WorldWideScience

Sample records for resting-state brain metabolism

  1. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    Science.gov (United States)

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  2. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    Science.gov (United States)

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  3. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  5. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  6. Complex network analysis of resting-state fMRI of the brain.

    Science.gov (United States)

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  7. Resting state brain networks in the prairie vole.

    Science.gov (United States)

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  8. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan

    2013-01-01

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  9. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    Science.gov (United States)

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  10. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    Science.gov (United States)

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Science.gov (United States)

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  12. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    Science.gov (United States)

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  13. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  14. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  15. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  16. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  17. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, L.; Veer, I.M.; Baerends, E.; van Tol, M.J.; Renken, R.J.; van der Wee, N.J.A.; Veltman, D.J.; Aleman, A.; Zitman, F.G.; Penninx, B.W.J.H.; van Buchem, M.A.; Reiber, J.H.C.; Rombouts, S.A.R.B.; Milles, J.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  18. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  19. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-01-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  20. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    Science.gov (United States)

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    Science.gov (United States)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  2. Resting-state brain networks revealed by granger causal connectivity in frogs.

    Science.gov (United States)

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Brain entropy and human intelligence: A resting-state fMRI study

    Science.gov (United States)

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  4. Brain entropy and human intelligence: A resting-state fMRI study.

    Science.gov (United States)

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  5. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  6. Clinical applications of resting state functional connectivity

    Directory of Open Access Journals (Sweden)

    Michael D Fox

    2010-06-01

    Full Text Available During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level dependent (BOLD signal of fMRI. The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  7. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Science.gov (United States)

    Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2013-01-01

    Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ). Based on ARSQ data from 813 participants assessed after 5 min eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer's disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease. PMID:23964225

  8. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  9. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Science.gov (United States)

    Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale

    2013-01-01

    Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  10. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  11. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Directory of Open Access Journals (Sweden)

    B. Alexander eDiaz

    2013-08-01

    Full Text Available Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ. Based on ARSQ data from 813 participants assessed after five minutes eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer’s disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease.

  12. Reduced brain resting-state network specificity in infants compared with adults

    Directory of Open Access Journals (Sweden)

    Wylie KP

    2014-07-01

    Full Text Available Korey P Wylie,1,* Donald C Rojas,1,* Randal G Ross,1 Sharon K Hunter,1 Keeran Maharajh,1 Marc-Andre Cornier,2 Jason R Tregellas1,3 1Department of Psychiatry, 2Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 3Denver Veterans Affairs Medical Center, Denver, CO, USA *These authors contributed equally to this work Purpose: Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults.Patients and methods: Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups.Results: Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults.Conclusion: We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience. Keywords: functional connectivity magnetic resonance imaging

  13. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  14. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  15. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    Science.gov (United States)

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  16. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Directory of Open Access Journals (Sweden)

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  17. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  18. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  19. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans.

    Science.gov (United States)

    Rebollo, Ignacio; Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine

    2018-03-21

    Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. © 2018, Rebollo et al.

  20. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.

    Science.gov (United States)

    Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2017-08-30

    Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that

  1. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  2. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness.

    Science.gov (United States)

    Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven

    2016-01-01

    The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.

  3. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    Science.gov (United States)

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (pketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  5. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder.

    Science.gov (United States)

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t -test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD.

  6. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    Science.gov (United States)

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  7. Relation of visual creative imagery manipulation to resting-state brain oscillations.

    Science.gov (United States)

    Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2018-02-01

    Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

  8. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    OpenAIRE

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was use...

  9. Assessing the mean strength and variations of the time-to-time fluctuations of resting-state brain activity.

    Science.gov (United States)

    Li, Zhengjun; Zang, Yu-Feng; Ding, Jianping; Wang, Ze

    2017-04-01

    The time-to-time fluctuations (TTFs) of resting-state brain activity as captured by resting-state fMRI (rsfMRI) have been repeatedly shown to be informative of functional brain structures and disease-related alterations. TTFs can be characterized by the mean and the range of successive difference. The former can be measured with the mean squared successive difference (MSSD), which is mathematically similar to standard deviation; the latter can be calculated by the variability of the successive difference (VSD). The purpose of this study was to evaluate both the resting state-MSSD and VSD of rsfMRI regarding their test-retest stability, sensitivity to brain state change, as well as their biological meanings. We hypothesized that MSSD and VSD are reliable in resting brain; both measures are sensitive to brain state changes such as eyes-open compared to eyes-closed condition; both are predictive of age. These hypotheses were tested with three rsfMRI datasets and proven true, suggesting both MSSD and VSD as reliable and useful tools for resting-state studies.

  10. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  11. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  12. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  13. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    Science.gov (United States)

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals

  14. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    Science.gov (United States)

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  15. Disrutpted resting-state functional architecture of the brain after 45-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-06-01

    Full Text Available Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI to study whether the functional architecture of the brain is altered after 45 days of -6° head-down tilt (HDT bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of -6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC, to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC analysis. We found decreased DC in two regions, the left anterior insula (aINS and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies, in the male volunteers after 45 days of -6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function and central neural activity.

  16. A computational study of whole-brain connectivity in resting state and task fMRI

    Science.gov (United States)

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  17. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  18. Intermittent metabolic switching, neuroplasticity and brain health

    Science.gov (United States)

    Mattson, Mark P.; Moehl, Keelin; Ghena, Nathaniel; Schmaedick, Maggie; Cheng, Aiwu

    2018-01-01

    During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease. PMID:29321682

  19. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    Science.gov (United States)

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  20. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  1. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  2. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Science.gov (United States)

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  3. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality.

    Science.gov (United States)

    Mongerson, Chandler R L; Jennings, Russell W; Borsook, David; Becerra, Lino; Bajic, Dusica

    2017-01-01

    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

  4. Directed connectivity of brain default networks in resting state using GCA and motif.

    Science.gov (United States)

    Jiao, Zhuqing; Wang, Huan; Ma, Kai; Zou, Ling; Xiang, Jianbo

    2017-06-01

    Nowadays, there is a lot of interest in assessing functional interactions between key brain regions. In this paper, Granger causality analysis (GCA) and motif structure are adopted to study directed connectivity of brain default mode networks (DMNs) in resting state. Firstly, the time series of functional magnetic resonance imaging (fMRI) data in resting state were extracted, and the causal relationship values of the nodes representing related brain regions are analyzed in time domain to construct a default network. Then, the network structures were searched from the default networks of controls and patients to determine the fixed connection mode in the networks. The important degree of motif structures in directed connectivity of default networks was judged according to p-value and Z-score. Both node degree and average distance were used to analyze the effect degree an information transfer rate of brain regions in motifs and default networks, and efficiency of the network. Finally, activity and functional connectivity strength of the default brain regions are researched according to the change of energy distributions between the normals and the patients' brain regions. Experimental results demonstrate that, both normal subjects and stroke patients have some corresponding fixed connection mode of three nodes, and the efficiency and power spectrum of the patient's default network is somewhat lower than that of the normal person. In particular, the Right Posterior Cingulate Gyrus (PCG.R) has a larger change in functional connectivity and its activity. The research results verify the feasibility of the application of GCA and motif structure to study the functional connectivity of default networks in resting state.

  5. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    NARCIS (Netherlands)

    Zhang, Delong; Liang, Bishan; Wu, Xia; Wang, Zengjian; Xu, Pengfei; Chang, Song; Liu, Bo; Liu, Ming; Huang, Ruiwang

    2015-01-01

    The present study examined directional connections in the brain among resting-state networks (RSNs) when the participant had their eyes open (E0) or had their eyes closed (EC). The resting state fMRI data were collected from 20 healthy participants (9 males, 20.17 +/- 2.74 years) under the EO and EC

  6. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality

    Directory of Open Access Journals (Sweden)

    Chandler R. L. Mongerson

    2017-08-01

    Full Text Available Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1 present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA, such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2 review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3 discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

  7. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    Science.gov (United States)

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  8. Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity.

    Directory of Open Access Journals (Sweden)

    Vasily A Vakorin

    2016-12-01

    Full Text Available Accurate means to detect mild traumatic brain injury (mTBI using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz, together with increased connectivity in the slower alpha band (8-12 Hz. A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI.

  9. Reduced brain resting-state network specificity in infants compared with adults.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Ross, Randal G; Hunter, Sharon K; Maharajh, Keeran; Cornier, Marc-Andre; Tregellas, Jason R

    2014-01-01

    Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults. Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups. Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults. We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience.

  10. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.

    Science.gov (United States)

    Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z

    2018-03-15

    Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.

  11. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.

    Science.gov (United States)

    Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain

    2014-09-01

    Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The spectral diversity of resting-state fluctuations in the human brain.

    Directory of Open Access Journals (Sweden)

    Klaudius Kalcher

    Full Text Available In order to assess whole-brain resting-state fluctuations at a wide range of frequencies, resting-state fMRI data of 20 healthy subjects were acquired using a multiband EPI sequence with a low TR (354 ms and compared to 20 resting-state datasets from standard, high-TR (1800 ms EPI scans. The spatial distribution of fluctuations in various frequency ranges are analyzed along with the spectra of the time-series in voxels from different regions of interest. Functional connectivity specific to different frequency ranges (<0.1 Hz; 0.1-0.25 Hz; 0.25-0.75 Hz; 0.75-1.4 Hz was computed for both the low-TR and (for the two lower-frequency ranges the high-TR datasets using bandpass filters. In the low-TR data, cortical regions exhibited highest contribution of low-frequency fluctuations and the most marked low-frequency peak in the spectrum, while the time courses in subcortical grey matter regions as well as the insula were strongly contaminated by high-frequency signals. White matter and CSF regions had highest contribution of high-frequency fluctuations and a mostly flat power spectrum. In the high-TR data, the basic patterns of the low-TR data can be recognized, but the high-frequency proportions of the signal fluctuations are folded into the low frequency range, thus obfuscating the low-frequency dynamics. Regions with higher proportion of high-frequency oscillations in the low-TR data showed flatter power spectra in the high-TR data due to aliasing of the high-frequency signal components, leading to loss of specificity in the signal from these regions in high-TR data. Functional connectivity analyses showed that there are correlations between resting-state signal fluctuations of distant brain regions even at high frequencies, which can be measured using low-TR fMRI. On the other hand, in the high-TR data, loss of specificity of measured fluctuations leads to lower sensitivity in detecting functional connectivity. This underlines the advantages of low

  13. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  14. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).

    Science.gov (United States)

    Fox, Michael D; Halko, Mark A; Eldaief, Mark C; Pascual-Leone, Alvaro

    2012-10-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. How motor, cognitive and musical expertise shapes the brain: Focus on fMRI and EEG resting-state functional connectivity

    DEFF Research Database (Denmark)

    Cantou, Pauline; Platel, Hervé; Desgranges, Béatrice

    2017-01-01

    about functional cerebral reorganization due to expertise at the whole-brain level and might facilitate comparison across studies. Resting-state functional MRI and EEG makes it possible to explore the functional traces of expertise in the brain by measuring temporal correlations of blood oxygen level......, to determine whether there is a domain-specific neural signature of expertise. After highlighting expertise-related changes within resting-state networks for each domain, we discuss their specificity to the trained activity and the methodological considerations concerning different conditions and analyses used......-dependent (BOLD) and spontaneous neural activity fluctuations at rest. Since these correlations are thought to reflect a prior history co-activation of brain regions, we propose reviewing studies that focused on the effects of expertise in the motor, cognitive and musical domains on brain plasticity at rest...

  16. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW.

    Science.gov (United States)

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    About 10% of trauma-exposed individuals develop PTSD. Although a growing number of studies have investigated resting-state abnormalities in PTSD, inconsistent results suggest a need for a meta-analysis and a systematic review. We conducted a systematic literature search in four online databases using keywords for PTSD, functional neuroimaging, and resting-state. In total, 23 studies matched our eligibility criteria. For the meta-analysis, we included 14 whole-brain resting-state studies, reporting data on 663 participants (298 PTSD patients and 365 controls). We used the activation likelihood estimation approach to identify concurrence of whole-brain hypo- and hyperactivations in PTSD patients during rest. Seed-based studies could not be included in the quantitative meta-analysis. Therefore, a separate qualitative systematic review was conducted on nine seed-based functional connectivity studies. The meta-analysis showed consistent hyperactivity in the ventral anterior cingulate cortex and the parahippocampus/amygdala, but hypoactivity in the (posterior) insula, cerebellar pyramis and middle frontal gyrus in PTSD patients, compared to healthy controls. Partly concordant with these findings, the systematic review on seed-based functional connectivity studies showed enhanced salience network (SN) connectivity, but decreased default mode network (DMN) connectivity in PTSD. Combined, these altered resting-state connectivity and activity patterns could represent neurobiological correlates of increased salience processing and hypervigilance (SN), at the cost of awareness of internal thoughts and autobiographical memory (DMN) in PTSD. However, several discrepancies between findings of the meta-analysis and systematic review were observed, stressing the need for future studies on resting-state abnormalities in PTSD patients. © 2016 Wiley Periodicals, Inc.

  17. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    Science.gov (United States)

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  18. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    Science.gov (United States)

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All

  19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    Science.gov (United States)

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all pRest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory

  20. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    Science.gov (United States)

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to

  1. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  2. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    OpenAIRE

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2013-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bu...

  3. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  4. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    Science.gov (United States)

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  6. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity.

    Science.gov (United States)

    Chan, Russell W; Leong, Alex T L; Ho, Leon C; Gao, Patrick P; Wong, Eddie C; Dong, Celia M; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X

    2017-08-15

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.

  7. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  8. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    Science.gov (United States)

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-09-01

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.

  9. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  10. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  11. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    Science.gov (United States)

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory.

    Science.gov (United States)

    del Río, David; Cuesta, Pablo; Bajo, Ricardo; García-Pacios, Javier; López-Higes, Ramón; del-Pozo, Francisco; Maestú, Fernando

    2012-11-01

    Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4-8 Hz), low alpha (8-10 Hz), high alpha (10-13 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    Science.gov (United States)

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  15. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.

    Science.gov (United States)

    Alamian, Golnoush; Hincapié, Ana-Sofía; Pascarella, Annalisa; Thiery, Thomas; Combrisson, Etienne; Saive, Anne-Lise; Martel, Véronique; Althukov, Dmitrii; Haesebaert, Frédéric; Jerbi, Karim

    2017-09-01

    Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  17. A Bayesian Double Fusion Model for Resting-State Brain Connectivity Using Joint Functional and Structural Data

    KAUST Repository

    Kang, Hakmook; Ombao, Hernando; Fonnesbeck, Christopher; Ding, Zhaohua; Morgan, Victoria L.

    2017-01-01

    DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC

  18. Identification of Resting State Networks Involved in Executive Function.

    Science.gov (United States)

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  19. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  20. Alcohol affects the brain's resting-state network in social drinkers.

    Directory of Open Access Journals (Sweden)

    Chrysa Lithari

    Full Text Available Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN. To test our hypothesis, electroencephalographic (EEG measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC on standardized Low Resolution Electromagnetic Tomography (sLORETA solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected in alpha, beta (eyes-open and theta bands (eyes-closed following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05. Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo. Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as

  1. Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: a resting-PET brain metabolism study.

    Directory of Open Access Journals (Sweden)

    Laura Moreno-López

    Full Text Available INTRODUCTION: Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. METHODS: Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM (using Statistical Parametric Mapping voxel-based (VB whole-brain analyses. In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. RESULTS: The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. CONCLUSIONS: Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.

  2. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation.

    Science.gov (United States)

    Wang, J; Hao, Z; Wang, H

    2018-01-01

    The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC). The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  3. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-10-01

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Resting state functional connectivity: its physiological basis and application in neuropharmacology.

    Science.gov (United States)

    Lu, Hanbing; Stein, Elliot A

    2014-09-01

    Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Published by Elsevier Ltd.

  5. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-07-01

    Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery

  6. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.

    Science.gov (United States)

    Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T

    2017-03-01

    Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task

  7. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    OpenAIRE

    Tingting Xu; Kathryn R. Cullen; Bryon Mueller; Mindy W. Schreiner; Kelvin O. Lim; S. Charles Schulz; Keshab K. Parhi

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and construc...

  8. A Bayesian Double Fusion Model for Resting-State Brain Connectivity Using Joint Functional and Structural Data

    KAUST Repository

    Kang, Hakmook

    2017-03-20

    Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC) into estimating FC. In our proposed approach, SC based on DTI data is used to construct an informative prior for FC based on resting-state fMRI data through the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.

  9. Infinite Relational Modeling of Functional Connectivity in Resting State fMRI

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer H.; Dogonowski, Anne Marie

    2010-01-01

    Functional magnetic resonance imaging (fMRI) can be applied to study the functional connectivity of the neural elements which form complex network at a whole brain level. Most analyses of functional resting state networks (RSN) have been based on the analysis of correlation between the temporal...... dynamics of various regions of the brain. While these models can identify coherently behaving groups in terms of correlation they give little insight into how these groups interact. In this paper we take a different view on the analysis of functional resting state networks. Starting from the definition...... of resting state as functional coherent groups we search for functional units of the brain that communicate with other parts of the brain in a coherent manner as measured by mutual information. We use the infinite relational model (IRM) to quantify functional coherent groups of resting state networks...

  10. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation

    Directory of Open Access Journals (Sweden)

    J. Wang

    2018-05-01

    Full Text Available The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC. The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  11. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  12. Activity flow over resting-state networks shapes cognitive task activations.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H

    2016-12-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.

  13. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.

    Science.gov (United States)

    Liu, Chun-Hong; Ma, Xin; Wu, Xia; Zhang, Yu; Zhou, Fu-Chun; Li, Feng; Tie, Chang-Le; Dong, Jie; Wang, Yong-Jun; Yang, Zhi; Wang, Chuan-Yue

    2013-03-05

    Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression (UD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right

  14. Sparse dictionary learning of resting state fMRI networks.

    Science.gov (United States)

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  15. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Yang Shiqi; Wu Guangyao; Lin Fuchun; Kong Xiangquan; Zhou Guofeng; Pang Haopeng; Zhu Ling; Liu Guobing; Lei Hao

    2012-01-01

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  16. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    Science.gov (United States)

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  18. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    International Nuclear Information System (INIS)

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  19. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders

    2015-01-01

    of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global......The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function...... these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.Journal of Cerebral Blood Flow & Metabolism advance online publication, 8 October 2014; doi:10...

  20. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  1. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  2. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  3. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes.

    Science.gov (United States)

    Czerniak, Suzanne M; Sikoglu, Elif M; Liso Navarro, Ana A; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-06-01

    Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.

  4. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  5. Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging.

    Science.gov (United States)

    Bernier, Michaël; Croteau, Etienne; Castellano, Christian-Alexandre; Cunnane, Stephen C; Whittingstall, Kevin

    2017-04-15

    Positron emission tomography using [18F]-fluorodeoxyglucose (PET-FDG) is the primary imaging modality used to measure glucose metabolism in the brain (CMRGlu). CMRGlu has been used as a biomarker of brain aging and neurodegenerative diseases, but the complexity and invasive nature of PET often limits its use in research. There is therefore great interest in developing non-invasive metrics for estimating brain CMRGlu. We therefore investigated resting state fMRI metrics such as regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and regional global connectivity (Closeness) with multiple analytical approaches to determine their relationship to CMRGlu. We investigated this relation in two distinct cognitively healthy populations separated by age (27 young adults and 35 older adults). Overall, we found that both regionally and across participants, ReHo strongly correlated with CMRGlu in healthy young and older adults. Moreover, ReHo demonstrated the same age-related differences as CMRGlu throughout all cortical regions, particularly in the default network and frontal areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Resting-state fMRI and social cognition: An opportunity to connect.

    Science.gov (United States)

    Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M

    2017-09-01

    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  8. [Brain activitivation of euthymic patients with Type I bipolar disorder in resting state Default Mode Network].

    Science.gov (United States)

    Vargas, Cristian; Pineda, Julián; Calvo, Víctor; López-Jaramillo, Carlos

    2014-01-01

    As there are still doubts about brain connectivity in type I bipolar disorder (BID), resting-state functional magnetic resonance imaging (RS-fMRI) studies are necessary during euthymia for a better control of confounding factors. To evaluate the differences in brain activation between euthymic BID patients and control subjects using resting state- functional-magnetic resonance imaging (RS-fMRI), and to identify the lithium effect in these activations. A cross-sectional study was conducted on 21 BID patients (10 receiving lithium only, and 11 non-medicated) and 12 healthy control subjects, using RS fMRI and independent component analysis (ICA). Increased activation was found in the right hippocampus (P=.049) and posterior cingulate (P=.040) within the Default Mode Network (DMN) when BID and control group were compared. No statistically significant differences were identified between BID on lithium only therapy and non-medicated BID patients. The results suggest that there are changes in brain activation and connectivity in BID even during euthymic phase and mainly within the DMN network, which could be relevant in affect regulation. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    Science.gov (United States)

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  10. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    2014-01-01

    Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

  11. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  12. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  13. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  14. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    Science.gov (United States)

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (Pfood intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (Pfood intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  15. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    Science.gov (United States)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  16. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Science.gov (United States)

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  17. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  18. The effects of a mid-task break on the brain connectome in healthy participants: A resting-state functional MRI study.

    Science.gov (United States)

    Sun, Yu; Lim, Julian; Dai, Zhongxiang; Wong, KianFoong; Taya, Fumihiko; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios

    2017-05-15

    Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the effects of receiving a rest break on the topological properties of brain connectivity networks via a two-session experimental paradigm, in which one session comprised four successive blocks of a mentally demanding visual selective attention task (No-rest session), whereas the other contained a rest break between the second and third task blocks (Rest session). Functional brain networks were constructed using resting-state functional MRI data recorded from 20 healthy adults before and after the performance of the task blocks. Behaviorally, subjects displayed robust time-on-task (TOT) declines, as reflected by increasingly slower reaction time as the test progressed and lower post-task self-reported ratings of engagement. However, we did not find a significant effect on task performance due to administering a mid-task break. Compared to pre-task measurements, post-task functional brain networks demonstrated an overall decrease of optimal small-world properties together with lower global efficiency. Specifically, we found TOT-related reduced nodal efficiency in brain regions that mainly resided in the subcortical areas. More interestingly, a significant block-by-session interaction was revealed in local efficiency, attributing to a significant post-task decline in No-rest session and a preserved local efficiency when a mid-task break opportunity was introduced in the Rest session. Taken together, these findings augment our understanding of how the resting brain reorganizes following the accumulation of prolonged task, suggest dissociable processes between the neural mechanisms of fatigue and recovery, and provide

  19. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  20. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    International Nuclear Information System (INIS)

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET- 18 FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  1. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.

  2. Resting state FMRI research in child psychiatric disorders

    NARCIS (Netherlands)

    Oldehinkel, Marianne; Francx, Winke; Beckmann, Christian; Buitelaar, Jan K.; Mennes, Maarten

    2013-01-01

    Concurring with the shift from linking functions to specific brain areas towards studying network integration, resting state FMRI (R-FMRI) has become an important tool for delineating the functional network architecture of the brain. Fueled by straightforward data collection, R-FMRI analysis methods

  3. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  4. Comparison of continuously acquired resting state and extracted analogues from active tasks.

    Science.gov (United States)

    Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-10-01

    Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Effectiveness of cognitive-coping therapy and alteration of resting-state brain function in obsessive-compulsive disorder.

    Science.gov (United States)

    Zhao, Hong-Zeng; Wang, Chang-Hong; Gao, Zhong-Zhan; Ma, Jian-Dong; Huang, Ping; Li, Heng-Fen; Sang, De-En; Shan, Xiao-Wen; Kou, Shao-Jie; Li, Zhi-Rong; Ma, Li; Zhang, Zhao-Hui; Zhang, Jian-Hong; Ouyang, Hua; Lian, Hong-Kai; Zang, Yu-Feng; Hu, Xian-Zhang

    2017-01-15

    Cognitive-coping therapy (CCT), integrating cognitive theory with stress-coping theory, is an efficacious therapy for obsessive-compulsive disorder (OCD). However, the potential brain mediation for the effectiveness remains unclear. We sought to investigate differences of resting-state brain function between OCD and healthy controls and if such differences would be changed by a four-week CCT. Thirty-one OCD patients were recruited and randomized into CCT (n=15) and pharmacotherapy plus CCT (pCCT, n=16) groups, together with 25 age-, gender- and education-matched healthy controls. The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was scored to evaluate the severity in symptoms. Resting-state functional magnetic resonance imaging was scanned pre- and post-treatment. For patients, Y-BOCS scores were reduced during four-week treatment for CCT and pCCT (Pleft hippocampus, parahippocampus, and temporal lobes, but lower in the right orbitofrontal cortex, rectus, bilateral calcarine, cuneus, lingual, occipital, left parietal, postcentral, precentral, and parietal (corrected Pbrain function was different between OCD and controls; such differences disappeared after OCD symptoms were relieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    Science.gov (United States)

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  7. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  8. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    Science.gov (United States)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  10. Graph-based network analysis of resting-state functional MRI.

    Science.gov (United States)

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  11. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake

    OpenAIRE

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schi?th, H B

    2016-01-01

    BACKGROUND: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. OBJECTIVE: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese...

  12. Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent Individuals: A Resting-State fMRI Study

    OpenAIRE

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subj...

  13. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  14. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  15. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    International Nuclear Information System (INIS)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming; Yang, Fang; Li, Qian; Hu, Zheng; Dante, Mantini; Li, Kai

    2017-01-01

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  16. Moral competence and brain connectivity: a resting-state fMRI study

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W.; Rao, Hengyi; Robertson, Diana C.

    2016-01-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. PMID:27456537

  17. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning

    Science.gov (United States)

    Branco, Paulo; Seixas, Daniela; Deprez, Sabine; Kovacs, Silvia; Peeters, Ronald; Castro, São L.; Sunaert, Stefan

    2016-01-01

    Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way. PMID:26869899

  18. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  19. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    Science.gov (United States)

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.

  20. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. The Impact of Age and Cognitive Reserve on Resting-State Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Jessica I. Fleck

    2017-12-01

    Full Text Available Cognitive reserve (CR is a protective mechanism that supports sustained cognitive function following damage to the physical brain associated with age, injury, or disease. The goal of the research was to identify relationships between age, CR, and brain connectivity. A sample of 90 cognitively normal adults, ages 45–64 years, had their resting-state brain activity recorded with electroencephalography (EEG and completed a series of memory and executive function assessments. CR was estimated using years of education and verbal IQ scores. Participants were divided into younger and older age groups and low- and high-CR groups. We observed greater left- than right-hemisphere coherence in younger participants, and greater right- than left-hemisphere coherence in older participants. In addition, greater coherence was observed under eyes-closed than eyes-open recording conditions for both low-CR and high-CR participants, with a more substantial difference between recording conditions in individuals high in CR regardless of age. Finally, younger participants low in CR exhibited greater mean coherence than younger participants high in CR, whereas the opposite pattern was observed in older participants, with greater coherence in older participants high in CR. Together, these findings suggest the possibility of a shift in the relationship between CR and brain connectivity during aging.

  2. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  3. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  4. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    Science.gov (United States)

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  5. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  6. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.

    Science.gov (United States)

    Lau, W K W; Leung, M-K; Lee, T M C; Law, A C K

    2016-04-26

    Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD). As no effective drug can cure AD, early diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015. We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.

  7. Does resting-state connectivity reflect depressive rumination? A tale of two analyses.

    Science.gov (United States)

    Berman, Marc G; Misic, Bratislav; Buschkuehl, Martin; Kross, Ethan; Deldin, Patricia J; Peltier, Scott; Churchill, Nathan W; Jaeggi, Susanne M; Vakorin, Vasily; McIntosh, Anthony R; Jonides, John

    2014-12-01

    Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  9. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  10. Spatially distributed effects of mental exhaustion on resting-state FMRI networks.

    Science.gov (United States)

    Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer

    2014-01-01

    Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.

  11. Resting-state fMRI study of patients with fragile X syndrome

    Science.gov (United States)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pright inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  12. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    Science.gov (United States)

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  13. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Extraversion and Neuroticism relate to topological properties of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Qing eGao

    2013-06-01

    Full Text Available With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e. betweenness centrality (BC, was positively associated with neuroticism scores in the right precentral gyrus, right caudate nucleus, right olfactory cortex and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus, indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  15. Extraversion and neuroticism relate to topological properties of resting-state brain networks.

    Science.gov (United States)

    Gao, Qing; Xu, Qiang; Duan, Xujun; Liao, Wei; Ding, Jurong; Zhang, Zhiqiang; Li, Yuan; Lu, Guangming; Chen, Huafu

    2013-01-01

    With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here, we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e., betweenness centrality (BC), was positively associated with neuroticism scores in the right precentral gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG), indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  16. Moral competence and brain connectivity: A resting-state fMRI study.

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Analysis of Altered Baseline Brain Activity in Drug-Naive Adult Patients with Social Anxiety Disorder Using Resting-State Functional MRI

    OpenAIRE

    Qiu, Changjian; Feng, Yuan; Meng, Yajing; Liao, Wei; Huang, Xiaoqi; Lui, Su; Zhu, Chunyan; Chen, Huafu; Gong, Qiyong; Zhang, Wei

    2015-01-01

    Objective We hypothesize that the amplitude of low-frequency fluctuations (ALFF) is involved in the altered regional baseline brain function in social anxiety disorder (SAD). The aim of the study was to analyze the altered baseline brain activity in drug-naive adult patients with SAD. Methods We investigated spontaneous and baseline brain activities by obtaining the resting-state functional magnetic resonance imaging data of 20 drug-na?ve adult SAD patients and 19 healthy controls. Voxels wer...

  18. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder.

    Science.gov (United States)

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-12-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.

  19. Yerba Maté (Ilex paraguariensis) Metabolic, Satiety, and Mood State Effects at Rest and during Prolonged Exercise.

    Science.gov (United States)

    Alkhatib, Ahmad; Atcheson, Roisin

    2017-08-15

    Yerba Maté (YM), has become a popular herb ingested for enhancing metabolic health and weight-loss outcomes. No studies have tested the combined metabolic, satiety, and psychomotor effects of YM during exercise. We tested whether YM ingestion affects fatty acid oxidation (FAO), profile of mood state score (POMS), and subjective appetite scale (VAS), during prolonged moderate exercise. Twelve healthy active females were randomized to ingest either 2 g of YM or placebo (PLC) in a repeated-measures design. Participants rested for 120 min before performing a 30-min cycling exercise corresponding to individuals' crossover point intensity (COP). FAO, determined using indirect calorimetry, was significantly higher during the 30-min exercise in YM vs. PLC (0.21 ± 0.07 vs. 0.17 ± 0.06 g/min, p exercise at targeted "fat-loss"' intensities augments FAO and improves measures of satiety and mood state. Such positive combined metabolic, satiety, and psychomotor effects may provide an important role for designing future fat and weight-loss lifestyle interventions.

  20. Resting-state functional connectivity remains unaffected by preceding exposure to aversive visual stimuli.

    Science.gov (United States)

    Geissmann, Léonie; Gschwind, Leo; Schicktanz, Nathalie; Deuring, Gunnar; Rosburg, Timm; Schwegler, Kyrill; Gerhards, Christiane; Milnik, Annette; Pflueger, Marlon O; Mager, Ralph; de Quervain, Dominique J F; Coynel, David

    2018-02-15

    While much is known about immediate brain activity changes induced by the confrontation with emotional stimuli, the subsequent temporal unfolding of emotions has yet to be explored. To investigate whether exposure to emotionally aversive pictures affects subsequent resting-state networks differently from exposure to neutral pictures, a resting-state fMRI study implementing a two-group repeated-measures design in healthy young adults (N = 34) was conducted. We focused on investigating (i) patterns of amygdala whole-brain and hippocampus connectivity in both a seed-to-voxel and seed-to-seed approach, (ii) whole-brain resting-state networks with an independent component analysis coupled with dual regression, and (iii) the amygdala's fractional amplitude of low frequency fluctuations, all while EEG recording potential fluctuations in vigilance. In spite of the successful emotion induction, as demonstrated by stimuli rating and a memory-facilitating effect of negative emotionality, none of the resting-state measures was differentially affected by picture valence. In conclusion, resting-state networks connectivity as well as the amygdala's low frequency oscillations appear to be unaffected by preceding exposure to widely used emotionally aversive visual stimuli in healthy young adults. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  2. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  3. Neuroaging through the Lens of the Resting State Networks

    Directory of Open Access Journals (Sweden)

    Filippo Cieri

    2018-01-01

    Full Text Available Resting state functional magnetic resonance imaging (rs-fMRI allows studying spontaneous brain activity in absence of task, recording changes of Blood Oxygenation Level Dependent (BOLD signal. rs-fMRI enables identification of brain networks also called Resting State Networks (RSNs including the most studied Default Mode Network (DMN. The simplicity and speed of execution make rs-fMRI applicable in a variety of normal and pathological conditions. Since it does not require any task, rs-fMRI is particularly useful for protocols on patients, children, and elders, increasing participant’s compliance and reducing intersubjective variability due to the task performance. rs-fMRI has shown high sensitivity in identification of RSNs modifications in several diseases also in absence of structural modifications. In this narrative review, we provide the state of the art of rs-fMRI studies about physiological and pathological aging processes. First, we introduce the background of resting state; then we review clinical findings provided by rs-fMRI in physiological aging, Mild Cognitive Impairment (MCI, Alzheimer Dementia (AD, and Late Life Depression (LLD. Finally, we suggest future directions in this field of research and its potential clinical applications.

  4. Resting-state slow wave power, healthy aging and cognitive performance

    OpenAIRE

    Eleni L. Vlahou; Franka Thurm; Iris-Tatjana Kolassa; Winfried Schlee

    2014-01-01

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18–89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show tha...

  5. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  6. Changes in dynamic resting state network connectivity following aphasia therapy.

    Science.gov (United States)

    Duncan, E Susan; Small, Steven L

    2017-10-24

    Resting state magnetic resonance imaging (rsfMRI) permits observation of intrinsic neural networks produced by task-independent correlations in low frequency brain activity. Various resting state networks have been described, with each thought to reflect common engagement in some shared function. There has been limited investigation of the plasticity in these network relationships after stroke or induced by therapy. Twelve individuals with language disorders after stroke (aphasia) were imaged at multiple time points before (baseline) and after an imitation-based aphasia therapy. Language assessment using a narrative production task was performed at the same time points. Group independent component analysis (ICA) was performed on the rsfMRI data to identify resting state networks. A sliding window approach was then applied to assess the dynamic nature of the correlations among these networks. Network correlations during each 30-second window were used to cluster the data into ten states for each window at each time point for each subject. Correlation was performed between changes in time spent in each state and therapeutic gains on the narrative task. The amount of time spent in a single one of the (ten overall) dynamic states was positively associated with behavioral improvement on the narrative task at the 6-week post-therapy maintenance interval, when compared with either baseline or assessment immediately following therapy. This particular state was characterized by minimal correlation among the task-independent resting state networks. Increased functional independence and segregation of resting state networks underlies improvement on a narrative production task following imitation-based aphasia treatment. This has important clinical implications for the targeting of noninvasive brain stimulation in post-stroke remediation.

  7. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  8. Resting State Network Estimation in Individual Subjects

    Science.gov (United States)

    Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.

    2014-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260

  9. Resting state glucose utilization and the CERAD cognitive battery in patients with Alzheimer's disease.

    Science.gov (United States)

    Teipel, S J; Willoch, F; Ishii, K; Bürger, K; Drzezga, A; Engel, R; Bartenstein, P; Möller, H-J; Schwaiger, M; Hampel, H

    2006-05-01

    The present study examined the cortical functional representation of neuropsychological domains in Alzheimer's disease (AD) using positron emission tomography (PET) and the neuropsychological assessment battery of the Consortium to Establish a Registry of Alzheimer's Disease (CERAD). Thirty patients with clinical probable AD and 10 elderly healthy controls underwent (18)FDG brain PET imaging during a resting state. Correlations between metabolic values and cognitive measures were determined using a region of interest analysis with NEUROSTAT (University of Michigan, USA) and a voxel-based analysis with SPM96 (Wellcome Department, London, UK). Specific correlations were seen between measures of episodic memory, verbal fluency and naming and left hemispheric temporal and prefrontal metabolism. Drawing was correlated with metabolism in left prefrontal and left inferior parietal regions. The presented data support the use of metabolic-cognitive correlations to demonstrate the neuronal substrates of cognitive impairment in AD. Subtests of the CERAD battery give a good representation of left, but not of right hemisphere function in AD.

  10. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery.

    Science.gov (United States)

    Wiemerslage, Lyle; Zhou, Wei; Olivo, Gaia; Stark, Julia; Hogenkamp, Pleunie S; Larsson, Elna-Marie; Sundbom, Magnus; Schiöth, Helgi B

    2017-02-01

    Past studies utilizing resting-state functional MRI (rsfMRI), have shown that obese humans exhibit altered activity in brain areas related to reward compared to normal-weight controls. However, to what extent bariatric surgery-induced weight loss alters resting-state brain activity in obese humans is less well-studied. Thus, we measured the fractional amplitude of low-frequency fluctuations from eyes-closed, rsfMRI in obese females (n = 11, mean age = 42 years, mean BMI = 41 kg/m 2 ) in both a pre- and postprandial state at two time points: four weeks before, and four weeks after bariatric surgery. Several brain areas showed altered resting-state activity following bariatric surgery, including the putamen, insula, cingulate, thalamus and frontal regions. Activity augmented by surgery was also dependent on prandial state. For example, in the fasted state, activity in the middle frontal and pre- and postcentral gyri was found to be decreased after surgery. In the sated state, activity within the insula was increased before, but not after surgery. Collectively, our results suggest that resting-state neural functions are rapidly affected following bariatric surgery and the associated weight loss and change in diet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.

    Science.gov (United States)

    Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-04-27

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long

  12. Exercise Effects on the Brain and Sensorimotor Function in Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; hide

    2016-01-01

    Long duration spaceflight microgravity results in cephalad fluid shifts and deficits in posture control and locomotion. Effects of microgravity on sensorimotor function have been investigated on Earth using head down tilt bed rest (HDBR). HDBR serves as a spaceflight analogue because it mimics microgravity in body unloading and bodily fluid shifts. Preliminary results from our prior 70 days HDBR studies showed that HDBR is associated with focal gray matter (GM) changes and gait and balance deficits, as well as changes in brain functional connectivity. In consideration of the health and performance of crewmembers we investigated whether exercise reduces the effects of HDBR on GM, functional connectivity, and motor performance. Numerous studies have shown beneficial effects of exercise on brain health. We therefore hypothesized that an exercise intervention during HDBR could potentially mitigate the effects of HDBR on the central nervous system. Eighteen subjects were assessed before (12 and 7 days), during (7, 30, and 70 days) and after (8 and 12 days) 70 days of 6-degrees HDBR at the NASA HDBR facility in UTMB, Galveston, TX, US. Each subject was randomly assigned to a control group or one of two exercise groups. Exercise consisted of daily supine exercise which started 20 days before the start of HDBR. The exercise subjects participated either in regular aerobic and resistance exercise (e.g. squat, heel raise, leg press, cycling and treadmill running), or aerobic and resistance exercise using a flywheel apparatus (rowing). Aerobic and resistance exercise intensity in both groups was similar, which is why we collapsed the two exercise groups for the current experiment. During each time point T1-weighted MRI scans and resting state functional connectivity scans were obtained using a 3T Siemens scanner. Focal changes over time in GM density were assessed using voxel based morphometry (VBM8) under SPM. Changes in resting state functional connectivity was assessed

  13. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    Science.gov (United States)

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  15. Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study.

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    Full Text Available UNLABELLED: Pediatric bipolar disorder (PBD is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially during resting state. Resting state brain activity measured by fMRI might help to explore neurobiological biomarkers of the disorder. METHODS: Regional homogeneity (ReHo was examined with resting-state fMRI (RS-fMRI on 15 patients with PBD in manic state, with 15 age-and sex-matched healthy youth subjects as controls. RESULTS: Compared with the healthy controls, the patients with PBD showed altered ReHo in the cortical and subcortical structures. The ReHo measurement of the PBD group was negatively correlated with the score of Young Mania Rating Scale (YMRS in the superior frontal gyrus. Positive correlations between the ReHo measurement and the score of YMRS were found in the hippocampus and the anterior cingulate cortex in the PBD group. CONCLUSIONS: Altered regional brain activity is present in patients with PBD during manic state. This study presents new evidence for abnormal ventral-affective and dorsal-cognitive circuits in PBD during resting state and may add fresh insights into the pathophysiological mechanisms underlying PBD.

  16. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    OpenAIRE

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  17. Your resting brain CAREs about your risky behavior.

    Directory of Open Access Journals (Sweden)

    Christine L Cox

    2010-08-01

    Full Text Available Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI and resting state functional connectivity (RSFC methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate. We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion was associated with 1 stronger positive functional connectivity between right inferior frontal gyrus (IFG and right insula, and 2 weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that

  18. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  19. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    Science.gov (United States)

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  20. Patients with Chronic Visceral Pain Show Sex-Related Alterations in Intrinsic Oscillations of the Resting Brain

    Science.gov (United States)

    Hong, Jui-Yang; Kilpatrick, Lisa A.; Labus, Jennifer; Gupta, Arpana; Jiang, Zhiguo; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Ebrat, Bahar; Smith, Suzanne; Tillisch, Kirsten; Naliboff, Bruce

    2013-01-01

    Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI. PMID:23864686

  1. Changes of Brain Glucose Metabolism in the Pretreatment Patients with Non-Small Cell Lung Cancer: A Retrospective PET/CT Study.

    Science.gov (United States)

    Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian

    2016-01-01

    The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (Pbrain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function.

  2. Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study

    NARCIS (Netherlands)

    Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J.

    2011-01-01

    Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving

  3. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  4. Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study.

    Science.gov (United States)

    Meng, Lu; Xiang, Jing

    2016-11-01

    The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  6. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  7. Superiority illusion arises from resting-state brain networks modulated by dopamine.

    Science.gov (United States)

    Yamada, Makiko; Uddin, Lucina Q; Takahashi, Hidehiko; Kimura, Yasuyuki; Takahata, Keisuke; Kousa, Ririko; Ikoma, Yoko; Eguchi, Yoko; Takano, Harumasa; Ito, Hiroshi; Higuchi, Makoto; Suhara, Tetsuya

    2013-03-12

    The majority of individuals evaluate themselves as superior to average. This is a cognitive bias known as the "superiority illusion." This illusion helps us to have hope for the future and is deep-rooted in the process of human evolution. In this study, we examined the default states of neural and molecular systems that generate this illusion, using resting-state functional MRI and PET. Resting-state functional connectivity between the frontal cortex and striatum regulated by inhibitory dopaminergic neurotransmission determines individual levels of the superiority illusion. Our findings help elucidate how this key aspect of the human mind is biologically determined, and identify potential molecular and neural targets for treatment for depressive realism.

  8. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study

    NARCIS (Netherlands)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard Jack Anton; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F.

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state

  9. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  10. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  11. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    Science.gov (United States)

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  12. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  13. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Discovering EEG resting state alterations of semantic dementia.

    Science.gov (United States)

    Grieder, Matthias; Koenig, Thomas; Kinoshita, Toshihiko; Utsunomiya, Keita; Wahlund, Lars-Olof; Dierks, Thomas; Nishida, Keiichiro

    2016-05-01

    Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer's disease. Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    Science.gov (United States)

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio

    2016-11-01

    Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. Heterogeneity across imaging studies. Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types.

    Science.gov (United States)

    Li, Wei-Ling; Fu, Chang; Xuan, Ang; Shi, Da-Peng; Gao, Yong-Ju; Zhang, Jie; Xu, Jun-Ling

    2015-02-05

    Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. One hundred and twenty patients with primary untreated lung cancer, who visited People's Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases), squamous cell carcinoma (43 cases), and small-cell carcinoma (25 cases). The whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM) software, with 50 age-matched and gender-matched healthy controls for comparison. The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255) was larger than those in the adenocarcinoma group (total voxel value 1217) and squamous cell carcinoma group (total voxel value 1292). The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  17. Preliminary Study of Brain Glucose Metabolism Changes in Patients with Lung Cancer of Different Histological Types

    Directory of Open Access Journals (Sweden)

    Wei-Ling Li

    2015-01-01

    Full Text Available Background: Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. Methods: One hundred and twenty patients with primary untreated lung cancer, who visited People′s Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases, squamous cell carcinoma (43 cases, and small-cell carcinoma (25 cases. The whole body 18F-fluorodeoxyglucose (18F-FDG positron emission tomography (PET/computed tomography (CT of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM software, with 50 age-matched and gender-matched healthy controls for comparison. Results: The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255 was larger than those in the adenocarcinoma group (total voxel value 1217 and squamous cell carcinoma group (total voxel value 1292. Conclusions: The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  18. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    Science.gov (United States)

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  19. Temporal reliability and lateralization of the resting-state language network.

    Science.gov (United States)

    Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong

    2014-01-01

    The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.

  20. Temporal reliability and lateralization of the resting-state language network.

    Directory of Open Access Journals (Sweden)

    Linlin Zhu

    Full Text Available The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.

  1. Temporal Reliability and Lateralization of the Resting-State Language Network

    Science.gov (United States)

    Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong

    2014-01-01

    The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058

  2. Effects of diabetes on brain metabolism - is brain glycogen a significant player?

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S.

    2015-01-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the br......Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose...... to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may...... understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes....

  3. Cross coherence independent component analysis in resting and action states EEG discrimination

    International Nuclear Information System (INIS)

    Almurshedi, A; Ismail, A K

    2014-01-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition

  4. Abnormal Resting-State Functional Connectivity in Progressive Supranuclear Palsy and Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Komal Bharti

    2017-06-01

    Full Text Available BackgroundPathological and MRI-based evidence suggests that multiple brain structures are likely to be involved in functional disconnection between brain areas. Few studies have investigated resting-state functional connectivity (rsFC in progressive supranuclear palsy (PSP and corticobasal syndrome (CBS. In this study, we investigated within- and between-network rsFC abnormalities in these two conditions.MethodsTwenty patients with PSP, 11 patients with CBS, and 16 healthy subjects (HS underwent a resting-state fMRI study. Resting-state networks (RSNs were extracted to evaluate within- and between-network rsFC using the Melodic and FSLNets software packages.ResultsIncreased within-network rsFC was observed in both PSP and CBS patients, with a larger number of RSNs being involved in CBS. Within-network cerebellar rsFC positively correlated with mini-mental state examination scores in patients with PSP. Compared to healthy volunteers, PSP and CBS patients exhibit reduced functional connectivity between the lateral visual and auditory RSNs, with PSP patients additionally showing lower functional connectivity between the cerebellar and insular RSNs. Moreover, rsFC between the salience and executive-control RSNs was increased in patients with CBS compared to HS.ConclusionThis study provides evidence of functional brain reorganization in both PSP and CBS. Increased within-network rsFC could represent a higher degree of synchronization in damaged brain areas, while between-network rsFC abnormalities may mainly reflect degeneration of long-range white matter fibers.

  5. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Lv Han

    2014-01-01

    Full Text Available Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI technique. The present study used unilateral PT patients (n=42 and age-, sex-, and education-matched normal control subjects (n=42 to investigate the changes in structural and amplitude of low-frequency (ALFF of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients.

  6. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    Science.gov (United States)

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.

  7. Large-scale Granger causality analysis on resting-state functional MRI

    Science.gov (United States)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  8. Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children

    Science.gov (United States)

    Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

    2011-01-01

    A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…

  9. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  10. Information Flow Between Resting-State Networks.

    Science.gov (United States)

    Diez, Ibai; Erramuzpe, Asier; Escudero, Iñaki; Mateos, Beatriz; Cabrera, Alberto; Marinazzo, Daniele; Sanz-Arigita, Ernesto J; Stramaglia, Sebastiano; Cortes Diaz, Jesus M

    2015-11-01

    The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method--addressing differences in IF between RSNs for any generic data--can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.

  11. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.

    Science.gov (United States)

    Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S

    2017-03-08

    Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across

  12. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  13. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  14. Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses.

    Science.gov (United States)

    Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito

    2018-04-24

    Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.

  15. Abnormal Baseline Brain Activity in Drug-Naïve Patients with Tourette Syndrome: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    Yonghua eCui

    2014-01-01

    Full Text Available Tourette Syndrome (TS is a childhood-onset chronic disorder characterized by the presence of multiple motor and vocal tics. This study investigated spontaneous low-frequency fluctuations in TS patients during resting-state functional magnetic resonance imaging (fMRI scans. We obtained resting-state fMRI scans from seventeen drug-naïve TS children and fifteen demographically matched healthy children. We computed the amplitude of low frequency fluctuation (ALFF and fractional ALFF (fALFF of resting-state fMRI data to measure spontaneous brain activity, and assessed the between-group differences in ALFF/fALFF and the relationship between ALFF/fALFF and tic severity scores. Our results showed that the children with TS exhibited significantly decreased ALFF in the posterior cingulate gyrus/precuneus and bilateral parietal gyrus. fALFF was decreased in TS children in the anterior cingulated cortex, bilateral middle and superior frontal cortices and superior parietal lobule, and increased in the left putamen and bilateral thalamus. Moreover, we found significantly positive correlations between fALFF and tic severity scores in the right thalamus. Our study provides empirical evidence for abnormal spontaneous neuronal activity in TS patients, which may implicate the underlying neurophysiological mechanism in TS and demonstrate the possibility of applying ALFF/fALFF for clinical TS studies.

  16. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  18. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs, 33 early MCI (EMCI, 32 late MCI (LMCI, and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ scores and global Clinical Dementia Rating (CDR scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE

  19. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  20. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  2. Habenula functional resting-state connectivity in pediatric CRPS.

    Science.gov (United States)

    Erpelding, Nathalie; Sava, Simona; Simons, Laura E; Lebel, Alyssa; Serrano, Paul; Becerra, Lino; Borsook, David

    2014-01-01

    The habenula (Hb) is a small brain structure located in the posterior end of the medial dorsal thalamus and through medial (MHb) and lateral (LHb) Hb connections, it acts as a conduit of information between forebrain and brainstem structures. The role of the Hb in pain processing is well documented in animals and recently also in acute experimental pain in humans. However, its function remains unknown in chronic pain disorders. Here, we investigated Hb resting-state functional connectivity (rsFC) in patients with complex regional pain syndrome (CRPS) compared with healthy controls. Twelve pediatric patients with unilateral lower-extremity CRPS (9 females; 10-17 yr) and 12 age- and sex-matched healthy controls provided informed consent to participate in the study. In healthy controls, Hb functional connections largely overlapped with previously described anatomical connections in cortical, subcortical, and brainstem structures. Compared with controls, patients exhibited an overall Hb rsFC reduction with the rest of the brain and, specifically, with the anterior midcingulate cortex, dorsolateral prefrontal cortex, supplementary motor cortex, primary motor cortex, and premotor cortex. Our results suggest that Hb rsFC parallels anatomical Hb connections in the healthy state and that overall Hb rsFC is reduced in patients, particularly connections with forebrain areas. Patients' decreased Hb rsFC to brain regions implicated in motor, affective, cognitive, and pain inhibitory/modulatory processes may contribute to their symptomatology.

  3. A close link between metabolic activity and functional connectivity in the resting human brain

    Energy Technology Data Exchange (ETDEWEB)

    Passow, Susanne [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Specht, Karsten [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); Adamsen, Tom Christian [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Chemistry, University of Bergen (Norway); Biermann, Martin; Brekke, Njål [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen (Norway); Craven, Alexander Richard [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Ersland, Lars [Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Grüner, Renate [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Kleven-Madsen, Nina [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); Kvernenes, Ole-Heine [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Schwarzlmüller, Thomas [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Clinical Medicine, University of Bergen (Norway); Olesen, Rasmus [Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus (Denmark); Hugdahl, Kenneth [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Radiology, Haukeland University Hospital, Bergen (Norway); Division of Psychiatry, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway)

    2015-05-18

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  4. A close link between metabolic activity and functional connectivity in the resting human brain

    International Nuclear Information System (INIS)

    Passow, Susanne; Specht, Karsten; Adamsen, Tom Christian; Biermann, Martin; Brekke, Njål; Craven, Alexander Richard; Ersland, Lars; Grüner, Renate; Kleven-Madsen, Nina; Kvernenes, Ole-Heine; Schwarzlmüller, Thomas; Olesen, Rasmus; Hugdahl, Kenneth

    2015-01-01

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  5. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity.

    Science.gov (United States)

    Moeller, Scott J; London, Edythe D; Northoff, Georg

    2016-02-01

    Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of scanner acoustic background noise on strict resting-state fMRI

    Directory of Open Access Journals (Sweden)

    C. Rondinoni

    2013-04-01

    Full Text Available Functional MRI (fMRI resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs. Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal, while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  7. Effect of scanner acoustic background noise on strict resting-state fMRI.

    Science.gov (United States)

    Rondinoni, C; Amaro, E; Cendes, F; dos Santos, A C; Salmon, C E G

    2013-04-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a 'resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced "silent" pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  8. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    Science.gov (United States)

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  9. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    Directory of Open Access Journals (Sweden)

    José Pedro Castro

    2018-04-01

    Full Text Available The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis, cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD, Parkinson’s (PD or even Huntington’s (HD diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

  10. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-01-01

    Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD) have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM) volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons), and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons). This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD. PMID:29636704

  11. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Ji-Woo Seok

    2018-03-01

    Full Text Available Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons, and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons. This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD.

  12. Resting metabolic rate and postprandial thermogenesis in polycystic ovarian syndrome.

    Science.gov (United States)

    Segal, K R; Dunaif, A

    1990-07-01

    To determine whether the high frequency of obesity in women with polycystic ovary syndrome (PCO) is related to a defect in energy expenditure, resting metabolic rate (RMR) and the thermic response to a standard meal were compared in 10 obese PCO women, nine obese but otherwise normal women, and 11 lean women. All groups were matched with respect to age and fat-free mass and the two obese groups were matched for degree of obesity. RMR was measured by indirect calorimetry for 3 h on two days: (1) in the postabsorptive state; and (2) after a 720 kcal (3014 kJ) liquid mixed meal. The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was significantly greater for the lean [52.9 +/- 5.5 kcal/3 h (221 +/- 23 kJ/3 h)] than the obese [17.2 +/- 5.1 kcal/3 h (72 +/- 21 kJ/3 h)] and the PCO women [22.8 +/- 5.2 kcal/3 h (95 +/- 22 kJ/3)], P less than 0.001). The thermic effect of food was negatively related to percent body fat (r = -0.694, P less than 0.001). Resting metabolic rate did not differ significantly among the three groups, and was strongly related to fat-free mass (r = 0.687, P less than 0.001). These results confirm previous reports of blunted thermogenesis in obese individuals, but provide no evidence of altered resting metabolic rate or postprandial thermogenesis in women with PCO compared with normal women of similar degree of obesity.

  13. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  14. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  15. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning.

    Science.gov (United States)

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C M

    2016-03-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The "competition" (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest--ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success

  16. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning

    Science.gov (United States)

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C.M.

    2016-01-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The “competition” (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest – ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success

  17. Selective Changes of Resting-State Brain Oscillations in aMCI: An fMRI Study Using ALFF

    Directory of Open Access Journals (Sweden)

    Zhilian Zhao

    2014-01-01

    Full Text Available Mild cognitive impairment (MCI refers to a transitional state between normal aging and dementia and is a syndrome with cognitive decline greater than expected for an individual’s age and educational level. As a subtype of MCI, amnestic mild cognitive impairment (aMCI most often leads to Alzheimer’s disease. This study aims to elucidate the altered brain activation in patients with aMCI using resting-state functional magnetic resonance. We observed Frequency-dependent changes in the amplitude of low-frequency fluctuations in aMCI patients (n=20, and normal subjects (n=18. At the same time, we took gray matter volume as a covariate. We found that aMCI patients had decreased amplitude of low-frequency fluctuation signal in left superior temporal gyrus, right middle temporal gyrus, right inferior parietal lobe, and right postcentral gyrus compared to the control group. Specially, aMCI patients showed increased signal in left superior and middle frontal gyrus. Our results suggested that increased activation in frontal lobe of aMCI patients may indicate effective recruitment of compensatory brain resources. This finding and interpretation may lead to the better understanding of cognitive changes of aMCI.

  18. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Oh, Jungsu S.; Lee, Jae Sung; Lee, Myung Chul; Kang, Hyejin; Kim, Heejung; Park, Hyojin

    2008-01-01

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  19. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Oh, Jungsu S.; Lee, Jae Sung; Lee, Myung Chul [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Kang, Hyejin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Programs in Brain and Neuroscience, Seoul (Korea); Kim, Heejung; Park, Hyojin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Interdisciplinary Program in Cognitive Science, Seoul (Korea)

    2008-09-15

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  20. Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data

    Science.gov (United States)

    Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924

  1. Resting-state functional connectivity differentiates anxious apprehension and anxious arousal.

    Science.gov (United States)

    Burdwood, Erin N; Infantolino, Zachary P; Crocker, Laura D; Spielberg, Jeffrey M; Banich, Marie T; Miller, Gregory A; Heller, Wendy

    2016-10-01

    Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. © 2016 Society for Psychophysiological Research.

  2. Resting-state slow wave power, healthy aging and cognitive performance.

    Science.gov (United States)

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  3. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    Science.gov (United States)

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  4. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416

  5. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study.

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2017-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  6. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2018-01-01

    Full Text Available A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI. We used the amplitude of low-frequency fluctuations (ALFF and fractional ALFF (fALFF to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  7. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind

    Science.gov (United States)

    Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239

  8. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy.......0 to 0.9 +/- 0.1 mM (P ratio from 6.0 +/- 0.3 to 2.8 +/- 0.2 (P

  9. Time course based artifact identification for independent components of resting state fMRI

    Directory of Open Access Journals (Sweden)

    Christian eRummel

    2013-05-01

    Full Text Available In functional magnetic resonance imaging (fMRI coherent oscillations of the blood oxygen level dependent (BOLD signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting state networks (RSN. Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82 and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.

  10. "I am resting but rest less well with you." The moderating effect of anxious attachment style on alpha power during EEG resting state in a social context

    NARCIS (Netherlands)

    Verbeke, W.J.M.I.; Pozharliev, R.; van Strien, J.W.; Belschak, F.; Bagozzi, R.P.

    2014-01-01

    We took EEG recordings to measure task-free resting-state cortical brain activity in 35 participants under two conditions, alone (A) or together (T). We also investigated whether psychological attachment styles shape human cortical activity differently in these two settings. The results indicate

  11. Behavioral and physiological significance of minimum resting metabolic rate in king penguins.

    Science.gov (United States)

    Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y

    2008-01-01

    Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.

  12. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  13. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  14. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  16. Subjective Cognitive Decline: Mapping Functional and Structural Brain Changes-A Combined Resting-State Functional and Structural MR Imaging Study.

    Science.gov (United States)

    Sun, Yu; Dai, Zhengjia; Li, Yuxia; Sheng, Can; Li, Hongyan; Wang, Xiaoni; Chen, Xiaodan; He, Yong; Han, Ying

    2016-10-01

    Purpose To determine whether individuals with subjective cognitive decline (SCD) exhibit functional and structural brain alterations by using resting-state functional and structural magnetic resonance (MR) imaging. Materials and Methods This study received institutional review board approval, and all participants gave informed consent. Resting-state functional MR imaging and structural MR imaging techniques were used to measure amplitude of low-frequency fluctuations (ALFF) and regional gray matter volume in 25 subjects with SCD (mean age, 65.52 years ± 6.12) and 61 control subjects (mean age, 64.11 years ± 8.59). Voxel-wise general linear model analyses were used to examine between-group differences in ALFF or in gray matter volume and to further determine the brain-behavioral relationship. Results Subjects with SCD exhibited higher ALFF values than did control subjects in the bilateral inferior parietal lobule (left: 0.44 ± 0.25 vs 0.27 ± 0.18, respectively; P = .0003; right: 1.46 ± 0.45 vs 1.10 ± 0.37, respectively; P = .0015), right inferior (0.45 ± 0.15 vs 0.37 ± 0.08, repectively; P = .0106) and middle (1.03 ± 0.32 vs 0.83 ± 0.20, respectively; P = .0008) occipital gyrus, right superior temporal gyrus (0.11 ± 0.07 vs 0.07 ± 0.04, respectively; P = .0016), and right cerebellum posterior lobe (0.51 ± 0.27 vs 0.39 ± 0.15, respectively; P = .0010). In the SCD group, significant correlations were found between Auditory Verbal Learning Test recognition scores and ALFF in the left inferior parietal lobe (r = -0.79, P Learning Test immediate recall scores and ALFF values in the right middle occipital gyrus (r = -0.64, P = .002). Nonsignificant group differences were found in gray matter volume (P > .05, corrected). Conclusion Individuals with SCD had altered spontaneous functional activity, suggesting that resting-state functional MR imaging may be a noninvasive method for characterizing SCD. (©) RSNA, 2016 Online supplemental material is available for

  17. Localized reductions in resting-state functional connectivity in children with prenatal alcohol exposure.

    Science.gov (United States)

    Fan, Jia; Taylor, Paul A; Jacobson, Sandra W; Molteno, Christopher D; Gohel, Suril; Biswal, Bharat B; Jacobson, Joseph L; Meintjes, Ernesta M

    2017-10-01

    Fetal alcohol spectrum disorders (FASD) are characterized by impairment in cognitive function that may or may not be accompanied by craniofacial anomalies, microcephaly, and/or growth retardation. Resting-state functional MRI (rs-fMRI), which examines the low-frequency component of the blood oxygen level dependent (BOLD) signal in the absence of an explicit task, provides an efficient and powerful mechanism for studying functional brain networks even in low-functioning and young subjects. Studies using independent component analysis (ICA) have identified a set of resting-state networks (RSNs) that have been linked to distinct domains of cognitive and perceptual function, which are believed to reflect the intrinsic functional architecture of the brain. This study is the first to examine resting-state functional connectivity within these RSNs in FASD. Rs-fMRI scans were performed on 38 children with FASD (19 with either full fetal alcohol syndrome (FAS) or partial FAS (PFAS), 19 nonsyndromal heavily exposed (HE)), and 19 controls, mean age 11.3 ± 0.9 years, from the Cape Town Longitudinal Cohort. Nine resting-state networks were generated by ICA. Voxelwise group comparison between a combined FAS/PFAS group and controls revealed localized dose-dependent functional connectivity reductions in five regions in separate networks: anterior default mode, salience, ventral and dorsal attention, and R executive control. The former three also showed lower connectivity in the HE group. Gray matter connectivity deficits in four of the five networks appear to be related to deficits in white matter tracts that provide intra-RSN connections. Hum Brain Mapp 38:5217-5233, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Changes in resting-state functionally connected parietofrontal networks after videogame practice.

    Science.gov (United States)

    Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto

    2013-12-01

    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.

  19. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    Science.gov (United States)

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. © The Author 2013. Published by Oxford University Press.

  20. Gender Differences in Cerebral Regional Homogeneity of Adult Healthy Volunteers: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Chunsheng Xu

    2015-01-01

    Full Text Available Objective. We sought to use the regional homogeneity (ReHo approach as an index in the resting-state functional MRI to investigate the gender differences of spontaneous brain activity within cerebral cortex and resting-state networks (RSNs in young adult healthy volunteers. Methods. One hundred and twelve healthy volunteers (56 males, 56 females participated in the resting-state fMRI scan. The ReHo mappings in the cerebral cortex and twelve RSNs of the male and female groups were compared. Results. We found statistically significant gender differences in the primary visual network (PVN (P<0.004, with Bonferroni correction and left attention network (LAtN, default mode network (DMN, sensorimotor network (SMN, executive network (EN, and dorsal medial prefrontal network (DMPFC as well (P<0.05, uncorrected. The male group showed higher ReHo in the left precuneus, while the female group showed higher ReHo in the right middle cingulate gyrus, fusiform gyrus, left inferior parietal lobule, precentral gyrus, supramarginal gyrus, and postcentral gyrus. Conclusions. Our results suggested that men and women had regional specific differences during the resting-state. The findings may improve our understanding of the gender differences in behavior and cognition from the perspective of resting-state brain function.

  1. Systemic inflammation and resting state connectivity of the default mode network.

    Science.gov (United States)

    Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J

    2017-05-01

    The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Structurally-constrained relationships between cognitive states in the human brain.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2014-05-01

    Full Text Available The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

  3. Metabolic, respiratory, and cardiological measurements during exercise and rest

    Science.gov (United States)

    1971-01-01

    Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.

  4. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  5. Comparative study of resting-state functional MRI and positron emission tomography-CT in the localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Zhao Chunlei; Chen Ziqian; Wang Zhimin; Qian Gennian; Ni Ping; Tao Chaochao

    2013-01-01

    Objective: To evaluate the efficacy of PET-CT brain imaging and resting-state fMRI in preoperative localization of temporal lobe epileptic (TLE) focus. Methods: PET-CT and resting-state fMRI were performed in 17 patients with refractory TLE, who then underwent surgical treatment. Seventeen healthy volunteers matched with gender and age were recruited as the control group. The resting-state fMRI images were post processed by SPM5 software. Regional homogeneity (ReHo) values of the whole brain and bilateral hippocampus were obtained and analyzed. PET-CT images were analyzed by visual analysis method and asymmetry index method and the standardized uptake value (SUV) of bilateral hippocampus were obtained. The ReHo values and SUV of the bilateral hippocampus were compared by two independent samples t-test, and analyzed by receiver operating characteristic curve (ROC) for optimized diagnostic threshold. Pearson correlation analysis was employed for evaluating the correlation between the SUV and ReHo values of bilateral hippocampus. The consistency between the diagnostic accuracy of PET-CT and resting-state fMRI was assessed by Kappa consistency test. The outcome of the patient group was compared with that of the control group, and with the pathological results, to evaluate the diagnostic value of the two modalities for preoperative localization of temporal lobe epileptic focus. Results: Regional or comprehensive low metabolism of "1"8F-FDG in temporal lobes was presented in all 17 patients, and 11 patients out of 17 showed lateral decreased ReHo value. The diagnostic accuracy of the two examinations was 70.6% (12/17) and 64.7% (11/17) for PET-CT and resting-state fMRI respectively compared with pathological results, and could be increased to 76.5% (13/17) when the two methods were combined for diagnosis. The ReHo values of the TLE group (0.34 ± 0.12) were significantly lower than those of the control group (0.46 ± 0.07) (t = 3.230, P = 0.003). The sensitivity and

  6. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  7. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    Science.gov (United States)

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  8. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  9. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    Science.gov (United States)

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  10. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    Science.gov (United States)

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    Science.gov (United States)

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  12. Is lactate a volume transmitter of metabolic states of the brain?

    DEFF Research Database (Denmark)

    Bergersen, Linda H; Gjedde, Albert

    2012-01-01

    We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance...... of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD(+) redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator...

  13. Resting state functional connectivity changes in adults with developmental stuttering: an initial sLORETA study.

    Directory of Open Access Journals (Sweden)

    Kathleen eJoos

    2014-10-01

    Full Text Available Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity.Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on the quality of life (QoL, we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES, respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES.Results: No resting state activity differences were identified in comparison to fluently speaking controls or in correlation with stuttering severity or QoL measures. Significant alterations in resting state functional connectivity were found, predominantly interhemispheric, i.e. a decreased functional connectivity for high frequency oscillations (beta and gamma between motor speech areas (BA44 and 45 and the contralateral premotor (BA 6 and motor (BA 4 areas. A positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL.Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  14. From "rest" to language task: Task activation selects and prunes from broader resting-state network.

    Science.gov (United States)

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael R; Sharan, Ashwini; Tracy, Joseph I

    2017-05-01

    Resting-state networks (RSNs) show spatial patterns generally consistent with networks revealed during cognitive tasks. However, the exact degree of overlap between these networks has not been clearly quantified. Such an investigation shows promise for decoding altered functional connectivity (FC) related to abnormal language functioning in clinical populations such as temporal lobe epilepsy (TLE). In this context, we investigated the network configurations during a language task and during resting state using FC. Twenty-four healthy controls, 24 right and 24 left TLE patients completed a verb generation (VG) task and a resting-state fMRI scan. We compared the language network revealed by the VG task with three FC-based networks (seeding the left inferior frontal cortex (IFC)/Broca): two from the task (ON, OFF blocks) and one from the resting state. We found that, for both left TLE patients and controls, the RSN recruited regions bilaterally, whereas both VG-on and VG-off conditions produced more left-lateralized FC networks, matching more closely with the activated language network. TLE brings with it variability in both task-dependent and task-independent networks, reflective of atypical language organization. Overall, our findings suggest that our RSN captured bilateral activity, reflecting a set of prepotent language regions. We propose that this relationship can be best understood by the notion of pruning or winnowing down of the larger language-ready RSN to carry out specific task demands. Our data suggest that multiple types of network analyses may be needed to decode the association between language deficits and the underlying functional mechanisms altered by disease. Hum Brain Mapp 38:2540-2552, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Differential resting-state EEG patterns associated with comorbid depression in Internet addiction.

    Science.gov (United States)

    Lee, Jaewon; Hwang, Jae Yeon; Park, Su Mi; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Lee, Jun-Young; Choi, Jung-Seok

    2014-04-03

    Many researchers have reported a relationship between Internet addiction and depression. In the present study, we compared the resting-state quantitative electroencephalography (QEEG) activity of treatment-seeking patients with comorbid Internet addiction and depression with those of treatment-seeking patients with Internet addiction without depression, and healthy controls to investigate the neurobiological markers that differentiate pure Internet addiction from Internet addiction with comorbid depression. Thirty-five patients diagnosed with Internet addiction and 34 age-, sex-, and IQ-matched healthy controls were enrolled in this study. Patients with Internet addiction were divided into two groups according to the presence (N=18) or absence (N=17) of depression. Resting-state, eye-closed QEEG was recorded, and the absolute and relative power of the brain were analyzed. The Internet addiction group without depression had decreased absolute delta and beta powers in all brain regions, whereas the Internet addiction group with depression had increased relative theta and decreased relative alpha power in all regions. These neurophysiological changes were not related to clinical variables. The current findings reflect differential resting-state QEEG patterns between both groups of participants with Internet addiction and healthy controls and also suggest that decreased absolute delta and beta powers are neurobiological markers of Internet addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Low frequency fluctuations in resting-state functional magnetic resonance imaging and their applications

    International Nuclear Information System (INIS)

    Küblböck, M.

    2015-01-01

    Over the course of the last two decades, functional magnetic resonance imaging (fMRI) has emerged as a widely used, highly accepted and very popular method for the assessment of neuronal activity in the human brain. It is a completely non-invasive imaging technique with high temporal resolution, which relies on the measurement of local differences in magnetic susceptibility between oxygenated and deoxygenated blood. Therefore, fMRI can be regarded as an indirect measure of neuronal activity via measurement of localised changes in cerebral blood flow and cerebral oxygen consumption. Maps of neuronal activity are calculated from fMRI data acquired either in the presence of an explicit task (task-based fMRI) or in absence of a task (resting-state fMRI). While in task-based fMRI task-specific patterns of brain activity are subject to research, resting-state fMRI reveals fundamental networks of intrinsic brain activity. These networks are characterized by low-frequency oscillations in the power spectrum of resting-state fMRI data. In the present work, we first introduce the physical principles and the technical background that allow us to measure these changes in blood oxygenation, followed by an introduction to the blood oxygenation level dependent (BOLD) effect and to analysis methods for both task-based and resting-state fMRI data. We also analyse the temporal signal-to-noise ratio (tSNR) of a novel 2D-EPI sequence, which allows the experimenter to acquire several slices simultaneously in order to assess the optimal parameter settings for this sequence at 3T. We then proceed to investigate the temporal properties of measures for the amplitude of low-frequency oscillations in resting-state fMRI data, which are regarded as potential biomarkers for a wide range of mental diseases in various clinical studies and show the high stability and robustness of these data, which are important prerequisites for application as a biomarker as well as their dependency on head motion

  17. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  18. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States.

    Science.gov (United States)

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.

  19. Phase-synchronization-based parcellation of resting state fMRI signals reveals topographically organized clusters in early visual cortex

    NARCIS (Netherlands)

    Gravel, Nicolás G; Harvey, Ben M; Renken, Remco K; Dumoulin, Serge O; Cornelissen, Frans W

    2018-01-01

    Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting patterns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI

  20. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    Science.gov (United States)

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative

  1. Metabolic Profiles of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Tone F. Bathen

    2013-01-01

    Full Text Available Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49 were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01, irrespective of their primary origin. The principal component analysis (PCA showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01, indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

  2. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti

    2013-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  3. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    Science.gov (United States)

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  4. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  5. Predicting Risk-Taking Behavior from Prefrontal Resting-State Activity and Personality

    Science.gov (United States)

    Studer, Bettina; Pedroni, Andreas; Rieskamp, Jörg

    2013-01-01

    Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior. PMID:24116176

  6. Identifying individuals with antisocial personality disorder using resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Yan Tang

    Full Text Available Antisocial personality disorder (ASPD is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.

  7. Individual and sex-related differences in pain and relief responsiveness are associated with differences in resting-state functional networks in healthy volunteers.

    Science.gov (United States)

    Galli, Giulia; Santarnecchi, Emiliano; Feurra, Matteo; Bonifazi, Marco; Rossi, Simone; Paulus, Martin P; Rossi, Alessandro

    2016-02-01

    Pain processing is associated with neural activity in a number of widespread brain regions. Here, we investigated whether functional connectivity at rest between these brain regions is associated with individual and sex-related differences in thermal pain and relief responsiveness. Twenty healthy volunteers (ten females) were scanned with functional magnetic resonance imaging in resting conditions. Half an hour after scanning, we administered thermal pain on the back of their right hand and collected pain and relief ratings in two separate runs of twelve stimuli each. Across the whole group, mean pain ratings were associated with decreased connectivity at rest between brain regions belonging to the default mode and the visual resting-state network. In men, pain measures correlated with increased connectivity within the visual resting-state network. In women, in contrast, decreased connectivity between this network and parietal and prefrontal brain regions implicated in affective cognitive control were associated with both pain and relief ratings. Our findings indicate that the well documented individual variability and sex differences in pain sensitivity may be explained, at least in part, by network dynamics at rest in these brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    Full Text Available Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70 university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1 a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings; and (2 a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks. Keywords: fMRI, Functional connectivity, Concussion, Brain injury, Symptoms

  9. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  11. Enhanced subject-specific resting-state network detection and extraction with fast fMRI.

    Science.gov (United States)

    Akin, Burak; Lee, Hsu-Lei; Hennig, Jürgen; LeVan, Pierre

    2017-02-01

    Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological artifacts and improves the sensitivity of the fMRI analysis. In this study, EPI is compared with MREG in terms of capability to extract resting-state networks. Healthy controls underwent two consecutive resting-state scans, one with EPI and the other with MREG. Subject-level independent component analyses (ICA) were performed separately for each of the two datasets. Using Stanford FIND atlas parcels as network templates, the presence of ICA maps corresponding to each network was quantified in each subject. The number of detected individual networks was significantly higher in the MREG data set than for EPI. Moreover, using short time segments of MREG data, such as 50 seconds, one can still detect and track consistent networks. Fast fMRI thus results in an increased capability to extract distinct functional regions at the individual subject level for the same scan times, and also allow the extraction of consistent networks within shorter time intervals than when using EPI, which is notably relevant for the analysis of dynamic functional connectivity fluctuations. Hum Brain Mapp 38:817-830, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    Science.gov (United States)

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.

  13. Brain sexual differentiation and effects of cross-sex hormone therapy in transpeople: A resting-state functional magnetic resonance study.

    Science.gov (United States)

    Nota, Nienke M; Burke, Sarah M; den Heijer, Martin; Soleman, Remi S; Lambalk, Cornelis B; Cohen-Kettenis, Peggy T; Veltman, Dick J; Kreukels, Baudewijntje P

    2017-12-01

    It is hypothesized that transpeople show sex-atypical differentiation of the brain. Various structural neuroimaging studies provide support for this notion, but little is known about the sexual differentiation of functional resting-state networks in transpeople. In this study we therefore aimed to determine whether brain functional connectivity (FC) patterns in transpeople are sex-typical or sex-atypical, before and after the start of cross-sex hormone therapy (CHT). We acquired resting-state functional magnetic resonance data in 36 transpeople (22 with female sex assigned at birth), first during gonadal suppression, and again four months after start of CHT, and in 37 cisgender people (20 females), both sessions without any hormonal intervention. We used independent component analysis to identify the default mode network (DMN), salience network (SN), and left and right working memory network (WMN). These spatial maps were used for group comparisons. Within the DMN, SN, and left WMN similar FC patterns were found across groups. However, within the right WMN, cisgender males showed significantly greater FC in the right caudate nucleus than cisgender females. There was no such sex difference in FC among the transgender groups and they did not differ significantly from either of the cisgender groups. CHT (in transgender participants) and circulating sex steroids (in cisgender participants) did not affect FC. Our findings may suggest that cisgender males and females experience a dissimilar (early) differentiation of the right WMN and that such differentiation is less pronounced in transpeople. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  15. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  16. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.

    Science.gov (United States)

    Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A

    2018-01-01

    Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks.

  17. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?

    Science.gov (United States)

    Fels, Meike; Bauer, Robert; Gharabaghi, Alireza

    2015-08-01

    Objective. Novel rehabilitation strategies apply robot-assisted exercises and neurofeedback tasks to facilitate intensive motor training. We aimed to disentangle task-specific and subject-related contributions to the perceived workload of these interventions and the related cortical activation patterns. Approach. We assessed the perceived workload with the NASA Task Load Index in twenty-one subjects who were exposed to two different feedback tasks in a cross-over design: (i) brain-robot interface (BRI) with haptic/proprioceptive feedback of sensorimotor oscillations related to motor imagery, and (ii) control of neuromuscular activity with feedback of the electromyography (EMG) of the same hand. We also used electroencephalography to examine the cortical activation patterns beforehand in resting state and during the training session of each task. Main results. The workload profile of BRI feedback differed from EMG feedback and was particularly characterized by the experience of frustration. The frustration level was highly correlated across tasks, suggesting subject-related relevance of this workload component. Those subjects who were specifically challenged by the respective tasks could be detected by an interhemispheric alpha-band network in resting state before the training and by their sensorimotor theta-band activation pattern during the exercise. Significance. Neurophysiological profiles in resting state and during the exercise may provide task-independent workload markers for monitoring and matching participants’ ability and task difficulty of neurofeedback interventions.

  18. Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity.

    Science.gov (United States)

    Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A

    2017-01-02

    Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  20. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  1. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  2. Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Pan Z

    2018-01-01

    Full Text Available Zhi-Ming Pan,1 Hai-Jun Li,1 Jing Bao,1 Nan Jiang,1 Qing Yuan,1 Shelby Freeberg,2 Pei-Wen Zhu,1 Lei Ye,1 Ming-Yang Ma,1 Xin Huang,1 Yi Shao1 1Department of Ophthalmology and Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Ophthalmology, University of Florida, Gainesville, FL, USA Objective: Many previous studies have reported that pain symptoms can lead to significant brain function and anatomical changes, whereas the intrinsic brain activity changes in acute eye pain (EP patients remain unknown. Using the amplitude of low-frequency fluctuation (ALFF method, this study aimed to evaluate the spontaneous brain activity alterations and their relationships with clinical features in acute EP patients.Participants and methods: A total of 20 patients with EP (15 males and 5 females and 20 healthy controls (HCs; 15 males and 5 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was applied to assess spontaneous brain activity changes. The ALFF values of the EP patients were distinguished from those of the HCs using a receiver operating characteristic curve. Pearson’s correlation analysis was used to investigate the relationships between the mean ALFF signal values from many brain regions and the clinical features in EP patients.Results: Compared with the HCs, acute EP patients had significantly lower ALFF in the left and right precentral/postcentral gyrus and left precuneus. In contrast, acute EP patients showed higher ALFF values in the right and left parahippocampal gyri and left caudate. However, no relationship was observed between the mean ALFF signal values from the different areas and clinical manifestations in the acute EP patients.Conclusion: We demonstrated that acute EP patients showed abnormal intrinsic brain activities in the precentral/postcentral gyrus and limbic system

  3. Effects of Early and Late Bilingualism on Resting-State Functional Connectivity.

    Science.gov (United States)

    Berken, Jonathan A; Chai, Xiaoqian; Chen, Jen-Kai; Gracco, Vincent L; Klein, Denise

    2016-01-27

    Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting-state

  4. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    Science.gov (United States)

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  5. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  6. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    NARCIS (Netherlands)

    Veer, I.M.; Beckmann, C.F.; van Tol, M.J.; Ferrarini, L.; Milles, J.; Veltman, D.J.; Aleman, A.; van Buchem, M.A.; van der Wee, N.J.; Rombouts, S.A.R.B.

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always

  7. Circulating androgens correlate with resting-state MRI in transgender men.

    Science.gov (United States)

    Mueller, Sven C; Wierckx, Katrien; Jackson, Kathryn; T'Sjoen, Guy

    2016-11-01

    Despite mounting evidence regarding the underlying neurobiology in transgender persons, information regarding resting-state activity, particularly after hormonal treatment, is lacking. The present study examined differences between transgender persons on long-term cross-sex hormone therapy and comparisons on two measures of local functional connectivity, intensity of spontaneous resting-state activity (low frequency fluctuations, LFF) and local synchronization of specific brain areas (regional homogeneity, ReHo). Nineteen transgender women (TW, male-to-female), 19 transgender men (TM, female-to-male), 21 non-transgender men (NTM) and 20 non-transgender women (NTW) underwent a resting-state MRI scan. The results showed differences between transgender persons and non-transgender comparisons on both LFF and ReHo measures in the frontal cortex, medial temporal lobe, and cerebellum. More interestingly, circulating androgens correlated for TM in the cerebellum and regions of the frontal cortex, an effect that was associated with treatment duration in the cerebellum. By comparison, no associations were found for TW with estrogens. These data provide first evidence for a potential masculinization of local functional connectivity in hormonally-treated transgender men. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    Science.gov (United States)

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  9. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging : A spatial filtering approach.

    Science.gov (United States)

    Subbaraju, Vigneshwaran; Suresh, Mahanand Belathur; Sundaram, Suresh; Narasimhan, Sundararajan

    2017-01-01

    This paper presents a new approach for detecting major differences in brain activities between Autism Spectrum Disorder (ASD) patients and neurotypical subjects using the resting state fMRI. Further the method also extracts discriminative features for an accurate diagnosis of ASD. The proposed approach determines a spatial filter that projects the covariance matrices of the Blood Oxygen Level Dependent (BOLD) time-series signals from both the ASD patients and neurotypical subjects in orthogonal directions such that they are highly separable. The inverse of this filter also provides a spatial pattern map within the brain that highlights those regions responsible for the distinguishable activities between the ASD patients and neurotypical subjects. For a better classification, highly discriminative log-variance features providing the maximum separation between the two classes are extracted from the projected BOLD time-series data. A detailed study has been carried out using the publicly available data from the Autism Brain Imaging Data Exchange (ABIDE) consortium for the different gender and age-groups. The study results indicate that for all the above categories, the regional differences in resting state activities are more commonly found in the right hemisphere compared to the left hemisphere of the brain. Among males, a clear shift in activities to the prefrontal cortex is observed for ASD patients while other parts of the brain show diminished activities compared to neurotypical subjects. Among females, such a clear shift is not evident; however, several regions, especially in the posterior and medial portions of the brain show diminished activities due to ASD. Finally, the classification performance obtained using the log-variance features is found to be better when compared to earlier studies in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  11. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Zhang, Jian; Chen, Yu-Chen; Feng, Xu; Yang, Ming; Liu, Bin; Qian, Cheng; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  12. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo

    2012-06-01

    To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the treatment of brain-related diseases (e.g., depression). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  14. Resting-state beta and gamma activity in Internet addiction.

    Science.gov (United States)

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Overview of potential procedural and participant-related confounds for neuroimaging of the resting state

    Science.gov (United States)

    Duncan, Niall W.; Northoff, Georg

    2013-01-01

    Studies of intrinsic brain activity in the resting state have become increasingly common. A productive discussion of what analysis methods are appropriate, of the importance of physiologic correction and of the potential interpretations of results has been ongoing. However, less attention has been paid to factors other than physiologic noise that may confound resting-state experiments. These range from straightforward factors, such as ensuring that participants are all instructed in the same manner, to more obscure participant-related factors, such as body weight. We provide an overview of such potentially confounding factors, along with some suggested approaches for minimizing their impact. A particular theme that emerges from the overview is the range of systematic differences between types of study groups (e.g., between patients and controls) that may influence resting-state study results. PMID:22964258

  16. What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner

    Science.gov (United States)

    Hurlburt, Russell T.; Alderson-Day, Ben; Fernyhough, Charles; Kühn, Simone

    2015-01-01

    The brain’s resting-state has attracted considerable interest in recent years, but currently little is known either about typical experience during the resting-state or about whether there are inter-individual differences in resting-state phenomenology. We used descriptive experience sampling (DES) in an attempt to apprehend high fidelity glimpses of the inner experience of five participants in an extended fMRI study. Results showed that the inner experiences and the neural activation patterns (as quantified by amplitude of low frequency fluctuations analysis) of the five participants were largely consistent across time, suggesting that our extended-duration scanner sessions were broadly similar to typical resting-state sessions. However, there were very large individual differences in inner phenomena, suggesting that the resting-state itself may differ substantially from one participant to the next. We describe these individual differences in experiential characteristics and display some typical moments of resting-state experience. We also show that retrospective characterizations of phenomena can often be very different from moment-by-moment reports. We discuss implications for the assessment of inner experience in neuroimaging studies more generally, concluding that it may be possible to use fMRI to investigate neural correlates of phenomena apprehended in high fidelity. PMID:26500590

  17. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  18. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    Science.gov (United States)

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported

  19. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    Science.gov (United States)

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson's Disease Patients

    NARCIS (Netherlands)

    Gómez, C.; Olde Dubbelink, K.T.E.; Stam, C.J.; Abasolo, D.; Berendse, H.W.; Hornero, R.

    2011-01-01

    The aim of the present study was to analyze resting-state brain activity in patients with Parkinson's disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage

  1. Resting-State Functional Connectivity and Cognitive Impairment in Children with Perinatal Stroke

    Directory of Open Access Journals (Sweden)

    Nigul Ilves

    2016-01-01

    Full Text Available Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years: 10 with periventricular venous infarction (PVI, 7 with arterial ischemic stroke (AIS, and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1 and lower cognitive functions (p<0.05 were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.

  2. Insights into Brain Glycogen Metabolism

    Science.gov (United States)

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  3. Functional network centrality in obesity: A resting-state and task fMRI study.

    Science.gov (United States)

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  5. Resting-state brain networks in patients with Parkinson's disease and impulse control disorders.

    Science.gov (United States)

    Tessitore, Alessandro; Santangelo, Gabriella; De Micco, Rosa; Giordano, Alfonso; Raimo, Simona; Amboni, Marianna; Esposito, Fabrizio; Barone, Paolo; Tedeschi, Gioacchino; Vitale, Carmine

    2017-09-01

    To investigate intrinsic neural networks connectivity changes in Parkinson's disease (PD) patients with and without impulse control disorders (ICD). Fifteen patients with PD with ICD (ICD+), 15 patients with PD without ICD (ICD-) and 24 age and sex-matched healthy controls (HC) were enrolled in the study. To identify patients with and without ICD and/or punding, we used the Minnesota Impulsive Disorders Interview (MIDI) and a clinical interview based on diagnostic criteria for each symptom. All patients underwent a detailed neuropsychological evaluation. Whole brain structural and functional imaging was performed on a 3T GE MR scanner. Statistical analysis of functional data was completed using BrainVoyager QX software. Voxel-based morphometry (VBM) was used to test whether between-group differences in resting-state connectivity were related to structural abnormalities. The presence of ICD symptoms was associated with an increased connectivity within the salience and default-mode networks, as well as with a decreased connectivity within the central executive network (p < .05 corrected). ICD severity was correlated with both salience and default mode networks connectivity changes only in the ICD+ group. VBM analysis did not reveal any statistically significant differences in local grey matter volume between ICD+ and ICD- patients and between all patients and HC (p < .05. FWE). The presence of a disrupted connectivity within the three core neurocognitive networks may be considered as a potential neural correlate of ICD presence in patients with PD. Our findings provide additional insights into the mechanisms underlying ICD in PD, confirming the crucial role of an abnormal prefrontal-limbic-striatal homeostasis in their development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2013-08-01

    Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.

  7. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    Science.gov (United States)

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  8. Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men

    DEFF Research Database (Denmark)

    Rosenkilde, M; Nordby, P; Nielsen, L B

    2010-01-01

    OBJECTIVE: To elucidate if fat oxidation at rest predicts peak fat oxidation during exercise and/or metabolic phenotype in moderately overweight, sedentary men. DESIGN: Cross-sectional study.Subjects:We measured respiratory exchange ratio (RER) at rest in 44 moderately overweight, normotensive...... the International Diabetes Federation criteria, we found that there was a lower accumulation of metabolic risk factors in L-RER than in H-RER (1.6 vs 3.5, P=0.028), and no subjects in L-RER and four of eight subjects in H-RER had the metabolic syndrome. Resting RER was positively correlated with plasma...... triglycerides (Pexercise was positively correlated with plasma free fatty acid concentration at rest (Pexercise and a healthy metabolic...

  9. Rest and action tremor in Parkinson's disease: effects of Deep Brain Stimulation

    NARCIS (Netherlands)

    Heida, Tjitske; Wentink, E.C.

    2010-01-01

    One of the cardinal symptoms of Parkinson’s disease is rest tremor. While rest tremor generally disappears during sleep and voluntary movement, action tremor may be triggered by voluntary movement, and may even be more disabling than rest tremor. Deep brain stimulation (DBS) in the subthalamic

  10. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  11. Large-scale DCMs for resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Adeel Razi

    2017-01-01

    Full Text Available This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI. We use spectral dynamic causal modeling (DCM to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model from a parent (e.g., fully connected graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  12. Aberrant resting-state corticostriatal functional connectivity in cirrhotic patients with hyperintense globus pallidus on T1-weighted MR imaging.

    Directory of Open Access Journals (Sweden)

    Xi-Qi Zhu

    Full Text Available Neurobiological and neuroimaging studies have emphasized the structural and functional alterations in the striatum of cirrhotic patients, but alterations in the functional connections between the striatum and other brain regions have not yet been explored. Of note, manganese accumulation in the nervous system, frequently reflected by hyperintensity at the bilateral globus pallidus (GP on T1-weighted imaging, has been considered a factor affecting the striatal and cortical functions in hepatic decompensation. We employed resting-state functional magnetic resonance imaging to analyze the temporal correlation between the striatum and the remaining brain regions using seed-based correlation analyses. The two-sample t-test was conducted to detect the differences in corticostriatal connectivity between 44 cirrhotic patients with hyperintensity at the bilateral GP and 20 healthy controls. Decreased connectivity of the caudate was detected in the anterior/middle cingulate gyrus, and increased connectivity of the caudate was found in the left motor cortex. A reduction in functional connectivity was found between the putamen and several regions, including the anterior cingulate gyrus, right insular lobe, inferior frontal gyrus, left parahippocampal gyrus, and anterior lobe of the right cerebellum; increased connectivity was detected between the putamen and right middle temporal gyrus. There were significant correlations between the corticostriatal connectivity and neuropsychological performances in the patient group, but not between the striatal connectivity and GP signal intensity. These alterations in the corticostriatal functional connectivity suggested the abnormalities in the intrinsic brain functional organiztion among the cirrhotic patients with manganese deposition, and may be associated with development of metabolic encephalopathy. The manganese deposition in nervous system, however, can not be an independent factor predicting the resting-state

  13. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  14. A multi-methodological MR resting state network analysis to assess the changes in brain physiology of children with ADHD.

    Directory of Open Access Journals (Sweden)

    Benito de Celis Alonso

    Full Text Available The purpose of this work was to highlight the neurological differences between the MR resting state networks of a group of children with ADHD (pre-treatment and an age-matched healthy group. Results were obtained using different image analysis techniques. A sample of n = 46 children with ages between 6 and 12 years were included in this study (23 per cohort. Resting state image analysis was performed using ReHo, ALFF and ICA techniques. ReHo and ICA represent connectivity analyses calculated with different mathematical approaches. ALFF represents an indirect measurement of brain activity. The ReHo and ICA analyses suggested differences between the two groups, while the ALFF analysis did not. The ReHo and ALFF analyses presented differences with respect to the results previously reported in the literature. ICA analysis showed that the same resting state networks that appear in healthy volunteers of adult age were obtained for both groups. In contrast, these networks were not identical when comparing the healthy and ADHD groups. These differences affected areas for all the networks except the Right Memory Function network. All techniques employed in this study were used to monitor different cerebral regions which participate in the phenomenological characterization of ADHD patients when compared to healthy controls. Results from our three analyses indicated that the cerebellum and mid-frontal lobe bilaterally for ReHo, the executive function regions in ICA, and the precuneus, cuneus and the clacarine fissure for ALFF, were the "hubs" in which the main inter-group differences were found. These results do not just help to explain the physiology underlying the disorder but open the door to future uses of these methodologies to monitor and evaluate patients with ADHD.

  15. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  16. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  17. Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks.

    Science.gov (United States)

    Du, Yuhui; Liu, Jingyu; Sui, Jing; He, Hao; Pearlson, Godfrey D; Calhoun, Vince D

    2014-01-01

    Schizophrenia, schizoaffective and bipolar disorders share some common symptoms. However, the biomarkers underlying those disorders remain unclear. In fact, there is still controversy about the schizoaffective disorder with respect to its validity of independent category and its relationship with schizophrenia and bipolar disorders. In this paper, based on brain functional networks extracted from resting-state fMRI using a recently proposed group information guided ICA (GIG-ICA) method, we explore the biomarkers for discriminating healthy controls, schizophrenia patients, bipolar patients, and patients with two symptom defined subsets of schizoaffective disorder, and then investigate the relationship between different groups. The results demonstrate that the discriminating regions mainly including frontal, parietal, precuneus, cingulate, supplementary motor, cerebellar, insular and supramarginal cortices perform well in distinguishing the different diagnostic groups. The results also suggest that schizoaffective disorder may be an independent disorder, although its subtype characterized by depressive episodes shares more similarity with schizophrenia.

  18. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Reijntjes, R.; Lammers, G.J.; Dijk, J.G.M.; Pijl, H.

    2008-01-01

    STUDY OBJECTIVES: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. METHODS: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were

  19. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    Science.gov (United States)

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. Resting and exercise energy metabolism in weight-reduced adults with severe obesity.

    Science.gov (United States)

    Hames, Kazanna C; Coen, Paul M; King, Wendy C; Anthony, Steven J; Stefanovic-Racic, Maja; Toledo, Frederico G S; Lowery, Jolene B; Helbling, Nicole L; Dubé, John J; DeLany, James P; Jakicic, John M; Goodpaster, Bret H

    2016-06-01

    To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity. Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest. Markers of muscle oxidation were determined by immunohistochemistry. Data were presented as medians. The intervention induced 7% weight loss (P = 0.001) and increased vigorous PA by 24 min/wk (P = 0.02). During exercise, energy expenditure decreased, efficiency increased (P ≤ 0.03), and fatty acid oxidation (FAO) did not change. Succinate dehydrogenase increased (P = 0.001), but fiber type remained the same. Post-intervention subjects' resting metabolism remained similar to controls. Efficiency was lower in post-intervention subjects compared with normal-weight controls exercising at 25 W (P ≤ 0.002) and compared with all controls exercising at 60% VO2peak (P ≤ 0.019). Resting and exercise FAO of post-intervention subjects remained similar to adults with less severe obesity. Succinate dehydrogenase and fiber type were similar across all body weight statuses. While metabolic adaptations to PA during weight loss occur in adults with severe obesity, FAO does not change. Resulting FAO during rest and exercise remains similar to adults with less severe obesity. © 2016 The Obesity Society.

  1. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    Science.gov (United States)

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Resting-state subcortical functional connectivity in HIV-infected patients on long-term cART

    NARCIS (Netherlands)

    Janssen, M.A.M.; Hinne, M.; Janssen, R.J.; Gerven, M.A.J. van; Steens, S.C.; Góraj, B.M.; Koopmans, P.P.; Kessels, R.P.C.

    2017-01-01

    Despite long-term successful treatment with cART, impairments in cognitive functioning are still being reported in HIV-infected patients. Since changes in cognitive function may be preceded by subtle changes in brain function, neuroimaging techniques, such as resting-state functional magnetic

  3. The relation between resting state connectivity and creativity in adolescents before and after training

    NARCIS (Netherlands)

    Cousijn, Janna; Zanolie, Kiki; Munsters, Robbert J M; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    An important component of creativity is divergent thinking, which involves the ability to generate novel and useful problem solutions. In this study, we tested the relation between resting-state functional connectivity of brain areas activated during a divergent thinking task (i.e., supramarginal

  4. Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-01-01

    subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions. PMID:21980485

  5. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  6. Neural correlates of verbal creativity: Differences in resting-state functional connectivity associated with expertise in creative writing

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2014-07-01

    Full Text Available Neural characteristics of verbal creativity as assessed by word generation tasks have been recently identified, but differences in resting-state functional connectivity (rFC between experts and non-experts in creative writing have not been reported yet. Previous electroencephalography (EEG coherence measures during rest demonstrated a decreased cooperation between brain areas in association with creative thinking ability. Here, we used resting-state functional magnetic resonance imaging to compare 20 experts in creative writing and 23 age-matched non-experts with respect to rFC strengths within a brain network previously found to be associated with creative writing. Decreased rFC for experts was found between areas 44 of both hemispheres. Increased rFC for experts was observed between right hemispheric caudate and intraparietal sulcus. Correlation analysis of verbal creativity indices with rFC values in the expert group revealed predominantly negative associations, particularly of rFC between left area 44 and left temporal pole. Overall, our data support previous findings on reduced connectivity between interhemispheric areas and increased right-hemispheric connectivity during rest in highly verbally creative individuals.

  7. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  8. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson's disease.

    Science.gov (United States)

    Volonté, M A; Garibotto, V; Spagnolo, F; Panzacchi, A; Picozzi, P; Franzin, A; Giovannini, E; Leocani, L; Cursi, M; Comi, G; Perani, D

    2012-07-01

    Despite its large clinical application, our understanding about the mechanisms of action of deep brain stimulation of the subthalamic nucleus is still limited. Aim of the present study was to explore cortical and subcortical metabolic modulations measured by Positron Emission Tomography associated with improved motor manifestations after deep brain stimulation in Parkinson disease, comparing the ON and OFF conditions. Investigations were performed in the stimulator off- and on-conditions in 14 parkinsonian patients and results were compared with a group of matched healthy controls. The results were also used to correlate metabolic changes with the clinical effectiveness of the procedure. The comparisons using Statistical parametric mapping revealed a brain metabolic pattern typical of advanced Parkinson disease. The direct comparison in ON vs OFF condition showed mainly an increased metabolism in subthalamic regions, corresponding to the deep brain stimulation site. A positive correlation exists between neurostimulation clinical effectiveness and metabolic differences in ON and OFF state, including the primary sensorimotor, premotor and parietal cortices, anterior cingulate cortex. Deep brain stimulation seems to operate modulating the neuronal network rather than merely exciting or inhibiting basal ganglia nuclei. Correlations with Parkinson Disease cardinal features suggest that the improvement of specific motor signs associated with deep brain stimulation might be explained by the functional modulation, not only in the target region, but also in surrounding and remote connecting areas, resulting in clinically beneficial effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Decreased resting-state interhemispheric coordination in first-episode, drug-naive paranoid schizophrenia.

    Science.gov (United States)

    Guo, Wenbin; Xiao, Changqing; Liu, Guiying; Wooderson, Sarah C; Zhang, Zhikun; Zhang, Jian; Yu, Liuyu; Liu, Jianrong

    2014-01-03

    Dysconnectivity hypothesis posits that schizophrenia relates to abnormalities in neuronal connectivity. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (FC) in patients with paranoid schizophrenia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in patients with paranoid schizophrenia at rest. Forty-nine first-episode, drug-naive patients with paranoid schizophrenia and 50 age-, gender-, and education-matched healthy subjects underwent a resting-state functional magnetic resonance imaging (fMRI) scans. An automated VMHC approach was used to analyze the data. Patients exhibited lower VMHC than healthy subjects in the precuneus (PCu), the precentral gyrus, the superior temporal gyrus (STG), the middle occipital gyrus (MOG), and the fusiform gyrus/cerebellum lobule VI. No region showed greater VMHC in the patient group than in the control group. Significantly negative correlation was observed between VMHC in the precentral gyrus and the PANSS positive/total scores, and between VMHC in the STG and the PANSS positive/negative/total scores. Our results suggest that interhemispheric resting-state FC of VMHC is reduced in paranoid schizophrenia with clinical implications for psychiatric symptomatology thus further contribute to the dysconnectivity hypothesis of schizophrenia. © 2013.

  11. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease

    Directory of Open Access Journals (Sweden)

    Michelle E. Watts

    2018-06-01

    Full Text Available Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.

  12. REST: a toolkit for resting-state functional magnetic resonance imaging data processing.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Song

    Full Text Available Resting-state fMRI (RS-fMRI has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST. REST was developed in MATLAB with graphical user interface (GUI. After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF, and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.. REST is an open-source package and is freely available at http://www.restfmri.net.

  13. Characterizing Signals within Lesions and Mapping Brain Network Connectivity After Traumatic Axonal Injury: A 7 Tesla Resting-State FMRI Study.

    Science.gov (United States)

    Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A

    2018-04-18

    Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. Here we characterize RS-FMRI signal time-course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of: 1) temporal signal-to-noise ratio (tSNR); 2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF) and gray matter (GM); and 3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared to the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Further, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hemorrhagic traumatic axonal injury.

  14. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.

    Science.gov (United States)

    Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.

  15. Electrophysiological resting-state biomarker for diagnosing mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2017-01-01

    The main aim of the present study was to evaluate whether resting-state functional connectivity of magnetoencephalography (MEG) signals can differentiate patients with mesial temporal lobe epilepsy (MTLE) from healthy controls (HC) and can differentiate between right and left MTLE as a diagnostic biomarker. To this end, a support vector machine (SVM) method among various machine learning algorithms was employed. We compared resting-state functional networks between 46 MTLE (right MTLE=23; left MTLE=23) patients with histologically proven HS who were free of seizure after surgery, and 46 HC. The optimal SVM group classifier distinguished MTLE patients with a mean accuracy of 95.1% (sensitivity=95.8%; specificity=94.3%). Increased connectivity including the right posterior cingulate gyrus and decreased connectivity including at least one sensory-related resting-state network were key features reflecting the differences between MTLE patients and HC. The optimal SVM model distinguished between right and left MTLE patients with a mean accuracy of 76.2% (sensitivity=76.0%; specificity=76.5%). We showed the potential of electrophysiological resting-state functional connectivity, which reflects brain network reorganization in MTLE patients, as a possible diagnostic biomarker to differentiate MTLE patients from HC and differentiate between right and left MTLE patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Science.gov (United States)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  17. Resting-State Alpha in Autism Spectrum Disorder and Alpha Associations with Thalamic Volume

    Science.gov (United States)

    Edgar, J. Christopher; Heiken, Kory; Chen, Yu-Han; Herrington, John D.; Chow, Vivian; Liu, Song; Bloy, Luke; Huang, Mingxiong; Pandey, Juhi; Cannon, Katelyn M.; Qasmieh, Saba; Levy, Susan E.; Schultz, Robert T.; Roberts, Timothy P. L.

    2015-01-01

    Alpha circuits (8-12 Hz), necessary for basic and complex brain processes, are abnormal in autism spectrum disorder (ASD). The present study obtained estimates of resting-state (RS) alpha activity in children with ASD and examined associations between alpha activity, age, and clinical symptoms. Given that the thalamus modulates cortical RS alpha…

  18. Modeling resting-state functional networks when the cortex falls asleep: local and global changes.

    Science.gov (United States)

    Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio

    2014-12-01

    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Science.gov (United States)

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  20. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    Science.gov (United States)

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed

  1. Resting-state test-retest reliability of a priori defined canonical networks over different preprocessing steps

    NARCIS (Netherlands)

    Varikuti, D.P.; Hoffstaedter, F.; Genon, S.; Schwender, H.; Reid, A.T.; Eickhoff, S.B.

    2017-01-01

    Resting-state functional connectivity analysis has become a widely used method for the investigation of human brain connectivity and pathology. The measurement of neuronal activity by functional MRI, however, is impeded by various nuisance signals that reduce the stability of functional

  2. Migraine classification using magnetic resonance imaging resting-state functional connectivity data.

    Science.gov (United States)

    Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J

    2017-08-01

    Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.

  3. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Directory of Open Access Journals (Sweden)

    Kyle H. Elliott

    2013-04-01

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  4. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    Science.gov (United States)

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  5. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Di, Xin; Biswal, Bharat B

    2014-02-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. © 2013.

  6. The neural correlates of risk propensity in males and females using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-01-01

    Full Text Available Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity.

  7. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  8. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta

    2017-05-15

    Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Is the Internet gaming-addicted brain close to be in a pathological state?

    Science.gov (United States)

    Park, Chang-Hyun; Chun, Ji-Won; Cho, Huyn; Jung, Young-Chul; Choi, Jihye; Kim, Dai Jin

    2017-01-01

    Internet gaming addiction (IGA) is becoming a common and widespread mental health concern. Although IGA induces a variety of negative psychosocial consequences, it is yet ambiguous whether the brain addicted to Internet gaming is considered to be in a pathological state. We investigated IGA-induced abnormalities of the brain specifically from the network perspective and qualitatively assessed whether the Internet gaming-addicted brain is in a state similar to the pathological brain. Topological properties of brain functional networks were examined by applying a graph-theoretical approach to analyzing functional magnetic resonance imaging data acquired during a resting state in 19 IGA adolescents and 20 age-matched healthy controls. We compared functional distance-based measures, global and local efficiency of resting state brain functional networks between the two groups to assess how the IGA subjects' brain was topologically altered from the controls' brain. The IGA subjects had severer impulsiveness and their brain functional networks showed higher global efficiency and lower local efficiency relative to the controls. These topological differences suggest that IGA induced brain functional networks to shift toward the random topological architecture, as exhibited in other pathological states. Furthermore, for the IGA subjects, the topological alterations were specifically attributable to interregional connections incident on the frontal region, and the degree of impulsiveness was associated with the topological alterations over the frontolimbic connections. The current findings lend support to the proposition that the Internet gaming-addicted brain could be in the state similar to pathological states in terms of topological characteristics of brain functional networks. © 2015 Society for the Study of Addiction.

  11. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  12. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2013-01-01

    Full Text Available The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP and heart rate (HR decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005 decreased and vitality (P = 0.036 increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem.

  13. Abnormal baseline brain activity in Parkinson's disease with and without REM sleep behavior disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Li, Dan; Huang, Peiyu; Zang, Yufeng; Lou, Yuting; Cen, Zhidong; Gu, Quanquan; Xuan, Min; Xie, Fei; Ouyang, Zhiyuan; Wang, Bo; Zhang, Minming; Luo, Wei

    2017-09-01

    To investigate the differences in spontaneous brain activity between Parkinson's disease (PD) patients with rapid eye movement sleep behavior disorder (RBD), PD patients without RBD, and normal controls, which may shed new light on the neural mechanism of RBD. Eighteen PD patients with RBD, 16 patients without RBD, and 19 age- and gender-matched normal controls underwent clinical assessment and functional magnetic resonance imaging (fMRI) with a 3.0T scanner. Resting-state fMRI scans were collected using an echo planar imaging sequence. Amplitude of low-frequency fluctuations (ALFF) were calculated to measure spontaneous brain activity in each subject. Compared with PD patients without RBD, patients with RBD exhibited significantly decreased ALFF values (P abnormalities. Our findings provide additional insight into the neural mechanism of RBD and may drive future research to develop better treatment. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:697-703. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Elevated Body Mass Index is Associated with Increased Integration and Reduced Cohesion of Sensory-Driven and Internally Guided Resting-State Functional Brain Networks.

    Science.gov (United States)

    Doucet, Gaelle E; Rasgon, Natalie; McEwen, Bruce S; Micali, Nadia; Frangou, Sophia

    2018-03-01

    Elevated body mass index (BMI) is associated with increased multi-morbidity and mortality. The investigation of the relationship between BMI and brain organization has the potential to provide new insights relevant to clinical and policy strategies for weight control. Here, we quantified the association between increasing BMI and the functional organization of resting-state brain networks in a sample of 496 healthy individuals that were studied as part of the Human Connectome Project. We demonstrated that higher BMI was associated with changes in the functional connectivity of the default-mode network (DMN), central executive network (CEN), sensorimotor network (SMN), visual network (VN), and their constituent modules. In siblings discordant for obesity, we showed that person-specific factors contributing to obesity are linked to reduced cohesiveness of the sensory networks (SMN and VN). We conclude that higher BMI is associated with widespread alterations in brain networks that balance sensory-driven (SMN, VN) and internally guided (DMN, CEN) states which may augment sensory-driven behavior leading to overeating and subsequent weight gain. Our results provide a neurobiological context for understanding the association between BMI and brain functional organization while accounting for familial and person-specific influences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    Science.gov (United States)

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  16. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States

    Directory of Open Access Journals (Sweden)

    Gaoxing Zheng

    2018-03-01

    Full Text Available The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST has been increasingly applied, while the average reference (AR was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening. The analysis results revealed the following observations: (1 there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2 there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3 the global brain functional connectivity density (FCD and local FCD have higher values for REST than for AR under different behavior states; and (4 the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording.

  17. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression.

    Directory of Open Access Journals (Sweden)

    Kosuke Yoshida

    Full Text Available In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS regression to resting-state functional magnetic resonance imaging (rs-fMRI data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.

  18. Fractional amplitude analysis of low frequency fluctuation in alcohol dependent individuals: a resting state functional MRI study

    International Nuclear Information System (INIS)

    Yan Dingfang; Cheng Jun; Wu Hanbin; Xu Liangzhou; Liu Jinhuan; Zhao Yilin; Lin Xue; Liu Changsheng; Qiu Li

    2012-01-01

    Objective: To explore brain activity features during the resting state in alcohol dependent individuals, and study the relationship between the brain activity features and alcohol dependent individuals' clinical symptoms. Methods: Twenty-four alcohol dependent individuals and 22 healthy control subjects, well matched in gender, age, education and handedness, were enrolled as the alcohol dependent group and control group respectively. A GE 3.0 T MR scanner was used to acquire all the subjects' resting state data. DPARSF software was used to process resting functional MRI data, and then the whole brain fractional amplitudes of low frequency fluctuation (fALFF) data were acquired. Two-sample t test statistical analysis was made to access fALFF difference between the two groups. Results: In comparison with the control group, the alcohol dependent group showed reduced fALFF in bilateral medial prefrontal gyrus, right inferior occipital gyrus, left precuneus,left inferior temporal gyrus, and left posterior lobe of cerebellum (0.64-1.69 vs. 0.87-1.78, t=-4.23- -2.79, P<0.05). fALFF was increased in the alcohol dependent group at the anterior cingulate,bilateral inferior frontal gyrus,right middle frontal gyrus,bilateral insular lobe,bilateral dorsal thalamus (0.86-1.82 vs. 0.76-1.58, t=3.56-3.96, P<0.05). Conclusion: Alcohol dependent individuals had abnormal activity at the bilateral prefrontal lobe,anterior cingulate, bilateral dorsal thalamus, bilateral insular lobe, left posterior lobe of cerebellum et al, during the resting state, and these abnormal activities might be related with clinical manifestation and pathophysiology. (authors)

  19. Metabolic drift in the aging brain.

    Science.gov (United States)

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.

  20. Daily physical-rest activities in relation to nutritional state, metabolism, and quality of life in cancer patients with progressive cachexia.

    Science.gov (United States)

    Fouladiun, Marita; Körner, Ulla; Gunnebo, Lena; Sixt-Ammilon, Petra; Bosaeus, Ingvar; Lundholm, Kent

    2007-11-01

    To evaluate daily physical-rest activities in cancer patients losing weight in relation to disease progression. Physical activity-rest rhythms were measured (ActiGraph, armband sensor from BodyMedia) in relation to body composition (dual-energy X-ray absorptiometry), energy metabolism, exercise capacity (walking test), and self-scored quality of life (SF-36, Hospital Anxiety and Depression Scale) in weight-losing outpatients with systemic cancer (71 +/- 2 years, n = 53). Well-nourished, age-matched, and previously hospitalized non-cancer patients served as controls (74 +/- 4 years, n = 8). Middle-aged healthy individuals were used as reference subjects (49 +/- 5 years, n = 23). Quality of life was globally reduced in patients with cancer (P sleep and bed-rest activities did not differ between patients with cancer and age-matched non-cancer patients. Spontaneous physical activity correlated weakly with maximum exercise capacity in univariate analysis (r = 0.41, P < 0.01). Multivariate analysis showed that spontaneous physical activity was related to weight loss, blood hemoglobin concentration, C-reactive protein, and to subjectively scored items of physical functioning and bodily pain (SF-36; P < 0.05-0.004). Anxiety and depression were not related to spontaneous physical activity. Patient survival was predicted only by weight loss and serum albumin levels (P < 0.01), although there was no such prediction for spontaneous physical activity. Daily physical-rest activities represent variables which probably reflect complex mental physiologic and metabolic interactions. Thus, activity-rest monitoring provides a new dimension in the evaluation of medical and drug interventions during palliative treatment of patients with cancer.

  1. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using [18F]fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men

  2. Changes in community structure of resting state functional connectivity in unipolar depression.

    Directory of Open Access Journals (Sweden)

    Anton Lord

    Full Text Available Major depression is a prevalent disorder that imposes a significant burden on society, yet objective laboratory-style tests to assist in diagnosis are lacking. We employed network-based analyses of "resting state" functional neuroimaging data to ascertain group differences in the endogenous cortical activity between healthy and depressed subjects.We additionally sought to use machine learning techniques to explore the ability of these network-based measures of resting state activity to provide diagnostic information for depression. Resting state fMRI data were acquired from twenty two depressed outpatients and twenty two healthy subjects matched for age and gender. These data were anatomically parcellated and functional connectivity matrices were then derived using the linear correlations between the BOLD signal fluctuations of all pairs of cortical and subcortical regions.We characterised the hierarchical organization of these matrices using network-based matrics, with an emphasis on their mid-scale "modularity" arrangement. Whilst whole brain measures of organization did not differ between groups, a significant rearrangement of their community structure was observed. Furthermore we were able to classify individuals with a high level of accuracy using a support vector machine, primarily through the use of a modularity-based metric known as the participation index.In conclusion, the application of machine learning techniques to features of resting state fMRI network activity shows promising potential to assist in the diagnosis of major depression, now suggesting the need for validation in independent data sets.

  3. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  4. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  5. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method.

    Science.gov (United States)

    Guo, Xinyu; Dominick, Kelli C; Minai, Ali A; Li, Hailong; Erickson, Craig A; Lu, Long J

    2017-01-01

    The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t -test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre

  6. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method

    Directory of Open Access Journals (Sweden)

    Xinyu Guo

    2017-08-01

    Full Text Available The whole-brain functional connectivity (FC pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes. Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150. Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross

  7. When structure affects function--the need for partial volume effect correction in functional and resting state magnetic resonance imaging studies.

    Science.gov (United States)

    Dukart, Juergen; Bertolino, Alessandro

    2014-01-01

    Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.

  8. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.

    Science.gov (United States)

    Mayevsky, A; Nioka, S; Subramanian, V H; Chance, B

    1988-04-01

    The effects of both anoxia and short- and long-term hypoxia on brain oxidative metabolism were studied in newborn dogs. Oxidative metabolism was evaluated by two independent measures: in vivo continuous monitoring of mitochondrial NADH redox state and energy stores as calculated from the phosphocreatine (PCr)/Pi levels measured by 31P nuclear magnetic resonance (NMR) spectroscopy. The hemodynamic response to low oxygen supply was further evaluated by measuring the changes in the reflected light intensity at 366 nm (the excitation wavelength for NADH). The animal underwent surgery and was prepared for monitoring of the two signals (NADH and PCr/Pi). It was then placed inside a Phosphoenergetics 260-80 NMR spectrometer magnet with a 31-cm bore. Each animal (1-21 days old) was exposed to short-term anoxia or hypoxia as well as to long-term hypoxia (1-2 h). The results can be summarized as follow: (a) In the normoxic brain, the ratio between PCr and Pi was greater than 1 (1.2-1.4), while under hypoxia or asphyxia a significant decrease that was correlated to the FiO2 levels was recorded. (b) A clear correlation was found between the decrease in PCr/Pi values and the increased NADH redox state developed under decreased O2 supply to the brain. (c) Exposing the animal to moderately long-term hypoxia led to a stabilized low-energy state of the brain with a good recovery after rebreathing normal air. (d) Under long-term and severe hypoxia, the microcirculatory autoregulatory mechanism was damaged and massive vasoconstriction was optically recorded simultaneously with a significant decrease in PCr/Pi values.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging

    NARCIS (Netherlands)

    T.J.H. White (Tonya); R.L. Muetzel (Ryan); M. Schmidt (Marcus); S.J.E. Langeslag (Sandra); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); V.D. Calhoun Vince D. (V.); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2014-01-01

    textabstractResting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps

  10. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder.

    Science.gov (United States)

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.

  11. Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector.

    Science.gov (United States)

    Zhao, Yangang; Zhu, Min; Yu, Yanlan; Qiu, Linli; Zhang, Yuanyuan; He, Li; Zhang, Jiqiang

    2017-01-01

    During neurogenesis, specific transcription factors are needed to repress neuronal genes in nonneuronal cells to ensure precise development. Repressor element-1 binding transcription factor (REST), or neuron-restrictive silencer factor (NRSF), has been shown to be an important regulator for the establishment of neuronal specificity. It restricts the expression of neuronal genes by binding to the neuron-restrictive silencer element (NRSE/RE1) domain in neuron-specific genes. REST/NRSF regulates many target genes in stem cells, nonneural cells, and neurons, which are involved in neuronal differentiation, axonal growth, vesicular transport, and release as well as ionic conductance. However, it is also regulated by some cytokines/regulators such as epigenetic factors (microRNAs) and even its truncated isoform. REST/NRSF is widely detected in brain regions and has been shown to be highly expressed in nonneuronal cells, but current findings also reveal that, at least in the human brain, it is also highly expressed in neurons and increases with ageing. However, its loss in expression and cytoplasmic translocation seems to play a pivotal role in several human dementias. Additionally, REST/NRSF knockdown leads to malformations in nerve and nonneural tissues and embryonic lethality. Altered REST/NRSF expression has been not only related to deficient brain functions such as neurodegenerative diseases, mental disorders, brain tumors, and neurobehavioral disorders but also highly correlated to brain injuries such as alcoholism and stroke. Encouragingly, several compounds such as valproic acid and X5050 that target REST/NRSF have been shown to be clinically effective at rescuing seizures or Niemann-Pick type C disease. Surprisingly, studies have also shown that REST/NRSF can function as an activator to induce neuronal differentiation. These findings strongly indicate that REST/NRSF is not only a classical repressor to maintain normal neurogenesis, but it is also a fine

  12. Lateralization of Resting State Networks and Relationship to Age and Gender

    Science.gov (United States)

    Agcaoglu, O.; Miller, R.; Mayer, A.R.; Hugdahl, K.; Calhoun, V.D.

    2014-01-01

    Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun, Adali, Pearlson, & Pekar, 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age

  13. Lateralization of resting state networks and relationship to age and gender.

    Science.gov (United States)

    Agcaoglu, O; Miller, R; Mayer, A R; Hugdahl, K; Calhoun, V D

    2015-01-01

    Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun et al., 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age were found in

  14. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  15. Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study.

    Science.gov (United States)

    Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan

    2011-10-17

    Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling.

    Science.gov (United States)

    Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J

    2017-08-01

    The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.

  17. Effects of aging and exercise training on leg hemodynamics and oxidative metabolism in the transition from rest to steady state exercise

    DEFF Research Database (Denmark)

    Piil, Peter Bergmann; Jørgensen, Tue Smith; Egelund, Jon

    2018-01-01

    hemodynamics and oxidative metabolism in the transition from rest to steady state exercise engaging the knee-extensor muscles in young (n=15, 25{plus minus}1 years) and older (n=15, 72{plus minus}1 years) subjects before and after a period of aerobic high-intensity exercise training. To enhance cGMP signaling....... The rate of increase in leg VO2 was, however, similar in the two groups as a result of higher ( PGMP signaling did not affect the rate of increase in blood flow or VO2 in either group. Exercise training augmented ( P.... A lower blood flow response in aging does not appear to be a result of reduced cGMP signaling....

  18. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T

    2014-05-01

    Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.

  19. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  20. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability.

    Science.gov (United States)

    Jennings, J Richard; Sheu, Lei K; Kuan, Dora C-H; Manuck, Stephen B; Gianaros, Peter J

    2016-04-01

    Resting high-frequency heart rate variability (HF-HRV) relates to cardiac vagal control and predicts individual differences in health and longevity, but its functional neural correlates are not well defined. The medial prefrontal cortex (mPFC) encompasses visceral control regions that are components of intrinsic networks of the brain, particularly the default mode network (DMN) and the salience network (SN). Might individual differences in resting HF-HRV covary with resting state neural activity in the DMN and SN, particularly within the mPFC? This question was addressed using fMRI data from an eyes-open, 5-min rest period during which echoplanar brain imaging yielded BOLD time series. Independent component analysis yielded functional connectivity estimates defining the DMN and SN. HF-HRV was measured in a rest period outside of the scanner. Midlife (52% female) adults were assessed in two studies (Study 1, N = 107; Study 2, N = 112). Neither overall DMN nor SN connectivity strength was related to HF-HRV. However, HF-HRV related to connectivity of one region within mPFC shared by the DMN and SN, namely, the perigenual anterior cingulate cortex, an area with connectivity to other regions involved in autonomic control. In sum, HF-HRV does not seem directly related to global resting state activity of intrinsic brain networks, but rather to more localized connectivity. A mPFC region was of particular interest as connectivity related to HF-HRV was shared by the DMN and SN. These findings may indicate a functional basis for the coordination of autonomic cardiac control with engagement and disengagement from the environment. © 2015 Society for Psychophysiological Research.

  1. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia

    Directory of Open Access Journals (Sweden)

    Dana Mastrovito

    Full Text Available Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can distinguish between healthy controls and individuals diagnosed with either autism spectrum disorder or schizophrenia. However, it has not yet been determined whether machine learning algorithms can be used to distinguish between the two disorders. Using a linear support vector machine, we identify features that are most diagnostic for each disorder and successfully use them to classify an independent cohort of subjects. We find both common and divergent connectivity differences largely in the default mode network as well as in salience, and motor networks. Using divergent connectivity differences, we are able to distinguish autistic subjects from those with schizophrenia. Understanding the common and divergent connectivity changes associated with these disorders may provide a framework for understanding their shared cognitive deficits. Keywords: Schizophrenia, Autism, Resting state, Classification, Connectivity, fMRI, Default mode network

  2. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP

    Directory of Open Access Journals (Sweden)

    Jason J. Kutch

    2015-01-01

    Full Text Available Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28, as well as group of age-matched healthy male controls (N = 27, had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing.

  3. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    Science.gov (United States)

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  4. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Murat Demirtaş

    2017-01-01

    Full Text Available Alzheimer's disease (AD is the most common dementia with dramatic consequences. The research in structural and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-brain resting state functional connectivity (FC of the subjects with preclinical Alzheimer's disease (PAD, mild cognitive impairment due to AD (MCI and mild dementia due to Alzheimer's disease (AD, the impact of APOE4 carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we found widespread significant decreases in functional connectivity (FC strengths particularly in the brain regions with high global connectivity. We employed a whole-brain computational modeling approach to study the mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we estimated the effective connectivity (EC in the model. We found that the significant EC differences in AD were primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1−42 total tau (t-tau and phosphorylated tau (p-tau. CSF Aβ1−42 was associated to the contrast between healthy control subjects and clinical groups. Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory integration regions. These associations were robust across clinical groups, unlike the associations that were found for CSF Aβ1−42. APOE4 carriership showed no significant correlations with the connectivity measures.

  5. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    OpenAIRE

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the c...

  6. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Resting-state oscillatory activity in children born small for gestational age: a magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Maria eBoersma

    2013-09-01

    Full Text Available Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG in 4-7 year old children to test if children born small for gestational age (SGA show deviations in resting-state brain oscillatory activity. Children born SGA children with postnatally spontaneous catch-up growth (SGA+; 6 boys, 7 girls; mean age 6.3 y (SD=0.9 and children born appropriate for gestational age (AGA; 7 boys, 3 girls; mean age 6.0 y (SD=1.2 participated in a resting-state MEG study. We calculated absolute and relative power spectra and used nonparametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At time of MEG investigation, SGA+ children showed was significantly lower head circumference (HC and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth.

  8. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    Science.gov (United States)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  9. Glucose metabolism from mouth to muscle: a student experiment to teach glucose metabolism during exercise and rest.

    Science.gov (United States)

    Engeroff, Tobias; Fleckenstein, Johannes; Banzer, Winfried

    2017-03-01

    We developed an experiment to help students understand basic regulation of postabsorptive and postprandial glucose metabolism and the availability of energy sources for physical activity in the fed and fasted state. Within a practical session, teams of two or three students (1 subject and 1 or 2 investigators) performed one of three different trials: 1) inactive, in which subjects ingested a glucose solution (75 g in 300 ml of water) and rested in the seated position until the end of the trial; 2) prior activity, in which the subject performed 15 min of walking before glucose ingestion and a subsequent resting phase; and 3) postactivity, in which the subject ingested glucose solution, walked (15 min), and rested afterwards. Glucose levels were drawn before trials (fasting value), immediately after glucose ingestion (0 min), and 5, 10, 15, 20, 25, 30, 40, 50, and 60 min thereafter. Students analyzed glucose values and worked on 12 tasks. Students evaluated the usefulness of the experiment; 54.2% of students found the experiment useful to enable them to gain a further understanding of the learning objectives and to clarify items, and 44.1% indicated that the experiment was necessary to enable them to understand the learning objectives. For 6.8% the experiment was not necessary but helpful to check what they had learned, and 3.4% found that the experiment was not necessary. The present article shows the great value of experiments within practical courses to help students gain knowledge of energy metabolism. Using an active learning strategy, students outworked complex physiological tasks and improved beneficial communication and interaction between students with different skill sets and problem-solving strategies. Copyright © 2017 the American Physiological Society.

  10. rTMS in fibromyalgia: a randomized trial evaluating QoL and its brain metabolic substrate.

    Science.gov (United States)

    Boyer, Laurent; Dousset, Alix; Roussel, Philippe; Dossetto, Nathalie; Cammilleri, Serge; Piano, Virginie; Khalfa, Stéphanie; Mundler, Olivier; Donnet, Anne; Guedj, Eric

    2014-04-08

    This double-blind, randomized, placebo-controlled study investigated the impact of repetitive transcranial magnetic stimulation (rTMS) on quality of life (QoL) of patients with fibromyalgia, and its possible brain metabolic substrate. Thirty-eight patients were randomly assigned to receive high-frequency rTMS (n = 19) or sham stimulation (n = 19), applied to left primary motor cortex in 14 sessions over 10 weeks. Primary clinical outcomes were QoL changes at the end of week 11, measured using the Fibromyalgia Impact Questionnaire (FIQ). Secondary clinical outcomes were mental and physical QoL component measured using the 36-Item Short Form Health Survey (SF-36), but also pain, mood, and anxiety. Resting-state [(18)F]-fluorodeoxyglucose-PET metabolism was assessed at baseline, week 2, and week 11. Whole-brain voxel-based analysis was performed to study between-group metabolic changes over time. At week 11, patients of the active rTMS group had greater QoL improvement in the FIQ (p = 0.032) and in the mental component of the SF-36 (p = 0.019) than the sham stimulation group. No significant impact was found for other clinical outcomes. Compared with the sham stimulation group, patients of the active rTMS group presented an increase in right medial temporal metabolism between baseline and week 11 (p FIQ and mental component SF-36 concomitant changes (r = -0.38, p = 0.043; r = 0.51, p = 0.009, respectively). QoL improvement involved mainly affective, emotional, and social dimensions. Our study shows that rTMS improves QoL of patients with fibromyalgia. This improvement is associated with a concomitant increase in right limbic metabolism, arguing for a neural substrate to the impact of rTMS on emotional dimensions involved in QoL. This study provides Class II evidence that rTMS compared with sham rTMS improves QoL in patients with fibromyalgia.

  11. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J. Nienke; Veer, Ilya M.; van Tol, Marie-Jose; van der Werff, Steven J. A.; Demenescu, Liliana R.; Aleman, Andre; Veltman, Dick J.; Zitman, Frans G.; Rombouts, Serge A. R. B.; van der Wee, Nic J. A.

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  12. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J.N.; Veer, I.M.; van Tol, M.J.; van der Werff, S.J.A.; Demenescu, L.R.; Aleman, A.; Veltman, D.J.; Zitman, F. G.; Rombouts, S.A.R.B.; van der Wee, N.J.A.

    2013-01-01

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  13. Altered Brain Functional Connectome in Migraine with and without Restless Legs Syndrome: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Fu-Chi Yang

    2018-01-01

    Full Text Available BackgroundMigraine is frequently comorbid with restless legs syndrome (RLS, both displaying functional connectivity (FC alterations in multiple brain networks, although the neurological basis of this association is unknown.MethodsWe performed resting-state functional magnetic resonance imaging and network-wise analysis of FC in migraine patients with and without RLS and healthy controls (CRL. Network-based statistics (NBS and composite FC matrix analyses were performed to identify the patterns of FC changes. Correlation analyses were performed to identify associations between alterations in FC and clinical profiles.ResultsNBS results revealed that both migraine patients with and without RLS exhibited lower FC than CRL in the dorsal attention, salience, default mode, cingulo-opercular, visual, frontoparietal, auditory, and sensory/somatomotor networks. Further composite FC matrix analyses revealed differences in FC of the salience, default mode to subcortical and frontoparietal, auditory to salience, and memory retrieval networks between migraine patients with and without RLS. There was a trend toward a negative association between RLS severity and cross-network abnormalities in the default mode to subcortical network.DiscussionMigraine patients with and without RLS exhibit disruptions of brain FC. Such findings suggest that these disorders are associated with differential neuropathological mechanisms and may aid in the future development of neuroimaging-driven biomarkers for these conditions.

  14. A Comprehensive Analysis of the Correlations between Resting-State Oscillations in Multiple-Frequency Bands and Big Five Traits.

    Science.gov (United States)

    Ikeda, Shigeyuki; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Sakaki, Kohei; Nozawa, Takayuki; Yokota, Susumu; Magistro, Daniele; Kawashima, Ryuta

    2017-01-01

    Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands.

  15. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  16. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  17. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  18. Resting State Functional Connectivity in Early Blind Humans

    Directory of Open Access Journals (Sweden)

    Harold eBurton

    2014-04-01

    Full Text Available Task-based neuroimaging studies in early blind humans (EB have demonstrated heightened visual cortex responses to non-visual paradigms. Several prior functional connectivity studies in EB have shown altered connections consistent with these task-based results. But these studies generally did not consider behavioral adaptations to lifelong blindness typically observed in EB. Enhanced cognitive abilities shown in EB include greater serial recall and attention to memory. Here, we address the question of the extent to which brain intrinsic activity in EB reflects such adaptations. We performed a resting-state functional magnetic resonance imaging study contrasting 14 EB with 14 age/gender matched normally sighted controls (NS. A principal finding was markedly greater functional connectivity in EB between visual cortex and regions typically associated with memory and cognitive control of attention. In contrast, correlations between visual cortex and non-deprived sensory cortices were significantly lower in EB. Thus, the available data, including that obtained in prior task-based and resting state fMRI studies, as well as the present results, indicate that visual cortex in EB becomes more heavily incorporated into functional systems instantiating episodic recall and attention to non-visual events. Moreover, EB appear to show a reduction in interactions between visual and non-deprived sensory cortices, possibly reflecting suppression of inter-sensory distracting activity.

  19. Recovery from an acute relapse is associated with changes in motor resting-state connectivity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Blinkenberg, Morten; Paulson, Olaf B.

    2016-01-01

    Resting-state functional MRI (rs-fMRI) of the brain has been successfully used to identify altered functional connectivity in the motor network in multiple sclerosis (MS).1 In clinically stable patients with MS, we recently demonstrated increased coupling between the basal ganglia and the motor...... network.1 Accordingly, rs-fMRI in MS is particularly suited to investigate functional reorganisation of the motor network in the remission phase after a relapse because the resting-state connectivity pattern is not influenced by interindividual differences in motor ability and task performance....... In this prospective rs-fMRI study, we mapped acute changes in resting-state motor connectivity in 12 patients with relapsing forms of MS presenting with an acute relapse involving an upper limb paresis. Previous functional MRI (fMRI) studies have shown that the activation of sensorimotor areas was stronger and more...

  20. Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement

    Science.gov (United States)

    Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin

    2015-01-01

    Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…

  1. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.

    Science.gov (United States)

    Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony

    2017-12-01

    State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    2017-06-01

    Full Text Available Normal aging is typically characterized by abnormal resting-state functional connectivity (FC, including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.

  3. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    Science.gov (United States)

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  5. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Improving the Test-Retest Reliability of Resting State fMRI by Removing the Impact of Sleep.

    Science.gov (United States)

    Wang, Jiahui; Han, Junwei; Nguyen, Vinh T; Guo, Lei; Guo, Christine C

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) provides a powerful tool to examine large-scale neural networks in the human brain and their disturbances in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting state paradigms can be easily acquired from clinical population. However, due to the unconstrained nature, resting state paradigm is associated with excessive head movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI measures is moderate at best, falling short of widespread use in the clinic. Here, we characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of heart rate variability (HRV) derived from simultaneous electrocardiogram (ECG) recording, we identified portions of fMRI data when subjects were more alert or sleepy, and examined their effects on the test-retest reliability of functional connectivity measures. When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved, and the improvement appears to be general across brain networks. The amount of improvement is robust with the removal of as much as 60% volumes of sleepiness. Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and practical method to improve test-retest reliability of rs-fMRI measures.

  8. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  9. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    Science.gov (United States)

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to

  10. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  11. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    Science.gov (United States)

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.

  12. Superior colliculus resting state networks in post-traumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Olivé, Isadora; Densmore, Maria; Harricharan, Sherain; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth

    2018-01-01

    The innate alarm system (IAS) models the neurocircuitry involved in threat processing in posttraumatic stress disorder (PTSD). Here, we investigate a primary subcortical structure of the IAS model, the superior colliculus (SC), where the SC is thought to contribute to the mechanisms underlying threat-detection in PTSD. Critically, the functional connectivity between the SC and other nodes of the IAS remains unexplored. We conducted a resting-state fMRI study to investigate the functional architecture of the IAS, focusing on connectivity of the SC in PTSD (n = 67), its dissociative subtype (n = 41), and healthy controls (n = 50) using region-of-interest seed-based analysis. We observed group-specific resting state functional connectivity between the SC for both PTSD and its dissociative subtype, indicative of dedicated IAS collicular pathways in each group of patients. When comparing PTSD to its dissociative subtype, we observed increased resting state functional connectivity between the left SC and the right dorsolateral prefrontal cortex (DLPFC) in PTSD. The DLPFC is involved in modulation of emotional processes associated with active defensive responses characterising PTSD. Moreover, when comparing PTSD to its dissociative subtype, increased resting state functional connectivity was observed between the right SC and the right temporoparietal junction in the dissociative subtype. The temporoparietal junction is involved in depersonalization responses associated with passive defensive responses typical of the dissociative subtype. Our findings suggest that unique resting state functional connectivity of the SC parallels the unique symptom profile and defensive responses observed in PTSD and its dissociative subtype. Hum Brain Mapp 39:563-574, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks.

    Science.gov (United States)

    Gullifer, Jason W; Chai, Xiaoqian J; Whitford, Veronica; Pivneva, Irina; Baum, Shari; Klein, Denise; Titone, Debra

    2018-05-01

    We investigated the independent contributions of second language (L2) age of acquisition (AoA) and social diversity of language use on intrinsic brain organization using seed-based resting-state functional connectivity among highly proficient French-English bilinguals. There were two key findings. First, earlier L2 AoA related to greater interhemispheric functional connectivity between homologous frontal brain regions, and to decreased reliance on proactive executive control in an AX-Continuous Performance Task completed outside the scanner. Second, greater diversity in social language use in daily life related to greater connectivity between the anterior cingulate cortex and the putamen bilaterally, and to increased reliance on proactive control in the same task. These findings suggest that early vs. late L2 AoA links to a specialized neural framework for processing two languages that may engage a specific type of executive control (e.g., reactive control). In contrast, higher vs. lower degrees of diversity in social language use link to a broadly distributed set of brain networks implicated in proactive control and context monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Anne eHafkemeijer

    2015-09-01

    Full Text Available Alzheimer’s disease (AD and behavioral variant frontotemporal dementia (bvFTD are the most common types of early-onset dementia. Here, we apply resting state functional magnetic resonance imaging (fMRI to study functional brain connectivity differences between AD and bvFTD.We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between a lateral visual cortical network and lateral occipital and cuneal cortex, and b auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. We showed that the pathophysiology of functional brain connectivity is different between AD and bvFTD. However, the group differences in functional connectivity are less abundant than has been shown in previous studies.

  15. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Science.gov (United States)

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific

  16. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  17. Modular Reorganization of Brain Resting State Networks and Its Independent Validation in Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Guangyu eChen

    2013-08-01

    Full Text Available Previous studies have demonstrated disruption in structural and functional connectivity occurring in the Alzheimer’s Disease (AD. However, it is not known how these disruptions alter brain network reorganization. With the modular analysis method of graph theory, and datasets acquired by the resting-state functional connectivity MRI (R-fMRI method, we investigated and compared the brain organization patterns between the AD group and the cognitively normal control (CN group. Our main finding is that the largest homotopic module (defined as the insula module in the CN group was broken down to the pieces in the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus, transverse temporal gyri, superior temporal gyrus, and superior temporal pole of the insula module had lost symmetric functional connection properties, and the corresponding gray matter concentration (GMC was significant lower in AD group. We further quantified the functional connectivity changes with an index (index A and structural changes with the GMC index in the insula module to demonstrate their great potential as AD biomarkers. We further validated these results with six additional independent datasets (271 subjects in six groups. Our results demonstrated specific underlying structural and functional reorganization from young to old, and for diseased subjects. Further, it is suggested that by combining the structural GMC analysis and functional modular analysis in the insula module, a new biomarker can be developed at the single-subject level.

  18. Mechanism of Cerebralcare Granule® for Improving Cognitive Function in Resting-State Brain Functional Networks of Sub-healthy Subjects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-07-01

    Full Text Available Cerebralcare Granule® (CG, a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI. Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC and Wechsler Memory Scale (WMS, and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM and frequent subgraph mining (FSM. Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ and Memory Quotient (MQ scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.

  19. Altered Rich-Club and Frequency-Dependent Subnetwork Organization in Mild Traumatic Brain Injury: A MEG Resting-State Study

    Directory of Open Access Journals (Sweden)

    Marios Antonakakis

    2017-08-01

    Full Text Available Functional brain connectivity networks exhibit “small-world” characteristics and some of these networks follow a “rich-club” organization, whereby a few nodes of high connectivity (hubs tend to connect more densely among themselves than to nodes of lower connectivity. The Current study followed an “attack strategy” to compare the rich-club and small-world network organization models using Magnetoencephalographic (MEG recordings from mild traumatic brain injury (mTBI patients and neurologically healthy controls to identify the topology that describes the underlying intrinsic brain network organization. We hypothesized that the reduction in global efficiency caused by an attack targeting a model's hubs would reveal the “true” underlying topological organization. Connectivity networks were estimated using mutual information as the basis for cross-frequency coupling. Our results revealed a prominent rich-club network organization for both groups. In particular, mTBI patients demonstrated hyper-synchronization among rich-club hubs compared to controls in the δ band and the δ-γ1, θ-γ1, and β-γ2 frequency pairs. Moreover, rich-club hubs in mTBI patients were overrepresented in right frontal brain areas, from θ to γ1 frequencies, and underrepresented in left occipital regions in the δ-β, δ-γ1, θ-β, and β-γ2 frequency pairs. These findings indicate that the rich-club organization of resting-state MEG, considering its role in information integration and its vulnerability to various disorders like mTBI, may have a significant predictive value in the development of reliable biomarkers to help the validation of the recovery from mTBI. Furthermore, the proposed approach might be used as a validation tool to assess patient recovery.

  20. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore

    2016-01-01

    of glucose has been proposed as an indicator of consciousness [2 and 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4 and 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect...

  1. Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: Comparison with task fMRI.

    Science.gov (United States)

    Sair, Haris I; Yahyavi-Firouz-Abadi, Noushin; Calhoun, Vince D; Airan, Raag D; Agarwal, Shruti; Intrapiromkul, Jarunee; Choe, Ann S; Gujar, Sachin K; Caffo, Brian; Lindquist, Martin A; Pillai, Jay J

    2016-03-01

    To compare language networks derived from resting-state fMRI (rs-fMRI) with task-fMRI in patients with brain tumors and investigate variables that affect rs-fMRI vs task-fMRI concordance. Independent component analysis (ICA) of rs-fMRI was performed with 20, 30, 40, and 50 target components (ICA20 to ICA50) and language networks identified for patients presenting for presurgical fMRI mapping between 1/1/2009 and 7/1/2015. 49 patients were analyzed fulfilling criteria for presence of brain tumors, no prior brain surgery, and adequate task-fMRI performance. Rs-vs-task-fMRI concordance was measured using Dice coefficients across varying fMRI thresholds before and after noise removal. Multi-thresholded Dice coefficient volume under the surface (DiceVUS) and maximum Dice coefficient (MaxDice) were calculated. One-way Analysis of Variance (ANOVA) was performed to determine significance of DiceVUS and MaxDice between the four ICA order groups. Age, Sex, Handedness, Tumor Side, Tumor Size, WHO Grade, number of scrubbed volumes, image intensity root mean square (iRMS), and mean framewise displacement (FD) were used as predictors for VUS in a linear regression. Artificial elevation of rs-fMRI vs task-fMRI concordance is seen at low thresholds due to noise. Noise-removed group-mean DiceVUS and MaxDice improved as ICA order increased, however ANOVA demonstrated no statistically significant difference between the four groups. Linear regression demonstrated an association between iRMS and DiceVUS for ICA30-50, and iRMS and MaxDice for ICA50. Overall there is moderate group level rs-vs-task fMRI language network concordance, however substantial subject-level variability exists; iRMS may be used to determine reliability of rs-fMRI derived language networks. © 2015 Wiley Periodicals, Inc.

  2. Genetic disorders of thyroid metabolism and brain development

    Science.gov (United States)

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  3. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  4. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia.

    Science.gov (United States)

    Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui

    2017-10-21

    Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  5. Resting state networks' corticotopy: the dual intertwined rings architecture.

    Directory of Open Access Journals (Sweden)

    Salma Mesmoudi

    Full Text Available How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture" that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy". Recent results suggest that the resting state networks (RSNs are organized into two large families: 1 a sensorimotor family that includes visual, somatic, and auditory areas and 2 a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1 the RSN functional roles by using a projection of the results on task based networks (TBNs as referenced in large databases of fMRI activation studies; and (2 relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring. The second ring integrates distant parietal, temporal and frontal regions (PTF ring through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  6. Resting State Networks' Corticotopy: The Dual Intertwined Rings Architecture

    Science.gov (United States)

    Mesmoudi, Salma; Perlbarg, Vincent; Rudrauf, David; Messe, Arnaud; Pinsard, Basile; Hasboun, Dominique; Cioli, Claudia; Marrelec, Guillaume; Toro, Roberto; Benali, Habib; Burnod, Yves

    2013-01-01

    How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  7. Aberrant functional connectivity of resting state networks in transient ischemic attack.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: Transient ischemic attack (TIA is usually defined as a neurologic ischemic disorder without permanent cerebral infarction. Studies have showed that patients with TIA can have lasting cognitive functional impairment. Inherent brain activity in the resting state is spatially organized in a set of specific coherent patterns named resting state networks (RSNs, which epitomize the functional architecture of memory, language, attention, visual, auditory and somato-motor networks. Here, we aimed to detect differences in RSNs between TIA patients and healthy controls (HCs. METHODS: Twenty one TIA patients suffered an ischemic event and 21 matched HCs were enrolled in the study. All subjects were investigated using cognitive tests, psychiatric tests and functional magnetic resonance imaging (fMRI. Independent component analysis (ICA was adopted to acquire the eight brain RSNs. Then one-sample t-tests were calculated in each group to gather the spatial maps of each RSNs, followed by second level analysis to investigate statistical differences on RSNs between twenty one TIA patients and 21 controls. Furthermore, a correlation analysis was performed to explore the relationship between functional connectivity (FC and cognitive and psychiatric scales in TIA group. RESULTS: Compared with the controls, TIA patients exhibited both decreased and increased functional connectivity in default mode network (DMN and self-referential network (SRN, and decreased functional connectivity in dorsal attention network (DAN, central-executive network (CEN, core network (CN, somato-motor network (SMN, visual network (VN and auditory network (AN. There was no correlation between neuropsychological scores and functional connectivity in regions of RSNs. CONCLUSIONS: We observed selective impairments of RSN intrinsic FC in TIA patients, whose all eight RSNs had aberrant functional connectivity. These changes indicate that TIA is a disease with widely abnormal brain

  8. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Resting state functional connectivity predicts neurofeedback response

    Directory of Open Access Journals (Sweden)

    Dustin eScheinost

    2014-09-01

    Full Text Available Tailoring treatments to the specific needs and biology of individual patients – personalized medicine – requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD. Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI, to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC and anterior prefrontal cortex, Brodmann area (BA 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety.

  10. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  11. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW

    NARCIS (Netherlands)

    Koch, Saskia B. J.; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L.; Veltman, Dick J.; Olff, Miranda

    2016-01-01

    About 10% of trauma-exposed individuals develop PTSD. Although a growing number of studies have investigated resting-state abnormalities in PTSD, inconsistent results suggest a need for a meta-analysis and a systematic review. We conducted a systematic literature search in four online databases

  12. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    Science.gov (United States)

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  13. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  14. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method.

    Science.gov (United States)

    Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve

    2017-01-01

    Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.

  15. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Daihong Liu

    2016-09-01

    Full Text Available Type 2 diabetes mellitus (T2DM has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo and functional connectivity (FC analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus and lower ReHo in right fusiform gyrus, right precentral gyrus and right medial orbit of the superior frontal gyrus. Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test forward scores revealed significant correlations with the ReHo values of the right precentral gyrus (ρ = 0.527, p = 0.014 and FC between the right fusiform gyrus and middle temporal gyrus (ρ = -0.437, p = 0.048. Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM-associated brain

  16. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI.

    Science.gov (United States)

    Wong, Chi Wah; Olafsson, Valur; Tal, Omer; Liu, Thomas T

    2012-10-15

    Resting-state functional connectivity magnetic resonance imaging is proving to be an essential tool for the characterization of functional networks in the brain. Two of the major networks that have been identified are the default mode network (DMN) and the task positive network (TPN). Although prior work indicates that these two networks are anti-correlated, the findings are controversial because the anti-correlations are often found only after the application of a pre-processing step, known as global signal regression, that can produce artifactual anti-correlations. In this paper, we show that, for subjects studied in an eyes-closed rest state, caffeine can significantly enhance the detection of anti-correlations between the DMN and TPN without the need for global signal regression. In line with these findings, we find that caffeine also leads to widespread decreases in connectivity and global signal amplitude. Using a recently introduced geometric model of global signal effects, we demonstrate that these decreases are consistent with the removal of an additive global signal confound. In contrast to the effects observed in the eyes-closed rest state, caffeine did not lead to significant changes in global functional connectivity in the eyes-open rest state. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Alzheimer's disease: The state of the art in resting-state magnetoencephalography.

    Science.gov (United States)

    Engels, M M A; van der Flier, W M; Stam, C J; Hillebrand, A; Scheltens, Ph; van Straaten, E C W

    2017-08-01

    Alzheimer's disease (AD) is accompanied by functional brain changes that can be detected in imaging studies, including electromagnetic activity recorded with magnetoencephalography (MEG). Here, we systematically review the studies that have examined resting-state MEG changes in AD and identify areas that lack scientific or clinical progress. Three levels of MEG analysis will be covered: (i) single-channel signal analysis, (ii) pairwise analyses over time series, which includes the study of interdependencies between two time series and (iii) global network analyses. We discuss the findings in the light of other functional modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Overall, single-channel MEG results show consistent changes in AD that are in line with EEG studies, but the full potential of the high spatial resolution of MEG and advanced functional connectivity and network analysis has yet to be fully exploited. Adding these features to the current knowledge will potentially aid in uncovering organizational patterns of brain function in AD and thereby aid the understanding of neuronal mechanisms leading to cognitive deficits. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Resting-state functional connectivity differences in premature children

    Directory of Open Access Journals (Sweden)

    Eswar Damaraju

    2010-06-01

    Full Text Available We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI signals. The results are described in terms of resting-state networks (RSN and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and preterm children were present at 36 but not 18 months and include: 1 increased spectral energy in the low frequency range (0.01 – 0.06 Hz for pre-term children in the basal ganglia component, and 2 stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth.

  19. A Comprehensive Analysis of the Correlations between Resting-State Oscillations in Multiple-Frequency Bands and Big Five Traits

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ikeda

    2017-06-01

    Full Text Available Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz of resting-state functional magnetic resonance imaging (fMRI activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI, and the fractional amplitude of low-frequency fluctuation (fALFF at four distinct frequency bands (slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz and slow-2 (0.198–0.25 Hz. We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands.

  20. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  1. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    Science.gov (United States)

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  2. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  3. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    Directory of Open Access Journals (Sweden)

    Chuan-Chih Yang

    2016-01-01

    Full Text Available The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation and between time points (before versus after training were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.

  4. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  5. Improving the Test-Retest Reliability of Resting State fMRI by Removing the Impact of Sleep

    Directory of Open Access Journals (Sweden)

    Jiahui Wang

    2017-05-01

    Full Text Available Resting state functional magnetic resonance imaging (rs-fMRI provides a powerful tool to examine large-scale neural networks in the human brain and their disturbances in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting state paradigms can be easily acquired from clinical population. However, due to the unconstrained nature, resting state paradigm is associated with excessive head movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI measures is moderate at best, falling short of widespread use in the clinic. Here, we characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of heart rate variability (HRV derived from simultaneous electrocardiogram (ECG recording, we identified portions of fMRI data when subjects were more alert or sleepy, and examined their effects on the test-retest reliability of functional connectivity measures. When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved, and the improvement appears to be general across brain networks. The amount of improvement is robust with the removal of as much as 60% volumes of sleepiness. Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and practical method to improve test-retest reliability of rs-fMRI measures.

  6. Effects of temperature and salinity on resting metabolism in two ...

    African Journals Online (AJOL)

    This study investigates the resting metabolic rate (RMR; mg O2 g/h) of the resident rock pool fish Caffrogobius caffer and the transient sparid Diplodus sargus capensis at a range of salinities (5, 15, 25, 35 and 45 PSU) and temperatures (14, 20 and 28°C) using closed-vessel respirometry. Both species were temperature ...

  7. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  8. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  9. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    International Nuclear Information System (INIS)

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  10. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  11. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.

    Science.gov (United States)

    Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara

    2017-06-01

    Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The self and its resting state in consciousness: an investigation of the vegetative state.

    Science.gov (United States)

    Huang, Zirui; Dai, Rui; Wu, Xuehai; Yang, Zhi; Liu, Dongqiang; Hu, Jin; Gao, Liang; Tang, Weijun; Mao, Ying; Jin, Yi; Wu, Xing; Liu, Bin; Zhang, Yao; Lu, Lu; Laureys, Steven; Weng, Xuchu; Northoff, Georg

    2014-05-01

    Recent studies have demonstrated resting-state abnormalities in midline regions in vegetative state/unresponsive wakefulness syndrome and minimally conscious state patients. However, the functional implications of these resting-state abnormalities remain unclear. Recent findings in healthy subjects have revealed a close overlap between the neural substrate of self-referential processing and the resting-state activity in cortical midline regions. As such, we investigated task-related neural activity during active self-referential processing and various measures of resting-state activity in 11 patients with disorders of consciousness (DOC) and 12 healthy control subjects. Overall, the results revealed that DOC patients exhibited task-specific signal changes in anterior and posterior midline regions, including the perigenual anterior cingulate cortex (PACC) and posterior cingulate cortex (PCC). However, the degree of signal change was significantly lower in DOC patients compared with that in healthy subjects. Moreover, reduced signal differentiation in the PACC predicted the degree of consciousness in DOC patients. Importantly, the same midline regions (PACC and PCC) in DOC patients also exhibited severe abnormalities in the measures of resting-state activity, that is functional connectivity and the amplitude of low-frequency fluctuations. Taken together, our results provide the first evidence of neural abnormalities in both the self-referential processing and the resting state in midline regions in DOC patients. This novel finding has important implications for clinical utility and general understanding of the relationship between the self, the resting state, and consciousness. Copyright © 2013 Wiley Periodicals, Inc.

  13. A task-related and resting state realistic fMRI simulator for fMRI data validation

    Science.gov (United States)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  14. Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity.

    Science.gov (United States)

    Straub, J; Metzger, C D; Plener, P L; Koelch, M G; Groen, G; Abler, B

    2017-02-01

    Current resting state imaging findings support suggestions that the neural signature of depression and therefore also its therapy should be conceptualized as a network disorder rather than a dysfunction of specific brain regions. In this study, we compared neural connectivity of adolescent patients with depression (PAT) and matched healthy controls (HC) and analysed pre-to-post changes of seed-based network connectivities in PAT after participation in a cognitive behavioral group psychotherapy (CBT). 38 adolescents (30 female; 19 patients; 13-18 years) underwent an eyes-closed resting-state scan. PAT were scanned before (pre) and after (post) five sessions of CBT. Resting-state functional connectivity was analysed in a seed-based approach for right-sided amygdala and subgenual anterior cingulate cortex (sgACC). Symptom severity was assessed using the Beck Depression Inventory Revision (BDI-II). Prior to group CBT, between groups amygdala and sgACC connectivity with regions of the default mode network was stronger in the patients group relative to controls. Within the PAT group, a similar pattern significantly decreased after successful CBT. Conversely, seed-based connectivity with affective regions and regions processing cognition and salient stimuli was stronger in HC relative to PAT before CBT. Within the PAT group, a similar pattern changed with CBT. Changes in connectivity correlated with the significant pre-to-post symptom improvement, and pre-treatment amygdala connectivity predicted treatment response in depressed adolescents. Sample size and missing long-term follow-up limit the interpretability. Successful group psychotherapy of depression in adolescents involved connectivity changes in resting state networks to that of healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience.

    Science.gov (United States)

    Roland, Jarod L; Griffin, Natalie; Hacker, Carl D; Vellimana, Ananth K; Akbari, S Hassan; Shimony, Joshua S; Smyth, Matthew D; Leuthardt, Eric C; Limbrick, David D

    2017-12-01

    OBJECTIVE Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting-state

  16. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  17. Glucose metabolic change after visual and electrical stimulation of the rabbit retina using [{sup 18}F]FDG PET: a preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin; Lee, Jae Sung; Woo, Se Joon; Seo, Jong Mo; Chung, Hum; Lee, Dong Soo; Zhou, Zing Ai; Kim, Sung June [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We studied to compare the cerebral cortical metabolic change after visual and electrical stimulation of the rabbit retina. Five PET scans were performed on five different days in an albino rabbit. One FDG PET study was done at rest state. In another two FDG PET studies, repetitive flash light stimulation (0.3 Hz, 6 min total) on each eye started 1 min prior to FDG injection and continued for 5 min into uptake. In the other two FDG studies, electrical retinal stimulation (500 {mu}A, 1 Hz, 6 min total) of each eye using a suprachoroidal electrode placed under the visual streak was performed with the same procedure. Static PET data was acquired for 10 min after injection of [{sup 18}F]FDG (37 MBq) through the catheter placed in the ear vein. All images were realigned to the rest state image. To remove the effects of global differences, each voxel value of the images was normalized versus mean value in whole brain. Change of cerebral glucose metabolism was examined with difference between rest and stimulation state. After visual and electrical stimulation of the rabbit retina, the cerebral area of increased metabolism could be determined. The hypermetabolic area of electrical stimulation overlapped with the area of visual stimulation, while electrically simulated cerebral area was focal and confined within the visually activated area. The electrical stimulation of the rabbit retina could increase the metabolism of the visual cortex which indicates electrical retinal stimulation caused visual perception of brain.

  18. Selective impairments of resting-state networks in minimal hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND: Minimal hepatic encephalopathy (MHE is a neuro-cognitive dysfunction characterized by impairment in attention, vigilance and integrative functions, while the sensorimotor function was often unaffected. Little is known, so far, about the exact neuro-pathophysiological mechanisms of aberrant cognition function in this disease. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the brain function is changed in MHE, we applied a resting-state fMRI approach with independent component analysis (ICA to assess the differences of resting-state networks (RSNs between MHE patients and healthy controls. Fourteen MHE patients and 14 age-and sex-matched healthy subjects underwent resting-state fMRI scans. ICA was used to identify six RSNs [dorsal attention network (DAN, default mode network (DMN, visual network (VN, auditory network (AN, sensorimotor network (SMN, self-referential network (SRN] in each subject. Group maps of each RSN were compared between the MHE and healthy control groups. Pearson correlation analysis was performed between the RSNs functional connectivity (FC and venous blood ammonia levels, and neuropsychological tests scores for all patients. Compared with the healthy controls, MHE patients showed significantly decreased FC in DAN, both decreased and increased FC in DMN, AN and VN. No significant differences were found in SRN and SMN between two groups. A relationship between FC and blood ammonia levels/neuropsychological tests scores were found in specific regions of RSNs, including middle and medial frontal gyrus, inferior parietal lobule, as well as anterior and posterior cingulate cortex/precuneus. CONCLUSIONS/SIGNIFICANCE: MHE patients have selective impairments of RSNs intrinsic functional connectivity, with aberrant functional connectivity in DAN, DMN, VN, AN, and spared SMN and SRN. Our fMRI study might supply a novel way to understand the neuropathophysiological mechanism of cognition function changes in MHE.

  19. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury: A pilot study.

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-11-01

    Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.

  20. Classification and Extraction of Resting State Networks Using Healthy and Epilepsy fMRI Data

    Directory of Open Access Journals (Sweden)

    Svyatoslav Vergun

    2016-09-01

    Full Text Available Functional magnetic resonance imaging studies have significantly expanded the field’s understanding of functional brain activity of healthy and patient populations. Resting state (rs- fMRI, which does not require subjects to perform a task, eliminating confounds of task difficulty, allows examination of neural activity and offers valuable functional mapping information. The purpose of this work was to develop an automatic resting state network (RNS labeling method which offers value in clinical workflow during rs-fMRI mapping by organizing and quickly labeling spatial maps into functional networks. Here independent component analysis (ICA and machine learning were applied to rs-fMRI data with the goal of developing a method for the clinically oriented task of extracting and classifying spatial maps into auditory, visual, default-mode, sensorimotor and executive control resting state networks from 23 epilepsy patients (and for general comparison, separately for 30 healthy subjects. ICA revealed distinct and consistent functional network components across patients and healthy subjects. Network classification was successful, achieving 88% accuracy for epilepsy patients with a naïve Bayes algorithm (and 90% accuracy for healthy subjects with a perceptron. The method’s utility to researchers and clinicians is the provided RSN spatial maps and their functional labeling which offer complementary functional information to clinicians’ expert interpretation.