota and South Dakota. This LCLUC is occurring in close proximity to wetlands in the Prairie Pothole Region. In most counties in the eastern Dakotas, grassland conversion exceeds declines in land area enrolled in the Conservation Reserve Program (CRP). Within the core corn/soy growing area in Iowa and southern Minnesota, LCLUC is occurring on marginal lands characterized by high erosion potential and less-productive soils. In Minnesota, particularly, corn/soy production is increasing on lands previously too wet to farm without an expansion of agricultural drainage practices. Over the period 2006-2011, we estimate a net greenhouse gas impact of grassland conversion in the Western Corn Belt of approximately 4*106 metric tons CO2-equivalent. Although not designed for monitoring grasslands, we suggest that the CDL can be used judiciously to identify grassland conversion at farm- to sub-county scales, and, in conjunction with other national-level datasets (e.g., the National Wetlands Inventory and SSURGO database), to provide timely feedback to policymakers and the public on likely environmental impacts of U.S. agricultural policies and shifting market forces.

  8. The impact of antecedent fire area on burned area in southern California coastal ecosystems

    Science.gov (United States)

    Price, Owen F.; Bradstock, Ross A.; Keeley, Jon E.; Syphard, Alexandra D.

    2012-01-01

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ∼ 0.25).

  9. Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah

    NARCIS (Netherlands)

    Gosling, Cleo M.; Cromsigt, Joris P. G. M.; Mpanza, Nokukhanya; Olff, Han

    A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites

  10. Variations of Near Surface Energy Balance Caused by Land Cover Changes in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2014-01-01

    Full Text Available This study applies the Dynamics of Land System (DLS model to simulating the land cover under the designed scenarios and then analyzes the effects of land cover conversion on energy flux in the semiarid grassland area of China with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a steadily upgrowing trend under the coordinated environmental sustainability (CES scenario. Compared to the CES scenario, the rate of increase in grassland cover is lower, while the rate of increase in urban land cover will be higher under the rapid economic growth (REG scenario. Although the conversion from cropland to grassland will reduce the energy flux, the expansion of urban area and decreasing of forestry area will bring about more energy flux. As a whole, the energy flux of near surface will obviously not change under the CES scenario, and the climate therefore will not be possible to be influenced greatly by land cover change. The energy flux under the REG scenario is higher than that under the CES scenario. Those research conclusions can offer valuable information for the land use planning and climate change adaptation in the semiarid grassland area of China.

  11. Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961-2010.

    Directory of Open Access Journals (Sweden)

    Jinfeng Chang

    Full Text Available About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration, and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing, is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers. When compared to agricultural statistics (Eurostat and FAOstat, ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over

  12. Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961-2010.

    Science.gov (United States)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Campioli, Matteo; Klumpp, Katja; Martin, Raphaël; Leip, Adrian; Soussana, Jean-François

    2015-01-01

    About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade

  13. BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition

    Directory of Open Access Journals (Sweden)

    H. J. Wang

    2012-04-01

    Full Text Available Biogenic volatile organic compounds (BVOCs profoundly affect atmospheric chemistry and ecosystem functioning. BVOCs emission and their responses to global change are still unclear in grasslands, which cover one quarter of the Earth's land surface and are currently undergoing the largest changes. Over two growing seasons, we conducted a field experiment in a semi-arid grassland (Inner Mongolia, China to examine the emission and the responses of BVOCs emissions to warming and nitrogen deposition. The natural emission rate (NER of monoterpene (dominant BVOCs here is 107 ± 16 μg m−2 h−1 in drought 2007, and 266 ± 53 μg m−2 h−1 in wet 2008, respectively. Warming decreased the standard emission factor (SEF by 24% in 2007, while it increased by 43% in 2008. The exacerbated soil moisture loss caused by warming in dry season might be responsible for the decrease of SEF in 2007. A possible threshold of soil moisture (8.2% (v/v, which controls the direction of warming effects on monoterpene emission, existed in the semiarid grassland. Nitrogen deposition decreased the coverage of Artemisia frigida and hence reduced the NER by 24% across the two growing seasons. These results suggest that the grasslands dominated by the extended Artemisia frigida are an important source for BVOCs, while the responses of their emissions to global changes are more uncertain since they depend on multifactorial in-situ conditions.

  14. An assessment of rehabilitation success in an African grassland using ants as bioindicators

    Directory of Open Access Journals (Sweden)

    Samantha-Leigh Jamison

    2016-09-01

    Full Text Available Many studies that evaluate rehabilitation make use of invertebrate bioindicators. Invertebrates, especially ants, make useful indicators as they are sensitive to environmental change. We compared ant assemblages in rehabilitated and control sites in the Rietvlei Nature Reserve, a protected area important for grassland conservation in South Africa. Pitfall traps were used to sample ant assemblages at six control sites and six rehabilitated sites. In addition, environmental and vegetation surveys were conducted at each site. We found that the ant assemblages differed significantly between the control and rehabilitated sites, although there was considerable overlap; the control sites supported a greater species density and higher abundance of ants than the rehabilitated sites. In total, 36 ant species were collected (control sites: 34 species; rehabilitated sites: 26 species. The environmental survey revealed that percentages of bare ground and coarse sand, as well as soil pH, differed significantly between the control and rehabilitated sites. The control and rehabilitated sites also supported significantly different plant assemblages. Three indicator ant species were identified for the control sites: Crematogaster rectinota, Crematogaster amita and Monomorium fastidium. No indicator species were identified for the rehabilitated sites. These results suggest that recovery from the previous agricultural use of the area is still incomplete and highlights the lack of research examining the success of rehabilitation in the grassland biome. Conservation implications: The present study illustrates the need for further research on rehabilitation techniques utilised in the grassland biome. This is of value as the remainder of South African grasslands are considered critically endangered.

  15. Clinical decisions for anterior restorations: the concept of restorative volume.

    Science.gov (United States)

    Cardoso, Jorge André; Almeida, Paulo Júlio; Fischer, Alex; Phaxay, Somano Luang

    2012-12-01

    The choice of the most appropriate restoration for anterior teeth is often a difficult decision. Numerous clinical and technical factors play an important role in selecting the treatment option that best suits the patient and the restorative team. Experienced clinicians have developed decision processes that are often more complex than may seem. Less experienced professionals may find difficulties making treatment decisions because of the widely varied restorative materials available and often numerous similar products offered by different manufacturers. The authors reviewed available evidence and integrated their clinical experience to select relevant factors that could provide a logical and practical guideline for restorative decisions in anterior teeth. The presented concept of restorative volume is based on structural, optical, and periodontal factors. Each of these factors will influence the short- and long-term behavior of restorations in terms of esthetics, biology, and function. Despite the marked evolution of esthetic restorative techniques and materials, significant limitations still exist, which should be addressed by researchers. The presented guidelines must be regarded as a mere orientation for risk analysis. A comprehensive individual approach should always be the core of restorative esthetic treatments. The complex decision process for anterior esthetic restorations can be clarified by a systematized examination of structural, optical, and periodontal factors. The basis for the proposed thought process is the concept of restorative volume that is a contemporary interpretation of restoration categories and their application. © 2012 Wiley Periodicals, Inc.

  16. Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level

    OpenAIRE

    Freitas, L; Sazima, M

    2006-01-01

    Surveys of local assemblages of plants and their pollinators are among the most useful ways to evaluate specialization in pollination and to discuss the patterns of plant-pollinator interactions among ecosystems. The high-altitude grasslands from southeastern Brazil constitute diminutive island-like formations surrounded by montane rainforests. We registered the floral traits of 124 species from the Serra da Bricaina grasslands (about 60% of the animal-pollinated species of this flora), and d...

  17. Vegetation diversity of salt-rich grasslands in Southeast Europe

    Czech Academy of Sciences Publication Activity Database

    Eliáš, P. Jr.; Sopotlieva, D.; Dítě, D.; Hájková, Petra; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, Michal

    2013-01-01

    Roč. 16, č. 3 (2013), s. 521-537 ISSN 1402-2001 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : salt marshes * vegetation survey * grasslands Subject RIV: EF - Botanics Impact factor: 2.416, year: 2013

  18. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  19. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  20. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  1. Efforts to improve and sustain the productive utilization of dry grasslands in Armenia

    Science.gov (United States)

    Mezhunts, Bagrat; Navasardyan, Marine

    2014-05-01

    Armenia is a small mountainous country (29,743 km2) located in the South Caucasus. It lies in the sub-tropical zone and has a continental climate with hot summers (av. +250C) and cold winters (av. -60C). The average precipitation is 550 mm; in the dry-steppe zone it amounts to only 250 mm and with a rainy season in spring-early summer. Altitudinal variation (390-4,095 m) gives rise to a range of climatic zones (from semi-desert to alpine), soil types and plant communities. Besides, Armenia is situated on the crossroads of Caucasian - mesophyllous (humid) and Armeno-Iranian - xerophyllous (arid) floristic provinces, which has made it to a "biodiversity hotspot". Agriculture is important as a source of employment and for domestic food supply. The rural population (ca. 1.2 million) is largely dependent on livestock for their livelihood. The principal feed resource is extensive grasslands (60% of total agricultural lands), but past practices of uncontrolled grazing management has led to low grassland productivity and low proportion of valuable legume forages. Improvement of natural grasslands, enhancement of feed quality, prevention of soil erosion and re-establishment of vegetation cover are key socio-economic challenges and are needed to raise the livelihood of rural population in Armenia. This presentation focuses on present status and trends of dry pastureland degradation, exposed to intensive grazing, and on results from case studies to increase productivity and restore valuable forage species for sustainable use in agriculture. Three different conventional approaches have been applied in these studies including: fertilization with moderate doses of ammonium and potassium nitrate and superphosphate, over-sowing by local legume seeds and implementation of a 2-year rest period in overgrazed areas. From 1986 to 2007, the total yield (TY) in studied dry-steppe pastures decreased by 40%, while at the same time, the proportion of grasses in total yield decreased by 50

  2. The Story of California = La Historia de California.

    Science.gov (United States)

    Bartel, Nick

    "The Story of California" is a history and geography of the state of California, intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The book is designed with the left page in English and the right page in Spanish to facilitate student transition into…

  3. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Science.gov (United States)

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  4. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    Science.gov (United States)

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  5. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India.

    Science.gov (United States)

    Pathak, Karabi; Malhi, Yadvinder; Sileshi, G W; Das, Ashesh Kumar; Nath, Arun Jyoti

    2018-09-01

    There have been few comprehensive descriptions of how fire management and harvesting affect the carbon dynamics of grasslands. Grasslands dominated by the invasive weed Imperata cylindrica are considered as environmental threats causing low land productivity throughout the moist tropical regions in Asia. Imperata grasslands in North East India are unique in that they are traditionally managed and culturally important in the rural landscapes. Given the importance of fire in the management of Imperata grassland, we aimed to assess (i) the seasonal pattern of biomass production, (ii) the eventual pathways for the produced biomass, partitioned between in situ decomposition, harvesting and combustion, and (iii) the effect of customary fire management on the ecosystem carbon cycle. Comparatively high biomass production was recorded during pre-monsoon (154 g m -2  month -1 ) and monsoon (214 g m -2  month -1 ) compared to the post-monsoon (91 g m -2  month -1 ) season, and this is attributed to nutrient return into the soil immediately after fire in February. Post fire effects might have killed roots and rhizomes leading to high belowground litter production 30-35 g m -2 during March to August. High autotrophic respiration was recorded during March-July, which was related to high belowground biomass production (35-70 g m -2 ) during that time. Burning removed all the surface litter in March and this appeared to hinder surface decomposition and result in low heterotrophic respiration. Annual total biomass carbon production was estimated at 886 g C m -2 . Annual harvest of biomass (estimated at 577 g C m -2 ) was the major pathway for carbon fluxes from the system. Net ecosystem production (NEP) of Imperata grassland was estimated at 91 g C m -2  yr -1 indicating that these grasslands are a net sink of CO 2 , although this is greatly influenced by weather and fire management. Crown Copyright © 2018. Published by Elsevier B

  6. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  7. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  8. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.

    2006-01-01

    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  9. Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2011-12-01

    Full Text Available We examined to what extend the rate and direction of changes in unmanaged grassland depend on fluctuations in climatic conditions. Vegetation data from permanent plots in a semi-natural grassland in southern Poland collected over 12 years were used. Relations between weather variables, time, and the cover of 41 more frequent species and 14 plant functional groups were analysed. The greatest effect on the dynamics of species and functional groups had precipitation in spring and/or early summer, particularly in the current year. The majority of plant groups were significantly affected also by the temperature in spring and early summer in one of the three previous years. During 12 years, the cover of annuals and biennials, short plants, and plants with small leaves decreased, while the cover of taller plants, plants with larger leaves, and with vegetative spread increased. The analyses suggest that these successional changes were not directly associated with climatic conditions but were affected by them indirectly through interspecific competition. The fluctuations in climatic conditions, chiefly precipitation, had a significant effect on both the composition and the rate of changes in abandoned grassland. The increase in the cover of tall perennial species with broad leaves hindered succession towards woodland despite of the presence of woods in the closed vicinity. It can be expected that during drier periods colonisation of grassland by later successional species could be easier.

  10. Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yunfei Feng

    2017-02-01

    Full Text Available Alpine grasslands on the Tibetan Plateau are claimed to be sensitive and vulnerable to climate change and human disturbance. The mechanism, direction and magnitude of climatic and anthropogenic influences on net primary productivity (NPP of various alpine pastures remain under debate. Here, we simulated the potential productivity (with only climate variables being considered as drivers; NPPP and actual productivity (based on remote sensing dataset including both climate and anthropogenic drivers; NPPA from 1993 to 2011. We denoted the difference between NPPP and NPPA as NPPpc to quantify how much forage can be potentially consumed by livestock. The actually consumed productivity (NPPac by livestock were estimated based on meat production and daily forage consumption per standardized sheep unit. We hypothesized that the gap between NPPpc and NPPac (NPPgap indicates the direction of vegetation dynamics, restoration or degradation. Our results show that growing season precipitation rather than temperature significantly relates with NPPgap, although warming was significant for the entire study region while precipitation only significantly increased in the northeastern places. On the Northern Tibetan Plateau, 69.05% of available alpine pastures showed a restoration trend with positive NPPgap, and for 58.74% of alpine pastures, stocking rate is suggested to increase in the future because of the positive mean NPPgap and its increasing trend. This study provides a potential framework for regionally regulating grazing management with aims to restore the degraded pastures and sustainable management of the healthy pastures on the Tibetan Plateau.

  11. Breeding bird response to juniper woodland expansion

    Science.gov (United States)

    Rosenstock, Steven S.; van Riper, Charles

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997-1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  12. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  13. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE), GERMANY

    OpenAIRE

    U. Lussem; J. Hollberg; J. Hollberg; J. Menne; J. Schellberg; J. Schellberg; G. Bareth; G. Bareth

    2017-01-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer g...

  14. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  15. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Science.gov (United States)

    Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  16. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S.Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  17. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Directory of Open Access Journals (Sweden)

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  18. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Science.gov (United States)

    2010-01-01

    ... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53... justify restoration, trustees may proceed with the Restoration Planning Phase. Otherwise, trustees may not... discount all service quantities and/or values to the date the demand is presented to the responsible...

  19. The conversion of grasslands to forests in Southern South America: Shifting evapotranspiration, stream flow and groundwater dynamics

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Pineiro, G.; Farley, K. A.; Palmer, S. M.; Jackson, R. B.

    2005-12-01

    Vegetation changes, particularly those involving transitions between tree- and grass-dominated systems, often modify evaporation as a result of plant-mediated shifts in moisture access and demand. The establishment of tree plantations (fast growing eucalypts and pines) on native grasslands is emerging as a major land-use change, particularly in the Southern Hemisphere, where cheap land and labor, public subsidies, and prospective C sequestration rewards provide converging incentives. What are the hydrological consequences of grassland afforestation? How are crucial ecosystem services such as fresh water supply and hydrological regulation being affected? We explore these questions focusing on a) evapotranspiration, b) stream flow, and c) groundwater recharge-discharge patterns across a network of paired stands and small watershed occupied by native grassland and tree plantation in Argentina and Uruguay. Radiometric information obtained from Landsat satellite images was used to estimate daily evapotranspiration in >100 tree plantations and grasslands stands in the humid plains of the Uruguay River (mean annual precipitation, MAP= 1350 mm). In spite of their lower albedo, tree plantations were 0.5 C° cooler than grasslands. Energy balance calculations suggested 80% higher evapotranspiration in afforested plots with relative differences becoming larger during dry periods. Seasonal stream flow measurements in twelve paired watershed (50-500 Ha) in the hills of Comechingones (MAP= 800 mm) and Minas (MAP= 1200 mm) showed declining water yields following afforestation. Preliminary data in Cordoba showed four-fold reductions of base flow in the dry season and two-fold reductions of peak flow after storms. A network of twenty paired grassland-plantation stands covering a broad range of sediment textures in the Pampas (MAP= 1000 mm, typical groundwater depth= 1-5 m) showed increased groundwater salinity in afforested stands (plantation:grassland salinity ratio = 1.2, 10, and

  20. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model