WorldWideScience

Sample records for resting studies performed

  1. Structure-function relationships in elderly resting-state-networks : influence of age and cognitive performance

    Jockwitz, Christiane

    2016-01-01

    The aim of this work was to investigate the structure-function relationship in cognitive resting state networks in a large population-based elderly sample. The first study characterized the functional connectivity in four cognitive resting state networks with respect to age, gender and cognitive performance: Default Mode Network (DMN), executive, and left and right frontoparietal resting state networks. The second study assessed the structural correlates of the functional reorganization of th...

  2. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  3. Feasibility Study of a Lunar Analog Bed Rest Model

    Cromwell, Ronita L.; Platts, Steven H.; Yarbough, Patrice; Buccello-Stout, Regina

    2010-01-01

    The purpose of this study was to determine the feasibility of using a 9.5deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The lunar analog bed rest model utilized a modified hospital bed. The modifications included mounting the mattress on a sled that rolled on bearings to provide freedom of movement. The weight of the sled was off-loaded using a counterweight system to insure that 1/6 body weight was applied along the long axis (z-axis) of the body. Force was verified through use of a force plate mounted at the foot of the bed. A seating assembly was added to the bed to permit periods of sitting. Subjects alternated between standing and sitting positions throughout the day. A total of 35% of the day was spent in the standing position and 65% was spent sitting. In an effort to achieve physiologic fluid shifts expected for a 1/6 G environment, subjects wore compression stockings and performed unloaded foot and ankle exercises. Eight subjects (3 females and 5 males) participated in this study. Subjects spent 13 days in the pre-bed rest phase, 6 days in bed rest and 3 days post bed rest. Subjects consumed a standardized diet throughout the study. To determine feasibility, measures of subject comfort, force and plasma volume were collected. Subject comfort was assessed using a Likert scale. Subjects were asked to assess level of comfort (0-100) for 11 body regions and provide an overall rating. Results indicated minimal to no discomfort as most subjects reported scores of zero. Force measures were performed for each standing position and were validated against subject s calculated 1/6 body weight (r(sup 2) = 0.993). The carbon monoxide rebreathing technique was used to assess plasma volume during pre-bed rest and on the last day of bed rest. Plasma volume results indicated a significant decrease (p = 0.001) from pre to post bed rest values. Subjects lost on average 8.3% (sd = 6.1%) during the

  4. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  5. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  6. The metabolic cost of an integrated exercise program performed during 14 days of bed rest.

    Scott, Jessica M; Hackney, Kyle; Downs, Meghan; Guined, Jamie; Ploutz-Snyder, Robert; Fiedler, James; Cunningham, David; Ploutz-Snyder, Lori

    2014-06-01

    Exercise countermeasures designed to mitigate muscle atrophy during long-duration spaceflight may not be as effective if crewmembers are in negative energy balance (energy output > energy input). This study determined the energy cost of supine exercise (resistance, interval, aerobic) during the spaceflight analogue of bed rest. Nine subjects (eight men and one woman; 34.5 +/- 8.2 yr) completed 14 d of bed rest and concomitant exercise countermeasures. Body mass and basal metabolic rate (BMR) were assessed before and during bed rest. Exercise energy expenditure was measured during and immediately after [excess post-exercise oxygen consumption (EPOC)] each of five different exercise protocols (30-s, 2-min, and 4-min intervals, continuous aerobic, and a variety of resistance exercises) during bed rest. On days when resistance and continuous aerobic exercise were performed daily, energy expenditure was significantly greater (2879 +/- 280 kcal) than 2-min (2390 +/- 237 kcal), 30-s (2501 +/- 264 kcal), or 4-min (2546 +/- 264 kcal) exercise. There were no significant differences in BMR (pre-bed rest: 1649 +/- 216 kcal; week 1: 1632 +/- 174 kcal; week 2:1657 +/- 176 kcal) or body mass (pre-bed rest: 75.2 +/- 10.1 kg; post-bed rest: 75.2 +/- 9.6 kg). These findings highlight the importance of energy balance for long-duration crewmembers completing a high-intensity exercise program with multiple exercise sessions daily.

  7. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  8. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  9. The impact of continuous driving time and rest time on commercial drivers' driving performance and recovery.

    Wang, Lianzhen; Pei, Yulong

    2014-09-01

    This real road driving study was conducted to investigate the effects of driving time and rest time on the driving performance and recovery of commercial coach drivers. Thirty-three commercial coach drivers participated in the study, and were divided into three groups according to driving time: (a) 2 h, (b) 3 h, and (c) 4 h. The Stanford Sleepiness Scale (SSS) was used to assess the subjective fatigue level of the drivers. One-way ANOVA was employed to analyze the variation in driving performance. The statistical analysis revealed that driving time had a significant effect on the subjective fatigue and driving performance measures among the three groups. After 2 h of driving, both the subjective fatigue and driving performance measures began to deteriorate. After 4 h of driving, all of the driving performance indicators changed significantly except for depth perception. A certain amount of rest time eliminated the negative effects of fatigue. A 15-minute rest allowed drivers to recover from a two-hour driving task. This needed to be prolonged to 30 min for driving tasks of 3 to 4 h of continuous driving. Drivers' attention, reactions, operating ability, and perceptions are all affected in turn after over 2 h of continuous driving. Drivers should take a certain amount of rest to recover from the fatigue effects before they continue driving. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  10. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  11. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard Jack Anton; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F.

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state

  12. [Performance of Thallium 201 rest-redistribution spect to predict viability in recent myocardial infarction].

    Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor

    2002-03-01

    The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.

  13. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  14. Experimental evaluation of the influence of various rests on task performance

    Nagasaka, Akihiko; Hirose, Ayako

    2000-01-01

    This report deals with the result of the experiment that 8 subjects had executed adding task and search task. They executed each task in 80 minutes under 5 conditions: (1) with no rest, and with 4 kinds of 20 minutes rests, in which they (2) opened eyes, (3) closed eyes, (4) closed eyes with listening classic music and (5) closed eyes with feet massage, in the middle of the task. The results of analysis of variance with the task performance in the latter half, there were significant differences between each condition with every subject in adding task, and with 6 subjects in search task. However, the orders of the task performance with each condition were not the same by each subject. It was suggested that transition of the arousal levels under the rest was related to the effects of the rest rather than the subjects' taste in rests. In the rest, the percentage of α wave of electroencephalogram and the coefficient of variation of R-R interval (time interval of heart beats) were increased than in executing task. The mean Kendall's rank correlation of coefficient with the order of increase rate of α/β wave and the task performance in the latter half was slightly negative in adding task, but was about 0.4 in search task. From these results, about six requirements for 'an effective rest' were able to be mentioned, for example, 'the devices that raises the arousal levels is carried out just before a rest end'. (author)

  15. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  16. Resting cardiointegram: correlation with stress thallium perfusion studies

    Gould, L.A.; Betzu, R.; Judge, D.; Lee, J.; Taddeo, M.; Yang, D.

    1988-01-01

    The cardiointegram is a noninvasive technique for the analysis of the electrical signals of the heart obtained by a transformation of the voltage versus time format by a series of integrations. The stress thallium perfusion study is a widely used test for the detection of coronary artery disease. In order to evaluate the correlation between the resting cardiointegram and the stress thallium 201 perfusion study, 20 patients with normal resting electrocardiograms underwent stress thallium tests and resting cardiointegrams. The cardiointegram was determined on two resting complexes of leads I, II, V4, V5, and V6 and called abnormal if five of ten complexes deviated outside a normalized template. There was concordance of the cardiointegram and the thallium study in 16 of 20 patients (80%). The sensitivity for the detection of coronary artery disease was 71%, and the specificity was 80%. The overall accuracy was 74%. Thus in patients with normal electrocardiograms, the cardiointegram is a useful noninvasive test for the detection of coronary artery disease

  17. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  18. Resting-state slow wave power, healthy aging and cognitive performance

    Eleni L. Vlahou; Franka Thurm; Iris-Tatjana Kolassa; Winfried Schlee

    2014-01-01

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18–89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show tha...

  19. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading

  20. Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.

    2012-01-01

    Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence

  1. Acute effect of passive rest intervals and stretching exercise on multiple set performance

    Antonio Claudio do Rosário Souza

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n4p435 The objective of this study was to determine the acute effect of passive rest intervals and static stretching between resistance exercise sets on the number of maximal repetitions (RM, rating of perceived exertion (RPE, and cumulative number of repetitions in multiple sets with a workload adjusted by the 8RM test. Fourteen trained male subjects (24.4 ± 2.1 years; 79.1 ± 7.1 kg; 175.4 ± 5.6 cm were studied. On the first two visits, the subjects were submitted to the test and 8RM re-test using chest press (CP and squat (SQ exercises. On the two subsequent visits, all subjects were randomly assigned to two experimental situations: a 8RM test with a passive rest interval (PI; b 8RM test with static stretching (SS. The subjects performed three sets of CP and SQ, intercalated with 2 minutes of passive rest or 30 seconds of static stretching. ANOVA revealed a significant decrease (p < 0.05 in the second (PI = 6 ± 0.8 x SS = 5.2 ± 1.0 repetitions and third (PI = 4.1 ± 0.8 X SS = 3.3 ± 0.6 repetitions sets for CP and only in the third set (PI = 4.9 ± 0.8 X SS = 4.2 ± 1.0 repetitions for SQ. For RPE, the Wilcoxon test showed significant differences (p < 0.05 between all sets for CP and SQ. For the cumulative number of repetitions, the paired t-test revealed a significant decrease (p < 0.05 for CP (PI = 18.3 ± 1.5 X SS = 16.8 ± 1.6 repetitions. These results indicate that static stretching between resistance exercise sets decreases 8RM test performance.

  2. Behavioral Health and Performance (BHP) Work-Rest Cycles

    Leveton, Lauren B.; Whitmire, Alexandra

    2011-01-01

    BHP Program Element Goal: Identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration and return to terrestrial life. BHP Requirements: a) Characterize and assess risks (e.g., likelihood and consequences). b) Develop tools and technologies to prevent, monitor, and treat adverse outcomes. c) Inform standards. d) Develop technologies to: 1) reduce risks and human systems resource requirements (e.g., crew time, mass, volume, power) and 2) ensure effective human-system integration across exploration mission.

  3. Experimental evaluation of the influence of various rests on task performance

    Nagasaka, Akihiko; Hirose, Ayako [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-01-01

    This report deals with the result of the experiment that 8 subjects had executed adding task and search task. They executed each task in 80 minutes under 5 conditions: (1) with no rest, and with 4 kinds of 20 minutes rests, in which they (2) opened eyes, (3) closed eyes, (4) closed eyes with listening classic music and (5) closed eyes with feet massage, in the middle of the task. The results of analysis of variance with the task performance in the latter half, there were significant differences between each condition with every subject in adding task, and with 6 subjects in search task. However, the orders of the task performance with each condition were not the same by each subject. It was suggested that transition of the arousal levels under the rest was related to the effects of the rest rather than the subjects' taste in rests. In the rest, the percentage of {alpha} wave of electroencephalogram and the coefficient of variation of R-R interval (time interval of heart beats) were increased than in executing task. The mean Kendall's rank correlation of coefficient with the order of increase rate of {alpha}/{beta} wave and the task performance in the latter half was slightly negative in adding task, but was about 0.4 in search task. From these results, about six requirements for 'an effective rest' were able to be mentioned, for example, 'the devices that raises the arousal levels is carried out just before a rest end'. (author)

  4. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the c...

  5. Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study

    Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J.

    2011-01-01

    Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving

  6. A longitudinal study in youth of heart rate variability at rest and in response to stress

    Li, Zhibin; Snieder, Harold; Su, Shaoyong; Ding, Xiuhua; Thayer, Julian F.; Treiber, Frank A.; Wang, Xiaoling

    Background: Few longitudinal studies have examined ethnic and sex differences, predictors and tracking stabilities of heart rate variability (HRV) at rest and in response to stress in youths and young adults. Methods: Two evaluations were performed approximately 1.5 years apart on 399 youths and

  7. Left ventricular performance at rest and during peak exercise in never-treated hypertensive female - an assessment with radionuclide ventriculography

    Topuzovic, N.; Karner, I.; Rusic, A.; Krstonosic, B.

    2002-01-01

    Aim: The aim of this study was to investigate left ventricular performance and exercise tolerance in never-treated female hypertensive patients. Materials and Methods: Seventeen female patients with newly established, uncomplicated essential hypertension (aged 25 to 57 years) were evaluated with rest-stress radionuclide gated ventriculography, and were compared to 23 age-matched normotensive female volunteers. Results: Mean blood pressure was significantly higher in patients at rest and during exercise than in controls (121±13 vs. 89±7 mm Hg, and 143±11 vs. 122±9 mm Hg, respectively, p 2 , respectively, p<0.01), while ESV was similar in both groups. Ejection fraction (EF) at rest and stress did not differ significantly (54±10 vs. 55±8%, and 70±10 vs. 66±8%, respectively), but % rise in EF during exercise was significantly higher in patients. At rest and during exercise, there were no significant difference in peak ejection rate (PER) and time to PER (TPER) between patients and controls. Patients had similar peak filling rate (PFR) at rest (2.88±0.79 vs. 2.76±0.76 EDV/s) and during exercise (5.85±1.86 vs. 6.21±1.97 EDV/s), in addition to nonsignificant difference in time to PFR (at rest 143±62 vs. 146±42 ms at rest, and 97±20 vs. 91±19 ms during exercise). Conclusion: Female patients with newly diagnosed, never-treated hypertension have preserved maximal exercise performance, systolic function and diastolic function, but they have significant enlargement of EDV and elevated cardiac output during exercise

  8. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes.

    Czerniak, Suzanne M; Sikoglu, Elif M; Liso Navarro, Ana A; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-06-01

    Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.

  9. The Effect of Regular-Season Rest on Playoff Performance Among Players in the National Basketball Association.

    Belk, John W; Marshall, Hayden A; McCarty, Eric C; Kraeutler, Matthew J

    2017-10-01

    There has been speculation that rest during the regular season for players in the National Basketball Association (NBA) improves player performance in the postseason. To determine whether there is a correlation between the amount of regular-season rest among NBA players and playoff performance and injury risk in the same season. Cohort study; Level of evidence, 3. The Basketball Reference and Pro Sports Transactions archives were searched from the 2005 to 2015 seasons. Data were collected on players who missed fewer than 5 regular-season games because of rest (group A) and 5 to 9 regular-season games because of rest (group B) during each season. Inclusion criteria consisted of players who played a minimum of 20 minutes per game and made the playoffs that season. Players were excluded if they missed ≥10 games because of rest or suspension or missed ≥20 games in a season for any reason. Matched pairs were formed between the groups based on the following criteria: position, mean age at the start of the season within 2 years, regular-season minutes per game within 5 minutes, same playoff seeding, and player efficiency rating (PER) within 2 points. The following data from the playoffs were collected and compared between matched pairs at each position (point guard, shooting guard, forward/center): points per game, assists per game, PER, true shooting percentage, blocks, steals, and number of playoff games missed because of injury. A total of 811 players met the inclusion and exclusion criteria (group A: n = 744 players; group B: n = 67 players). Among all eligible players, 27 matched pairs were formed. Within these matched pairs, players in group B missed significantly more regular-season games because of rest than players in group A (6.0 games vs 1.3 games, respectively; P NBA regular season does not improve playoff performance or affect the injury risk during the playoffs in the same season.

  10. Effect of rest interval length on bench press performance in boys, teens, and men.

    Faigenbaum, Avery D; Ratamess, Nicholas A; McFarland, Jim; Kaczmarek, Jon; Coraggio, Michael J; Kang, Jie; Hoffman, Jay R

    2008-11-01

    The purpose of this study was to assess the lifting performance of boys (N = 12; age 11.3 +/- 0.8 yr), teens (N = 13; age 13.6 +/- 0.6 yr), and men (N = 17; age 21.4 +/- 2.1 yr) to various rest interval (RI) lengths on the bench press exercise. Each subject performed 3 sets with a 10 repetition maximum load and a 1, 2, and 3 min RI between sets. Significant differences in lifting performance between age groups were observed within each RI for selected sets with boys and teens performing significantly more total repetitions than adults following protocols with 1 min (27.9 +/- 3.1, 26.9 +/- 3.9, and 18.2 +/- 4.1, respectively), 2 min (29.6 +/- 1.0, 27.8 +/- 3.5, and 21.4 +/- .1, respectively) and 3 min (30.0 +/- 0.0, 28.8 +/- 2.4, and 23.9 +/- 5.3, respectively) RIs. Significant differences in average velocity and average power between age groups were also observed. These findings indicate that boys and teens are better able to maintain muscle performance during intermittent moderate-intensity resistance exercise as compared with men.

  11. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  12. Resting right ventricular function is associated with exercise performance in PAH, but not in CTEPH.

    Rehman, Michaela Beatrice; Howard, Luke S; Christiaens, Luc P; Gill, Dipender; Gibbs, J Simon R; Nihoyannopoulos, Petros

    2018-02-01

    To assess whether resting right ventricular (RV) function assessed by Global RV longitudinal strain (RVLS) and RV fractional area change (FAC) is associated with exercise performance in pulmonary arterial hypertension (PAH) and in chronic thromboembolic pulmonary hypertension (CTEPH). We prospectively recruited 46 consecutive patients with PAH and 42 patients with CTEPH who were referred for cardio-pulmonary exercise testing (CPET) and transthoracic echocardiography. Resting RV systolic function was assessed with RVLS and FAC. CPET parameters analyzed were percentage of predicted maximal oxygen consumption (VO2max) and the slope of ventilation against carbon dioxide production (VE/VCO2). Spearman correlation was performed between echocardiographic measurements and CPET measurements. In PAH, spearman correlation found an association between RVLS and VE/VCO2 (coefficient = 0.556, P PAH, resting RV function as assessed by FAC or RVLS is associated with exercise performance and could therefore make a significant contribution to non-invasive assessment in PAH patients. This association is not found in CTEPH, suggesting a disconnection between resting RV function and exercise performance, with implications for the use of exercise measurements as a prognostic marker and clinical/research endpoint in CTEPH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  13. Genome-wide association studies and resting heart rate

    Oskari Kilpeläinen, Tuomas

    2016-01-01

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10 years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms...... and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands...... of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal...

  14. The Relationship of Cognitive Performance and the Theta-Alpha Power Ratio Is Age-Dependent: An EEG Study of Short Term Memory and Reasoning during Task and Resting-State in Healthy Young and Old Adults

    Janet P. Trammell

    2017-11-01

    Full Text Available Objective: The Theta-Alpha ratio (TAR is known to differ based upon age and cognitive ability, with pathological electroencephalography (EEG patterns routinely found within neurodegenerative disorders of older adults. We hypothesized that cognitive ability would predict EEG metrics differently within healthy young and old adults, and that healthy old adults not showing age-expected EEG activity may be more likely to demonstrate cognitive deficits relative to old adults showing these expected changes.Methods: In 216 EEG blocks collected in 16 young and 20 old adults during rest (eyes open, eyes closed and cognitive tasks (short-term memory [STM]; matrix reasoning [RM; Raven's matrices], models assessed the contributing roles of cognitive ability, age, and task in predicting the TAR. A general linear mixed-effects regression model was used to model this relationship, including interaction effects to test whether increased cognitive ability predicted TAR differently for young and old adults at rest and during cognitive tasks.Results: The relationship between cognitive ability and the TAR across all blocks showed age-dependency, and cognitive performance at the CZ midline location predicted the TAR measure when accounting for the effect of age (p < 0.05, chi-square test of nested models. Age significantly interacted with STM performance in predicting the TAR (p < 0.05; increases in STM were associated with increased TAR in young adults, but not in old adults. RM showed similar interaction effects with aging and TAR (p < 0.10.Conclusion: EEG correlates of cognitive ability are age-dependent. Adults who did not show age-related EEG changes were more likely to exhibit cognitive deficits than those who showed age-related changes. This suggests that healthy aging should produce moderate changes in Alpha and TAR measures, and the absence of such changes signals impaired cognitive functioning.

  15. Bed Rest is an Analog to Study the Physiological Changes of Spaceflight and to Evaluate Countermeasures

    Pfannenstiel, P.; Ottenbacher, M.; Inniss, A.; Ware, D.; Anderson, K.; Stranges, S.; Keith, K.; Cromwell, R.; Neigut. J.; Powell, D.

    2012-01-01

    The UTMB/NASA Flight Analog Research Unit is an inpatient unit with a bionutrition kitchen and unique testing areas for studying subjects subjected to 6 degree head-down complete bed rest for prolonged periods as an analog for zero gravity. Bed rest allows study of physiological changes and performance of functional tasks representative of critical interplanetary mission operations and measures of the efficacy of countermeasures designed to protect against the resulting deleterious effects. METHODS/STUDY POPULATION: Subjects are healthy adults 24-55 years old; 60 75 in tall; body mass index 18.5-30; and bone mineral density normal by DXA scan. Over 100 subjects have been studied in 7 campaigns since 2004. The iRAT countermeasure combines high intensity interval aerobic exercises on alternating days with continuous aerobic exercise. Resistance exercise is performed 3 days per week. Subjects are tested on an integrated suite of functional and interdisciplinary physiological tests before and after 70 days of total bed rest. RESULTS/ANTICIPATED RESULTS: It is anticipated that post-bed rest functional performance will be predicted by a weighted combination of sensorimotor, cardiovascular and muscle physiological factors. Control subjects who do not participate in the exercise countermeasure will have significantly greater decreases in these parameters. DISCUSSION/SIGNIFICANCE OF IMPACT: Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity, leading to disruption in the ability to perform functional tasks after reintroduction to a gravitational environment. Current flight exercise countermeasures are not fully protective of cardiovascular, muscle and bone health. There is a need to refine and optimize countermeasures to mitigate health risks associated with long-term space missions.

  16. Resting-state slow wave power, healthy aging and cognitive performance.

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  17. A Rwandan spirometry and resting ventilation study | Gahutu ...

    To illustrate spirometric population variation and ventilatory adaptation to moderate altitude, we report the spirometric and resting ventilation values observed in a student population in Butare, Rwanda (altitude: 1 768 m; barometric pressure: 629 mm Hg). Spirometry was carried out with a Mijnhardt Volutest VT-3 ...

  18. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  19. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  1. A study on regional cerebral blood flow at rest and stress state in anxiety disorder patients

    Wan Li; Liu Jian

    2002-01-01

    Objective: To investigate he characteristics of rest and stress regional cerebral blood flow (rCBF) in naive anxiety disorder patients. Methods: Twenty naive anxiety disorder patients were enrolled in the study with twenty healthy volunteers as controls. The rest and stress 99 Tc m -ethylene cystein dimer (ECD) SPECT were performed separately at 2 consecutive days, Raven reasoning test was used as a stressor. Results: 1) Compared to the healthy controls, the patients' rest rCBF of the frontal lobe, temporal lobe, thalamus and basal ganglia were significantly lower (P<0.05 and 0.01). 2)The patients' stress rCBF of the frontal lobe, temporal lobe, part occipital lobe, part parietal lobe, thalamus and basal ganglia were significantly lower compared to the healthy controls' (P<0.05 and 0.01). 3) Opposite to the healthy controls, the rCBF of patients increased significantly after stressor simulating. Conclusions: The hypofunction of frontal lobe, temporal lobe, thalamus and basal ganglia may exist in naive anxiety disorder patients. The abnormal rCBF of patients after simulating may be one of the characteristics of anxiety disorder

  2. Brain entropy and human intelligence: A resting-state fMRI study.

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  3. Brain entropy and human intelligence: A resting-state fMRI study

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  4. Adding attenuation corrected images in myocardial perfusion imaging reduces the need for a rest study

    Trägårdh, Elin; Valind, Sven; Edenbrandt, Lars

    2013-01-01

    The American Society of Nuclear Cardiology and the Society of Nuclear Medicine conclude that incorporation of attenuation corrected (AC) images in myocardial perfusion scintigraphy (MPS) will improve diagnostic accuracy. The aim was to investigate the value of adding AC stress-only images for the decision whether a rest study is necessary or not. 1,261 patients admitted to 99m Tc MPS were studied. The stress studies were interpreted by two physicians who judged each study as “no rest study necessary” or “rest study necessary”, by evaluating NC stress-only and NC + AC stress-only images. When there was disagreement between the two physicians, a third physician evaluated the studies. Thus, agreement between 2 out of 3 physicians was evaluated. The physicians assessed 214 more NC + AC images than NC images as “no rest study necessary” (17% of the study population). The number of no-rest-study-required was significantly higher for NC + AC studies compared to NC studies (859 vs 645 cases (p < 0.0001). In the final report according to clinical routine, ischemia or infarction was reported in 23 patients, assessed as “no rest study necessary” (22 NC + AC cases; 8 NC cases), (no statistically significant difference). In 11 of these, the final report stated “suspected/possible ischemia or infarction in a small area”. Adding AC stress-only images to NC stress-only images reduce the number of unnecessary rest studies substantially

  5. Virtual Resting Pd/Pa From Coronary Angiography and Blood Flow Modelling: Diagnostic Performance Against Fractional Flow Reserve.

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Bourantas, Christos V; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Serruys, Patrick W; Michalis, Lampros K

    2018-03-01

    Fractional flow reserve (FFR) has been established as a useful diagnostic tool. The distal coronary pressure to aortic pressure (Pd/Pa) ratio at rest is a simpler physiologic index but also requires the use of the pressure wire, whereas recently proposed virtual functional indices derived from coronary imaging require complex blood flow modelling and/or are time-consuming. Our aim was to test the diagnostic performance of virtual resting Pd/Pa using routine angiographic images and a simple flow model. Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by FFR. The resting Pd/Pa for each lesion was assessed by computational fluid dynamics. The discriminatory power of virtual resting Pd/Pa against FFR (reference: ≤0.80) was high (area under the receiver operator characteristic curve [AUC]: 90.5% [95% CI: 85.4-95.6%]). Diagnostic accuracy, sensitivity and specificity for the optimal virtual resting Pd/Pa cut-off (≤0.94) were 84.9%, 90.4% and 81.6%, respectively. Virtual resting Pd/Pa demonstrated superior performance (pvirtual resting Pd/Pa and FFR (r=0.69, pVirtual resting Pd/Pa using routine angiographic data and a simple flow model provides fast functional assessment of coronary lesions without requiring the pressure-wire and hyperaemia induction. The high diagnostic performance of virtual resting Pd/Pa for predicting FFR shows promise for using this simple/fast virtual index in clinical practice. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  6. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Effects of rest interval length on Smith machine bench press performance and perceived exertion in trained men.

    Tibana, Ramires A; Vieira, Denis C L; Tajra, Vitor; Bottaro, Martim; de Salles, Belmiro F; Willardson, Jeffrey M; Prestes, Jonato

    2013-12-01

    This study compared two different rest intervals (RI) between sets of resistance exercise. Ten resistance-trained men (M age = 24.3, SD = 3.5 yr.; M weigh t= 80.0 kg, SD = 15.3; M height = 1.75 m, SD = 0.04) performed five sets of Smith machine bench presses at 60% of one repetition maximum, either with 1.5 min. or 3 min. RI between sets. Their repetition performance, total training volume, velocity, fatigue, rating of perceived exertion, and muscular power were measured. All of these measures indicated that performance was significantly better and fatigue was significantly lower in the 3 min. RI as compared with the 1.5 min. RI, except the rating of perceived exertion which did not show a significant difference. A longer RI between sets promotes superior performance for the bench press.

  8. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  9. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  10. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes

    Angelo Cataldo

    2018-02-01

    Full Text Available Relationships between heart rate recovery after exercise (HRR, baseline heart rate variability measures (HRV, and time to perform a 10Km running trial (t10Km were evaluated in "master" athletes of endurance to assess whether the measured indexes may be useful for monitoring the training status of the athletes. Ten “master” athletes of endurance, aged 40-60 years, were recruited. After baseline measures of HRV, the athletes performed a graded maximal test on treadmill and HRR was measured at 1 and 2 minutes from recovery. Subsequently they performed a 10Km running trial and t10Km was related to HRV and HRR indexes. The time to perform a 10Km running trial was significantly correlated with baseline HRV indexes. No correlation was found between t10Km and HRR. Baseline HRV measures, but not HRR, were significantly correlated with the time of performance on 10km running in “master” athletes. The enhanced parasympathetic function at rest appears to be a condition to a better performance on 10km running. HRV can be simple and useful measurements for monitoring the training stratus of athletes and their physical condition in proximity of a competition.

  11. Influence of Different Work and Rest Distributions on Performance and Fatigue During Simulated Team Handball Match Play.

    Moss, Samantha L; Twist, Craig

    2015-10-01

    This study investigated the effect of different interchange strategies on performance and pacing strategy during a simulated team-sport protocol. Eight youth male team handball players completed 2 conditions (LONG-work: 3 × 13:00 minutes, rest: 8:00 minutes; SHORT-work: 5 × 7:48 minutes, rest: 3:45 minutes). Participants were tested for 20-m sprint, countermovement jump, throwing performance, and heart rate (HR) during conditions. Postcondition measures included repeated shuttle-sprint and jump ability, session rating of perceived exertion, blood lactate, and glucose. Faster sprint (3.87 ± 0.27 seconds cf. 3.97 ± 0.24 seconds, effect size [ES] = 0.39, p = 0.03) and throwing performance (70.02 ± 7.40 km·h(-1) cf. 69.04 ± 5.57 km·h(-1), p > 0.05, ES = -0.15) occurred in SHORT compared with LONG by a "likely small" difference. Higher summated HR (157 ± 21 cf. 150 ± 15 AU) occurred in SHORT compared with LONG by a "likely small" difference (ES = 0.37, p > 0.05). SHORT resulted in lower session rating of perceived exertion (224 ± 45 AU cf. 282 ± 35 AU, ES = 1.45, p = 0.001) and higher blood glucose (6.06 ± 0.69 mmol·l(-1) cf. 4.98 ± 1.10 mmol·l(-1), ES = -1.17, p = 0.03) by a "most likely moderate" difference compared with LONG. Repeated shuttle sprint was better preserved after SHORT, with "moderately lower" 10 and 25 m times (p ≤ 0.05). Interchange strategies using SHORT rather than LONG work and rest periods result in lower physiological load, leading to improved fatigue resistance and better preservation of high-intensity movements during matches.

  12. Long Duration Head Down Tilt Bed Rest and Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2017-01-01

    We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor

  13. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  14. EFFECTS OF PROTEIN SUPPLEMENTATION ON MUSCULAR PERFORMANCE AND RESTING HORMONAL CHANGES IN COLLEGE FOOTBALL PLAYERS

    Jay R. Hoffman

    2007-03-01

    Full Text Available The effect of protein supplementation on athletic performance and hormonal changes was examined in 21 experienced collegiate strength/power athletes participating in a 12-week resistance training program. Subjects were randomly assigned to either a protein supplement (PR; n = 11 or a placebo (PL; n = 10 group. During each testing session subjects were assessed for strength (one repetition maximum [1-RM] bench press and squat, power (Wingate anaerobic power test and body composition. Resting blood samples were analyzed at weeks 0 (PRE, 6 (MID and 12 (POST for total testosterone, cortisol, growth hormone, and IGF-1. No difference was seen in energy intake between PR and PL (3034 ± 209 kcal and 3130 ± 266 kcal, respectively, but a significant difference in daily protein intake was seen between PR (2.00 g·kg body mass[BM]-1·d-1 and PL (1.24 g·kgBM-1·d-1. A greater change (p < 0.05 in the ∆ 1-RM squat was seen in PR (23.5 ± 13.6 kg compared to PL (9.1 ± 11.9 kg. No other significant strength or power differences were seen between the groups. Cortisol concentrations were significantly lower at MID for PL and this difference was significantly different than PR. No significant changes were noted in resting growth hormone or IGF-1 concentrations in either group. Although protein supplementation appeared to augment lower body strength development, similar upper body strength, anaerobic power and lean tissue changes do not provide clear evidence supporting the efficacy of a 12-week protein supplementation period in experienced resistance trained athletes

  15. Repetitive box lifting performance is impaired in a hot environment: implications for altered work-rest cycles.

    Maresh, Carl M; Sökmen, Bulent; Armstrong, Lawrence E; Dias, Joao C; Pryor, J Luke; Creighton, Brent C; Muñoz, Colleen X; Apicella, Jenna M; Casa, Douglas J; Lee, Elaine C; Anderson, Jeffery M; Kraemer, William J

    2014-01-01

    This study investigated the effects of environmental temperature on repetitive box lifting (RBL) performance, associated stress hormone and creatine kinase (CK) responses. Ten healthy males performed two experimental trials in a random crossover design. The trials consisted of three 40 min (10 min sitting, 20 min standing, and 10 min RBL) circuits performed in either 23 °C or 38 °C followed by a 180 min seated recovery period in 23 °C. RBL performance (i.e., number of boxes lifted) was reduced (p ≤ 0.05) in 38 °C compared to the 23 °C trial. Physiological Strain Index was significantly different between trials (38 °C: 8.5 ± 1.1 versus 23 °C: 7.2 ± 0.7; p ≤ 0.01). Plasma testosterone was elevated (p ≤ 0.05) across both trials and then decreased at 60 min recovery, compared to pre-exercise (PRE) measures, but was higher (p ≤ 0.05) during the 38 °C trial. Plasma cortisol increased (p ≤ 0.05) at 60 min during both trials and remained elevated until 120 min in 23 °C, and until 60 min recovery in 38 °C. Serum CK was greater through 48 hr post compared to PRE values in both trials. Thus, 10 min RBL performance was reduced in 38 °C despite the 30-min rest periods between RBL intervals. Plasma testosterone and cortisol were generally higher during the 38 °C trial, suggesting a greater stress response. Additional research is needed to determine optimal work:rest cycles for maximizing work performance in thermally oppressive environments.

  16. The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise.

    Stellingwerff, Trent; Godin, Jean-Philippe; Chou, Chieh J; Grathwohl, Dominik; Ross, Alastair B; Cooper, Karen A; Williamson, Gary; Actis-Goretta, Lucas

    2014-02-01

    Consumption of cocoa-enriched dark chocolate (DC) has been shown to alter glucose and insulin concentration during rest and exercise compared with cocoa-depleted control (CON). However, the impact of DC consumption on exercise metabolism and performance is uncertain. Therefore, we investigated carbohydrate metabolism via stable isotope tracer techniques during exercise after subjects ingested either DC or CON. Sixteen overnight-fasted male cyclists performed a single-blinded, randomized, crossover design trial, after consuming either DC or CON at 2 h prior to 2.5 h of steady-state (SS) exercise (∼45% peak oxygen uptake). This was followed by an ∼15-min time-trial (TT) and 60 min of recovery. [6,6-(2)H2]Glucose and [U-(13)C]glucose were infused during SS to assess glucose rate of appearance (Ra) and disappearance (Rd). After DC consumption, plasma (-)-glucose and insulin concentrations were significantly (p consumption coincided with high concentrations of epicatechin and (or) theobromine. In summary, DC consumption altered muscle carbohydrate partitioning, between muscle glucose uptake and glycogen oxidation, but did not effect cycling TT performance.

  17. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  18. Effects of Early and Late Rest Intervals on Performance and Overnight Consolidation of a Keyboard Sequence

    Cash, Carla Davis

    2009-01-01

    Thirty-six nonmusicians practiced a five-element key-press sequence on a digital piano, repeating the sequence as quickly and accurately as possible during twelve 30-s practice blocks alternating with 30-s pauses. Twelve learners rested for 5 min between Blocks 3 and 4, another 12 learners rested for 5 min between Blocks 9 and 10, and the…

  19. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  20. A Computational Study on the Relation between Resting Heart Rate and Atrial Fibrillation Hemodynamics under Exercise.

    Anselmino, Matteo; Scarsoglio, Stefania; Saglietto, Andrea; Gaita, Fiorenzo; Ridolfi, Luca

    2017-01-01

    Clinical data indicating a heart rate (HR) target during rate control therapy for permanent atrial fibrillation (AF) and assessing its eventual relationship with reduced exercise tolerance are lacking. The present study aims at investigating the impact of resting HR on the hemodynamic response to exercise in permanent AF patients by means of a computational cardiovascular model. The AF lumped-parameter model was run to simulate resting (1 Metabolic Equivalent of Task-MET) and various exercise conditions (4 METs: brisk walking; 6 METs: skiing; 8 METs: running), considering different resting HR (70 bpm for the slower resting HR-SHR-simulations, and 100 bpm for the higher resting HR-HHR-simulations). To compare relative variations of cardiovascular variables upon exertion, the variation comparative index (VCI)-the absolute variation between the exercise and the resting values in SHR simulations referred to the absolute variation in HHR simulations-was calculated at each exercise grade (VCI4, VCI6 and VCI8). Pulmonary venous pressure underwent a greater increase in HHR compared to SHR simulations (VCI4 = 0.71, VCI6 = 0.73 and VCI8 = 0.77), while for systemic arterial pressure the opposite is true (VCI4 = 1.15, VCI6 = 1.36, VCI8 = 1.56). The computational findings suggest that a slower, with respect to a higher resting HR, might be preferable in permanent AF patients, since during exercise pulmonary venous pressure undergoes a slighter increase and systemic blood pressure reveals a more appropriate increase.

  1. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  3. Vortex Formation and Acceleration of a Fish-Inspired Robot Performing Starts from Rest

    Devoria, Adam; Bapst, Jonathan; Ringuette, Matthew

    2009-11-01

    We investigate the unsteady flow of a fish-inspired robot executing starts from rest, with the objective of understanding the connection among the kinematics, vortex formation, and acceleration performance. Several fish perform ``fast starts,'' where the body bends into a ``C'' or ``S'' shape while turning (phase I), followed by a straightening of the body and caudal fin and a linear acceleration (phase II). The resulting highly 3-D, unsteady vortex formation and its relationship to the acceleration are not well understood. The self-propelled robotic model contains motor-driven joints with programmable motion to emulate phase II of a simplified C-start. The experiments are conducted in a water tank, and the model is constrained to 1 direction along rails. The velocity is measured using digital particle image velocimetry (DPIV) in multiple planes. Vortex boundaries are identified using the finite-time Lyapunov exponent, then the unsteady vortex circulation is computed. The thrust is estimated from the identified vortices, and correlated with the circulation and model acceleration for different kinematics.

  4. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  5. A 15O-H2O PET study of meditation and the resting state of normal consciousness

    Lou, H C; Kjaer, T W; Friberg, L

    1999-01-01

    The aim of the present study was to examine whether the neural structures subserving meditation can be reproducibly measured, and, if so, whether they are different from those supporting the resting state of normal consciousness. Cerebral blood flow distribution was investigated with the 15O-H20...... PET technique in nine young adults, who were highly experienced yoga teachers, during the relaxation meditation (Yoga Nidra), and during the resting state of normal consciousness. In addition, global CBF was measured in two of the subjects. Spectral EEG analysis was performed throughout...... the investigations. In meditation, differential activity was seen, with the noticeable exception of V1, in the posterior sensory and associative cortices known to participate in imagery tasks. In the resting state of normal consciousness (compared with meditation as a baseline), differential activity was found...

  6. Effect of smoking on the central circulation at rest and during exercise as studied by radiocardiography

    Timisjaervi, J.; Kuikka, J.; Hirvonen, L.; Kettunen, R.; Moskinen, M.; Kari-Koskinen, O.; Tuominen, M.

    1980-01-01

    The pulmonary vessels are the first target of tobacco smoke in the circulatory system, but the functional changes occuring in the pulmonary circulation are poorly understood. Hence 46 volunteers were studied by radiocardiography under the following conditions: 1. At rest before and after smoking 2 cigarettes (15 men); 2. After repeated ergometer exercise (5 min. 100 W) with and without smoking (13 men); and 3. Control experiments under the corresponding conditions without smoking (18 subjects). A significant increase occured in heart rate, cardiac output and systolic arterial blood pressure after smoking when at rest, but an almost significant decrease in pulmonary dispersion volume, whereas the heart rate and pulmonary capillary pressure attained significantly higher values after than before smoking in the exercise tests, with a significant decrease observed in stroke volume, pulmonary blood volume and pulmonary dispersion volume. It is concluded that smoking impairs physical performance increases pulmonary capillary pressure and reduces pulmonary blood volume and probably the number of open capillaries. (orig.) [de

  7. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  8. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.

    2011-01-01

    Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C

  9. The effects of a mid-task break on the brain connectome in healthy participants: A resting-state functional MRI study.

    Sun, Yu; Lim, Julian; Dai, Zhongxiang; Wong, KianFoong; Taya, Fumihiko; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios

    2017-05-15

    Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the effects of receiving a rest break on the topological properties of brain connectivity networks via a two-session experimental paradigm, in which one session comprised four successive blocks of a mentally demanding visual selective attention task (No-rest session), whereas the other contained a rest break between the second and third task blocks (Rest session). Functional brain networks were constructed using resting-state functional MRI data recorded from 20 healthy adults before and after the performance of the task blocks. Behaviorally, subjects displayed robust time-on-task (TOT) declines, as reflected by increasingly slower reaction time as the test progressed and lower post-task self-reported ratings of engagement. However, we did not find a significant effect on task performance due to administering a mid-task break. Compared to pre-task measurements, post-task functional brain networks demonstrated an overall decrease of optimal small-world properties together with lower global efficiency. Specifically, we found TOT-related reduced nodal efficiency in brain regions that mainly resided in the subcortical areas. More interestingly, a significant block-by-session interaction was revealed in local efficiency, attributing to a significant post-task decline in No-rest session and a preserved local efficiency when a mid-task break opportunity was introduced in the Rest session. Taken together, these findings augment our understanding of how the resting brain reorganizes following the accumulation of prolonged task, suggest dissociable processes between the neural mechanisms of fatigue and recovery, and provide

  10. Receiver operating characteristics of diagnostic efficacy of resting left ventricular performance (evaluating with a non-imaging ECG gated scintillation detector - nuclear stethoscope)

    Kotlyarov, E.V.; Reba, R.C.; Lindsay, J.

    1983-01-01

    Receiver operating characteristic (ROC) analysis of left ventricular performance at rest was applied to evaluate diagnostic utility of non-imaging nuclear detector (''Nuclear Stethoscope''), for screening patients with coronary artery disease (CAD). Thirty-one patients without CAD and normal rest and stress radionuclide ventriculography (MUGA) were used as a control group. Another 62 patients with abnormal left ventricular reserve and segmental wall motion abnormalities at rest were also studied. All 93 patients were studied with the Nuclear Stethoscope (30 minutes after conventional MUGA testing) both in beat-to-beat and gated equilibrium modes. ROC analysis showed that along with ejection fraction, stroke and end-diastolic volumes, evaluation of the left ventricular filling phase has a great potential for the identification of patients with a segmental wall motion abnormality and, therefore, significant CAD

  11. Exanthema after a stress Tc-99m sestamibi study: continue with a rest sestamibi study?

    Hesse, Birger; Vinberg, Niels; Mosbech, Holger

    2011-01-01

    Purpose:  A mild allergic reaction assumed to be caused by injection of Tc-99m sestamibi for a stress myocardial perfusion imaging (MPI) is presented. We want to discuss the risk involved in completing the MPI with another sestamibi injection, and the precautions and possible treatment in case...... of a further reaction. Material and methods:  A patient experienced a maculo-papular exanthema, i.e. a mild, probably allergic, adverse event (AE) after a stress MPI including administration of a dose of Tc-99m sestamibi. A rest MPI was needed to decide whether coronary bypass surgery should be performed...

  12. Restoring effective sleep tranquility (REST): A feasibility and pilot study.

    Eakman, Aaron M; Schmid, Arlene A; Henry, Kimberly L; Rolle, Natalie R; Schelly, Catherine; Pott, Christine E; Burns, Joshua E

    2017-06-01

    The purpose of this pilot study was to establish the feasibility of completing a future controlled trial of a multi-component cognitive behavioral therapy for insomnia program for military veterans with sleep disturbance. This was a single-arm feasibility and pilot study. Participants were United States post-9/11 veterans with service-connected injuries, university students, and had self-reported sleep disturbances. Restoring Effective Sleep Tranquility was a multi-component cognitive behavioral therapy for insomnia intervention consisting of seven sessions of group therapy and eight 1:1 sessions delivered by occupational therapists. Feasibility and pilot indicators were process, resources, management, and scientific, including pre-post-assessments of sleep difficulties, dysfunctional sleep beliefs, participation, and pain interference. Indicators were supportive of feasibility, including reduced sleep difficulties (for example Medical Outcomes Study Sleep Measure [ t  = 3.29, p  = .02]), reduced nightmares: t  = 2.79, p  = .03; fewer dysfunctional sleep beliefs: t  = 3.63, p  = .01, and greater ability to participate in social roles: t  = -2.86, p  = .03, along with trends towards improved satisfaction with participation and reduced pain interference. The Restoring Effective Sleep Tranquility program may reduce sleep difficulties and improve participation in US veterans with service-connected injuries, and evidence indicates a controlled trial would be feasible to deliver.

  13. The effects of rest interval length manipulation of the first upper-body resistance exercise in sequence on acute performance of subsequent exercises in men and women.

    Ratamess, Nicholas A; Chiarello, Christina M; Sacco, Anthony J; Hoffman, Jay R; Faigenbaum, Avery D; Ross, Ryan E; Kang, Jie

    2012-11-01

    The purpose of the present study was to investigate the effects of manipulating rest interval (RI) length of the first upper-body exercise in sequence on subsequent resistance exercise performance. Twenty-two men and women with at least 1 year of resistance training experience performed resistance exercise protocols on 3 occasions in random order. Each protocol consisted of performing 4 barbell upper-body exercises in the same sequence (bench press, incline bench press, shoulder press, and bent-over row) for 3 sets of up to 10 repetitions with 75% of 1 repetition maximum. Bench press RIs were 1, 2, or 3 minutes, whereas other exercises were performed with a standard 2-minute rest interval. The number of repetitions completed, average power, and velocity for each set of each exercise were recorded. Gender differences were observed during the bench press and incline press as women performed significantly (p ≤ 0.05) more repetitions than men during all RIs. The magnitude of decline in velocity and power over 3 sets of the bench press and incline press was significantly higher in men than women. Manipulation of RI length during the bench press did not affect performance of the remaining exercises in men. However, significantly more repetitions were performed by women during the first set of the incline press using 3-minute rest interval than 1-minute rest interval. In men and women, performance of the incline press and shoulder press was compromised compared with baseline performances. Manipulation of RI length of the first exercise affected performance of only the first set of 1 subsequent exercise in women. All RIs led to comparable levels of fatigue in men, indicating that reductions in load are necessary for subsequent exercises performed in sequence that stress similar agonist muscle groups when 10 repetitions are desired.

  14. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio

    2016-11-01

    Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. Heterogeneity across imaging studies. Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adrenal rest tissue in gonads of patients with classical congenital adrenal hyperplasia: multicenter study of 45 French male patients.

    Pierre, Peggy; Despert, François; Tranquart, François; Coutant, Régis; Tardy, Véronique; Kerlan, Véronique; Sonnet, Emmanuel; Baron, Sabine; Lorcy, Yannick; Emy, Philippe; Delavierre, Dominique; Monceaux, Françoise; Morel, Yves; Lecomte, Pierre

    2012-12-01

    Several cases of testicular adrenal rest tumours have been reported in men with congenital adrenal hyperplasia (CAH) due to the classical form of 21-hydroxylase deficiency but the prevalence has not been established. The aims of this report were to evaluate the frequency of testicular adrenal rest tissue in this population in a retrospective multicentre study involving eight endocrinology centres, and to determine whether treatment or genetic background had an impact on the occurrence of adrenal rest tissue. Testicular adrenal rest tissue (TART) was sought clinically and with ultrasound examination in forty-five males with CAH due to the classical form of 21-hydroxylase deficiency. When the diagnosis of testicular adrenal rest tumours was sought, good observance of treatment was judged on biological concentrations of 17-hydroxyprogesterone (17OHP), delta4-androstenedione, active renin and testosterone. The results of affected and non-affected subjects were compared. TART was detected in none of the 18 subjects aged 1 to 15years but was detected in 14 of the 27 subjects aged more than 15years. Five patients with an abnormal echography result had no clinical signs. Therapeutic control evaluated at diagnosis of TART seemed less effective when diagnosis was made in patients with adrenal rest tissue compared to TART-free subjects. Various genotypes were observed in patients with or without TART. Due to the high prevalence of TART in classical CAH and the delayed clinical diagnosis, testicular ultrasonography must be performed before puberty and thereafter regularly during adulthood even if the clinical examination is normal. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Default Mode Network Interference in Mild Traumatic Brain Injury – A Pilot Resting State Study

    Sours, Chandler; Zhuo, Jiachen; Janowich, Jacqueline; Aarabi, Bizhan; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P

    2013-01-01

    In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits. PMID:23994210

  17. Default mode network interference in mild traumatic brain injury - a pilot resting state study.

    Sours, Chandler; Zhuo, Jiachen; Janowich, Jacqueline; Aarabi, Bizhan; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P

    2013-11-06

    In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits. © 2013 Elsevier B.V. All rights reserved.

  18. Study on mixis potential of rotifer resting eggs ( Brachionus plicatilis) with different collection times and different preservation periods

    Zhou, Li; Zheng, Yan; Xiang, Jian-Hai

    2001-09-01

    The present study investigated the possible changes in the mixis potential of rotifer resting eggs produced by a single stock of Brachionus plicatilis and collected and preserved annually from 1985 1998. Several clones derived from each batch of resting eggs were cultured under the same conditions for 21 days. The percentage of clones appearing resting eggs and the average yield of resting eggs produced from each clone were recorded and statistically analyzed to find the differences between the mixis potential of those resting egg batches. Results showed that different batches of resting eggs had different mictic levels among their descendent clones; but no regular relationship was found between the mixis potential of resting eggs and their collection times/preservation periods. Several internal and external factors that might affect the mixis potential of resting eggs were discussed.

  19. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study.

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of "Eyes Open" (EO) or "Eyes Closed" (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5-4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4-8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12-15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15-18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  20. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  1. Assessment of non-typical worsening of myocardial perfusion in rest in comparison to stress in 99mTc-MIBI SPECT studies. Preliminary report

    Dabrowski, A.; Szumilak, B.; Wnuk, J.; Konieczna, S.; Teresinska, A.

    2002-01-01

    Worsening of regional rest perfusion in comparison to stress perfusion, observed in a few percentage of myocardial perfusion 99m Tc-MIBI SPECT studies, does not have an easy clinical interpretation. Also, no reports evaluating the relationship between worsening and technical SPECT study conditions are available. The goal of our study is: 1) to assess the reproducibility of this non-typical effect - by repeating the rest study on separate day after new MIBI injection; 2) to assess reproducibility of this effect in rest perfusion images performed at different time points after one MIBI injection; 3) to propose the most probable clinical explanation for this effect. Up to now, 20 patients (100 predicted altogether) with rest perfusion worsening in routine stress-rest 99m Tc-MIBI SPECT perfusion imaging were studied. The group was clinically in homogeneous (7 patients with suspected coronary artery disease (CAD), 4 patients with CAD and no myocardial infarction (MI), 8 patients after MI, and 1 patient with developmental anomaly). Within 14 days, rest study was repeated, with data acquisition performed at 1 h and 3 hrs after MIBI injection. Regional myocardial perfusion was evaluated qualitatively, in 17 segments of the LV and compared among stress and all the three rest (BAD-I, BAD-II, BAD-III) studies. In 175 segments there was perfusion worsening in at least one of the three rest studies. In the highest percentage of these segments (n=53, 30%, ), worsening was present in all rest studies. Among stress defects with perfusion worsening in BAD-I, the highest percentage (55%, ) presented worsening also in BAD-II (performed after separate injection of MIBI, but like in BAD-I also 1 h after injection), significantly lower percentage - persistent defect in BAD-II (25%, ), and some smaller percentage - transient defect in BAD-II (20%, ). In segments with perfusion worsening present in one of the rest studies, our preliminary results show: 1) the highest probability of

  2. A Computational Study on the Relation between Resting Heart Rate and Atrial Fibrillation Hemodynamics under Exercise.

    Matteo Anselmino

    Full Text Available Clinical data indicating a heart rate (HR target during rate control therapy for permanent atrial fibrillation (AF and assessing its eventual relationship with reduced exercise tolerance are lacking. The present study aims at investigating the impact of resting HR on the hemodynamic response to exercise in permanent AF patients by means of a computational cardiovascular model.The AF lumped-parameter model was run to simulate resting (1 Metabolic Equivalent of Task-MET and various exercise conditions (4 METs: brisk walking; 6 METs: skiing; 8 METs: running, considering different resting HR (70 bpm for the slower resting HR-SHR-simulations, and 100 bpm for the higher resting HR-HHR-simulations. To compare relative variations of cardiovascular variables upon exertion, the variation comparative index (VCI-the absolute variation between the exercise and the resting values in SHR simulations referred to the absolute variation in HHR simulations-was calculated at each exercise grade (VCI4, VCI6 and VCI8.Pulmonary venous pressure underwent a greater increase in HHR compared to SHR simulations (VCI4 = 0.71, VCI6 = 0.73 and VCI8 = 0.77, while for systemic arterial pressure the opposite is true (VCI4 = 1.15, VCI6 = 1.36, VCI8 = 1.56.The computational findings suggest that a slower, with respect to a higher resting HR, might be preferable in permanent AF patients, since during exercise pulmonary venous pressure undergoes a slighter increase and systemic blood pressure reveals a more appropriate increase.

  3. A computational study of whole-brain connectivity in resting state and task fMRI

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  4. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task

    Maxim S Kuschpel

    2015-10-01

    Full Text Available The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music breaks on working memory performance. Young adults were exposed to breaks involving (i eyes-open resting, (ii listening to music and (iii playing the video game Angry Birds before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the Angry Birds video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.

  5. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task.

    Kuschpel, Maxim S; Liu, Shuyan; Schad, Daniel J; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.

  6. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task

    Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A.

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. PMID:26579055

  7. Radionuclide angiographic evaluation of left ventricular performance at rest and during exercise in patients with aortic regurgitation

    Iskandrian, A.S.; Heo, J.

    1986-01-01

    Radionuclide angiographic evaluation of LV performance at rest and during exercise in patients with AR have shown that an abnormal EF response to exercise may be observed in asymptomatic patients with normal resting LV function. The EF response to exercise has been correlated with a number of clinical and exercise measurements; important among these are the slope of the systolic pressure-to-end-systolic volume, end-systolic volume, cardiac index, pulmonary capillary wedge pressure, and wall stress. The changes in the regurgitant fraction, EF, and LV volume have shown considerable individual variability; they have also allowed a better understanding of the circulatory responses during exercise. Radionuclide angiography provides a reliable and reproducible method of measuring the rest LVEF that is important in the timing and the outcome of valve replacement. The value of the EF response to exercise in patient management is not yet clear; it is possible that other radionuclide-derived measurements at rest or during exercise, such as the systolic pressure-to-end-systolic volume relationship, and the end-systolic volume may provide complementary information to that provided by the EF

  8. Science and Ecological Economics: Integrating of the Study of Humans and the Rest of Nature

    Costanza, Robert

    2009-01-01

    Ecological economics is a transdisciplinary field that seeks to integrate the study of humans and the rest of nature as the basis for the creation of a sustainable and desirable future. It seeks to dissolve the barriers between the traditional disciplines and achieve a true "consilience" of all the sciences and humanities. This consilient,…

  9. A User Oriented Review of the Literature on the Effects of Sleep Loss, Work-Rest Schedules, and Recovery on Performance

    1974-12-01

    Martin , 0. E. and Alluisi, E. A., "Human Performance as a Function of the Work-Rest Cycle: A Review of Selected Studies," National Academy.of Sciences...WilKinson, R. T., "One Stress on Top of Another," New So0eety, 12 JOly 1972, 72-75 52. Wilkinson, R. T., "Sleep Deprivation-Eight Questions," MRC

  10. Cross-sectional associations between daily rest periods during weekdays and psychological distress, non-restorative sleep, fatigue, and work performance among information technology workers.

    Tsuchiya, Masao; Takahashi, Masaya; Miki, Keiichi; Kubo, Tomohide; Izawa, Shuhei

    2017-04-07

    A daily rest period (DRP; rest taken from daily work during a 24 h period), is essential to work recovery. This study examined DRPs' distribution and association with health outcomes among information technology workers recruited from an internet panel (N=1,811). Participants completed a web questionnaire examining psychological distress as a primary outcome, along with non-restorative sleep, fatigue (stress reaction), and work performance. Logistic regression analysis showed elevated psychological distress when DRP was working and commuting hours. After the above adjustment, similar associations were found with non-restorative sleep and fatigue, but not work performance, when DRP was <12 h. These findings constitute the first analysis of a dose-response relationship between DRP and subjective health outcomes among white-collar workers.

  11. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists

    Lundy, Bronwen; Rogers, Margot A.; Welvaert, Marijke; Halson, Shona; McKune, Andrew

    2018-01-01

    Background Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms. Method Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a “Baseline” week (100% of regular training load), a “Build” week (~120% of Baseline load), two “Loading” weeks (~140, 150% of Baseline load, respectively) and two “Recovery” weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach. Results The intensified training period elicited significant decreases in RMR (F(5,123.36) = 12.0947, p = HRV (F(2,22.608) = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F(5,121.87) = 8.2622, p = HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation. PMID:29444097

  12. The Best and the Rest: Revisiting the Norm of Normality of Individual Performance

    O'Boyle, Ernest, Jr.; Aguinis, Herman

    2012-01-01

    We revisit a long-held assumption in human resource management, organizational behavior, and industrial and organizational psychology that individual performance follows a Gaussian (normal) distribution. We conducted 5 studies involving 198 samples including 633,263 researchers, entertainers, politicians, and amateur and professional athletes.…

  13. Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study.

    Meng, Lu; Xiang, Jing

    2016-11-01

    The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. High-Intensity Cycling Training: The Effect of Work-to-Rest Intervals on Running Performance Measures.

    Kavaliauskas, Mykolas; Aspe, Rodrigo R; Babraj, John

    2015-08-01

    The work-to-rest ratio during cycling-based high-intensity interval training (HIT) could be important in regulating physiological and performance adaptations. We sought to determine the effectiveness of cycling-based HIT with different work-to-rest ratios for long-distance running. Thirty-two long-distance runners (age: 39 ± 8 years; sex: 14 men, 18 women; average weekly running training volume: 25 miles) underwent baseline testing (3-km time-trial, V[Combining Dot Above]O2peak and time to exhaustion, and Wingate test) before a 2-week matched-work cycling HIT of 6 × 10-second sprints with different rest periods (30 seconds [R30], 80 seconds [R80], 120 seconds [R120], or control). Three-kilometer time trial was significantly improved in the R30 group only (3.1 ± 4.0%, p = 0.04), whereas time to exhaustion was significantly increased in the 2 groups with a lower work-to-rest ratio (R30 group 6.4 ± 6.3%, p = 0.003 vs. R80 group 4.4 ± 2.7%, p = 0.03 vs. R120 group 1.9 ± 5.0%, p = 0.2). However, improvements in average power production were significantly greater with a higher work-to-rest ratio (R30 group 0.3 ± 4.1%, p = 0.8 vs. R80 group 4.6 ± 4.2%, p = 0.03 vs. R120 group 5.3 ± 5.9%, p = 0.02), whereas peak power significantly increased only in the R80 group (8.5 ± 8.2%, p = 0.04) but not in the R30 group (4.3 ± 6.1%, p = 0.3) or in the R120 group (7.1 ± 7.9%, p = 0.09). Therefore, cycling-based HIT is an effective way to improve running performance, and the type and magnitude of adaptation is dependent on the work-to-rest ratio.

  15. Effectiveness of Different Rest Intervals Following Whole-Body Vibration on Vertical Jump Performance between College Athletes and Recreationally Trained Females

    Nicole C. Dabbs

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the effect of different rest intervals following whole-body vibration on counter-movement vertical jump performance. Sixteen females, eight recreationally trained and eight varsity athletes volunteered to participate in four testing visits separated by 24 h. Visit one acted as a familiarization visit where subjects were introduced to the counter-movement vertical jump and whole-body vibration protocols. Visits 2–4 contained 2 randomized conditions. Whole-body vibration was administered in four bouts of 30 s with 30 s rest between bouts. During whole-body vibration subjects performed a quarter squat every 5 s, simulating a counter-movement vertical jump. Whole-body vibration was followed by three counter-movement vertical jumps with five different rest intervals between the vibration exposure and jumping. For a control condition, subjects performed squats with no whole-body vibration. There was a significant (p < 0.05 main effect for time for vertical jump height, peak power output, and relative ground reaction forces, where a majority of individuals max jump from all whole-body vibration conditions was greater than the control condition. There were significant (p < 0.05 group differences, showing that varsity athletes had a greater vertical jump height and peak power output compared to recreationally trained females. There were no significant (p > 0.05 group differences for relative ground reaction forces. Practitioners and/or strength and conditioning coaches may utilize whole-body vibration to enhance acute counter-movement vertical jump performance after identifying individuals optimal rest time in order to maximize the potentiating effects.

  16. Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults.

    Cherif, Anissa; Roelands, Bart; Meeusen, Romain; Chamari, Karim

    2016-01-01

    The aim of this review was to highlight the potent effects of intermittent fasting on the cognitive performance of athletes at rest and during exercise. Exercise interacts with dietary factors and has a positive effect on brain functioning. Furthermore, physical activity and exercise can favorably influence brain plasticity. Mounting evidence indicates that exercise, in combination with diet, affects the management of energy metabolism and synaptic plasticity by affecting molecular mechanisms through brain-derived neurotrophic factor, an essential neurotrophin that acts at the interface of metabolism and plasticity. The literature has also shown that certain aspects of physical performance and mental health, such as coping and decision-making strategies, can be negatively affected by daylight fasting. However, there are several types of intermittent fasting. These include caloric restriction, which is distinct from fasting and allows subjects to drink water ad libitum while consuming a very low-calorie food intake. Another type is Ramadan intermittent fasting, which is a religious practice of Islam, where healthy adult Muslims do not eat or drink during daylight hours for 1 month. Other religious practices in Islam (Sunna) also encourage Muslims to practice intermittent fasting outside the month of Ramadan. Several cross-sectional and longitudinal studies have shown that intermittent fasting has crucial effects on physical and intellectual performance by affecting various aspects of bodily physiology and biochemistry that could be important for athletic success. Moreover, recent findings revealed that immunological variables are also involved in cognitive functioning and that intermittent fasting might impact the relationship between cytokine expression in the brain and cognitive deficits, including memory deficits.

  17. Mentalizing and Information Propagation through Social Network: Evidence from a Resting-State-fMRI Study

    Zhang, Huijun; Mo, Lei

    2016-01-01

    Microblogs is one of the main social networking channels by which information is spread. Among them, Sina Weibo is one of the largest social networking channels in China. Millions of users repost information from Sina Weibo and share embedded emotion at the same time. The present study investigated participants’ propensity to repost microblog messages of positive, negative, or neutral valence, and studied the neural correlates during resting state with the reposting rate of each type microblo...

  18. Mentalizing and Microblog Repost through Social Network: Evidence from a Resting-state-fMRI study

    Huijun Zhang; Lei Mo

    2016-01-01

    Microblogs is one of the main social networking channels by which information is spread. Among them, Sina Weibo is one of the largest social networking channel in China. Millions of users repost information from Sina Weibo and share embedded emotion at the same time. The present study investigated participants’ propensity to repost microblog messages of positive, negative or neutral valence, and studied the neural correlates during resting state with the reposting rate of each type microblog ...

  19. Reproducibility of the 133Xe inhalation technique in resting studies: task order and sex related effects in healthy young adults

    Warach, S.; Gur, R.C.; Gur, R.E.; Skolnick, B.E.; Obrist, W.D.; Reivich, M.

    1987-01-01

    Repeated applications of the 133 Xe inhalation technique for measuring regional CBF (rCBF) were made during consecutive resting conditions in a sample of young healthy subjects. Subjects were grouped by order and by sex [nine had resting studies as the initial two measurements in a series of four measurement (six men, three women) and six had these measurements later (two men, four women)]. Three flow parameters were examined: f1 (fast flow) and IS (initial slope) for gray matter CBF, and CBF-15 for mean CBF (gray and white matter over 15-min integration), as well as w1, the percentage of tissue with fast clearing characteristics. With all groups combined, there were no significant differences between the two resting measurements, and high test-retest correlations were obtained for the flow parameters and w1. Analyses by order and sex grouping revealed, for the flow parameters, significant interactions of test-retest difference with order. Repeated initial studies showed reduced CBF from the first to second measurement, whereas resting studies performed later in the series showed no reduction. Interactions for test-retest difference with sex indicated that reduced CBF in serial measures was more pronounced for women. No hemispheric or regional specificity to account for these effects was found. Correction for PaCO 2 differences did not alter these results. The results resemble data regarding habituation effects measured for other psychophysiologic measures, and suggest that reduction in CBF for consecutive measurements made on the same day may reflect habituation. This underscores the importance of controlling for effects of habituation on serial measurements of CBF and metabolism

  20. Comparison of heart rate variability between resting state and external-cuff-inflation-and-deflation state: a pilot study.

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun

    2015-10-01

    Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p  >  0.05). The corresponding HRV indices had significant positive correlation (all p    0.05) for either state. Besides, none of the indices showed HR-related change (all p  >  0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV indices in clinical practice.

  1. The effects of rest interval length on acute bench press performance: the influence of gender and muscle strength.

    Ratamess, Nicholas A; Chiarello, Christina M; Sacco, Anthony J; Hoffman, Jay R; Faigenbaum, Avery D; Ross, Ryan E; Kang, Jie

    2012-07-01

    The purpose of this study was to investigate the effects of rest interval (RI) length on bench press performance in subjects with disparity in maximum strength. Two cohorts of subjects performed 3 bench press protocols in random order consisting of 3 sets of up to 10 repetitions with 75% of 1-repetition maximum (1RM) using either 1-, 2-, or 3-minute RIs between sets. In the first cohort, 22 men and women were studied to investigate gender influence. In the second cohort, 23 men were tested for 1RM bench press strength and placed into a low 1RM (mean = 80.7 ± 7.5 kg) or high 1RM (mean = 140.6 ± 11.9 kg) experimental group. The number of successful repetitions completed, average power, and velocity for each set were recorded. Women performed significantly more repetitions than men with 1-minute (26.9 ± 4.4 vs. 21.1 ± 3.5), 2-minute (29.0 ± 2.0 vs. 24.0 ± 4.5), and 3-minute (29.7 ± 1.8 vs. 25.8 ± 5.1) RIs. The magnitude of decline in average velocity and power was significantly higher in men than in women. Total number of repetitions performed was significantly greater in the low 1RM group than in the high 1RM group at 1-minute (21.6 ± 5.0 vs. 18.1 ± 2.0) and 2-minute RIs (24.2 ± 5.4 vs. 21.3 ± 2.8). Significant negative correlations were observed between 1RM bench press and total number of repetitions completed for 1- and 2-minute RIs (r = -0.558 and -0.490, respectively). These data indicate that maximal strength plays a role in bench press performance with varying RIs and suggest that shorter RIs may suffice in women to attain a specific volume.

  2. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  3. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  4. Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise

    McManus, Chris J.; Collison, Jay; Cooper, Chris E.

    2018-01-01

    The purpose of the study was to compare muscle oxygenation as measured by two portable, wireless near-infrared spectroscopy (NIRS) devices under resting and dynamic conditions. A recently developed low-cost NIRS device (MOXY) was compared against an established PortaMon system that makes use of the spatially resolved spectroscopy algorithm. The influence of increasing external pressure on tissue oxygen saturation index (TSI) indicated that both devices are stable between 2 and 20 mmHg. However, above this pressure, MOXY reports declining TSI values. Analysis of adipose tissue thickness (ATT) and TSI shows a significant, nonlinear difference between devices at rest. The devices report similar TSI (%) values at a low ATT (major subsequent change between the devices occurring between 7 and 10 mm at ATT values >10 mm the difference remains constant (-14.7±2.8%). The most likely explanation for this difference is the small source-detector separation (2.5 cm) in the MOXY resulting in lower tissue penetration into muscle in subjects with higher ATT. Interday test-retest reliability of resting TSI was evaluated on five separate occasions, with the PortaMon reporting a lower coefficient of variation (1.8% to 2.5% versus 5.7% to 6.2%). In studies on male subjects with low ATT, decreases in the TSI were strongly correlated during isometric exercise, arterial occlusion, and incremental arm crank exercise. However, the MOXY reports a greater dynamic range, particularly during ischemia induced by isometric contraction or occlusion (Δ74.3% versus Δ43.7% hyperemia MAX-occlusion MIN). This study shows that in this subject group both MOXY and PortaMon produce physiologically credible TSI measures during rest and exercise. However, the absolute values obtained during exercise are generally not comparable between devices unless corrected by physiological calibration following an arterial occlusion.

  5. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS

    JONH J MÉNDEZ

    2009-01-01

    Full Text Available ABSTRACT In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\\\www.simfit.man.ac.uk. Key words: bound lipase, esterification, fungal resting cells, Rhizopus oryzae, palmitic acid, propanol. RESUMEN En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\\\www.simfit.man.ac.uk. Palabras clave: Lipasas, esterificación, resting cells, Rhizopus oryzae, acido palmítico, propanol.

  6. Resting-state fMRI study of patients with fragile X syndrome

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pright inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  7. Low Motivational Incongruence Predicts Successful EEG Resting-state Neurofeedback Performance in Healthy Adults.

    Diaz Hernandez, Laura; Rieger, Kathryn; Koenig, Thomas

    2018-05-15

    Neurofeedback is becoming increasingly sophisticated and widespread, although predictors of successful performance still remain scarce. Here, we explored the possible predictive value of psychological factors and report the results obtained from a neurofeedback training study designed to enhance the self-regulation of spontaneous EEG microstates of a particular type (microstate class D). Specifically, we were interested in life satisfaction (including motivational incongruence), body awareness, personality and trait anxiety. These variables were quantified with questionnaires before neurofeedback. Individual neurofeedback success was established by means of linear mixed models that accounted for the amount of observed target state (microstate class D contribution) as a function of time and training condition: baseline, training and transfer (results shown in Diaz Hernandez et al.). We found a series of significant negative correlations between motivational incongruence and mean percentage increase of microstate D during the condition transfer, across-sessions (36% of common variance) and mean percentage increase of microstate D during the condition training, within-session (42% of common variance). There were no significant correlations related to other questionnaires, besides a trend in a sub-scale of the Life Satisfaction questionnaire. We conclude that motivational incongruence may be a potential predictor for neurofeedback success, at least in the current protocol. The finding may be explained by the interfering effect on neurofeedback performance produced by incompatible simultaneously active psychological processes, which are indirectly measured by the Motivational Incongruence questionnaire. Copyright © 2016. Published by Elsevier Ltd.

  8. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  9. The implication of frontostriatal circuits in young smokers: A resting-state study.

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Li, Yangding; Guan, Yanyan; Liu, Jixin; Zhang, Yi; Qin, Wei; Lu, Xiaoqi; Tian, Jie

    2016-06-01

    The critical roles of frontostriatal circuits had been revealed in addiction. With regard to young smokers, the implication of frontostriatal circuits resting-state functional connectivity (RSFC) in smoking behaviors and cognitive control deficits remains unclear. In this study, the volume of striatum subsets, i.e., caudate, putamen, and nucleus accumbens, and corresponding RSFC differences were investigated between young smokers (n1  = 60) and nonsmokers (n2  = 60), which were then correlated with cigarette smoking measures, such as pack_years-cumulative effect of smoking, Fagerström Test for Nicotine Dependence (FTND)-severity of nicotine addiction, Questionnaire on Smoking Urges (QSU)-craving state, and Stroop task performances. Additionally, mediation analysis was carried out to test whether the frontostriatal RSFC mediates the relationship between striatum morphometry and cognitive control behaviors in young smokers when applicable. We revealed increased volume of right caudate and reduced RSFC between caudate and dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex in young smokers. Significant positive correlation between right caudate volume and QSU as well as negative correlation between anterior cingulate cortex-right caudate RSFC and FTND were detected in young smokers. More importantly, DLPFC-caudate RSFC strength mediated the relationship between caudate volume and incongruent errors during Stroop task in young smokers. Our results demonstrated that young smokers showed abnormal interactions within frontostriatal circuits, which were associated with smoking behaviors and cognitive control impairments. It is hoped that our study focusing on frontostriatal circuits could provide new insights into the neural correlates and potential novel therapeutic targets for treatment of young smokers. Hum Brain Mapp 37:2013-2026, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. RESTful NET

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  11. Resting on Laurels: The Effects of Discrete Progress Markers as Subgoals on Task Performance and Preferences

    Amir, On; Ariely, Dan

    2008-01-01

    This article investigates the influence of progress certainty and discrete progress markers (DPMs) on performance and preferences. The authors suggest that the effects of DPMs depend on whether progress certainty is high or low. When the distance to the goal is uncertain, DPMs can help reduce uncertainty and thus improve performance and increase…

  12. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  13. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); Yang, Hong; Wang, Hao [Third Military Medical University, Ophthalmology Research Center, Southwest Eye Hospital/Southwest Hospital, Chongqing (China); Yu, Longhua [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); 401st Hospital of PLA, Department of Radiology, Qingdao (China); He, Sheng [University of Minnesota Twin Cities, Department of Psychology, Minneapolis, MN (United States)

    2017-05-15

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  14. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian; Yang, Hong; Wang, Hao; Yu, Longhua; He, Sheng

    2017-01-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  15. Performance of an Ambulatory Cardiorespiratory Monitoring System During Rest and Exercise

    Karis, Anthony

    2003-01-01

    ...), and blood oxygen saturation (SpO2). The results showed that signal performance across all activity levels and sensor types was able to provide an acceptable signal 84% of the time (ECG=96.9 +/- 3.0%, RESP=71.2 +/- 13.1%, and SpO2=83.7 +/- 13.8...

  16. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study

    Siegel, M.E.; Stewart, C.A.

    1981-01-01

    The distribution and redistribution kinetics of thallium-201 in the lower extremities were investigated to determine the relationships among the rest, stress, and delayed-stress perfusion studies. The distribution of perfusion when the tracer was administered at rest was compared with that when administered during stress, and the distribution 5 to 6 h after the stress injection. In nine of 10 subjects without peripheral vascular disease, the 5 to 6 h poststress redistribution pattern was unchanged from the stress pattern and was different from the rest pattern. However, in all patients with peripheral vascular disease, the delayed poststress perfusion distribution had greater similarity to the rest pattern and was substantially different from that noted immediately after stress. Using the time frame of this study, the stress and delayed-stress 201 Tl perfusion study of the lower extremities cannot be used to represent true rest perfusion. However, because of the similarity of the delayed-stress to the true rest distribution in abnormals, it may be clinically useful in defining rest and stress alterations

  17. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study

    Siegel, M.E.; Stewart, C.A.

    1981-01-01

    The distribution and redistribution kinetics of thallium-201 in the lower extremities were investigated to determine the relationships among the rest, stress, and delayed-stress perfusion studies. The distribution of perfusion when the tracer was administered at rest was compared with that when administered during stress, and the distribution 5--6 hr after the stress injection. The distribution was evaluated qualitatively by scanning and quantitatively by point counting. In nine of 10 subjects without peripheral vascular disease, the 5--6 poststress redistribution pattern was unchanged from the stress pattern and was different from the rest pattern. However, in all patients with peripheral vascular disease, the delayed poststress perfusion distribution had greater similarity to the rest pattern and was substantially different from that noted immediately after stress. Using the time frame of this study, the stress and delayed-stress 201 Tl perfusion study of the lower extremities cannot be used to represent true rest perfusion. However, because of the similarity of the delayed-stress to the true rest distribution in abnormals, it may be clinically useful in defining rest and stress alterations

  18. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  19. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  20. Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study.

    Son, K-L; Choi, J-S; Lee, J; Park, S M; Lim, J-A; Lee, J Y; Kim, S N; Oh, S; Kim, D J; Kwon, J S

    2015-09-01

    Despite that Internet gaming disorder (IGD) shares clinical, neuropsychological and personality characteristics with alcohol use disorder (AUD), little is known about the resting-state quantitative electroencephalography (QEEG) patterns associated with IGD and AUD. Therefore, this study compared the QEEG patterns in patients with IGD with those in patients with AUD to identify unique neurophysiological characteristics that can be used as biomarkers of IGD. A total of 76 subjects (34 with IGD, 17 with AUD and 25 healthy controls) participated in this study. Resting-state, eyes-closed QEEGs were recorded, and the absolute and relative power of brains were analyzed. The generalized estimating equation showed that the IGD group had lower absolute beta power than AUD (estimate = 5.319, P < 0.01) and the healthy control group (estimate = 2.612, P = 0.01). The AUD group showed higher absolute delta power than IGD (estimate = 7.516, P < 0.01) and the healthy control group (estimate = 7.179, P < 0.01). We found no significant correlations between the severity of IGD and QEEG activities in patients with IGD. The current findings suggest that lower absolute beta power can be used as a potential trait marker of IGD. Higher absolute power in the delta band may be a susceptibility marker for AUD. This study clarifies the unique characteristics of IGD as a behavioral addiction, which is distinct from AUD, by providing neurophysiological evidence.

  1. Resting Heart Rate Predicts Depression and Cognition Early after Ischemic Stroke: A Pilot Study.

    Tessier, Arnaud; Sibon, Igor; Poli, Mathilde; Audiffren, Michel; Allard, Michèle; Pfeuty, Micha

    2017-10-01

    Early detection of poststroke depression (PSD) and cognitive impairment (PSCI) remains challenging. It is well documented that the function of autonomic nervous system is associated with depression and cognition. However, their relationship has never been investigated in the early poststroke phase. This pilot study aimed at determining whether resting heart rate (HR) parameters measured in early poststroke phase (1) are associated with early-phase measures of depression and cognition and (2) could be used as new tools for early objective prediction of PSD or PSCI, which could be applicable to patients unable to answer usual questionnaires. Fifty-four patients with first-ever ischemic stroke, without cardiac arrhythmia, were assessed for resting HR and heart rate variability (HRV) within the first week after stroke and for depression and cognition during the first week and at 3 months after stroke. Multiple regression analyses controlled for age, gender, and stroke severity revealed that higher HR, lower HRV, and higher sympathovagal balance (low-frequency/high-frequency ratio of HRV) were associated with higher severity of depressive symptoms within the first week after stroke. Furthermore, higher sympathovagal balance in early phase predicted higher severity of depressive symptoms at the 3-month follow-up, whereas higher HR and lower HRV in early phase predicted lower global cognitive functioning at the 3-month follow-up. Resting HR measurements obtained in early poststroke phase could serve as an objective tool, applicable to patients unable to complete questionnaires, to help in the early prediction of PSD and PSCI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  3. A prospective population study of resting heart rate and peak oxygen uptake (the HUNT Study, Norway.

    Javaid Nauman

    Full Text Available OBJECTIVES: We assessed the prospective association of resting heart rate (RHR at baseline with peak oxygen uptake (VO(2peak 23 years later, and evaluated whether physical activity (PA could modify this association. BACKGROUND: Both RHR and VO(2peak are strong and independent predictors of cardiovascular morbidity and mortality. However, the association of RHR with VO(2peak and modifying effect of PA have not been prospectively assessed in population studies. METHODS: In 807 men and 810 women free from cardiovascular disease both at baseline (1984-86 and follow-up 23 years later, RHR was recorded at both occasions, and VO(2peak was measured by ergospirometry at follow-up. We used Generalized Linear Models to assess the association of baseline RHR with VO(2peak, and to study combined effects of RHR and self-reported PA on later VO(2peak. RESULTS: There was an inverse association of RHR at baseline with VO(2peak (p<0.01. Men and women with baseline RHR greater than 80 bpm had 4.6 mL.kg(-1.min(-1 (95% confidence interval [CI], 2.8 to 6.3 and 1.4 mL.kg(-1.min(-1 (95% CI, -0.4 to 3.1 lower VO(2peak at follow-up compared with men and women with RHR below 60 bpm at baseline. We found a linear association of change in RHR with VO(2peak (p=0.03, suggesting that a decrease in RHR over time is likely to be beneficial for cardiovascular fitness. Participants with low RHR and high PA at baseline had higher VO(2peak than inactive people with relatively high RHR. However, among participants with relatively high RHR and high PA at baseline, VO(2peak was similar to inactive people with relatively low RHR. CONCLUSION: RHR is an important predictor of VO(2peak, and serial assessments of RHR may provide useful and inexpensive information on cardiovascular fitness. The results suggest that high levels of PA may compensate for the lower VO(2peak associated with a high RHR.

  4. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  5. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Caiani, Enrico G.; Martin-Yebra, Alba; Landreani, Federica; Bolea, Juan; Laguna, Pablo; Vaïda, Pierre

    2016-01-01

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  6. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Caiani, Enrico G. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Martin-Yebra, Alba [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Landreani, Federica [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Bolea, Juan; Laguna, Pablo [Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza (Spain); Vaïda, Pierre, E-mail: enrico.caiani@polimi.it [École Nationale Supérieure de Cognitique, Institut Polytechnique de Bordeaux, Université de Bordeaux, Bordeaux (France)

    2016-08-23

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  7. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  8. Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: a resting-state functional MRI study

    Wang, J.-J.; Chen, X.; Sah, S.K.; Zeng, C.; Li, Y.-M.; Li, N.; Liu, M.-Q.; Du, S.-I.

    2016-01-01

    Aim: To evaluate the amplitude of low-frequency oscillations (LFOs) of the brain in migraine patients using amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in the interictal period, in comparison to healthy controls (HCs). Materials and methods: A total of 54 subjects, including 30 migraineurs and 24 gender- and age-matched HCs completed the fMRI. All the data and ALFF, fALFF analyses were preprocessed with the Data Processing Assistant for Resting-State fMRI (DPARSF). All of the statistical analyses were performed using the REST software to explore the differences in ALFF and fALFF between migraine patients and HCs. Results: In contrast to HCs, migraine patients showed significant ALFF increase in the left medulla and pons, the bilateral cerebellum posterior lobe and right insula. The regions showing decreased ALFF in migraine patients included the bilateral cerebellum posterior lobe, left cerebellum anterior lobe, bilateral orbital cortex, right middle frontal gyrus, bilateral occipital lobe, right fusiform gyrus, and bilateral postcentral gyrus. The fALFFs in migraine patients were significantly increased in the bilateral insular and left orbital cortex, but were decreased in the left occipital lobe and bilateral cerebellum posterior lobe. Conclusion: These ALFF and fALFF alterations in the brain regions of migraineurs are in keeping with the domains associated with pain and cognition. Such brain functional alteration may contribute to further understanding of migraine-related network imbalances demonstrated in previous studies. - Highlights: • Migraine is a common, paroxysmal, highly disabling primary headache disorder. • Resting-state fMRI offers a novel approach to measure spontaneous brain activity in migraine patients • The ALFF and fALFF alterations in migraineurs' brain regions are in keeping with the domains associated with pain and cognition.

  9. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  10. Functional network centrality in obesity: A resting-state and task fMRI study.

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. SCEAPI: A unified Restful Web API for High-Performance Computing

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  12. A clinical study of gated simultaneous rest 201Tl/stress 99Tcm-sestamibi dual isotope myocardial perfusion imaging

    Tang Anwu; Qiao Shuixian; Luo Yaowu; Liang Xiaolin

    2002-01-01

    Objective: To investigate a modified gated radionuclide myocardial tomography in methodology for raising the sensitivity and efficiency of detecting myocardial ischemia. Methods: One hundred and three patients were involved and divided into two groups: coronary artery disease (CAD) patient 37, non-CAD patient 66. 201 Tl 111 MBq was injected intravenously 5 min before stress, the patient exercised with ergometer following the modified Bruce protocol, and was injected 99 Tc m -sestamibi at the peak of stress. 45 min later, the simultaneous dual energy peak gated acquisition was then performed. Stress ( 99 Tc m -sestamibi) and rest ( 201 Tl) images were reconstructed. Results: Positive findings were seen in 35/37 (94.6%) in CAD group and 7/66 (10.6%) in non-CAD, respectively; LVEF, EDV and ESV of two groups were (52.33+-16.26)%, (70.45+-28.12) mL, (33.35 +- 18.86) mL and (61.76 +- 9.38)%, (60.45 +- 18.18) mL, (23.30 +- 11.09) mL, respectively. Conclusion: The simultaneous stress ( 99 Tc m -sestamibi) and rest ( 201 Tl) gated myocardial imaging is an efficient and practical protocol for the study of myocardial perfusion and the diagnosis of ischemia

  13. Left ventricular diastolic performance at rest in patients with angina and normal systolic function - assessment by equilibrium radionuclide angiography

    Maini, C.L.; Bonetti, M.G.; Valle, G.; Antonelli Incalzi, R.; Montenero, A.S.

    1985-01-01

    The aim of the study was to correlate diastolic function, as evaluated by peak filling rate (PFR) and relative time (TPFR), with the severity of ischemic heart disease, as evaluated by exercise electrocardiography. Accordingly, 83 ischemic patients with effort angina, but normal ejection function at rest and normal left ventricular size, were studied by equilibrium radionuclide angiocardiography within two weeks from the exercise ECG. Diastolic dysfunction, as determined from PFR and, to a lesser extent, from TPFR, is common in patients with ischemic heart disease and normal systolic function. The prevalence and severity of such dysfunction is related more to the severity of the ischemia, as evaluated by the exercise ECG, than to the presence of an old myocardial infarction. Such findings are consistent with the hypothesis that PFR reflects mainly the early diastolic active uncoupling process. (orig.) [de

  14. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  15. Common effects of amnestic mild cognitive impairment on resting-state connectivity across four independent studies

    Angela eTam

    2015-12-01

    Full Text Available Resting-state functional connectivity is a promising biomarker for Alzheimer’s disease. However, previous resting-state functional magnetic resonance imaging studies in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI have shown limited reproducibility as they have had small sample sizes and substantial variation in study protocol. We sought to identify functional brain networks and connections that could consistently discriminate normal aging from aMCI despite variations in scanner manufacturer, imaging protocol, and diagnostic procedure. We therefore combined four datasets collected independently, including 112 healthy controls and 143 patients with aMCI. We systematically tested multiple brain connections for associations with aMCI using a weighted average routinely used in meta-analyses. The largest effects involved the superior medial frontal cortex (including the anterior cingulate, dorsomedial prefrontal cortex, striatum, and middle temporal lobe. Compared with controls, patients with aMCI exhibited significantly decreased connectivity between default mode network nodes and between regions of the cortico-striatal-thalamic loop. Despite the heterogeneity of methods among the four datasets, we identified common aMCI-related connectivity changes with small to medium effect sizes and sample size estimates recommending a minimum of 140 to upwards of 600 total subjects to achieve adequate statistical power in the context of a multisite study with 5-10 scanning sites and about 10 subjects per group and per site. If our findings can be replicated and associated with other established biomarkers of Alzheimer’s disease (e.g. amyloid and tau quantification, then these functional connections may be promising candidate biomarkers for Alzheimer’s disease.

  16. A method to study the antiproton-proton annihilation at rest

    Bigi, A.

    1977-01-01

    The comparison between at rest and in flight antiproton-proton annihilations cannot be extended in terms of kinematical variables referred to the collision axis that is not defined for the at rest interactions. On the basis of the momentum vectors of the final state particles, other directions can be defined, event by event, and used as reference frame

  17. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study.

    Sundqvist, Michaela L; Lundberg, Jon O; Weitzberg, Eddie

    2016-12-30

    The nitrate-nitrite-nitric oxide pathway has emerged as a significant source of nitric oxide (NO) bioactivity. Dietary intake of inorganic nitrate has a number of cardiovascular effects as well as a decrease in oxygen cost during exercise and a reduction in resting metabolic rate (RMR). Oral bacteria have a key role in bioactivation of inorganic nitrate since they catalyse the conversion of salivary nitrate to the more reactive nitrite anion. Recent studies demonstrate that blood pressure increases with the use of an antiseptic mouthwash, indicating that endogenous, NO-synthase derived nitrate is recycled into nitrite and NO, sufficiently to modulate cardiovascular function. Here we tested if also RMR would be affected by an antiseptic mouthwash. Seventeen healthy normotensive female subjects (23 ± 4 y) participated in this randomized, double-blinded, crossover study. During two 3-day periods separated by 28 days the subjects consumed a diet low in nitrate combined with rinsing their mouth three times daily with a chlorhexidine-containing mouthwash (mouthwash) or placebo mouthwash (placebo) with similar taste but no antiseptic properties. Resting metabolic rate (RMR) was measured by indirect calorimetry and 24 h ambulatory blood pressure recordings were obtained after each intervention together with blood, saliva and urine samples. Treatment with chlorhexidine-containing mouthwash effectively reduced oral conversion of nitrate to nitrite but had no effect on plasma levels of these anions or plasma cGMP. RMR and 24 h ambulatory blood pressure were unaffected by the intervention. We conclude that in young healthy females an antiseptic mouthwash was effective in disrupting oral bacterial nitrate conversion to nitrite, but this was not associated with changes in plasma nitrite, RMR or blood pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of the Brain-Derived Neurotrophic Factor Val66Met polymorphism and resting brain functional connectivity on individual differences in tactile cognitive performance in healthy young adults.

    Yang, Xuejuan; Xu, Ziliang; Liu, Lin; Liu, Peng; Sun, Jinbo; Jin, Lingmin; Zhu, Yuanqiang; Fei, Ningbo; Qin, Wei

    2017-07-28

    Cognitive processes involve input from multiple sensory modalities and obvious differences in the level of cognitive function can be observed between individuals. Evidence to date understanding the biological basis of tactile cognitive variability, however, is limited compared with other forms of sensory cognition. Data from auditory and visual cognition research suggest that variations in both genetics and intrinsic brain function might contribute to individual differences in tactile cognitive performance. In the present study, by using the tactual performance test (TPT), a widely used neuropsychological assessment tool, we investigated the effects of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and resting-state brain functional connectivity (FC) on interindividual variability in TPT performance in healthy, young Chinese adults. Our results showed that the BDNF genotypes and resting-state FC had significant effects on the variability in TPT performance, together accounting for 32.5% and 19.1% of the variance on TPT total score and Memory subitem score respectively. Having fewer Met alleles, stronger anticorrelations between left posterior superior temporal gyrus and somatosensory areas (right postcentral gyrus and right parietal operculum cortex), and greater positive correlation between left parietal operculum cortex and left central opercular cortex, all correspond with better performance of TPT task. And FC between left parietal operculum cortex and left central opercular cortex might be a mediator of the relationship between BDNF genotypes and Memory subitem score. These data demonstrate a novel contribution of intrinsic brain function to tactile cognitive capacity, and further confirm the genetic basis of tactile cognition. Our findings might also explain the interindividual differences in cognitive ability observed in those who are blind and/or deaf from a new perspective. Copyright © 2017. Published by Elsevier Ltd.

  19. Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: A twins study.

    Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M

    2014-08-01

    The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.

  20. Resting-state oscillatory activity in children born small for gestational age: a magnetoencephalographic study

    Maria eBoersma

    2013-09-01

    Full Text Available Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG in 4-7 year old children to test if children born small for gestational age (SGA show deviations in resting-state brain oscillatory activity. Children born SGA children with postnatally spontaneous catch-up growth (SGA+; 6 boys, 7 girls; mean age 6.3 y (SD=0.9 and children born appropriate for gestational age (AGA; 7 boys, 3 girls; mean age 6.0 y (SD=1.2 participated in a resting-state MEG study. We calculated absolute and relative power spectra and used nonparametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At time of MEG investigation, SGA+ children showed was significantly lower head circumference (HC and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth.

  1. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  2. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Smoking is associated with increased resting energy expenditure in the general population: The NEO study.

    Blauw, Lisanne L; Boon, Mariëtte R; Rosendaal, Frits R; de Mutsert, Renée; Gast, Karin B; van Dijk, Ko Willems; Rensen, Patrick C N; Dekkers, Olaf M

    2015-11-01

    Animal studies and human studies in small selected populations have shown a positive association between nicotine smoking and resting energy expenditure (REE), but data in large cohorts are lacking. We aimed to investigate the association between smoking behavior and REE in a large, population-based study. Population-based cross-sectional study. In this cross-sectional analysis of baseline measurements from the Netherlands Epidemiology of Obesity (NEO) study (n=6673), we included participants with REE measurement by indirect calorimetry who were not using lipid or glucose lowering drugs (n=1189). We used linear regression analysis to examine the association of smoking status (never, former, occasional, current smoker) and smoking quantity (pack years) with REE per kilogram (kg) fat free mass (FFM) and with REE adjusted for FFM. Models were adjusted for age, sex, ethnicity, educational level, physical activity, energy intake and body mass index (BMI). Mean (standard deviation, SD) age was 55.2 (5.9) years and BMI was 26.3 (4.4) kg/m(2). 60% of the participants were women. Mean (SD) REE/FFM (kcal/day/kg FFM) was for male never smokers 25.1 (2.0), male current smokers 26.4 (2.8), female never smokers 28.9 (2.5) and female current smokers 30.1 (3.7). After adjustment, only current smokers had a higher REE/FFM (mean difference 1.28, 95% CI 0.64, 1.92), and a higher REE adjusted for FFM (mean difference 60.3 kcal/day, 95% CI 29.1, 91.5), compared with never smokers. There was no association between pack years and REE/FFM (mean difference -0.01, 95% CI -0.06, 0.04) or REE adjusted for FFM (mean difference 0.2, 95% CI -2.4, 2.8) in current smokers. Current smoking is associated with a higher resting energy expenditure compared with never smoking in a large population-based cohort. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study.

    Akinwunmi Oni-Orisan

    Full Text Available Functional magnetic resonance imaging (fMRI studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity. However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system.

  5. RESTful Web Services Cookbook

    Allamaraju, Subbu

    2010-01-01

    While the REST design philosophy has captured the imagination of web and enterprise developers alike, using this approach to develop real web services is no picnic. This cookbook includes more than 100 recipes to help you take advantage of REST, HTTP, and the infrastructure of the Web. You'll learn ways to design RESTful web services for client and server applications that meet performance, scalability, reliability, and security goals, no matter what programming language and development framework you use. Each recipe includes one or two problem statements, with easy-to-follow, step-by-step i

  6. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.

    Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-04-27

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long

  7. Association Between Cardiovascular and Intraocular Pressure Changes in a 14-Day 6 deg Head Down Tilt (HDT) Bed Rest Study: Possible Implications in Retinal Anatomy

    Cromwell, Ronita; Zanello, Susana; Yarbough, Patrice; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2013-01-01

    Visual symptoms and intracranial pressure increase reported in astronauts returning from long duration missions in low Earth-orbit are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, studies conducted in head-down tilt (HDT) bed rest are being monitored for potential changes in ocular health. These measures will also serve to determine whether HDT is a suitable ground-based analog to model subclinical cardiovascular and ocular changes that could shed light on the etiology of the VIIP syndrome observed in spaceflight. Sixteen healthy normotensive (12M, 4F, age range 29-54 years), non-smoker and normal weight subjects, volunteered to participate in a 14 day 6 deg head HDT study conducted at the NASA Flight Analogs Research Unit (FARU). This facility provides standard bed rest conditions (diet, wake/sleep time, time allowed in sunlight) during the time that the subjects stay at the FARU. Cardiovascular parameters were obtained in supine posture at BR-5, BR+0, and BR+3 and ocular monitoring was performed weekly. Intraocular pressure (IOP) increased from pre-bed rest BR-3) to the third day into bed rest (BR+3). Values reached a plateau towards the end of the bed rest phase (BR10) and decreased within the first three days of recovery (BR+2) returning to levels comparable to baseline at BR-3. As expected, most cardiovascular parameters were affected by 14 days of HDT bed rest. Plasma volume decreased as a result of bed rest but recovered to baseline levels by BR+3. Indications of cardiovascular deconditioning included increase in both systolic and diastolic blood pressure and heart rate, and a decrease in stroke volume and cardiac output between BR-5 and BR+3. Due to the experimental design of this study, we were not able to test the hypothesis that fluid shifts might be involved in the IOP increase during the bed rest phase, since cardiovascular measures were not available for those

  8. The Effect of Low Volume Interval Training on Resting Blood Pressure in Pre-hypertensive Subjects: A Preliminary Study.

    Skutnik, Benjamin C; Smith, Joshua R; Johnson, Ariel M; Kurti, Stephanie P; Harms, Craig A

    2016-01-01

    Clinically pre-hypertensive adults are at a greater risk of developing hypertension, stiffened arteries, and other cardiovascular risks. Endurance exercise training has been shown to improve elevated resting blood pressure and C-reactive protein (CRP) levels. However, a primary barrier preventing individuals from engaging in regular physical activity is a lack of time. The purpose of our study was to determine if a high-intensity interval training (HIIT) protocol would be as effective as continuous aerobic endurance training (ET) on resting blood pressure in pre-hypertensive participants. Additionally, this study investigated the effects of HIIT vs. ET on CRP. Twelve pre-hypertensive participants (33.3±6.1 yrs; 3M/9W) participated in 8 weeks of cycle ergometer exercise training. The ET exercised for 30 continuous min/day, 4 days/week at 40% VO2max reserve. The HIIT exercised at a 1:1 work-to-rest for 20 min/day, 3 days/week at 60% peak power. Resting mean arterial pressure and CRP were compared throughout the study. Both groups showed decreases (pHIIT: -8.6 ± 4.8 mmHg) following the 8 weeks. For CRP, there was a significant decrease (p=0.014) as a main effect of time. VO2max increased (pHIIT and ET. These preliminary data suggest HIIT and ET similarly decreased resting blood pressure and increased VO2max.

  9. Pavement Subgrade Performance Study

    Zhang, Wei; Ullidtz, Per; Macdonald, Robin

    1998-01-01

    The report describes the second test in the Danish Road Testing Machine (RTM) under the International Pavement Subgrade Performance Study. Pavement response was measured in different layers, and compared to different theroretical values. Performance in terms of plastic strains, rutting...

  10. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes. PMID:24917689

  11. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    I. Bezrati-Benayed

    2014-07-01

    Full Text Available Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC was significantly lower in sprinters than controls (34±30 vs. 74±3 μmol/mmol creatinine, p<0.05. UC was inversely correlated with body mass (r=-0.34, p<0.01 and lean mass (r=- 0.30, p<0.05, and positively correlated with fat mass (r=0.32, p<0.05. After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes.

  12. Prefrontal Hemodynamics in Toddlers at Rest: A Pilot Study of Developmental Variability

    Afrouz A. Anderson

    2017-05-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a non-invasive functional neuroimaging modality. Although, it is amenable to use in infants and young children, there is a lack of fNIRS research within the toddler age range. In this study, we used fNIRS to measure cerebral hemodynamics in the prefrontal cortex (PFC in 18–36 months old toddlers (n = 29 as part of a longitudinal study that enrolled typically-developing toddlers as well as those “at risk” for language and other delays based on presence of early language delays. In these toddlers, we explored two hemodynamic response indices during periods of rest during which time audiovisual children's programming was presented. First, we investigate Lateralization Index, based on differences in oxy-hemoglobin saturation from left and right prefrontal cortex. Then, we measure oxygenation variability (OV index, based on variability in oxygen saturation at frequencies attributed to cerebral autoregulation. Preliminary findings show that lower cognitive (including language abilities are associated with fNIRS measures of both lower OV index and more extreme Lateralization index values. These preliminary findings show the feasibility of using fNIRS in toddlers, including those at risk for developmental delay, and lay the groundwork for future studies.

  13. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  14. Interhemispheric Functional and Structural Disconnection in Alzheimer's Disease: A Combined Resting-State fMRI and DTI Study.

    Zhiqun Wang

    Full Text Available Neuroimaging studies have demonstrated that patients with Alzheimer's disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI, as well as 16 cognitive normal healthy subjects (CN. The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of ADperformance. These results demonstrate that there are specific patterns of interhemispheric functional connectivity changes in the AD and MCI, which can be significantly correlated with the integrity changes in the midline white matter structures. These results suggest that VMHC can be used as a biomarker for the degeneration of the interhemispheric connectivity in AD.

  15. Mentalizing and Microblog Repost through Social Network: Evidence from a Resting-state-fMRI study

    Huijun Zhang

    2016-11-01

    Full Text Available Microblogs is one of the main social networking channels by which information is spread. Among them, Sina Weibo is one of the largest social networking channel in China. Millions of users repost information from Sina Weibo and share embedded emotion at the same time. The present study investigated participants’ propensity to repost microblog messages of positive, negative or neutral valence, and studied the neural correlates during resting state with the reposting rate of each type microblog messages. Participants preferred to repost negative messages relative to positive and neutral messages. Reposting rate of negative messages was positively correlated to the functional connectivity of temporoparietal junction (TPJ with insula, and TPJ with dorsolateral prefrontal cortex (DLPFC. These results indicate that reposting negative messages is related to conflict resolution between the feeling of pain/ disgust and the intention to repost significant information. Thus, resposting emotional microblog messages might be attributed to participants’ appraisal of personal and recipient’s interest, as well as their cognitive process for decision making.

  16. Mentalizing and Information Propagation through Social Network: Evidence from a Resting-State-fMRI Study.

    Zhang, Huijun; Mo, Lei

    2016-01-01

    Microblogs is one of the main social networking channels by which information is spread. Among them, Sina Weibo is one of the largest social networking channels in China. Millions of users repost information from Sina Weibo and share embedded emotion at the same time. The present study investigated participants' propensity to repost microblog messages of positive, negative, or neutral valence, and studied the neural correlates during resting state with the reposting rate of each type microblog messages. Participants preferred to repost negative messages relative to positive and neutral messages. Reposting rate of negative messages was positively correlated to the functional connectivity of temporoparietal junction (TPJ) with insula, and TPJ with dorsolateral prefrontal cortex. These results indicate that reposting negative messages is related to conflict resolution between the feeling of pain/disgust and the intention to repost significant information. Thus, resposting emotional microblog messages might be attributed to participants' appraisal of personal and recipient's interest, as well as their cognitive process for decision making.

  17. A method to determine the necessity for global signal regression in resting-state fMRI studies.

    Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang

    2012-12-01

    In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures. Copyright © 2012 Wiley Periodicals, Inc.

  18. Reporting studies on time to diagnosis: proposal of a guideline by an international panel (REST).

    Launay, Elise; Cohen, Jérémie F; Bossuyt, Patrick M; Buekens, Pierre; Deeks, Jonathan; Dye, Timothy; Feltbower, Richard; Ferrari, Andrea; Kramer, Michael; Leeflang, Mariska; Moher, David; Moons, Karel G; von Elm, Erik; Ravaud, Philippe; Chalumeau, Martin

    2016-09-27

    Studies on time to diagnosis are an increasing field of clinical research that may help to plan corrective actions and identify inequities in access to healthcare. Specific features of time to diagnosis studies, such as how participants were selected and how time to diagnosis was defined and measured, are poorly reported. The present study aims to derive a reporting guideline for studies on time to diagnosis. Each item of a list previously used to evaluate the completeness of reporting of studies on time to diagnosis was independently evaluated by a core panel of international experts (n = 11) for relevance and readability before an open electronic discussion allowed consensus to be reached on a refined list. The list was then submitted with an explanatory document to first, last and/or corresponding authors (n = 98) of published systematic reviews on time to diagnosis (n = 45) for relevance and readability, and finally approved by the core expert panel. The refined reporting guideline consists of a 19-item checklist: six items are about the process of participant selection (with a suggested flowchart), six about the definition and measurement of time to diagnosis, and three about optional analyses of associations between time to diagnosis and participant characteristics and health outcomes. Of 24 responding authors of systematic reviews, more than 21 (≥88 %) rated the items as relevant, and more than 17 (≥70 %) as readable; 19 of 22 (86 %) authors stated that they would potentially use the reporting guideline in the future. We propose a reporting guideline (REST) that could help authors, reviewers, and editors of time to diagnosis study reports to improve the completeness and the accuracy of their reporting.

  19. Resting-State Neurophysiological Abnormalities in Posttraumatic Stress Disorder: A Magnetoencephalography Study

    Amy S. Badura-Brack

    2017-04-01

    Full Text Available Posttraumatic stress disorder (PTSD is a debilitating psychiatric condition that is common in veterans returning from combat operations. While the symptoms of PTSD have been extensively characterized, the neural mechanisms that underlie PTSD are only vaguely understood. In this study, we examined the neurophysiology of PTSD using magnetoencephalography (MEG in a sample of veterans with and without PTSD. Our primary hypothesis was that veterans with PTSD would exhibit aberrant activity across multiple brain networks, especially those involving medial temporal and frontal regions. To this end, we examined a total of 51 USA combat veterans with a battery of clinical interviews and tests. Thirty-one of the combat veterans met diagnostic criteria for PTSD and the remaining 20 did not have PTSD. All participants then underwent high-density MEG during an eyes-closed resting-state task, and the resulting data were analyzed using a Bayesian image reconstruction method. Our results indicated that veterans with PTSD had significantly stronger neural activity in prefrontal, sensorimotor and temporal areas compared to those without PTSD. Veterans with PTSD also exhibited significantly stronger activity in the bilateral amygdalae, parahippocampal and hippocampal regions. Conversely, healthy veterans had stronger neural activity in the bilateral occipital cortices relative to veterans with PTSD. In conclusion, these data suggest that veterans with PTSD exhibit aberrant neural activation in multiple cortical areas, as well as medial temporal structures implicated in affective processing.

  20. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  1. Physiological responses of women to simulated weightlessness: A review of the first female bed-rest study

    Sandler, H.; Winter, D. L.

    1978-01-01

    Subjects were exposed to centrifugation, to lower body negative pressure (LBNP), and to exericse stress both before and after bed rest. Areas studied were centrifugation tolerance, fluid electrolyte changes and hematology, tolerance to LBNP, physical working capacity, biochemistries, blood fibrinolytic activity, female metabolic and hormonal responses, circadian alterations, and gynecology. Results were compared with the responses observed in similarly bed-rested male subjects. The bed-rested females showed deconditioning responses similar to those of the males, although with some differences. Results indicate that women are capable of coping with exposure to weightlessness and, moreover, that they may be more sensitive subjects for evaluating countermeasures to weightlessness and developing criteria for assessing applicants for shuttle voyages.

  2. Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample

    Peter Eriksson

    2016-03-01

    Full Text Available Abstract Background Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. Methods We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden (n = 1552. Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001–2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. Results No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38, but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient −0.18, 95 % CI −0.30 to −0.02. However, there were no significant associations in the fully adjusted model. Conclusions Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.

  3. Comparative studies on Fc receptors for IgG on resting and activated T lymphocytes

    Hueckel, C.; Jensen, H.L.; Rychly, J.; Sandor, M.; Erdei, A.; Gergely, J.

    1986-01-01

    Fc-receptors for IgG (FcγR) on resting (i.e. freshly prepared) and mitogen (Con A) or alloantigen-activated mouse spleen T cells were compared using binding of different markers such as 125 I-labelled immune complexes, 125 I-labelled anti FcγR monoclonal antibody, FITC-labelled aggr. IgG and sheep erythrocytes covered with specific antibody (EA rosetting). C3b receptors were detected by rosetting with sheep erythrocytes covered with antibody and complement (EAC rosetting). The electrophoretic mobility of the cells without or after binding of aggr. IgG was also tested. Differences between resting and activated T cells were found: (1) After activation of T cells by mitogen or alloantigen, a proportion of FcγR-positive cells increased two to four times. (2) FcγR number per FcγR-positive cell seemed to be higher on activated then on resting cells. (3) FcγR-positive resting cells did not shed their FcγR upon incubation at 4 0 C followed by incubation at 37 0 C, but FcγR-positive activated cells shed a remarkable proportion of their FcγR on the same conditions. (4) Binding of aggr. IgG caused a decrease of electrophoretic mobility of activated but not resting cells. (5) FcγR-positive resting cells were also C3b receptor-positive, whereas FcγR-positive activated cells had no detectable C3b receptors. (author)

  4. Abnormal Resting State Corticolimbic Blood Flow in Depressed Unmedicated Patients With Major Depression: A 15O-H2O PET Study

    Monkul, E. Serap; Silva, Leandro A.P.; Narayana, Shalini; Peluso, Marco A.M.; Zamarripa, Frank; Nery, Fabiano G.; Najt, Pablo; Li, John; Lancaster, Jack L.; Fox, Peter T.; Lafer, Beny; Soares, Jair C.

    2011-01-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H215O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients wa...

  5. Short rest interval lengths between sets optimally enhance body composition and performance with 8 weeks of strength resistance training in older men.

    Villanueva, Matthew G; Lane, Christianne Joy; Schroeder, E Todd

    2015-02-01

    To determine if 8 weeks of periodized strength resistance training (RT) utilizing relatively short rest interval lengths (RI) in between sets (SS) would induce greater improvements in body composition and muscular performance, compared to the same RT program utilizing extended RI (SL). 22 male volunteers (SS: n = 11, 65.6 ± 3.4 years; SL: n = 11, 70.3 ± 4.9 years) were assigned to one of two strength RT groups, following 4 weeks of periodized hypertrophic RT (PHRT): strength RT with 60-s RI (SS) or strength RT with 4-min RI (SL). Prior to randomization, all 22 study participants trained 3 days/week, for 4 weeks, targeting hypertrophy; from week 4 to week 12, SS and SL followed the same periodized strength RT program for 8 weeks, with RI the only difference in their RT prescription. Following PHRT, all study participants experienced increases in lean body mass (LBM) (p body strength (p body fat (p high-intensity strength RT with shortened RI induces significantly greater enhancements in body composition, muscular performance, and functional performance, compared to the same RT prescription with extended RI, in older men. Applied professionals may optimize certain RT-induced adaptations, by incorporating shortened RI.

  6. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain : the Baltimore Longitudinal Study on Aging

    Seidell, J C; Muller, D C; Sorkin, J D; Andres, R.

    The authors followed 775 men (aged 18-98 years) participating in the Baltimore Longitudinal Study in Aging for an average of ten years. Resting metabolic rate and fasting respiratory exchange ratio (RER) were measured by indirect calorimetry on their first visit and related to subsequent weight

  7. Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.

    van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D

    2015-04-01

    Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  9. Association Between Heart Rate at Rest and Incident Atrial Fibrillation (from the Copenhagen Electrocardiographic Study)

    Skov, Morten W; Bachmann, Troels N; Rasmussen, Peter V.

    2016-01-01

    Heart rate (HR) at rest is a well-known marker of cardiovascular morbidity and mortality. Results on the association between HR and incident atrial fibrillation (AF) have, however, been conflicting. Using digital electrocardiograms from 281,451 primary care patients, we aimed to describe...

  10. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment.

    Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa

    2017-01-01

    Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task

  11. Resting sympathetic arousal moderates the association between parasympathetic reactivity and working memory performance in adults reporting high levels of life stress.

    Giuliano, Ryan J; Gatzke-Kopp, Lisa M; Roos, Leslie E; Skowron, Elizabeth A

    2017-08-01

    The neurovisceral integration model stipulates that autonomic function plays a critical role in the regulation of higher-order cognitive processes, yet most work to date has examined parasympathetic function in isolation from sympathetic function. Furthermore, the majority of work has been conducted on normative samples, which typically demonstrate parasympathetic withdrawal to increase arousal needed to complete cognitive tasks. Little is known about how autonomic regulation supports cognitive function in populations exposed to high levels of stress, which is critical given that chronic stress exposure alters autonomic function. To address this, we sought to characterize how parasympathetic (high-frequency heart rate variability, HF-HRV) and sympathetic (preejection period, PEP) measures of cardiac function contribute to individual differences in working memory (WM) capacity in a sample of high-risk women. HF-HRV and PEP were measured at rest and during a visual change detection measure of WM. Multilevel modeling was used to examine within-person fluctuations in WM performance throughout the task concurrently with HF-HRV and PEP, as well as between-person differences as a function of resting HF-HRV and PEP levels. Results indicate that resting PEP moderated the association between HF-HRV reactivity and WM capacity. Increases in WM capacity across the task were associated with increases in parasympathetic activity, but only among individuals with longer resting PEP (lower sympathetic arousal). Follow-up analyses showed that shorter resting PEP was associated with greater cumulative risk exposure. These results support the autonomic space framework, in that the relationship between behavior and parasympathetic function appears dependent on resting sympathetic activation. © 2017 Society for Psychophysiological Research.

  12. Resting state functional connectivity changes in adults with developmental stuttering: an initial sLORETA study.

    Kathleen eJoos

    2014-10-01

    Full Text Available Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity.Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on the quality of life (QoL, we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES, respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES.Results: No resting state activity differences were identified in comparison to fluently speaking controls or in correlation with stuttering severity or QoL measures. Significant alterations in resting state functional connectivity were found, predominantly interhemispheric, i.e. a decreased functional connectivity for high frequency oscillations (beta and gamma between motor speech areas (BA44 and 45 and the contralateral premotor (BA 6 and motor (BA 4 areas. A positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL.Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  13. Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study.

    Qian Xiao

    Full Text Available UNLABELLED: Pediatric bipolar disorder (PBD is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially during resting state. Resting state brain activity measured by fMRI might help to explore neurobiological biomarkers of the disorder. METHODS: Regional homogeneity (ReHo was examined with resting-state fMRI (RS-fMRI on 15 patients with PBD in manic state, with 15 age-and sex-matched healthy youth subjects as controls. RESULTS: Compared with the healthy controls, the patients with PBD showed altered ReHo in the cortical and subcortical structures. The ReHo measurement of the PBD group was negatively correlated with the score of Young Mania Rating Scale (YMRS in the superior frontal gyrus. Positive correlations between the ReHo measurement and the score of YMRS were found in the hippocampus and the anterior cingulate cortex in the PBD group. CONCLUSIONS: Altered regional brain activity is present in patients with PBD during manic state. This study presents new evidence for abnormal ventral-affective and dorsal-cognitive circuits in PBD during resting state and may add fresh insights into the pathophysiological mechanisms underlying PBD.

  14. A decision support system for stress only myocardial perfusion scintigraphy may save unnecessary rest studies

    Tägil, K; Jakobsson, D; Lomsky, M

    2013-01-01

    The aim of this study was to investigate the influence of a computer-based decision support system (DSS) on performance and inter-observer variability of interpretations regarding ischaemia and infarction in myocardial perfusion scintigraphy (MPS).......The aim of this study was to investigate the influence of a computer-based decision support system (DSS) on performance and inter-observer variability of interpretations regarding ischaemia and infarction in myocardial perfusion scintigraphy (MPS)....

  15. Effect of Integrated Cognitive Therapy on Hippocampal Functional Connectivity Patterns in Stroke Patients with Cognitive Dysfunction: A Resting-State fMRI Study

    Shanli Yang

    2014-01-01

    Full Text Available Objective. This study aimed to identify abnormal hippocampal functional connectivity (FC following ischemic stroke using resting-state fMRI. We also explored whether abnormal hippocampal FC could be modulated by integrated cognitive therapy and tested whether these alterations were associated with cognitive performance. Methods. 18 right-handed cognitively impaired ischemic stroke patients and 18 healty control (HC subjects were included in this study. Stroke subjects were scanned at baseline and after integrated cognitive therapy, while HCs were only scanned at baseline, to identify regions that show significant correlations with the seed region. Behavioral and cognitive assessments were obtained before each scan. Results. During the resting state, we found abnormal hippocampal FC associated with temporal regions, insular cortex, cerebellum, and prefrontal cortex in stroke patients compared to HCs. After integrated cognitive therapy, however, the stroke group showed increased hippocampal FC mainly located in the prefrontal gyrus and the default mode network (DMN. Altered hippocampal FC was associated with cognitive improvement. Conclusion. Resting-state fMRI may provide novel insight into the study of functional networks in the brain after stroke. Furthermore, altered hippocampal FC may be a compensatory mechanism for cognitive recovery after ischemic stroke.

  16. Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder.

    Sumich, Alexander; Matsudaira, Toshiko; Gow, Rachel V; Ibrahimovic, Almira; Ghebremeskel, Kebreab; Crawford, Michael; Taylor, Eric

    2009-12-01

    Abnormal fatty acid status has been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Delayed maturation in ADHD may result in raised frontal low frequency (theta) electroencephalographic activity (EEG) and a reduction in posterior high frequency (beta, alpha) activity. The current study used sequential linear regression to investigate the association between age, resting-state EEG and levels of long-chain polyunsaturated omega-3 and omega-6 fatty acids in red blood cells in 46 adolescent boys with ADHD symptoms. Docosahexaenoic acid (DHA) levels were positively associated with fast frequency activity: alpha during eyes-open and beta during eyes-closed conditions. Frontal theta activity during both eyes-open and eyes-closed conditions was inversely associated with age and positively associated with eicosapentaenoic acid (EPA) levels. Alpha activity correlated positively with performance on fluency for categories (semantic memory). Theta activity correlated inversely with performance on delayed (25 min) verbal memory (recall + recognition/2). No associations were observed between long-chain omega-6 and EEG measures. Results support differential associations for DHA and EPA with fast and slow EEG activity respectively. Results support EEG activity as an objective biomarker of neural function associated with long-chain omega-3 fatty acids in ADHD.

  17. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study

    Lin Cai; Qi Dong; Haijing Niu

    2018-01-01

    Early childhood (7–8 years old) and early adolescence (11–12 years old) constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS) imaging data to examine topological ...

  18. Altered regional homogeneity in the development of minimal hepatic encephalopathy: a resting-state functional MRI study.

    Ling Ni

    Full Text Available BACKGROUND: Little is known about how spontaneous brain activity progresses from non-hepatic encephalopathy (non-HE to minimal HE (MHE. The purpose of this study was to evaluate the evolution pattern of spontaneous brain activities in cirrhotic patients using resting-state fMRI with a regional homogeneity (ReHo method. METHODOLOGY/PRINCIPAL FINDINGS: Resting-state fMRI data were acquired in 47 cirrhotic patients (minimal HE [MHE], n = 20, and non-HE, n = 27 and 25 age-and sex-matched healthy controls. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity. The regional homogeneity maps were compared with ANOVA tests among MHE, non-HE, and healthy control groups and t-tests between each pair in a voxel-wise way. Correlation analyses were performed to explore the relationships between regional ReHo values and Child-Pugh scores, number connection test type A (NCT-A, digit symbol test (DST scores, venous blood ammonia levels. Compared with healthy controls, both MHE and non-HE patients showed decreased ReHo in the bilateral frontal, parietal and temporal lobes and increased ReHo in the bilateral caudate. Compared with the non-HE, MHE patients showed decreased ReHo in the bilateral precuneus, cuneus and supplementary motor area (SMA. The NCT-A of cirrhotic patients negatively correlated with ReHo values in the precuneus, cuneus and lingual gyrus. DST scores positively correlated with ReHo values in the cuneus, precuneus and lingual gyrus, and negatively correlated with ReHo values in the bilateral caudate (P<0.05, AlphaSim corrected. CONCLUSIONS/SIGNIFICANCE: Diffused abnormal homogeneity of baseline brain activity was nonspecific for MHE, and only the progressively decreased ReHo in the SMA and the cuneus, especially for the latter, might be associated with the development of MHE. The ReHo analysis may be potentially valuable for detecting the development from non-HE to MHE.

  19. Abnormal regional spontaneous neural activity in visual pathway in retinal detachment patients: a resting-state functional MRI study

    Huang X

    2017-11-01

    Full Text Available Xin Huang,1,2,* Dan Li,3,* Hai-Jun Li,3 Yu-Lin Zhong,1 Shelby Freeberg,4 Jing Bao,1 Xian-Jun Zeng,3 Yi Shao1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People’s Republic of China; 2Department of Ophthalmology, Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China; 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 4Department of Ophthalmology, University of Florida, Gainesville, FL, USA *These authors contributed equally to this work Objective: The aim of the study was to investigate changes of brain neural homogeneity in retinal detachment (RD patients using the regional homogeneity (ReHo method to understand their relationships with clinical features. Materials and methods: A total of 30 patients with RD (16 men and 14 women, and 30 healthy controls (HCs (16 men and 14 women closely matched in age and sex were recruited. Resting-state functional magnetic resonance imaging scans were performed for all subjects. The ReHo method was used to investigate the brain regional neural homogeneity. Patients with RD were distinguished from HCs by receiver operating characteristic curve. The relationships between the mean ReHo signal values in many brain regions and clinical features in RD patients were calculated by Pearson correlation analysis. Results: Compared with HCs, RD patients had significantly decreased ReHo values in the right occipital lobe, right superior temporal gyrus, bilateral cuneus and left middle frontal gyrus. Moreover, we found that the mean ReHo signal of the bilateral cuneus showed positive relationships with the duration of the RD (r=0.392, P=0.032. Conclusion: The RD patients showed brain neural homogeneity dysfunction in the visual pathway, which may underline the pathological mechanism

  20. Usefulness of rate of increase in SPECT counts in one-day method of N-isopropyl-4-iodoamphetamine [123I] SPECT studies at rest and after acetazolamide challenge using a method for estimating time-dependent distribution at rest

    Kawamura, Yoshifumi; Ashizaki, Michio; Saida, Shoko; Sugimoto, Hideharu

    2008-01-01

    When N-isopropyl-4-iodoamphetamine ( 123 I-IMP) single-photon emission computed tomography (SPECT) studies at rest and after acetazolamide (ACZ) challenge are conducted in a day, the time-dependent change in IMP in the brain at rest should be estimated accurately. We devised the method and investigated whether our one-day method for measuring the rate of increase in SPECT counts allowed reduction in the acquisition time. Sequential, 5-min SPECT scans were performed. We estimated the time-dependent change in the brain using the change in slopes of two linear equations derived from the first three SPECT counts. For the one-day method, ACZ was administered 15 min or 20 min after IMP administration. The second IMP was administered 10 min after ACZ administration. Time-dependent changes in the brain were classified into 13 patterns when estimation was started at 5 min after IMP administration and 6 patterns when estimation was started at 10 min, and fitting coefficients were determined. The correlation between actual measurements at 37.5 min and estimates was high with a correlation coefficient of 0.99 or greater. Rates of increase obtained from 20-min data were highly correlated with those obtained from 15-min or 10-min data (r=0.97 or greater). In patients with unilateral cerebrovascular disease, the rate of increase on the unaffected side was 44.4±10.9% when ACZ was administered 15 min later and 48.0±16.0% when ACZ was administered 20 min later, and the rates of increase with different timings of administration were not significantly different. The examination time may be reduced from 50 min to 45 min or 40 min as needed. The rate of increase was not influenced by the time frame for determination or the timing of ACZ administration. These findings suggest that our estimation method is accurate and versatile. (author)

  1. The NASA Bed Rest Project

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  2. Resting-state fMRI study of acute migraine treatment with kinetic oscillation stimulation in nasal cavity

    Tie-Qiang Li

    2016-01-01

    The result of this study confirms the efficacy of KOS treatment for relieving acute migraine symptoms and reducing attack frequency. Resting-state fMRI measurements demonstrate that migraine is associated with aberrant intrinsic functional activity in the limbic and primary sensory systems. KOS in the nasal cavity gives rise to the adjustment of the intrinsic functional activity in the limbic and primary sensory networks and restores the physiological homeostasis in the autonomic nervous system.

  3. The resting state fMRI study of patients with Parkinson's disease associated with cognitive dysfunction

    Feng Jieying; Huang Biao

    2013-01-01

    Parkinson's disease (PD) is the most common neurodegenerative cause of Parkinsonism, but the high morbidity of PD accompanied cognitive dysfunction hasn't drawn enough attention by the clinicians. With the rapid development of the resting state functional MRI (fMRI) technique, the cause of PD patients with cognitive dysfunction may be associated with the damage of functional connectivity of the motor networks and the cognitive networks. The relationship between neuropathologic mechanism of PD patients with cognitive dysfunction and impaired cognitive circuits will be disclosed by building the changes of brain topological structure in patients. The resting state fMRI study can provide the rationale for prevention, diagnosis and treatment of PD. (authors)

  4. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Resting electrocardiogram and stress myocardial perfusion imaging in the determination of left ventricular systolic function: an assessment enhancing the performance of gated SPET.

    Moralidis, Efstratios; Spyridonidis, Tryfon; Arsos, Georgios; Skeberis, Vassilios; Anagnostopoulos, Constantinos; Gavrielidis, Stavros

    2010-01-01

    This study aimed to determine systolic dysfunction and estimate resting left ventricular ejection fraction (LVEF) from information collected during routine evaluation of patients with suspected or known coronary heart disease. This approach was then compared to gated single photon emission tomography (SPET). Patients having undergone stress (201)Tl myocardial perfusion imaging followed by equilibrium radionuclide angiography (ERNA) were separated into derivation (n=954) and validation (n=309) groups. Logistic regression analysis was used to develop scoring systems, containing clinical, electrocardiographic (ECG) and scintigraphic data, for the discrimination of an ERNA-LVEFstatistic (mean+/-2SD) provided values of 0.001+/-0.176, 0.071+/-0.196 and 0.040+/-0.152, respectively. The average LVEF was a better discriminator of systolic dysfunction than gated SPET-LVEF in receiver operating characteristic (ROC) analysis and identified more patients (89%) with a stress myocardial perfusion imaging variables. This model provides reliable LVEF estimations, comparable to those from (201)Tl gated SPET, and can enhance the clinical performance of the latter.

  6. Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a PET study with nitric oxide and cyclooxygenase inhibition

    Heinonen, Ilkka; Saltin, Bengt; Kemppainen, Jukka

    2011-01-01

    The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed 3 five min bouts of light knee-extensor exercise. Skeletal...... muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with H(2)O(15) and (15)O(2) during: 1) control conditions; 2) nitric oxide synthase (NOS) inhibition by arterial infusion of L-NMMA and 3) combined NOS and cyclooxygenase (COX) inhibition by arterial infusion of L...

  7. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  8. Fractional amplitude analysis of low frequency fluctuation in alcohol dependent individuals: a resting state functional MRI study

    Yan Dingfang; Cheng Jun; Wu Hanbin; Xu Liangzhou; Liu Jinhuan; Zhao Yilin; Lin Xue; Liu Changsheng; Qiu Li

    2012-01-01

    Objective: To explore brain activity features during the resting state in alcohol dependent individuals, and study the relationship between the brain activity features and alcohol dependent individuals' clinical symptoms. Methods: Twenty-four alcohol dependent individuals and 22 healthy control subjects, well matched in gender, age, education and handedness, were enrolled as the alcohol dependent group and control group respectively. A GE 3.0 T MR scanner was used to acquire all the subjects' resting state data. DPARSF software was used to process resting functional MRI data, and then the whole brain fractional amplitudes of low frequency fluctuation (fALFF) data were acquired. Two-sample t test statistical analysis was made to access fALFF difference between the two groups. Results: In comparison with the control group, the alcohol dependent group showed reduced fALFF in bilateral medial prefrontal gyrus, right inferior occipital gyrus, left precuneus,left inferior temporal gyrus, and left posterior lobe of cerebellum (0.64-1.69 vs. 0.87-1.78, t=-4.23- -2.79, P<0.05). fALFF was increased in the alcohol dependent group at the anterior cingulate,bilateral inferior frontal gyrus,right middle frontal gyrus,bilateral insular lobe,bilateral dorsal thalamus (0.86-1.82 vs. 0.76-1.58, t=3.56-3.96, P<0.05). Conclusion: Alcohol dependent individuals had abnormal activity at the bilateral prefrontal lobe,anterior cingulate, bilateral dorsal thalamus, bilateral insular lobe, left posterior lobe of cerebellum et al, during the resting state, and these abnormal activities might be related with clinical manifestation and pathophysiology. (authors)

  9. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  10. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  11. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  12. Bipolar mood state reflected in cortico-amygdala resting state connectivity: A cohort and longitudinal study.

    Brady, Roscoe O; Margolis, Allison; Masters, Grace A; Keshavan, Matcheri; Öngür, Dost

    2017-08-01

    Using resting-state functional magnetic resonance imaging (rsfMRI), we previously compared cohorts of bipolar I subjects in a manic state to those in a euthymic state to identify mood state-specific patterns of cortico-amygdala connectivity. Our results suggested that mania is reflected in the disruption of emotion regulation circuits. We sought to replicate this finding in a group of subjects with bipolar disorder imaged longitudinally across states of mania and euthymia METHODS: We divided our subjects into three groups: 26 subjects imaged in a manic state, 21 subjects imaged in a euthymic state, and 10 subjects imaged longitudinally across both mood states. We measured differences in amygdala connectivity between the mania and euthymia cohorts. We then used these regions of altered connectivity to examine connectivity in the longitudinal bipolar group using a within-subjects design. Our findings in the mania vs euthymia cohort comparison were replicated in the longitudinal analysis. Bipolar mania was differentiated from euthymia by decreased connectivity between the amygdala and pre-genual anterior cingulate cortex. Mania was also characterized by increased connectivity between amygdala and the supplemental motor area, a region normally anti-correlated to the amygdala in emotion regulation tasks. Stringent controls for movement effects limited the number of subjects in the longitudinal sample. In this first report of rsfMRI conducted longitudinally across mood states, we find that previously observed between-group differences in amygdala connectivity are also found longitudinally within subjects. These results suggest resting state cortico-amygdala connectivity is a biomarker of mood state in bipolar disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Association between resting heart rate and N-terminal pro-brain natriuretic peptide in a community-based population study in Beijing

    Cao R

    2014-12-01

    Full Text Available Ruihua Cao, Yongyi Bai, Ruyi Xu, Ping Ye Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People’s Republic of China Background: N-terminal pro-brain natriuretic peptide (NT-proBNP is associated with an increased risk of cardiac insufficiency, which possibly leads to heart failure. However, the relationship between resting heart rate and NT-proBNP is unclear.Objective: This study focuses on this relativity between resting heart rate and plasma NT-proBNP levels in a surveyed community-based population.Methods: We evaluated the relativity between resting heart rate and plasma levels of NT-proBNP in 1,567 participants (mean age 61.0 years, range 21–96 years from a community-based population in Beijing, People’s Republic of China.Results: In patients with high resting heart rate (≥75 beats/min, NT-proBNP was higher than in those having low resting heart rate (<75 beats/min. In multiple linear stepwise regression analysis, plasma NT-proBNP was associated with resting heart rate (partial correlation coefficient, 0.82; 95% confidence interval, 0.18–1.51; P=0.011. A subsequent subgroup analysis revealed that the association between resting heart rate and plasma NT-proBNP was strengthened in subjects over 60 years old (partial correlation coefficient 1.28; 95% confidence interval, 0.49–2.36; P=0.031; while the relativity between resting heart rate and plasma NT-proBNP was not emerged in the younger subgroup (<60 years old.Conclusions: Resting heart rate was associated with plasma NT-proBNP in the elderly, which indicated a relationship between resting heart rate and cardiac function damage. Keywords: resting heart rate, N-terminal pro-brain natriuretic peptide, epidemiology, cardiac function, relationship

  14. [Resting state fMRI study of emotional network in patients with postconcussion syndrome].

    Zhang, X; Qian, R B; Fu, X M; Lin, B; Zhang, D; Xia, C S; Wei, X P; Niu, C S; Wang, Y H

    2017-07-04

    Objective: To discuss functional connectivity changes in the emotional network of patients with post-concussion syndrome (PCS) and their clinical significance by resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Twenty-seven patients with PCS were recruited from the Department of Neurosurgery of Anhui provincial hospital affiliated to Anhui medical university from October 2015 to April 2016, and 27 healthy subjects were recruited as the controls. The Hamilton Anxiety Scale (HAMA) and The Hamilton Depression Scale (HAMD) were used to evaluate the emotional state of two groups of subjects. All fMRI data were preprocessed after RS-fMRI scanning, the left and right amygdala were selected as region of interest (ROI) to make functional connectivity (FC) calculation with the whole brain and then the results were did statistical analysis in order to obtain the altered brain areas of amygdala and whole brain functional connectivity in the PCS patient, to understand the functional changes of emotional network. Results: HAMA and HAMD scores of PCS group and the health controls had significant statistical difference (HAMA: the PCS group 9.8±1.5, the health controls 4.5±1.2, P =0.044; HAMD: the PCS group 12±1.2, the health controls was 4.2±1.5, P =0.024). Compared with the health controls, the left amygdala in PCS patients showed decreased FC with left insula, left putamen, left anterior cingulate gyrus, left inferior orbital frontal gyrus, left medial superior frontal gyrus, bilateral superior temporal gyrus, left superior temporal pole, bilateral supramarginal gyrus et al, on the contrary with the increased FC with right superior orbital frontal gyrus, right middle frontal lobe, right orbital frontal lobe, right middle frontal gyrus. The right amygdala in PCS patients showed decreased FC with bilateral putamen, right inferior orbital frontal gyrus, left insula, bilateral precuneus, bilateral superior temporal pole, right superior temporal gyrus

  15. Moral competence and brain connectivity: a resting-state fMRI study

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W.; Rao, Hengyi; Robertson, Diana C.

    2016-01-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. PMID:27456537

  16. Moral competence and brain connectivity: A resting-state fMRI study.

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pain Perception Can Be Modulated by Mindfulness Training: A Resting-state fMRI Study

    I-Wen Su

    2016-11-01

    Full Text Available The multi-dimensional nature of pain renders difficult a holistic understanding of it. The conceptual framework of pain is said to be cognitive-evaluative, in addition to being sensory-discriminative and affective-motivational. To compare participants’ brain-behavior response before and after a six-week mindfulness-based stress reduction (MBSR training course on mindfulness in relation to pain modulation, three questionnaires (the Dallas Pain Questionnaire, Short Form McGill Pain Questionnaire-SFMPQ, and Kentucky Inventory of Mindfulness as well as resting-state functional magnetic resonance imaging (fMRI were administered to participants, divided into a pain-afflicted group (N=18 and a control group (N=16. Our results showed that the pain-afflicted group experienced significantly less pain after the mindfulness treatment than before, as measured by the SFMPQ. In conjunction, an increased connection from the anterior insular cortex (AIC to the dorsal anterior midcingulate cortex (daMCC was observed in the post-training pain-afflicted group and a significant correlation was found between AIC-daMCC connectivity and SFMPQ scores. The results suggest that mindfulness training can modulate the brain network dynamics underlying the subjective experience of pain.

  18. A comparison of resting images from two myocardial perfusion tracers

    Anagnostopoulos, C.; Laney, R.; Pennell, D.; Proukakis, H.; Underwood, R.

    1995-01-01

    We have compared stress-redistribution and delayed rest thallium-201 with rest technetium-99m methoxyisobutylisonitrile (MIBI) tomograms in order to compare the tracers for the assessment of myocardial viability and to validate a rapid protocol combining the two tracers. We studied 30 consecutive patients with known or suspected coronary artery disease [group 1: 16 with normal left ventricular function, mean left ventricular ejection fraction (LVEF) 55%, SD 6%; group 2: 14 with abnormal function, mean LVEF 28%, SD 8%]. 201 Tl was injected during infusion of adenosine followed by acquisition of conventional stress and redistribution tomograms. On a separate day, 201 Tl was injected at rest with imaging 4 h later. 99m Tc-MIBI was then given at rest and imaging was performed. Three images were compared: redistribution 201 Tl, rest 201 Tl, and rest 99m Tc-MIBI. Tracer activity was classified visually and quantitatively in nine segments and segments with>50% activity were defined as containing clinically significant viable myocardium. Mean global tracer uptake as a percentage of maximum was similar in group 1 (rest 201 Tl 69%±12%, redistribution 201 Tl 69%±15%, rest 99m Tc-MIBI 70%±13%), but in group 2 mean tracer uptake was significantly greater in the rest 201 Tl images (59%±16%) than in redistribution 201 Tl images (53%±17%) or rest 99m Tc-MIBI images (53%±19%). Overall agreement for regional uptake score was excellent (κ from 0.79 to 0.84), although there were a significant number of segments with less uptake shown by redistribution 201 Tl and by rest 99m Tc-MIBI than by rest 201 Tl in group 2. The number of segments with significant viable myocardium in group 1 was very similar between the three images but in group 2 rest 201 Tl identified significantly more segments as viable than the other images. (orig./MG) (orig.). With 1 fig., 7 tabs

  19. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study.

    Kutch, Jason J; Labus, Jennifer S; Harris, Richard E; Martucci, Katherine T; Farmer, Melissa A; Fenske, Sonja; Fling, Connor; Ichesco, Eric; Peltier, Scott; Petre, Bogdan; Guo, Wensheng; Hou, Xiaoling; Stephens, Alisa J; Mullins, Chris; Clauw, Daniel J; Mackey, Sean C; Apkarian, A Vania; Landis, J Richard; Mayer, Emeran A

    2017-06-01

    Chronic pain symptoms often change over time, even in individuals who have had symptoms for years. Studying biological factors that predict trends in symptom change in chronic pain may uncover novel pathophysiological mechanisms and potential therapeutic targets. In this study, we investigated whether brain functional connectivity measures obtained from resting-state functional magnetic resonance imaging at baseline can predict longitudinal symptom change (3, 6, and 12 months after scan) in urologic chronic pelvic pain syndrome. We studied 52 individuals with urologic chronic pelvic pain syndrome (34 women, 18 men) who had baseline neuroimaging followed by symptom tracking every 2 weeks for 1 year as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We found that brain functional connectivity can make a significant prediction of short-term (3 month) pain reduction with 73.1% accuracy (69.2% sensitivity and 75.0% precision). In addition, we found that the brain regions with greatest contribution to the classification were preferentially aligned with the left frontoparietal network. Resting-state functional magnetic resonance imaging measures seemed to be less informative about 6- or 12-month symptom change. Our study provides the first evidence that future trends in symptom change in patients in a state of chronic pain may be linked to functional connectivity within specific brain networks.

  20. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  1. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Yolanda R Schlumpf

    Full Text Available In accordance with the Theory of Structural Dissociation of the Personality (TSDP, studies of dissociative identity disorder (DID have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP and the "Apparently Normal Part" (ANP, have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls.Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events.DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent

  2. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  3. Genomewide linkage scan of resting blood pressure: HERITAGE Family Study. Health, Risk Factors, Exercise Training, and Genetics.

    Rice, Treva; Rankinen, Tuomo; Chagnon, Yvon C; Province, Michael A; Pérusse, Louis; Leon, Arthur S; Skinner, James S; Wilmore, Jack H; Bouchard, Claude; Rao, Dabeeru C

    2002-06-01

    The purpose of this study was to search for genomic regions influencing resting systolic (SBP) and diastolic (DBP) blood pressure (BP) in sedentary families (baseline), and for resting BP responses (changes) resulting from a 20-week exercise training intervention (post-training-baseline) in the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study. A genome-wide scan was conducted on 317 black individuals from 114 families and 519 white individuals from 99 families using a multipoint variance-components linkage model and a panel of 509 markers. Promising results were primarily, but not exclusively, found in the black families. Linkage evidence (PHERITAGE data, in conjunction with results from previous genomewide scans, provide a basis for planning future investigations. The major areas warranting further study involve fine mapping to narrow down 3 regions on 2q, 3p, and 12q that may contain "novel" hypertension genes, additional typing of some biological candidate genes to determine whether they are the sources of these and other signals, multilocus investigations to understand how and to what extent some of these candidates may interact, and multivariate studies to characterize any pleiotropy.

  4. Parametric Geometry, Structured Grid Generation, and Initial Design Study for REST-Class Hypersonic Inlets

    Ferlemann, Paul G.; Gollan, Rowan J.

    2010-01-01

    Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.

  5. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  6. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  7. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Niklaus Denier

    Full Text Available Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration. Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL sequence based on a flow-sensitive alternating inversion recovery (FAIR spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8, using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC, the left medial prefrontal cortex (mPFC and in the insula (both hemispheres. Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  8. Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: a primary study using resting-state FMRI.

    Yao Wang

    Full Text Available Recent neuroimaging studies have shown that people with Internet gaming disorder (IGD have structural and functional abnormalities in specific brain areas and connections. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (rsFC in participants with IGD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC method to investigate the interhemispheric rsFC of the whole brain in participants with IGD.We compared interhemispheric rsFC between 17 participants with IGD and 24 healthy controls, group-matched on age, gender, and education status. All participants were provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired for all participants. The rsFC between bilateral homotopic voxels was calculated. Regions showing abnormal VMHC in IGD participants were adopted as regions of interest for correlation analyses.Compared to healthy controls, IGD participants showed decreased VMHC between the left and right superior frontal gyrus (orbital part, inferior frontal gyrus (orbital part, middle frontal gyrus and superior frontal gyrus. Further analyses showed Chen Internet Addiction Scale (CIAS-related VMHC in superior frontal gyrus (orbital part and CIAS (r = -0.55, p = 0.02, uncorrected.Our findings implicate the important role of altered interhemispheric rsFC in the bilateral prefrontal lobe in the neuropathological mechanism of IGD, and provide further supportive evidence for the reclassification of IGD as a behavioral addiction.

  9. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-01-01

    Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD) have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM) volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons), and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons). This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD. PMID:29636704

  10. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Ji-Woo Seok

    2018-03-01

    Full Text Available Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons, and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons. This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD.

  11. Same day injections of Tc-99m methoxy isobutyl isonitrile (hexamibi) for myocardial tomographic imaging: Comparison between rest-stress and stress-rest injection sequences

    Taillefer, R.; Gagnon, A.; Laflamme, L.; Leveille, J.; Phaneuf, D.C.

    1989-01-01

    It has been shown that both rest and stress 99m Tc-hexamibi myocardial perfusion imaging can be performed on the same day using two different doses injected within few h (the first one at rest followed by a second at stress). In order to evaluate and compare 2 sequences (rest-stress and stress-rest) of 99m Tc-hexamibi injections performed the same day, 18 patients with either abnormal 201 Tl myocardial scan or abnormal coronary angiography were studied with 2 99m Tc-hexamibi injections protocols. The rest-stress study was performed as follows: 7 mCi 99m Tc-hexamibi was injected at rest. Single photon emission computed tomography (SPECT) was performed 60 min later. Immediately after the rest study, patients were injected at peak stress with 25 mCi 99m Tc-hexamibi. Tomographic imaging was repeated 1 h later. Patients were submitted to the stress-rest protocol within 3 days. Tomographic imaging was done 1 h after a 7 mCi injection at stress. This study was followed by an injection of 25 mCi 99m Tc-hexamibi at rest, a tomographic study was performed 60 min later. Myocardial sections were reconstructed in horizontal long, vertical long, and short axes. Data analysis also included polar map representation. A total of 324 segments were interpreted blind by 3 observers, there was an agreement in 283/324 (87.3%) segments between the 2 protocols. However, 24 segments (7.4%) judged ischemic on rest-stress were called scars on stress-rest. In three patients, myocardial segments were judged normal on the rest image of the rest-stress protocol while they were found abnormal (false positive images) on the stress-rest sequence. Stress images from both protocols were judged similar in 17 patients. In conclusion, when using a short time interval (less than 2 h) between two 99m Tc-hexamibi injections, it is preferable to do a rest-stress sequence since the rest image performed initially represents a true rest study, which is not necessarily the case with the stress-rest sequence

  12. Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study.

    Nicoletta Cera

    Full Text Available Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC and Dorsal Attention (DAN networks. No changes were found in the Salience Network (SN, a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions.Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC of insular subregions.Analysis of FC with resting state fMRI (rs-FMRI revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group.Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action.ClinicalTrials.gov NCT01684306.

  13. The Development of Human Amygdala Functional Connectivity at Rest from 4 to 23 Years: a cross-sectional study

    Gabard-Durnam, Laurel J.; Flannery, Jessica; Goff, Bonnie; Gee, Dylan G.; Humphreys, Kathryn L.; Telzer, Eva; Hare, Todd; Tottenham, Nim

    2014-01-01

    Functional connections (FC) between the amygdala and cortical and subcortical regions underlie a range of affective and cognitive processes. Despite the central role amygdala networks have in these functions, the normative developmental emergence of FC between the amygdala and the rest of the brain is still largely undefined. This study employed amygdala subregion maps and resting-state functional magnetic resonance imaging to characterize the typical development of human amygdala FC from age 4 to 23 years old (n = 58). Amygdala FC with subcortical and limbic regions was largely stable across this developmental period. However, three cortical regions exhibited age-dependent changes in FC: amygdala FC with the medial prefrontal cortex (mPFC) increased with age, while amygdala FC with a region including the insula and superior temporal sulcus decreased with age, and amygdala FC with a region encompassing the parahippocampal gyrus and posterior cingulate also decreased with age. The transition from childhood to adolescence (around age 10 years) marked an important change-point in the nature of amygdala-cortical FC. We distinguished unique developmental patterns of coupling for three amygdala subregions and found particularly robust convergence of FC for all subregions with the mPFC. These findings suggest that there are extensive changes in amygdala-cortical functional connectivity that emerge between childhood and adolescence. PMID:24662579

  14. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  15. Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium - 82 PET

    Lee, D. S.; Kamg, K. W.; Lee, K. H.; Jeong, J. M.; Kwark, C. E.; Chung, J. K.; Lee, M.C.; Seo, J. D.; Koh, C. S.

    1995-01-01

    We compared stress/rest myocardial Tc-99m-MIBI tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed, rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium, or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709-stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBI scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9(rest) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segmental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day- human studies, these segmental analyses with

  16. Comparison of stress-rest and rest-stress one day myocardial perfusion scintigraphies in detecting coronary artery diseases

    Bom, Hee Seung; Min, Jung Jun; Song, Ho Cheon; Kim, Ji Yeul

    1997-01-01

    It has been shown that both rest and stress myocardial perfusion imaging with technetium agents can be performed on the same day using two different doses injected within few hours. The purpose of this study was to compare the two protocols (stress-rest and rest-stress) in detecting coronary artery diseases. One hundred and sixty patients (101 males, 59 females, mean age 57±9 years) and 120 patients (79 males, 41 females, mean age 59±10 years) underwent stress-rest myocardial perfusion SPECT and rest-stress myocardial perfusion SPECT, respectively. All of them underwent both myocardial perfusion SPECT and coronary angiography within 1 month. A coronary stenosis was considered significant when it compromised the luminal diameter by ≥50%. The chi square test was used to compare differences in sensitivity, specificity and accuracy between the two groups. The overall sensitivity, specificity and accuracy of stress-rest protocol were 99%, 35% and 68%, respectively. Those of rest-stress protocol were 96%, 47% and 78%, respectively. There was no difference between the two protocols in identifying individual diseased coronary artery branches. Therefore, one day stress-rest and rest-stress myocardial SPECT using 99m Tc agents were comparable and were very sensitive tests in detecting coronary artery diseases

  17. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  18. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo [Third Military Medical University, Department of Medical Imaging, College of Biomedical Engineering, Chongqing (China); Liu, Hongliang; Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Yang, Jun; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China)

    2016-05-15

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  19. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo; Liu, Hongliang; Yan, Rubing; Yang, Jun; Wang, Jian

    2016-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  20. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.

    Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A

    2011-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Identification of Resting State Networks Involved in Executive Function.

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  2. Altered Brain Functional Connectome in Migraine with and without Restless Legs Syndrome: A Resting-State Functional MRI Study

    Fu-Chi Yang

    2018-01-01

    Full Text Available BackgroundMigraine is frequently comorbid with restless legs syndrome (RLS, both displaying functional connectivity (FC alterations in multiple brain networks, although the neurological basis of this association is unknown.MethodsWe performed resting-state functional magnetic resonance imaging and network-wise analysis of FC in migraine patients with and without RLS and healthy controls (CRL. Network-based statistics (NBS and composite FC matrix analyses were performed to identify the patterns of FC changes. Correlation analyses were performed to identify associations between alterations in FC and clinical profiles.ResultsNBS results revealed that both migraine patients with and without RLS exhibited lower FC than CRL in the dorsal attention, salience, default mode, cingulo-opercular, visual, frontoparietal, auditory, and sensory/somatomotor networks. Further composite FC matrix analyses revealed differences in FC of the salience, default mode to subcortical and frontoparietal, auditory to salience, and memory retrieval networks between migraine patients with and without RLS. There was a trend toward a negative association between RLS severity and cross-network abnormalities in the default mode to subcortical network.DiscussionMigraine patients with and without RLS exhibit disruptions of brain FC. Such findings suggest that these disorders are associated with differential neuropathological mechanisms and may aid in the future development of neuroimaging-driven biomarkers for these conditions.

  3. REST based mobile applications

    Rambow, Mark; Preuss, Thomas; Berdux, Jörg; Conrad, Marc

    2008-02-01

    Simplicity is the major advantage of REST based webservices. Whereas SOAP is widespread in complex, security sensitive business-to-business aplications, REST is widely used for mashups and end-user centric applicatons. In that context we give an overview of REST and compare it to SOAP. Furthermore we apply the GeoDrawing application as an example for REST based mobile applications and emphasize on pros and cons for the use of REST in mobile application scenarios.

  4. A field study of the effectiveness and practicality of a novel hybrid personal cooling vest worn during rest in Hong Kong construction industry.

    Chan, Albert P C; Zhang, Ying; Wang, Faming; Wong, Francis F K; Chan, Daniel W M

    2017-12-01

    A novel hybrid cooling vest (HCV) incorporated with phase change materials (PCMs) and ventilation fans has been developed for construction workers in Hong Kong to attenuate heat stress and prevent heat-related illnesses, and its effectiveness and practicality have been validated in this study. A total of 140 wear trials involving of 140 workers were conducted in Hong Kong construction sites during the summer time. Each wear trial involves a two-day wear test, of which one day workers wore the HCV (denoted as VEST) during resting, and another day they wore traditional workwear (denoted as CON). Subjects were asked to rate their perceived exertion (RPE), thermal sensations (TS) and 7 other subjective attributes. There were significant differences in the effectiveness on reducing workers' heat strain between VEST and CON in terms of alleviations of heart rate (ΔHR), ΔTS, ΔRPE as well as ΔPeSI (p stress. In addition, a remarkable proportion of 91 per cent of subjects prefer to use this newly designed HCV as a cooling measure during rest. The power to alleviate perceptual heat stain (PeSA) in VEST is about twice of that by rest, which means HCV can notably improve the workers' perceptual heat strain in a limited resting duration. However, the strain alleviation power of HCV nearly remains unchanged with the prolonged rest duration. Thus, the optimal work-rest schedule needs to be investigated in a further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Exercise countermeasures for bed-rest deconditioning

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  6. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia

    Jessica A Turner

    2013-08-01

    Full Text Available Background. This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF and fractional ALFF (fALFF between patients with schizophrenia (SZ and healthy controls (HC. Methods. Eyes-closed resting fMRI scans (5:38 minutes; n=306, 146 SZ were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01 to 0.08 Hz was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter and CSF signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results. Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions. SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fractional ALFF measures, but does not affect the pattern of case

  7. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study

    Lin Cai

    2018-04-01

    Full Text Available Early childhood (7–8 years old and early adolescence (11–12 years old constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across

  8. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Hua-Guang Zheng; Rong Zhang; Xin Li; Fang-Fei Li; Ya-Chen Wang; Xue-Mei Wang; Ling-Long Lu

    2015-01-01

    Background:The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial.In this study,we aimed to assess the function ofpresynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis.Methods:Thirty-three consecutive patients with mRT were enrolled prospectively.The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET.Striatal asymmetry index (SAI) was calculated,and a normal DAT-PET was defined as a SAI of <15%.Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging.Results:Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD,while the remained 5 with a normal DAT-PET scan were SWEDDs.As for UPRDS,the dressing and hygiene score,walking in motor experiences of daily living (Part Ⅱ) and motor examination (Part Ⅲ) were significant different between two groups (P < 0.05 andP< 0.01,respectively).Bilateral tremor was more frequent in the SWEDDs group (P < 0.05).The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P =0.08 and P =0.05,respectively).Conclusions:mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration,which can be determined by DAT-PET brain imaging.Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  9. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Ping, Li; Su-Fang, Li; Hai-Ying, Han; Zhang-Ye, Dong; Jia, Luo; Zhi-Hua, Guo; Hong-Fang, Xiong; Yu-Feng, Zang; Zhan-Jiang, Li

    2013-01-01

    Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  10. Cumulative dose of hydroxychloroquine is associated with a decrease of resting heart rate in patients with systemic lupus erythematosus: a pilot study.

    Cairoli, E; Danese, N; Teliz, M; Bruzzone, M J; Ferreira, J; Rebella, M; Cayota, A

    2015-10-01

    The use of hydroxychloroquine (HCQ) in patients with systemic lupus erythematosus (SLE) offers a wide range of benefits. However, there are evidence in favour of cardiotoxicity, including heart conduction disturbances and congestive heart failure. To determine the effects of HCQ in the resting heart rate (RHR) of SLE patients. Included were patients with non active SLE, with a sedentary lifestyle and treated with HCQ. Excluded were patients on beta blocker treatment, trained patients, pacemaker's users and patients with clinical or analytical evidence of anemia, renal disease, obstructive pulmonary disease, obesity, uncontrolled thyroid disease, fever or current infection. Standard 12-lead electrocardiogram was performed in the resting condition (supine decubitus and orthostatic position). Comparison between groups was performed using Mann-Whitney U test. A multiple linear regression was performed. A p value 365 g). Non significant differences were found in age, sex, prednisone dose or SLEDAI. The mean RHR was 73 ± 6 beats/min in the low-HCQ and 65 ± 7 beats/min in the high-HCQ, with a significant decrease of 11% (p = 0.003). In multiple linear regressions, there were non significant association between the decrease of RHR and prednisone dose, age, SLEDAI or TSH, but there was significant association between RHR and CD-HCQ (p = 0.024) and RHR and time of exposure to HCQ (p = 0.029). CD-HCQ higher than 365 g was associated with a significant decrease (11%) in RHR in non-active SLE patients, although a larger prospective study is required to allow more definitive conclusions. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    Bezrati-Benayed, I.; Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatog...

  12. Sex Differences in the Default Mode Network with Regard to Autism Spectrum Traits: A Resting State fMRI Study.

    Minyoung Jung

    Full Text Available Autism spectrum traits exist on a continuum and are more common in males than in females, but the basis for this sex difference is unclear. To this end, the present study draws on the extreme male brain theory, investigating the relationship between sex difference and the default mode network (DMN, both known to be associated with autism spectrum traits. Resting-state functional magnetic resonance imaging (MRI was carried out in 42 females (mean age ± standard deviation, 22.4 ± 4.2 years and 43 males (mean age ± standard deviation, 23.8 ± 3.9 years with typical development. Using a combination of different analyses (viz., independent component analysis (ICA, fractional amplitude of low-frequency fluctuation (fALFF, regional homogeneity (ReHo, and seed-based analyses, we examined sex differences in the DMN and the relationship to autism spectrum traits as measured by autism-spectrum quotient (AQ scores. We found significant differences between female and male subjects in DMN brain regions, with seed-based analysis revealing a significant negative correlation between default-mode resting state functional connectivity of the anterior medial prefrontal cortex seed (aMPFC and AQ scores in males. However, there were no relationships between DMN sex differences and autism spectrum traits in females. Our findings may provide important insight into the skewed balance of functional connectivity in males compared to females that could serve as a potential biomarker of the degree of autism spectrum traits in line with the extreme male brain theory.

  13. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.

    Khalili-Mahani, Najmeh; van Osch, Matthias J; de Rooij, Mark; Beckmann, Christian F; van Buchem, Mark A; Dahan, Albert; van Gerven, Johannes M; Rombouts, Serge A R B

    2014-03-01

    Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs. Copyright © 2012 Wiley Periodicals, Inc.

  14. Human Performance in Continuous/Sustained Operations and the Demands of Extended Work/Rest Schedules. An Annotated Bibliography

    1985-05-01

    attempt to study the effect’s of mental fatigue on a simulated flight task. Special care is taken to separate mental from muscular fatigue because the...descriptions of other effects of atmospheric pressure changes -including aerotitis, gastrointestinal distension , aerosinusitis, aerodontia, bends, air...34 It, does not, however, deal with muscular fatigue" but with what is usually called . general fatigue. 130. Grandjean, E. P. (1970). Fatigue. American

  15. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  16. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  17. Regional cerebral blood flow of the patients with schizophrenia. A study using 99mTc-ECD SPECT at rest and activation

    Hu Ping; Wu Kening; Zeng Shiquan; Lin Zengtao; Yu Jinlong

    1996-01-01

    Regional cerebral blood flow (rCBF) changes of the patients with schizophrenia were observed. 99m Tc-ECD SPECT was performed on 22 patients with schizophrenia and 10 healthy volunteers at rest and activation with a cognitive task: a modified Wisconsin Card Sorting Test. At rest state, only 4 patients have abnormal rCBF pattern: left hemisphere over-perfusion relative to the right. A significant relative activation deficit in the left inferior prefrontal region was revealed in the patients during activation. The patients with schizophrenia may have frontal lobe dysfunction

  18. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    McCommis, Kyle S.; Goldstein, Thomas A.; Pilgram, Thomas; Abendschein, Dana R.; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2010-01-01

    To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99m Tc-labeled red blood cells were injected to obtain respective gold standards. Microsphere-measured MBF and 99m Tc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. (orig.)

  19. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Misselwitz, Bernd; Pilgram, Thomas; Gropler, Robert J.

    2010-01-01

    Objective To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. Methods A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99mTc-labeled red blood cells were injected to obtain respective gold standards. Results Microsphere-measured MBF and 99mTc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. Conclusions MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. PMID:20182731

  20. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    Lv Han

    2014-01-01

    Full Text Available Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI technique. The present study used unilateral PT patients (n=42 and age-, sex-, and education-matched normal control subjects (n=42 to investigate the changes in structural and amplitude of low-frequency (ALFF of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients.

  1. Resting Heart Rate Is Not a Good Predictor of a Clustered Cardiovascular Risk Score in Adolescents: The HELENA Study.

    Augusto César Ferreira de Moraes

    Full Text Available Resting heart rate (RHR reflects sympathetic nerve activity a significant association between RHR and all-cause and cardiovascular mortality has been reported in some epidemiologic studies.To analyze the predictive power and accuracy of RHR as a screening measure for individual and clustered cardiovascular risk in adolescents. The study comprised 769 European adolescents (376 boys participating in the HELENA cross-sectional study (2006-2008 were included in this study. Measurements on systolic blood pressure, HOMA index, triglycerides, TC/HDL-c, VO2máx and the sum of four skinfolds were obtained, and a clustered cardiovascular disease (CVD risk index was computed. The receiver operating characteristics curve was applied to calculate the power and accuracy of RHR to predict individual and clustered CVD risk factors.RHR showed low accuracy for screening CVD risk factors in both sexes (range 38.5%-54.4% in boys and 45.5%-54.3% in girls. Low specificity's (15.6%-19.7% in boys; 18.1%-20.0% in girls were also found. Nevertheless, the sensitivities were moderate-to-high (61.4%-89.1% in boys; 72.9%-90.3% in girls.RHR is a poor predictor of individual CVD risk factors and of clustered CVD and the estimates based on RHR are not accurate. The use of RHR as an indicator of CVD risk in adolescents may produce a biased screening of cardiovascular health in both sexes.

  2. Alternative REST Splicing Underappreciated

    Chen, Guo-Lin; Miller, Gregory

    2017-01-01

    As a major orchestrator of the cellular epigenome, the repressor element-1 silencing transcription factor (REST) can either repress or activate thousands of genes depending on cellular context, suggesting a highly context-dependent REST function tuned by environmental cues. While REST shows cell-type non-selective active transcription, an N-terminal REST4 isoform caused by alternative splicing - inclusion of an extra exon (N3c) which introduces a pre-mature stop codon - has been implicated in...

  3. Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study.

    Wang, Li; Kong, Qingmei; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Dai, Wenji; Xia, Mingrui; Wang, Gang; Jin, Zhen; Yu, Xin; Si, Tianmei

    2016-02-12

    We conducted this fMRI study to examine whether the alterations in amplitudes of low-frequency oscillation (LFO) of major depressive disorder (MDD) patients were frequency dependent. The LFO amplitudes (as indexed by amplitude of low-frequency fluctuation [ALFF] and fractional ALFF [fALFF]) within 4 narrowly-defined frequency bands (slow-5: 0.01-0.027Hz, slow-4: 0.027-0.073Hz, slow-3: 0.073-0.198Hz, and slow-2: 0.198-0.25Hz) were computed using resting-state fMRI data of 35 MDD patients and 32 healthy subjects. Repeated-measures analysis of variance (ANOVA) was performed on ALFF and fALFF both within the low frequency bands of slow-4 and slow-5 and within all of the four bands. We observed significant main effects of group and frequency on ALFF and fALFF in widely distributed brain regions. Importantly, significant group and frequency interaction effects were observed in the ventromedial prefrontal cortex, inferior frontal gyrus, precentral gyrus, in a left-sided fashion, the bilateral posterior cingulate and precuneus, during ANOVA both within slow-4 and slow-5 bands and within all the frequency bands. The results suggest that the alterations of LFO amplitudes in specific brain regions in MDD patients could be more sensitively detected in the slow-5 rather than the slow-4 bands. The findings may provide guidance for the frequency choice of future resting-state fMRI studies of MDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Resting heart rate, physiological stress and disadvantage in Aboriginal and Torres Strait Islander Australians: analysis from a cross-sectional study.

    Zhang, Alice; Hughes, Jaquelyne T; Brown, Alex; Lawton, Paul D; Cass, Alan; Hoy, Wendy; O'Dea, Kerin; Maple-Brown, Louise J

    2016-02-11

    Lower socioeconomic status has been linked to long-term stress, which can manifest in individuals as physiological stress. The aim was to explore the relationship between low socioeconomic status and physiological stress in Aboriginal and Torres Strait Islander Australians. Using data from the eGFR Study (a cross-sectional study of 634 Indigenous Australians in urban and remote areas of northern and central Australia), we examined associations between resting heart rate and demographic, socioeconomic, and biomedical factors. An elevated resting heart rate has been proposed as a measure of sustained stress activation and was used as a marker of physiological stress. Relationships were assessed between heart rate and the above variables using univariate and multiple regression analyses. We reported a mean resting heart rate of 74 beats/min in the cohort (mean age 45 years). On multiple regression analysis, higher heart rate was found to be independently associated with Aboriginal ethnicity, being a current smoker, having only primary level schooling, higher HbA1c and higher diastolic blood pressure (model R(2) 0.25). Elevated resting heart rate was associated with lower socioeconomic status and poorer health profile in Aboriginal and Torres Strait Islander Australians. Higher resting heart rate may be an indicator of stress and disadvantage in this population at high risk of chronic diseases.

  5. Clinical physiology of bed rest

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  6. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography.

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-07-05

    The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  8. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.

    Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo

    2012-06-01

    To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the treatment of brain-related diseases (e.g., depression). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; Bruyne, de B. (Bernard); Davies, Justin E.; Escaned, Javier; Fearon, W.F. (William); Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, K.G. (Keith); Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, M.; Spaan, J.A.E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    Objectives This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study.

  10. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; de Bruyne, Bernard; Davies, Justin E.; Escaned, Javier; Fearon, William F.; Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon-Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, Keith G.; Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study. FFR is an index of

  11. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  12. Functional connectivity of the ventral tegmental area and avolition in subjects with schizophrenia: a resting state functional MRI study.

    Giordano, Giulia Maria; Stanziano, Mario; Papa, Michele; Mucci, Armida; Prinster, Anna; Soricelli, Andrea; Galderisi, Silvana

    2018-04-10

    Avolition, a deficit in goal-directed behavior, is a key aspect of negative symptoms. It is highly prevalent in schizophrenia and is associated to poor functional outcome and to measures of real life motivation, indicating that central to the concept is the lack of interest and motivation. In this study we tested the hypothesis that avolition is related to altered connectivity within dopaminergic cortico-striatal circuits involved in motivation processes. Since dopamine input to these circuits derives mostly from the ventro-tegmental area (VTA), we investigated the relationships between the resting-state functional connectivity (RS-FC) of the VTA and avolition in twenty-six subjects with schizophrenia (SCZ), treated with second-generation antipsychotics only, compared to twenty-two healthy controls (HC). SCZ, in comparison to HC, showed significantly reduced RS-FC of the VTA with bilateral ventro-lateral prefrontal cortex (VLPFC), bilateral insular cortex (IC) and right (R) lateral occipital complex (LOC) and increased RS-FC of the VTA with bilateral dorso-lateral prefrontal cortex (DLPFC). Significant negative correlations were found between avolition and RS-FC of the VTA with the bilateral IC, R VLPFC and R LOC. According to our findings, avolition is linked to a disconnectivity of the VTA from several key cortical regions involved in the integration of value information with action selection. These findings are in line with translational animal models of "auto-activation apathy". Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  13. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  14. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  16. Abnormal resting state effective connectivity within the default mode network in major depressive disorder: A spectral dynamic causal modeling study.

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Liu, Wenlei; Wang, Huaning; Leung, Hoi-Chung; Tian, Ping; Zhang, Linchuan; Guo, Fan; Cui, Long-Biao; Yin, Hong; Lu, Hongbing; Tan, Qingrong

    2017-07-01

    Understanding the neural basis underlying major depressive disorder (MDD) is essential for the diagnosis and treatment of this mental disorder. Aberrant activation and functional connectivity of the default mode network (DMN) have been consistently found in patients with MDD. It is not known whether effective connectivity within the DMN is altered in MDD. The primary object of this study is to investigate the effective connectivity within the DMN during resting state in MDD patients before and after eight weeks of antidepressant treatment. We defined four regions of the DMN (medial frontal cortex, posterior cingulate cortex, left parietal cortex, and right parietal cortex) for each participant using a group independent component analysis. The coupling parameters reflecting the causal interactions among the DMN regions were estimated using spectral dynamic causal modeling (DCM). Twenty-seven MDD patients and 27 healthy controls were included in the statistical analysis. Our results showed declined influences from the left parietal cortex to other DMN regions in the pre-treatment patients as compared with healthy controls. After eight weeks of treatment, the influence from the right parietal cortex to the posterior cingulate cortex significantly decreased. These findings suggest that the reduced excitatory causal influence of the left parietal cortex is the key alteration of the DMN in patients with MDD, and the disrupted causal influences that parietal cortex exerts on the posterior cingulate cortex is responsive to antidepressant treatment.

  17. Selective Changes of Resting-State Brain Oscillations in aMCI: An fMRI Study Using ALFF

    Zhilian Zhao

    2014-01-01

    Full Text Available Mild cognitive impairment (MCI refers to a transitional state between normal aging and dementia and is a syndrome with cognitive decline greater than expected for an individual’s age and educational level. As a subtype of MCI, amnestic mild cognitive impairment (aMCI most often leads to Alzheimer’s disease. This study aims to elucidate the altered brain activation in patients with aMCI using resting-state functional magnetic resonance. We observed Frequency-dependent changes in the amplitude of low-frequency fluctuations in aMCI patients (n=20, and normal subjects (n=18. At the same time, we took gray matter volume as a covariate. We found that aMCI patients had decreased amplitude of low-frequency fluctuation signal in left superior temporal gyrus, right middle temporal gyrus, right inferior parietal lobe, and right postcentral gyrus compared to the control group. Specially, aMCI patients showed increased signal in left superior and middle frontal gyrus. Our results suggested that increased activation in frontal lobe of aMCI patients may indicate effective recruitment of compensatory brain resources. This finding and interpretation may lead to the better understanding of cognitive changes of aMCI.

  18. Gender Differences in Cerebral Regional Homogeneity of Adult Healthy Volunteers: A Resting-State fMRI Study

    Chunsheng Xu

    2015-01-01

    Full Text Available Objective. We sought to use the regional homogeneity (ReHo approach as an index in the resting-state functional MRI to investigate the gender differences of spontaneous brain activity within cerebral cortex and resting-state networks (RSNs in young adult healthy volunteers. Methods. One hundred and twelve healthy volunteers (56 males, 56 females participated in the resting-state fMRI scan. The ReHo mappings in the cerebral cortex and twelve RSNs of the male and female groups were compared. Results. We found statistically significant gender differences in the primary visual network (PVN (P<0.004, with Bonferroni correction and left attention network (LAtN, default mode network (DMN, sensorimotor network (SMN, executive network (EN, and dorsal medial prefrontal network (DMPFC as well (P<0.05, uncorrected. The male group showed higher ReHo in the left precuneus, while the female group showed higher ReHo in the right middle cingulate gyrus, fusiform gyrus, left inferior parietal lobule, precentral gyrus, supramarginal gyrus, and postcentral gyrus. Conclusions. Our results suggested that men and women had regional specific differences during the resting-state. The findings may improve our understanding of the gender differences in behavior and cognition from the perspective of resting-state brain function.

  19. Altered fractional amplitude of low frequency fluctuation in premenstrual syndrome: A resting state fMRI study.

    Liao, Hai; Duan, Gaoxiong; Liu, Peng; Liu, Yanfei; Pang, Yong; Liu, Huimei; Tang, Lijun; Tao, Jien; Wen, Danhong; Li, Shasha; Liang, Lingyan; Deng, Demao

    2017-08-15

    Premenstrual syndrome (PMS) is becoming highly prevalent among female and is characterized by emotional, physical and behavior symptoms. Previous evidence suggested functional dysregulation of female brain was expected to be involved in the etiology of PMS. The aim of present study was to evaluate the alterations of spontaneous brain activity in PMS patients based on functional magnetic resonance imaging (fMRI). 20 PMS patients and 21 healthy controls underwent resting-state fMRI scanning during luteal phase. All participants were asked to complete a prospective daily record of severity of problems (DRSP) questionnaire. Compared with healthy controls, the results showed that PMS patients had increased fALFF in bilateral precuneus, left hippocampus and left inferior temporal cortex, and decreased fALFF in bilateral anterior cingulate cortex (ACC) and cerebellum at luteal phase. Moreover, the DRSP scores of PMS patients were negatively correlated with the mean fALFF in ACC and positively correlated with the fALFF in precuneus. (1) the study did not investigate whether or not abnormal brain activity differences between groups in mid-follicular phase, and within-group changes. between phases.(2) it was relatively limited sample size and the participants were young; (3) fALFF could not provide us with more holistic information of brain network;(4) the comparisons of PMS and premenstrual dysphoric disorder (PMDD) were not involved in the study. The present study shows abnormal spontaneous brain activity in PMS patients revealed by fALFF, which could provide neuroimaging evidence to further improve our understanding of the underlying neural mechanism of PMS. Copyright © 2017. Published by Elsevier B.V.

  20. The effects of shiftwork on human performance and its implications for regulating crew rest and duty restrictions during commercial space flight

    2008-11-01

    Although the current crew rest and duty restrictions for commercial space transportation remain in place, the Federal Aviation Administration (FAA) continues to review the regulation on a regular basis for validity and efficacy based on input from sc...

  1. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  2. Scapular Resting Position and Gleno-Humeral Movement Dysfunction in Asymptomatic Racquet Players: A Case-Control Study.

    Shimpi, Apurv P; Bhakti, Shah; Roshni, Karnik; Rairikar, Savita A; Shyam, Ashok; Sancheti, Parag K

    2015-12-01

    Racquet sports, especially lawn tennis and badminton have been gaining popularity in Asian countries like India. With this increase in popularity, the injury rate in the sport has also increased. The study will help detect the presence of gleno-humeral movement dysfunction and scapular resting position abnormality in asymptomatic racquet players, thus providing basis for screening the players and allow the clinician to determine if the asymmetry is a normal adaptation in the player or an abnormal change associated with injury. 46 asymptomatic professional players were divided into a study group of 23 players (16 tennis and 7 badminton) and control group of 23 football players. Assessment of passive gleno-humeral range of motion and distance of spine and inferior angle of scapula from corresponding spinous process were measured bilaterally and between groups. There was statistically significant reduction in range of internal rotation (62.17 ± 8.09), extension (39.78 ± 4.12) and an increase in the external rotation (106.95 ± 7.49) of dominant compared to non-dominant arm of racquet players and a statistically significant decrease in internal rotation (78.69 ± 10.24), extension (44.78 ± 3.19), adduction (37.39 ± 6.54) and an increase in external rotation (102.6 ± 5.19) of dominant arm of racquet players compared to football players. Study also showed statistically significant increase in the spino-scapular distance at the level of inferior angle of scapula (10.23 ± 1.43) on dominant side compared to non-dominant. The dominant side scapula of asymptomatic racquet players showed increased external rotation and elevation as compared to the non-dominant side. Also, reduced shoulder internal rotation, extension and adduction and gain in shoulder external rotation was observed on the dominant side of racquet players when compared to the control group.

  3. Clustering of resting state networks.

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  4. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study.

    Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C

    2012-02-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.

  5. Regional homogeneity changes in hemodialysis patients with end stage renal disease: in vivo resting-state functional MRI study.

    Cheng Li

    Full Text Available OBJECTIVE: To prospectively investigate and detect early cerebral regional homogeneity (ReHo changes in neurologically asymptomatic patients with end stage renal disease (ESRD using in vivo resting-state functional MR imaging (Rs-fMRI. METHODS: We enrolled 20 patients (15 men, 5 women; meanage, 37.1 years; range, 19-49 years with ESRD and 20 healthy controls (15 men, 5 women; mean age, 38.3 years; range, 28-49 years. The mean duration of hemodialysis for the patient group was 10.7±6.4 monthes. There was no significant sex or age difference between the ESRD and control groups. Rs-fMRI was performed using a gradient-echo echo-planar imaging sequence. ReHo was calculated using software (DPARSF. Voxel-based analysis of the ReHo maps between ESRD and control groups was performed with a two-samples t test. Statistical maps were set at P value less than 0.05 and were corrected for multiple comparisons. The Mini-Mental State Examination (MMSE was administered to all participants at imaging. RESULTS: ReHo values were increased in the bilateral superior temporal gyrus and left medial frontal gyrus in the ERSD group compared with controls, but a significantly decreased ReHo value was found in the right middle temporal gyrus. There was no significant correlation between ReHo values and the duration of hemodialysis in the ESRD group. Both the patients and control subjects had normal MMSE scores (≥28. CONCLUSIONS: Our finding revealed that abnormal brain activity was distributed mainly in the memory and cognition related cotices in patients with ESRD. The abnormal spontaneous neuronal activity in those areas provide information on the neural mechanisms underlying cognitive impairment in patients with ESRD, and demonstrate that Rs-fMRI with ReHo analysis is a useful non-invasive imaging tool for the detection of early cerebral ReHo changes in hemodialysis patients with ESRD.

  6. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study.

    Cai, Lin; Dong, Qi; Niu, Haijing

    2018-04-01

    Early childhood (7-8 years old) and early adolescence (11-12 years old) constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS) imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across development. Copyright

  7. Case Study on Logistics Performance

    Shahryar Sorooshian

    2013-05-01

    Full Text Available The paper presents research carried out at a medium‐size manufacturing organization in east Asia. The study tries to highlight the importance of supply chain management; specifically, our aim for this study is to understand logistics and performance measurement in the logistics and supply chain, and we include a theoretical discussion of online data collected and a case study of the logistic performance of a real organization. The study also examines the performance of the selected company, identifies the problems and provides recommendations for improvements. This study can be a guide for business advisers and those interested in analysing company performance, especially from a logistics viewpoint. We also suggest the methodology of this case study for those who want to have a better understanding of a business environment before starting their own business, or for benchmarking practice during strategic planning.

  8. Rigidity decreases resting tremor intensity in Parkinson's disease: A [(123)I]beta-CIT SPECT study in early, nonmedicated patients

    Winogrodzka, A.; Wagenaar, R. C.; Bergmans, P.; Vellinga, A.; Booij, J.; van Royen, E. A.; van Emmerik, R. E.; Stoof, J. C.; Wolters, E. C.

    2001-01-01

    Tremor is one of the clinical hallmarks of Parkinson's disease (PD). Although it is accepted that other classic symptoms of PD such as rigidity and bradykinesia result from a degeneration of the nigrostriatal system and subsequent reduction in striatal dopamine, the pathophysiology of resting tremor

  9. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study.

    Kramer, Andreas; Kümmel, Jakob; Mulder, Edwin; Gollhofer, Albert; Frings-Meuthen, Petra; Gruber, Markus

    2017-01-01

    Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance. 23 male participants (29±6 years, 181±6 cm, 77±7 kg) were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT), and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12) or the control group (CTRL, n = 11). A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5-6 sessions per week. Peak force for the reactive hops (3.6±0.4 kN) as well as jump height (35±4 cm) and peak power (3.1±0.2 kW) for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03). Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect pjump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day.

  10. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study.

    Andreas Kramer

    Full Text Available Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance.23 male participants (29±6 years, 181±6 cm, 77±7 kg were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT, and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12 or the control group (CTRL, n = 11. A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5-6 sessions per week.Peak force for the reactive hops (3.6±0.4 kN as well as jump height (35±4 cm and peak power (3.1±0.2 kW for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03. Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect p<0.001.Participants tolerated the near-daily high-intensity jump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day.

  11. Resting heart rate and the incidence and progression of valvular calcium: The Multi-Ethnic Study of Atherosclerosis (MESA).

    Amoakwa, Kojo; Fashanu, Oluwaseun E; Tibuakuu, Martin; Zhao, Di; Guallar, Eliseo; Whelton, Seamus P; O'Neal, Wesley T; Post, Wendy S; Budoff, Matthew J; Michos, Erin D

    2018-06-01

    Left-sided valvular calcification is associated with cardiovascular disease (CVD) morbidity and mortality. Resting heart rate (RHR) may influence valvular calcium progression through shear stress. Whether RHR, an established CVD risk factor, is associated with valvular calcium progression is unknown. We assessed whether RHR predicts incidence and progression of mitral annular calcium (MAC) and aortic valve calcium (AVC) in a community-based cohort free of CVD at baseline. RHR was obtained from baseline electrocardiograms of 5498 MESA participants. MAC and AVC were quantified using Agatston scoring from cardiac computed tomography scans obtained at baseline and at a second examination during follow-up. We examined associations of RHR with incident MAC/AVC and annual change in MAC/AVC scores, after adjusting for demographics, CVD risk factors, physical activity, and atrioventricular nodal blocker use. At baseline, participants had mean age of 62 ± 10 years and mean RHR of 63 ± 10 bpm; 12.3% and 8.9% had prevalent AVC and MAC, respectively. Over a median of 2.3 years, 4.1% and 4.5% developed incident AVC and MAC, respectively. Each 10 bpm higher RHR was significantly associated with incident MAC [Risk Ratio 1.17 (95% CI 1.03-1.34)], but not incident AVC. However, RHR was associated with AVC progression [β = 1.62 (0.45-2.80) Agatston units/year for every 10 bpm increment], but not MAC progression. Higher RHR was associated with MAC incidence and AVC progression, independent of traditional CVD risk factors. Future studies are needed to determine whether modification of RHR through lifestyle or pharmacologic interventions can reduce valvular calcium incidence or progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Directional information flow in patients with Alzheimer's disease. A source-space resting-state MEG study.

    Engels, M M A; Yu, M; Stam, C J; Gouw, A A; van der Flier, W M; Scheltens, Ph; van Straaten, E C W; Hillebrand, A

    2017-01-01

    In a recent magnetoencephalography (MEG) study, we found posterior-to-anterior information flow over the cortex in higher frequency bands in healthy subjects, with a reversed pattern in the theta band. A disruption of information flow may underlie clinical symptoms in Alzheimer's disease (AD). In AD, highly connected regions (hubs) in posterior areas are mostly disrupted. We therefore hypothesized that in AD the information flow from these hub regions would be disturbed. We used resting-state MEG recordings from 27 early-onset AD patients and 26 healthy controls. Using beamformer-based virtual electrodes, we estimated neuronal oscillatory activity for 78 cortical regions of interest (ROIs) and 12 subcortical ROIs of the AAL atlas, and calculated the directed phase transfer entropy (dPTE) as a measure of information flow between these ROIs. Group differences were evaluated using permutation tests and, for the AD group, associations between dPTE and general cognition or CSF biomarkers were determined using Spearman correlation coefficients. We confirmed the previously reported posterior-to-anterior information flow in the higher frequency bands in the healthy controls, and found it to be disturbed in the beta band in AD. Most prominently, the information flow from the precuneus and the visual cortex, towards frontal and subcortical structures, was decreased in AD. These disruptions did not correlate with cognitive impairment or CSF biomarkers. We conclude that AD pathology may affect the flow of information between brain regions, particularly from posterior hub regions, and that changes in the information flow in the beta band indicate an aspect of the pathophysiological process in AD.

  13. PlanHab study: assessment of psycho-neuroendocrine function in male subjects during 21 d of normobaric hypoxia and bed rest.

    Strewe, C; Zeller, R; Feuerecker, M; Hoerl, M; Kumprej, I; Crispin, A; Johannes, B; Debevec, T; Mekjavic, I; Schelling, G; Choukèr, A

    2017-03-01

    Immobilization and hypoxemia are conditions often seen in patients suffering from severe heart insufficiency or primary pulmonary diseases (e.g. fibrosis, emphysema). In future planned long-duration and exploration class space missions (including habitats on the moon and Mars), healthy individuals will encounter such a combination of reduced physical activity and oxygen tension by way of technical reasons and the reduced gravitational forces. These overall unconventional extraterrestrial conditions can result in yet unknown consequences for the regulation of stress-permissive, psycho-neuroendocrine responses, which warrant appropriate measures in order to mitigate foreseeable risks. The Planetary Habitat Simulation Study (PlanHab) investigated these two space-related conditions: bed rest as model of reduced gravity and normobaric hypoxia, with the aim of examining their influence on psycho-neuroendocrine responses. We hypothesized that both conditions independently increase measures of psychological stress and enhance neuroendocrine markers of stress, and that these effects would be exacerbated by combined treatment. The cross-over study composed of three interventions (NBR, normobaric normoxic horizontal bed rest; HBR, normobaric hypoxic horizontal bed rest; HAMB, normobaric hypoxic ambulatory confinement) with 14 male subjects during three sequential campaigns separated by 4 months. The psychological state was determined through three questionnaires and principal neuroendocrine responses were evaluated by measuring cortisol in saliva, catecholamine in urine, and endocannabinoids in blood. The results revealed no effects after 3 weeks of normobaric hypoxia on psycho-neuroendocrine responses. Conversely, bed rest induced neuroendocrine alterations that were not influenced by hypoxia.

  14. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery.

    Wiemerslage, Lyle; Zhou, Wei; Olivo, Gaia; Stark, Julia; Hogenkamp, Pleunie S; Larsson, Elna-Marie; Sundbom, Magnus; Schiöth, Helgi B

    2017-02-01

    Past studies utilizing resting-state functional MRI (rsfMRI), have shown that obese humans exhibit altered activity in brain areas related to reward compared to normal-weight controls. However, to what extent bariatric surgery-induced weight loss alters resting-state brain activity in obese humans is less well-studied. Thus, we measured the fractional amplitude of low-frequency fluctuations from eyes-closed, rsfMRI in obese females (n = 11, mean age = 42 years, mean BMI = 41 kg/m 2 ) in both a pre- and postprandial state at two time points: four weeks before, and four weeks after bariatric surgery. Several brain areas showed altered resting-state activity following bariatric surgery, including the putamen, insula, cingulate, thalamus and frontal regions. Activity augmented by surgery was also dependent on prandial state. For example, in the fasted state, activity in the middle frontal and pre- and postcentral gyri was found to be decreased after surgery. In the sated state, activity within the insula was increased before, but not after surgery. Collectively, our results suggest that resting-state neural functions are rapidly affected following bariatric surgery and the associated weight loss and change in diet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Diagnostic colonoscopy: performance measurement study.

    Kuznets, Naomi

    2002-07-01

    This is the fifth of a series of best practices studies undertaken by the Performance Measurement Initiative (PMI), the centerpiece of the Institute for Quality Improvement (IQI), a not-for-profit quality improvement subsidiary of the Accreditation Association for Ambulatory Health Care (AAAHC) (Performance Measurement Initiative, 1999a, 1999b, 2000a, 2000b). The IQI was created to offer clinical performance measurement and improvement opportunities to ambulatory health care organizations and others interested in quality patient care. The purpose of the study was to provide opportunities to initiate clinical performance measurement on key processes and outcomes for this procedure and use this information for clinical quality improvement. This article provides performance measurement information on how organizations that have demonstrated and validated differences in clinical practice can have similar outcomes, but at a dramatically lower cost. The intent of the article is to provide organizations with alternatives in practice to provide a better value to their patients.

  16. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  17. When structure affects function--the need for partial volume effect correction in functional and resting state magnetic resonance imaging studies.

    Dukart, Juergen; Bertolino, Alessandro

    2014-01-01

    Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.

  18. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  19. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state functional magnetic resonance imaging study

    Peng DC

    2014-09-01

    Full Text Available De-Chang Peng,1 Xi-Jian Dai,1,2 Hong-Han Gong,1 Hai-Jun Li,1 Xiao Nie,1 Wei Zhang3 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, 2Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, 3Department of Pneumology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China Background: Previous studies have demonstrated that obstructive sleep apnea (OSA is associated with abnormal brain structural deficits. However, little is known about the changes in local synchronization of spontaneous activity in patients with OSA. The primary aim of the present study was to investigate spontaneous brain activity in patients with OSA compared with good sleepers (GSs using regional homogeneity (ReHo analysis based on resting-state ­functional magnetic resonance imaging (MRI. Methods: Twenty-five untreated male patients with severe OSA and 25 male GSs matched for age and years of education were included in this study. The ReHo method was calculated to assess the strength of local signal synchrony and was compared between the two groups. The observed mean ReHo values were entered into Statistical Package for the Social Sciences software to assess their correlation with behavioral performance. Results: Compared with GSs, patients with OSA showed significantly lower ReHo in the right medial frontal gyrus (BA11, right superior frontal gyrus (BA10, right cluster of the precuneus and angular gyrus (BA39, and left superior parietal lobule (BA7, and higher ReHo in the right posterior lobe of the cerebellum, right cingulate gyrus (BA23, and bilateral cluster covering the lentiform nucleus, putamen, and insula (BA13. The lower mean ReHo value in the right cluster of the precuneus and angular gyrus had a significant negative correlation with sleep time (r=-0.430, P=0.032, and higher ReHo in

  20. Functional cortical changes in relapsing-remitting multiple sclerosis at amplitude configuration: a resting-state fMRI study

    Liu H

    2016-11-01

    Full Text Available Heng Liu,1,* Hua Chen,1,* Bo Wu,1 Tijiang Zhang,1 Jinhui Wang,2,3 Kexin Huang,1 Ganjun Song,1 Jian Zhan4 1Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou, 2Department of Psychology, Hangzhou Normal University, 3Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 4Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to explore the amplitude of spontaneous brain activity fluctuations in patients with relapsing–remitting multiple sclerosis (RRMS using the amplitude of low-frequency fluctuation (ALFF method. Methods: ALFF and SPM8 were utilized to assess alterations in regional spontaneous brain activities in patients with RRMS in comparison with healthy controls (HCs. The beta values of altered brain regions between patients with RRMS and HCs were extracted, and a receiver operating characteristic (ROC curve was generated to calculate the sensitivities and specificities of these different brain areas for distinguishing patients with RRMS from HCs. Pearson correlation analyses were applied to assess the relationships between the beta values of altered brain regions and disease duration and Expanded Disability Status Scale (EDSS score. Patients and participants: A total of 18 patients with RRMS (13 females; five males and 18 sex-, age-, and education-matched HCs (14 females; four males were recruited for this study. Measurements and results: Compared with HCs, patients with RRMS showed higher ALFF responses in the right fusiform gyrus (Brodmann area [BA] 37 and lower ALFF responses in the bilateral anterior cingulate cortices (BA 24 and 32, bilateral heads of the caudate nuclei, and bilateral brainstem. The ROC analysis revealed that the beta values of these abnormal brain areas

  1. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  2. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  3. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  4. A Brief History of the Resting State: the Washington University Perspective

    Snyder, Abraham Z.; Raichle, Marcus E.

    2012-01-01

    We present a history of the concepts and developments that have led us to focus on the resting state as an object of study. We then discuss resting state research performed in our laboratory since 2005 with an emphasis on papers of particular interest. PMID:22266172

  5. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how

  6. Does a variation in self-reported physical activity reflect variation in objectively measured physical activity, resting heart rate, and physical fitness? Results from the Tromso study

    Emaus, Aina; Degerstrøm, Jorid; Wilsgaard, Tom

    2010-01-01

    AIMS: To study the association between self-reported physical activity (PA) and objectively measured PA, resting heart rate, and physical fitness. METHODS: During 2007-08, 5017 men and 5607 women aged 30-69 years attended the sixth survey of the Tromsø study. Self-reported PA during leisure......-time and work were assessed and resting heart rate was measured. In a sub-study, the activity study, PA (Actigraph LLC) and physical fitness (VO₂(max)) were objectively measured among 313 healthy men and women aged 40-44 years. RESULTS: Self-reported leisure PA was significantly correlated with VO₂(max) (ml...... women than men met the international recommendations of 10,000 step counts/day (27% vs. 22%) and the recommendation of at least 30 minutes/day of moderate-to-vigorous intensities (30% vs. 22 %). CONCLUSIONS: The Tromsø physical activity questionnaire has acceptable validity and provides valid estimates...

  7. Mapping the effect of escitalopram treatment on amplitude of low-frequency fluctuations in patients with depression: a resting-state fMRI study.

    Wang, Li; Li, Xueni; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Wang, Gang; Jin, Zhen; Kong, Qingmei; Si, Tianmei

    2017-02-01

    Antidepressant medications represent the most common treatment option for major depressive disorder (MDD), but the neuro-psychological mechanisms by which antidepressants act to improve depressive symptoms remain under-specified. We designed this study to assess the effects of escitalopram treatment on spontaneous brain activity of MDD patients using functional magnetic resonance imaging (fMRI). Twenty first-episode drug-naive MDD patients received resting-state fMRI scans before and after 8 weeks of treatment with a selective serotonin reuptake inhibitor - escitalopram. Twenty age- and gender-matched healthy controls were also scanned twice with an 8-week interval. The fractional amplitude of low-frequency fluctuation (fALFF) was used to characterize the spontaneous brain activity. The analysis of covariance (ANCOVA) was performed to determine treatment-related changes in fALFF. The symptoms were significantly improved in MDD patients after treatment. We observed significant group-by-time interaction on fALFF in the left dorsomedial prefrontal cortex, the right middle frontal gyrus, and the left putamen. Post-hoc analyses showed that the fALFF values in these regions were significantly higher in the MDD patients compared to healthy controls at baseline and were reduced after treatment. The findings suggest that abnormalities in the brain areas involved in emotional processing and regulation could be normalized by effective antidepressant treatment with escitalopram in the MDD patients and free of a task situation.

  8. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  9. A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups.

    Muddugangadhar, B C; Sangur, Rajashekar; Rudraprasad, I V; Nandeeshwar, D B; Kumar, B H Dhanya

    2015-01-01

    This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics.

  10. A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups

    Muddugangadhar, B. C.; Sangur, Rajashekar; Rudraprasad, I. V.; Nandeeshwar, D. B.; Kumar, B. H. Dhanya

    2015-01-01

    Purpose: This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Materials and Methods: Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Results: Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Conclusion: Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. Clinical Implications: The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics. PMID:26929540

  11. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  12. Hemodynamic variables during exercise in childhood and resting systolic blood pressure levels 6 years later in adolescence: the European Youth Heart Study

    Grøntved, Anders; Andresen, Brage Storstein; Møller, N C

    2011-01-01

    of Danish children followed longitudinally for 6 years. The study comprised 226 children randomly sampled at age 9, who had their blood pressure and HR measured during ergometer exercise to exhaustion and was reassessed in adolescence. SBP and RPP during exercise in stage two of the test were positively......The aim of this study was to analyze whether systolic blood pressure (SBP), heart rate (HR) and rate pressure product (RPP) during exercise in childhood can predict resting SBP levels in adolescence independent of resting SBP and conventional cardiovascular risk factors. We studied this in a sample...... remained significant (P=0.059 and P=0.012, respectively). No significant independent associations were observed for HR during exercise, but associations were in the same direction. Our results supports that measuring SBP and RPP, during a standard acute ergometer exercise test in children, improves...

  13. A strategy for obtaining both resting and psychologically activated state metabolic data from a single PET study using [F-18]-fluorodeoxyglucose(FDG)

    Chang, J.; Duara, R.; Barker, W.; Apicella, A.; Gilson, A.

    1985-01-01

    When psychological activation is studied with PET using the deoxyglucose method, a stable and specific psychological state for at least 30 minutes is required before commencing the scan. At this time, if the subject reverts to the testing state, a progressive degradation of the activated pattern occurs. However, a strategy could be used to obtain corrected activation state data and resting state data in a single study using a tracer such as FDG. The amount of tracer FDG and FDG-6P in the tissue at the time of study completion, t, will be the sum of the remaining quantity (R) of tracer accumulated in the tissue at the time T, when activation ceases, and the uptake during the subsequent period t-T when resting state glucose transport kinetics apply

  14. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.

    2014-01-01

    Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear

  15. Laboratory treatability studies preparatory to field testing a resting-cell in situ microbial filter bioremediation strategy

    Taylor, R.T.; Hanna, M.L.

    1995-04-01

    Prior to a down-hole-column treatability test of a Methylosinus trichosporium OB3b attached-resting-cell in situ biofilter strategy, a set of three sequential laboratory experiments were carried out to define several key operational parameters and to evaluate the likely degree of success at a NASA Kennedy Space Center site. They involved the cell attachment to site-specific sediments, the intrinsic resting-cell biotransformation capacities for the contaminants of interest plus their time-dependent extents of biodegradative removal at the concentrations of concern, and a scaled in situ mini-flow-through-column system that closely mimics the subsurface conditions during a field-treatability or pilot test of an emplaced resting-cell filter. These experiments established the conditions required for the complete metabolic removal of a vinyl chloride (VC), cis-dichlororthylene (cis-DCE) and trichloroethylene (TCE) mixture. However, the gas chromatographic (GC) procedures that we utilized and the mini-flow-through column data demonstrated that, at most, only about 50--70% of the site-water VC, cis-DCE, and TCE would be biodegraded. This occurred because of a limiting level of dissolved oxygen, which was exacerbated by the simultaneous presence of several additional previously unrecognized groundwater components, especially methane, that are also competing substrates for the whole-cell soluble methane monooxygenase (sMMO) enzyme complex. Irrespective, collectively the simplicity of the methods that we have developed and the results obtainable with them appear to provide relevant laboratory-based test-criteria before taking our microbial filter strategy to an in situ field treatability or pilot demonstration stage at other sites in the future

  16. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  17. Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent Individuals: A Resting-State fMRI Study

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subj...

  18. Altered effective connectivity network of the basal ganglia in low-grade hepatic encephalopathy: a resting-state fMRI study with Granger causality analysis.

    Rongfeng Qi

    Full Text Available BACKGROUND: The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE. Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI. METHODOLOGY/PRINCIPAL FINDINGS: Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC, cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. CONCLUSIONS/SIGNIFICANCE: Low-grade HE patients had disrupted effective

  19. Abnormal Baseline Brain Activity in Drug-Naïve Patients with Tourette Syndrome: A Resting-state fMRI Study

    Yonghua eCui

    2014-01-01

    Full Text Available Tourette Syndrome (TS is a childhood-onset chronic disorder characterized by the presence of multiple motor and vocal tics. This study investigated spontaneous low-frequency fluctuations in TS patients during resting-state functional magnetic resonance imaging (fMRI scans. We obtained resting-state fMRI scans from seventeen drug-naïve TS children and fifteen demographically matched healthy children. We computed the amplitude of low frequency fluctuation (ALFF and fractional ALFF (fALFF of resting-state fMRI data to measure spontaneous brain activity, and assessed the between-group differences in ALFF/fALFF and the relationship between ALFF/fALFF and tic severity scores. Our results showed that the children with TS exhibited significantly decreased ALFF in the posterior cingulate gyrus/precuneus and bilateral parietal gyrus. fALFF was decreased in TS children in the anterior cingulated cortex, bilateral middle and superior frontal cortices and superior parietal lobule, and increased in the left putamen and bilateral thalamus. Moreover, we found significantly positive correlations between fALFF and tic severity scores in the right thalamus. Our study provides empirical evidence for abnormal spontaneous neuronal activity in TS patients, which may implicate the underlying neurophysiological mechanism in TS and demonstrate the possibility of applying ALFF/fALFF for clinical TS studies.

  20. Comparative study of resting-state functional MRI and positron emission tomography-CT in the localization of temporal lobe epileptic focus

    Zhao Chunlei; Chen Ziqian; Wang Zhimin; Qian Gennian; Ni Ping; Tao Chaochao

    2013-01-01

    Objective: To evaluate the efficacy of PET-CT brain imaging and resting-state fMRI in preoperative localization of temporal lobe epileptic (TLE) focus. Methods: PET-CT and resting-state fMRI were performed in 17 patients with refractory TLE, who then underwent surgical treatment. Seventeen healthy volunteers matched with gender and age were recruited as the control group. The resting-state fMRI images were post processed by SPM5 software. Regional homogeneity (ReHo) values of the whole brain and bilateral hippocampus were obtained and analyzed. PET-CT images were analyzed by visual analysis method and asymmetry index method and the standardized uptake value (SUV) of bilateral hippocampus were obtained. The ReHo values and SUV of the bilateral hippocampus were compared by two independent samples t-test, and analyzed by receiver operating characteristic curve (ROC) for optimized diagnostic threshold. Pearson correlation analysis was employed for evaluating the correlation between the SUV and ReHo values of bilateral hippocampus. The consistency between the diagnostic accuracy of PET-CT and resting-state fMRI was assessed by Kappa consistency test. The outcome of the patient group was compared with that of the control group, and with the pathological results, to evaluate the diagnostic value of the two modalities for preoperative localization of temporal lobe epileptic focus. Results: Regional or comprehensive low metabolism of "1"8F-FDG in temporal lobes was presented in all 17 patients, and 11 patients out of 17 showed lateral decreased ReHo value. The diagnostic accuracy of the two examinations was 70.6% (12/17) and 64.7% (11/17) for PET-CT and resting-state fMRI respectively compared with pathological results, and could be increased to 76.5% (13/17) when the two methods were combined for diagnosis. The ReHo values of the TLE group (0.34 ± 0.12) were significantly lower than those of the control group (0.46 ± 0.07) (t = 3.230, P = 0.003). The sensitivity and

  1. Regional homogeneity within the default mode network in bipolar depression: a resting-state functional magnetic resonance imaging study.

    Chun-Hong Liu

    Full Text Available AIM: We sought to use a regional homogeneity (ReHo approach as an index in resting-state functional magnetic resonance imaging (fMRI to investigate the features of spontaneous brain activity within the default mode network (DMN in patients suffering from bipolar depression (BD. METHODS: Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD total score, and ReHo in regions with significant group differences. RESULTS: Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group. CONCLUSIONS: Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.

  2. Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study.

    Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan

    2011-10-17

    Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Framework for ReSTful Web Services in OSGi

    Shams, Khawaja S.; Norris, Jeffrey S.; Powell, Mark W.; Crockett, Thomas M.; Mittman, David S.; Fox, Jason M.; Joswig, Joseph C.; Wallick, Michael N.; Torres, Recaredo J.; Rabe, Kenneth

    2009-01-01

    Ensemble ReST is a software system that eases the development, deployment, and maintenance of server-side application programs to perform functions that would otherwise be performed by client software. Ensemble ReST takes advantage of the proven disciplines of ReST (Representational State Transfer. ReST leverages the standardized HTTP protocol to enable developers to offer services to a diverse variety of clients: from shell scripts to sophisticated Java application suites

  4. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study.

    Li Wang

    Full Text Available BACKGROUND: Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD. However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named "voxel-mirrored homotopic connectivity (VMHC". METHODOLOGY/PRINCIPAL FINDINGS: We compared the interhemispheric RSFC, computed using the VMHC approach, of seventeen first-episode drug-naive patients with MDD and seventeen healthy controls. Compared to the controls, MDD patients showed significant VMHC decreases in the medial orbitofrontal gyrus, parahippocampal gyrus, fusiform gyrus, and occipital regions including the middle occipital gyrus and cuneus. In MDD patients, a negative correlation was found between VMHC of the fusiform gyrus and illness duration. Moreover, there were several regions whose VMHC showed significant negative correlations with the severity of cognitive disturbance, including the prefrontal regions, such as middle and inferior frontal gyri, and two regions in the cereballar crus. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is

  5. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    SuPing eCai

    2015-08-01

    Full Text Available Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnestic mild cognitive impairment (aMCI subjects. Here, we employed a resting state functional MRI (fMRI to examine changes in functional connectivity of left/right FG comparing aMCI patients with age-matched control subjects. Forty-eight aMCI and thirty-eight control subjects from the Alzheimer’s disease Neuroimaging Initiative (ADNI were analyzed. We focused on the correlation between low frequency fMRI signal fluctuations in the FG and those in all other brain regions. Compared to the control group, we found some discrepant regions in the aMCI group which presented increased or decreased connectivity with the left/right FG including the left precuneus, left lingual gyrus, right thalamus, supramarginal gyrus, left supplementary motor area, left inferior temporal gyrus, and left parahippocampus. More importantly, we also obtained that both left and right FG have increased functional connections with the left middle occipital gyrus (MOG and right anterior cingulate gyrus (ACC in aMCI patients. That was not a coincidence and might imply that the MOG and ACC also play a critical role in visual cognition, especially face recognition. These findings in a large part supported our hypothesis and provided a new insight in understanding the important subtype of MCI.

  6. Clinical applications of resting state functional connectivity

    Michael D Fox

    2010-06-01

    Full Text Available During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level dependent (BOLD signal of fMRI. The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  7. Effect of rest interval on strength recovery in young and old women.

    Theou, Olga; Gareth, Jones R; Brown, Lee E

    2008-11-01

    This study compares the effects of rest intervals on isokinetic muscle torque recovery between sets of a knee extensor and flexor exercise protocol in physically active younger and older women. Twenty young (22.4 +/- 1.7 years) and 16 older (70.7 +/- 4.3 years) women performed three sets of eight maximum repetitions of knee extension/flexion at 60 degrees x s(-1). The rest interval between sets was 15, 30, and 60 seconds and was randomly assigned across three testing days. No significant interaction of rest by set by age group was observed. There was a significant decline in mean knee extensor torque when 15- and 30-second rest intervals were used between sets, but not when a 60-second rest interval was applied for both the young and the old women. No significant decline for mean knee flexor torque was observed in the older women when a 30-second rest interval was used, whereas a longer 60-second rest interval was required in younger women. Active younger and older women require similar rest intervals between sets of a knee extensor exercise (60 seconds) for complete recovery. However, older women recovered faster (30 seconds) than younger women (60 seconds) between sets of a knee flexor exercise. The exercise-to-rest ratio for knee extensors was similar for young and old women (1:2). Old women required only a 1:1 exercise-to-rest ratio for knee flexor recovery, whereas younger women required a longer 1:2 exercise-to-rest ratio. The results of the present study are specific to isokinetic testing and training and are more applicable in rehabilitation and research settings. Practitioners should consider age and gender when prescribing rest intervals between sets.

  8. The effect of body-mind relaxation meditation induction on major depressive disorder: A resting-state fMRI study.

    Chen, Fangfang; Lv, Xueyu; Fang, Jiliang; Yu, Shan; Sui, Jing; Fan, Lingzhong; Li, Tao; Hong, Yang; Wang, XiaoLing; Wang, Weidong; Jiang, Tianzi

    2015-09-01

    Meditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body-mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body-mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body-mind relaxation induction. Our findings support the hypothesis that body-mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  10. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease: a resting-state fMRI study.

    Chen, Hui-Min; Wang, Zhi-Jiang; Fang, Jin-Ping; Gao, Li-Yan; Ma, Ling-Yan; Wu, Tao; Hou, Ya-Nan; Zhang, Jia-Rong; Feng, Tao

    2015-10-01

    Postural instability/gait difficulty (PIGD) and tremor-dominant (TD) subtypes of Parkinson's disease (PD) show different clinical manifestations; however, their underlying neural substrates remain incompletely understood. This study aimed at investigating the subtype-specific patterns of spontaneous brain activity in PD. Thirty-one patients with PD (12 TD/19 PIGD) and 22 healthy gender- and age-matched controls were recruited. Resting-state functional magnetic resonance imaging data were collected, and amplitude of low-frequency fluctuations (ALFF) was measured. Voxelwise one-way analysis of covariance and post hoc analyses of ALFF were performed among the three groups, with age and gender as covariates (levodopa daily dosage and gray matter volume as additional covariates for validation analysis). Correlations of clinical variables (e.g., disease duration and PIGD/tremor subscale score) with ALFF values were examined. Compared with controls, patients with TD exhibited higher ALFF in the right cerebellar posterior lobe and patients with PIGD exhibited lower ALFF in the bilateral putamen and cerebellar posterior lobe, and higher values primarily in several cortical areas including the inferior and superior temporal gyrus, superior frontal, and parietal gyrus. Compared with patients with PIGD, patients with TD had higher ALFF in the bilateral putamen and the cerebellar posterior lobe, as well as lower ALFF in the bilateral temporal gyrus and the left superior parietal lobule. In all patients, ALFF in the bilateral cerebellar posterior lobe positively correlated with tremor score and ALFF in the bilateral putamen negatively correlated with PIGD score. Different patterns of spontaneous neural activity in the cerebellum and putamen may underlie the neural substrate of PD motor subtypes. © 2015 John Wiley & Sons Ltd.

  11. A PILOT STUDY ON THE EFFECTS OF MAGNESIUM SUPPLEMENTATION WITH HIGH AND LOW HABITUAL DIETARY MAGNESIUM INTAKE ON RESTING AND RECOVERY FROM AEROBIC AND RESISTANCE EXERCISE AND SYSTOLIC BLOOD PRESSURE

    Lindsy S. Kass

    2013-03-01

    Full Text Available The effects of magnesium supplementation on blood pressure (BP have been studied for over 25 years and results have been inconsistent. Blood pressure reductions in randomized studies have varied from 12 mmHg reductions to no reduction. The objective of this pilot intervention was to investigate the effect of magnesium supplementation on systolic blood pressure whilst resting and during recovery from aerobic and resistance exercise and on performance. A further objective was to see whether the effect of a high vs low habitual dietary magnesium intake affected these results. Sixteen male volunteers were randomly assigned to either a 300 mg·d-1 magnesium oxide supplementation (MO or a control group (CG for 14 days. Resting blood pressure (BP and heart rate (HR were measured before subjects performed a maximal 30 minute cycle, immediately followed by three x 5 second isometric bench press, both at baseline and after the intervention. Blood pressure and heart rate were recorded immediately post exercise and after five minutes recovery. A 3 day food diary was recorded for all subjects to measure dietary magnesium intake. At the end of the intervention, the supplemented group, had a reduction in mean resting systolic BP by 8.9 mmHg (115.125 ± 9.46 mmHg, p = 0.01 and post exercise by 13 mmHg (122.625 ± 9. 88 mmHg, p = 0.01. Recovery BP was 11.9 mmHg lower in the intervention group compared to control (p = 0.006 and HR decreased by 7 beats per minute in the experimental group (69.0 ± 11.6 bpm, p = 0. 02. Performance indicators did not change within and between the groups. Habitual dietary magnesium intake affected both resting and post exercise systolic BP and the subsequent effect of the magnesium supplementation. These results have an implication in a health setting and for health and exercise but not performance.

  12. Performance study for inlet installations

    Bingaman, Donald C.

    1992-01-01

    A conceptual design trade study was conducted by McDonnell Aircraft Company (MCAIR) and NASA LARC PAB to determine the impact of inlet design features incorporated for reduced detectability on inlet performance, weight, and cost, for both fighter and attack-type aircraft. Quality Function Deployment (QFD) techniques were used to prioritize trade study issues, and select 'best' air induction system configurations for each of two notional aircraft, the Multi-Role Fighter (MRF) and the Advanced Medium Attack (AMA) bomber. Database deficiencies discovered in the trade study process were identified, and technology roadmaps were developed to address these deficiencies. Finally, two high speed inlet wind tunnel model concepts were developed for follow-on wind tunnel investigations.

  13. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  14. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was

  15. Experimental study of the inclusive η-spectrum from panti p annihilations at rest in liquid hydrogen

    Adiels, L.; Bergstroem, L.; Kerek, A.; Backenstoss, G.; Findeisen, C.; Hugi, M.; Repond, J.; Tauscher, L.; Troester, D.; Charalambous, S.; Zioutas, K.; Hatzifotiadou, D.; Pavlopoulos, P.; Meyer, H.O.; Williams, M.C.S.; Thessaloniki Univ.

    1989-01-01

    The inclusive η-momentum spectrum from panti p annihilations at rest in liquid hydrogen was measured at LEAR. Branching ratios were obtained for panti p → ηω(1.04 -0.10 +0.09 )%, ηρ 0 (0.53 -0.08 +0.20 )%, πa 2 (8.49 -1.10 +1.05 )%, ηπ 0 (1.33±0.27) x 10 -4 , and ηη(8.1±3.1) x 10 -5 . An upper limit for panti p → ηη' of 1.8 x 10 -4 at 95% CL was found. The ratio of the branching ratios is BR(ηρ)/BR(ηω)=0.51 -0.06 +0.20 . For the ratio of branching ratios into two pseudoscalar mesons, we have BR(ηπ 0 )/BR(π 0 π 0 )=0.65±0.14, BR(ηη)/BR(π 0 π 0 )=0.39±0.15, BR(ηη')/BR(π 0 π 0 ) 0 )=0.61±0.25. (orig.)

  16. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study

    Katharina Brueggen

    2017-10-01

    Full Text Available Simultaneous resting state functional magnetic resonance imaging (rsfMRI–resting state electroencephalography (rsEEG studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN regions. Negative associations were found in occipital regions. In Alzheimer’s disease (AD, rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC. We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels. This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD

  17. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children.

    Kuriakose, S; Sundaresan, C; Mathai, V; Khosla, E; Gaffoor, F M A

    2013-01-01

    This study was conducted to identify various factors in the development of rampant type of dental caries in South Kerala children, other than high sucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), flow-rate(FR), resting pH and salivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampant dental caries. Two study groups, a rampant caries group(RC) with more than five active caries lesions in the early stages and a CR with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva was collected directly from the floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measured using color coded pH paper. BC was measured by calculating the amount of citric acid of pH2.5, required to lower the initial pH of saliva down to 3. s-IgA levels were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with specific anti-IgA antibodies. The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared to the CR group. This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factors in the development of RC in children.

  18. Resting state EEG correlates of memory consolidation.

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. REST based service composition

    Grönvall, Erik; Ingstrup, Mads; Pløger, Morten

    2011-01-01

    This paper presents an ongoing work developing and testing a Service Composition framework based upon the REST architecture named SECREST. A minimalistic approach have been favored instead of a creating a complete infrastructure. One focus has been on the system's interaction model. Indeed, an aim...

  20. WEB-SERVICE. RESTFUL ARCHITECTURE

    M. Melnichuk

    2018-04-01

    Full Text Available Network technology for interaction between two applications via the HTTP protocol was considered in article.When client works with REST API - it means it works with "resources", and in SOAP work is performed with operations. To build REST web services, you must follow certain principles: explicit use of HTTP methods, access to resources by URI, stateless, HATEAOS, caching, transfer of objects in JSON or XML representation. But sometimes some principles are ignored to ensure a higher speed of work and to reduce development time.The pros and cons of using JSON and XML representations were considered, and it can be said that using the JSON format reduces the amount of data transfer, and with the use of XML, the readability of data increases.Also, two main ways of data transfer in REST web services were considered: converting the file to Base64 and transferring it as an object field or transferring the file using the usual HTTP multipart. The Base64 standard approach gives a higher speed for multiple files in a single request, because only one HTTP connection is created, but these files are stored in RAM during request processing, which increases chance of the application crashing.In the conclusion, the advantages of using web services and their wide use in other architectural approaches were considered, which increases the popularity of web services.

  1. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives

    Brötzner, Christina P.; Klimesch, Wolfgang; Doppelmayr, Michael; Zauner, Andrea; Kerschbaum, Hubert H.

    2014-01-01

    Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electro...

  2. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study

    Galpin Andrew J

    2009-08-01

    Full Text Available Abstract Background The purpose of the present investigation was to determine the effects of EPA/DHA supplementation on resting and exercise-induced inflammation and oxidative stress in exercise-trained men. Fourteen men supplemented with 2224 mg EPA+2208 mg DHA and a placebo for 6 weeks in a random order, double blind cross-over design (with an 8 week washout prior to performing a 60 minute treadmill climb using a weighted pack. Blood was collected pre and post exercise and analyzed for a variety of oxidative stress and inflammatory biomarkers. Blood lactate, muscle soreness, and creatine kinase activity were also measured. Results Treatment with EPA/DHA resulted in a significant increase in blood levels of both EPA (18 ± 2 μmol·L-1 vs. 143 ± 23 μmol·L-1; p -1 vs. 157 ± 13 μmol·L-1; p 0.05. There was a mild increase in oxidative stress in response to exercise (XO and H2O2 (p Conclusion EPA/DHA supplementation increases blood levels of these fatty acids and results in decreased resting levels of inflammatory biomarkers in exercise-trained men, but does not appear necessary for exercise-induced attenuation in either inflammation or oxidative stress. This may be due to the finding that trained men exhibit a minimal increase in both inflammation and oxidative stress in response to moderate duration (60 minute aerobic exercise.

  3. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  4. Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fMRI study

    Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhang, Liping [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Qiang [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhao, Tie Zhu [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China)

    2014-10-15

    Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE.

  5. Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study.

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-08-14

    Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fMRI study

    Zhang, Long Jiang; Zheng, Gang; Zhang, Liping; Zhong, Jianhui; Li, Qiang; Zhao, Tie Zhu; Lu, Guang Ming

    2014-01-01

    Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE

  7. Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: A path modelling study.

    Kemp, Andrew H; López, Santiago Rodríguez; Passos, Valeria M A; Bittencourt, Marcio S; Dantas, Eduardo M; Mill, José G; Ribeiro, Antonio L P; Thayer, Julian F; Bensenor, Isabela M; Lotufo, Paulo A

    2016-05-01

    Research has linked high-frequency heart rate variability (HF-HRV) to cognitive function. The present study adopts a modern path modelling approach to understand potential causal pathways that may underpin this relationship. Here we examine the association between resting-state HF-HRV and executive function in a large sample of civil servants from Brazil (N=8114) recruited for the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). HF-HRV was calculated from 10-min resting-state electrocardiograms. Executive function was assessed using the trail-making test (version B). Insulin resistance (a marker of type 2 diabetes mellitus) and carotid intima-media thickness (subclinical atherosclerosis) mediated the relationship between HRV and executive function in seriatim. A limitation of the present study is its cross-sectional design; therefore, conclusions must be confirmed in longitudinal study. Nevertheless, findings support that possibility that HRV provides a 'spark' that initiates a cascade of adverse downstream effects that subsequently leads to cognitive impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    Lv, Han [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Neuroradiology Division, Department of Radiology, Stanford University, CA, 94305 (United States); Zhao, Pengfei [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Liu, Zhaohui [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Li, Rui; Zhang, Ling; Wang, Peng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Yan, Fei [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Liu, Liheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Guopeng; Zeng, Rong [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Li, Ting [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Dong, Cheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Gong, Shusheng, E-mail: gongss@ccmu.edu.cn [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China)

    2016-11-15

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  9. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2016-01-01

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  10. Influence of mercury exposure on blood pressure, resting heart rate and heart rate variability in French Polynesians: a cross-sectional study

    Valera Beatriz

    2011-11-01

    Full Text Available Abstract Background Populations which diet is rich in seafood are highly exposed to contaminants such as mercury, which could affect cardiovascular risk factors Objective To assess the associations between mercury and blood pressure (BP, resting heart rate (HR and HR variability (HRV among French Polynesians Methods Data were collected among 180 adults (≥ 18 years and 101 teenagers (12-17 years. HRV was measured using a two-hour ambulatory electrocardiogram (Holter and BP was measured using a standardized protocol. The association between mercury and HRV and BP parameters was studied using analysis of variance (ANOVA and analysis of covariance (ANCOVA Results Among teenagers, the high frequency (HF decreased between the 2nd and 3rd tertile (380 vs. 204 ms2, p = 0.03 and a similar pattern was observed for the square root of the mean squared differences of successive R-R intervals (rMSSD (43 vs. 30 ms, p = 0.005 after adjusting for confounders. In addition, the ratio low/high frequency (LF/HF increased between the 2nd and 3rd tertile (2.3 vs. 3.0, p = 0.04. Among adults, the standard deviation of R-R intervals (SDNN tended to decrease between the 1st and 2nd tertile (84 vs. 75 ms, p = 0.069 after adjusting for confounders. Furthermore, diastolic BP tended to increase between the 2nd and 3rd tertile (86 vs. 91 mm Hg, p = 0.09. No significant difference was observed in resting HR or pulse pressure (PP Conclusions Mercury was associated with decreased HRV among French Polynesian teenagers while no significant association was observed with resting HR, BP, or PP among teenagers or adults

  11. The impacts of multiple rest-break periods on commercial truck driver's crash risk.

    Chen, Chen; Xie, Yuanchang

    2014-02-01

    Driver fatigue has been a major contributing factor to fatal commercial truck crashes, which accounted for about 10% of all fatal motor vehicle crashes that happened between 2009 and 2011. Commercial truck drivers' safety performance can deteriorate easily due to fatigue caused by long driving hours and irregular working schedules. To ensure safety, truck drivers often use off-duty time and short rest breaks during a trip to recover from fatigue. This study thoroughly investigates the impacts of off-duty time prior to a trip and short rest breaks on commercial truck safety by using Cox proportional hazards model and Andersen-Gill model. It is found that increasing total rest-break duration can consistently reduce fatigue-related crash risk. Similarly, taking more rest breaks can help to reduce crash risk. The results suggest that two rest breaks are generally considered enough for a 10-hour trip, as three or more rest breaks may not further reduce crash risk substantially. Also, the length of each rest break does not need to be very long and 30min is usually adequate. In addition, this study investigates the safety impacts of when to take rest breaks. It is found that taking rest breaks too soon after a trip starts will cause the rest breaks to be less effective. The findings of this research can help policy makers and trucking companies better understand the impacts of multiple rest-break periods and develop more effective rules to improve the safety of truck drivers. Copyright © 2014 Elsevier Ltd and National Safety Council. All rights reserved.

  12. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  13. Predictive Modeling of Spinner Dolphin (Stenella longirostris) Resting Habitat in the Main Hawaiian Islands

    Thorne, Lesley H.; Johnston, David W.; Urban, Dean L.; Tyne, Julian; Bejder, Lars; Baird, Robin W.; Yin, Suzanne; Rickards, Susan H.; Deakos, Mark H.; Mobley, Joseph R.; Pack, Adam A.; Chapla Hill, Marie

    2012-01-01

    Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood. PMID:22937022

  14. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  15. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie; Wang, Shufeng; Xue, Yunhao; Li, Wenjun

    2017-01-01

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  16. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  17. HORMONAL RESPONSE TO DIFFERENT REST INTERVALS DURING RESISTANCE TRAINING WITH LIGHT LOADS

    Payam Mohamad-Panahi

    2014-02-01

    Full Text Available Purpose: The purpose of the present study was to determine the appropriate rest time between sets during weight training with light load. Material: Seventeen cadet wrestlers (age =16.7В±0.6 yrs.; height =169.2В±8.2 cm; and weight =51.4В±7.9 kg were recruited from wrestling clubs in the Iranian province of Kurdistan and served as subjects in this study. This study was conducted over seven sessions with 48 hours recovery between sessions. In the first session, the characteristic features of subjects were recorded and the one repetition maximum in the bench press test was determined for each subject. On 6 separate occasions, subjects performed a 4 set of bench press at 60% 1RM with a 90 and 240 seconds rest interval until volitional fatigue. The numbers of repetition performed by the subjects, and also, cortisol and testosterone levels and 1RM were recorded. The results showed that there was a significant difference in the sustainability of repetitions during 4 sets bench press with 60 % load between 90 and 240 seconds rest intervals (rest interval effect (p<0.05 as well as with 90% load. Results: Additionally, there was a significant difference in the sustainability of repetitions during 4 sets bench press in 90 and 240 seconds rest intervals, both, between light and heavy loads (load effect. Plasma cortisol concentrations significantly increased after all bench press trials. Also, the rest interval effect was statistically significant in both 60 % and 90% load trials. But, the load effect was only statistically significant in 90 seconds rest interval trial (p<0.05. In contrast, plasma testosterone concentrations significantly increased after 4 sets bench press only in 90 seconds rest interval with heavy load and 240 seconds rest interval with light load (p<0.05. Accordingly, testosterone to cortisol (T:C ratio were significantly decreased after 4 sets bench press in 90 seconds rest interval with light load and 240 seconds rest interval with

  18. HORMONAL RESPONSE TO DIFFERENT REST INTERVALS DURING RESISTANCE TRAINING WITH LIGHT LOADS

    Payam Mohamad-Panahi

    2014-02-01

    Full Text Available Purpose: The purpose of the present study was to determine the appropriate rest time between sets during weight training with light load. Material: Seventeen cadet wrestlers (age =16.7±0.6 yrs.; height =169.2±8.2 cm; and weight =51.4±7.9 kg were recruited from wrestling clubs in the Iranian province of Kurdistan and served as subjects in this study. This study was conducted over seven sessions with 48 hours recovery between sessions. In the first session, the characteristic features of subjects were recorded and the one repetition maximum in the bench press test was determined for each subject. On 6 separate occasions, subjects performed a 4 set of bench press at 60% 1RM with a 90 and 240 seconds rest interval until volitional fatigue. The numbers of repetition performed by the subjects, and also, cortisol and testosterone levels and 1RM were recorded. The results showed that there was a significant difference in the sustainability of repetitions during 4 sets bench press with 60 % load between 90 and 240 seconds rest intervals (rest interval effect (p<0.05 as well as with 90% load. Results: Additionally, there was a significant difference in the sustainability of repetitions during 4 sets bench press in 90 and 240 seconds rest intervals, both, between light and heavy loads (load effect. Plasma cortisol concentrations significantly increased after all bench press trials. Also, the rest interval effect was statistically significant in both 60 % and 90% load trials. But, the load effect was only statistically significant in 90 seconds rest interval trial (p<0.05. In contrast, plasma testosterone concentrations significantly increased after 4 sets bench press only in 90 seconds rest interval with heavy load and 240 seconds rest interval with light load (p<0.05. Accordingly, testosterone to cortisol (T:C ratio were significantly decreased after 4 sets bench press in 90 seconds rest interval with light load and 240 seconds rest interval with heavy

  19. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    Sorba, Robert; Sawicki, Marcin

    2010-01-01

    We explore the feasibility and limitations of using the 1.6 μm bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z ∼ 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 μm bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z ∼ 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 μm bump technique to select high-redshift galaxies with the JWST, whose λ>0.6 μm coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  20. Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory.

    del Río, David; Cuesta, Pablo; Bajo, Ricardo; García-Pacios, Javier; López-Higes, Ramón; del-Pozo, Francisco; Maestú, Fernando

    2012-11-01

    Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4-8 Hz), low alpha (8-10 Hz), high alpha (10-13 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Low-dose single acquisition rest {sup 99m}Tc/stress {sup 201}Tl myocardial perfusion SPECT protocol: phantom studies and clinical validation

    Dey, Thomas [RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen (Germany); Backus, Barbra E.; Romijn, R.Leo [St. Antonius Hospital, Department of Nuclear Medicine, Nieuwegein (Netherlands); Wieczorek, Herfried [Philips Research, Eindhoven (Netherlands); Verzijlbergen, J.F. [St. Antonius Hospital, Department of Nuclear Medicine, Nieuwegein (Netherlands); Erasmus Medical Center, Department of Nuclear Medicine, Rotterdam (Netherlands)

    2014-03-15

    We developed and tested a single acquisition rest {sup 99m}Tc-sestamibi/stress {sup 201}Tl dual isotope protocol (SDI) with the intention of improving the clinical workflow and patient comfort of myocardial perfusion single photon emission computed tomography (SPECT). The technical feasibility of SDI was evaluated by a series of anthropomorphic phantom studies on a standard SPECT camera. The attenuation map was created by a moving transmission line source. Iterative reconstruction including attenuation correction, resolution recovery and Monte Carlo simulation of scatter was used for simultaneous reconstruction of dual tracer distribution. For clinical evaluation, patient studies were compared to stress {sup 99m}Tc and rest {sup 99m}Tc reference images acquired in a 2-day protocol. Clinical follow-up examinations like coronary angiography (CAG) and fractional flow reserve (FFR) were included in the assessment if available. Phantom studies demonstrated the technical feasibility of SDI. Artificial lesions inserted in the phantom mimicking ischaemia could be clearly identified. In 51/53 patients, the image quality was adequate for clinical evaluation. For the remaining two obese patients with body mass index > 32 the injected {sup 201}Tl dose of 74 MBq was insufficient for clinical assessment. In answer to this the {sup 201}Tl dose was adapted for obese patients in the rest of the study. In 31 patients, SDI and {sup 99m}Tc reference images resulted in equivalent clinical assessment. Significant differences were found in 20 patients. In 18 of these 20 patients additional examinations were available. In 15 patients the diagnosis based on the SDI images was confirmed by the results of CAG or FFR. In these patients the SDI images were more accurate than the {sup 99m}Tc reference study. In three patients minor ischaemic lesions were detected by SDI but were not confirmed by CAG. In one of these cases this was probably caused by pronounced apical thinning. For two patients

  2. Low-dose single acquisition rest 99mTc/stress 201Tl myocardial perfusion SPECT protocol: phantom studies and clinical validation

    Dey, Thomas; Backus, Barbra E.; Romijn, R.Leo; Wieczorek, Herfried; Verzijlbergen, J.F.

    2014-01-01

    We developed and tested a single acquisition rest 99m Tc-sestamibi/stress 201 Tl dual isotope protocol (SDI) with the intention of improving the clinical workflow and patient comfort of myocardial perfusion single photon emission computed tomography (SPECT). The technical feasibility of SDI was evaluated by a series of anthropomorphic phantom studies on a standard SPECT camera. The attenuation map was created by a moving transmission line source. Iterative reconstruction including attenuation correction, resolution recovery and Monte Carlo simulation of scatter was used for simultaneous reconstruction of dual tracer distribution. For clinical evaluation, patient studies were compared to stress 99m Tc and rest 99m Tc reference images acquired in a 2-day protocol. Clinical follow-up examinations like coronary angiography (CAG) and fractional flow reserve (FFR) were included in the assessment if available. Phantom studies demonstrated the technical feasibility of SDI. Artificial lesions inserted in the phantom mimicking ischaemia could be clearly identified. In 51/53 patients, the image quality was adequate for clinical evaluation. For the remaining two obese patients with body mass index > 32 the injected 201 Tl dose of 74 MBq was insufficient for clinical assessment. In answer to this the 201 Tl dose was adapted for obese patients in the rest of the study. In 31 patients, SDI and 99m Tc reference images resulted in equivalent clinical assessment. Significant differences were found in 20 patients. In 18 of these 20 patients additional examinations were available. In 15 patients the diagnosis based on the SDI images was confirmed by the results of CAG or FFR. In these patients the SDI images were more accurate than the 99m Tc reference study. In three patients minor ischaemic lesions were detected by SDI but were not confirmed by CAG. In one of these cases this was probably caused by pronounced apical thinning. For two patients no relevant clinical follow

  3. Partnership strategies for safety roadside rest areas.

    2009-01-01

    This project studied the many factors influencing the potential for public private partnerships for Safety : Roadside Rest Areas. It found that Federal and California State laws and regulations represent important : barriers to certain types and loca...

  4. A Nap But Not Rest or Activity Consolidates Language Learning

    Stefan Heim

    2017-05-01

    Full Text Available Recent evidence suggests that a period of sleep after a motor learning task is a relevant factor for memory consolidation. However, it is yet open whether this also holds true for language-related learning. Therefore, the present study compared the short- and long-term effects of a daytime nap, rest, or an activity task after vocabulary learning on learning outcome. Thirty healthy subjects were divided into three treatment groups. Each group received a pseudo-word learning task in which pictures of monsters were associated with unique pseudo-word names. At the end of the learning block a first test was administered. Then, one group went for a 90-min nap, one for a waking rest period, and one for a resting session with interfering activity at the end during which a new set of monster names was to be learned. After this block, all groups performed a first re-test of the names that they initially learned. On the morning of the following day, a second re-test was administered to all groups. The nap group showed significant improvement from test to re-test and a stable performance onto the second re-test. In contrast, the rest and the interference groups showed decline in performance from test to re-test, with persistently low performance at re-test 2. The 3 (GROUP × 3 (TIME ANOVA revealed a significant interaction, indicating that the type of activity (nap/rest/interfering action after initial learning actually had an influence on the memory outcome. These data are discussed with respect to translation to clinical settings with suggestions for improvement of intervention outcome after speech-language therapy if it is followed by a nap rather than interfering activity.

  5. Characterizing Signals within Lesions and Mapping Brain Network Connectivity After Traumatic Axonal Injury: A 7 Tesla Resting-State FMRI Study.

    Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A

    2018-04-18

    Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. Here we characterize RS-FMRI signal time-course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of: 1) temporal signal-to-noise ratio (tSNR); 2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF) and gray matter (GM); and 3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared to the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Further, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hemorrhagic traumatic axonal injury.

  6. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man

    Savard, G; Strange, S; Kiens, Bente

    1987-01-01

    Increases in plasma noradrenaline (NA) concentration occur during moderate to heavy exercise in man. This study was undertaken to examine the spillover of NA from both resting and contracting skeletal muscle during exercise. Six male subjects performed one-legged knee-extension so that all...... in the exercising leg than in the resting leg both during 50% and 100% leg exercise. These results suggest that contracting skeletal muscle may contribute to a larger extent than resting skeletal muscle to increasing the level of plasma NA during exercise. Contractile activity may influence the NA spillover from...

  7. Rest requirements and rest management of personnel in shift work

    Hammell, B.D. [PDG Environmental, Melbourne, FL (United States); Scheuerle, A. [Univ. of Texas, Houston, TX (United States)

    1995-12-31

    A difficulty-weighted shift assignment scheme is proposed for use in prolonged and strenuous field operations such as emergency response, site testing, and short term hazardous waste remediation projects. The purpose of the work rotation plan is to increase productivity, safety, and moral of workers. Job weighting is accomplished by assigning adjustments to the mental and physical intensity of the task, the protective equipment worn, and the climatic conditions. The plan is based on medical studies of sleep deprivation, the effects of rest adjustments, and programs to reduce sleep deprivation and normalize shift schedules.

  8. The Resting Motor Threshold - Restless or Resting?

    Karabanov, Anke Ninija; Raffin, Estelle Emeline; Siebner, Hartwig Roman

    2015-01-01

    , the RMT of the right first dorsal interosseus muscle was repeatedly determined using a threshold-hunting procedure while participants performed motor imagery and visual attention tasks with the right or left hand. Data were analyzed using repeated-measure ANOVA. Results RMT differed depending on which...

  9. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  11. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  12. Subjective Cognitive Decline: Mapping Functional and Structural Brain Changes-A Combined Resting-State Functional and Structural MR Imaging Study.

    Sun, Yu; Dai, Zhengjia; Li, Yuxia; Sheng, Can; Li, Hongyan; Wang, Xiaoni; Chen, Xiaodan; He, Yong; Han, Ying

    2016-10-01

    Purpose To determine whether individuals with subjective cognitive decline (SCD) exhibit functional and structural brain alterations by using resting-state functional and structural magnetic resonance (MR) imaging. Materials and Methods This study received institutional review board approval, and all participants gave informed consent. Resting-state functional MR imaging and structural MR imaging techniques were used to measure amplitude of low-frequency fluctuations (ALFF) and regional gray matter volume in 25 subjects with SCD (mean age, 65.52 years ± 6.12) and 61 control subjects (mean age, 64.11 years ± 8.59). Voxel-wise general linear model analyses were used to examine between-group differences in ALFF or in gray matter volume and to further determine the brain-behavioral relationship. Results Subjects with SCD exhibited higher ALFF values than did control subjects in the bilateral inferior parietal lobule (left: 0.44 ± 0.25 vs 0.27 ± 0.18, respectively; P = .0003; right: 1.46 ± 0.45 vs 1.10 ± 0.37, respectively; P = .0015), right inferior (0.45 ± 0.15 vs 0.37 ± 0.08, repectively; P = .0106) and middle (1.03 ± 0.32 vs 0.83 ± 0.20, respectively; P = .0008) occipital gyrus, right superior temporal gyrus (0.11 ± 0.07 vs 0.07 ± 0.04, respectively; P = .0016), and right cerebellum posterior lobe (0.51 ± 0.27 vs 0.39 ± 0.15, respectively; P = .0010). In the SCD group, significant correlations were found between Auditory Verbal Learning Test recognition scores and ALFF in the left inferior parietal lobe (r = -0.79, P Learning Test immediate recall scores and ALFF values in the right middle occipital gyrus (r = -0.64, P = .002). Nonsignificant group differences were found in gray matter volume (P > .05, corrected). Conclusion Individuals with SCD had altered spontaneous functional activity, suggesting that resting-state functional MR imaging may be a noninvasive method for characterizing SCD. (©) RSNA, 2016 Online supplemental material is available for

  13. Connectivity pattern differences bilaterally in the cerebellum posterior lobe in healthy subjects after normal sleep and sleep deprivation: a resting-state functional MRI study

    Liu XM

    2015-05-01

    Full Text Available Xuming Liu,1 Zhihan Yan,2 Tingyu Wang,1 Xiaokai Yang,1 Feng Feng,3 Luping Fan,1 Jian Jiang4 1Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 2Department of Radiology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, 3Peking Union Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 4Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China Objective: The aim of this study was to use functional magnetic resonance imaging (fMRI technique to explore the resting-state functional connectivity (rsFC differences of the bilaterial cerebellum posterior lobe (CPL after normal sleep (NS and after sleep deprivation (SD. Methods: A total of 16 healthy subjects (eight males, eight females underwent an fMRI scan twice at random: once following NS and the other following 24 hours’ SD, with an interval of 1 month between the two scans. The fMRI scanning included resting state and acupuncture stimulation. The special activated regions located during the acupuncture stimulation were selected as regions of interest for rsFC analysis. Results: Bilateral CPLs were positively activated by acupuncture stimulation. In the NS group, the left CPL showed rsFC with the bilateral CPL, bilateral frontal lobe (BFL, left precuneus and right inferior parietal lobule, while the right CPL showed rsFC with the bilateral temporal lobe, right cerebellum anterior lobe, right CPL, left frontal lobe, left anterior cingulate, right posterior cingulate, and bilateral inferior parietal lobule. In the SD group, the left CPL showed rsFC with the left posterior cingulate gyrus bilateral CPL, left precuneus, left precentral gyrus, BFL, and the left parietal lobe, while the right CPL showed rsFC with bilateral cerebellum anterior lobe, bilateral CPL, left frontal lobe and left temporal lobe. Compared with the NS group, the

  14. Brain sexual differentiation and effects of cross-sex hormone therapy in transpeople: A resting-state functional magnetic resonance study.

    Nota, Nienke M; Burke, Sarah M; den Heijer, Martin; Soleman, Remi S; Lambalk, Cornelis B; Cohen-Kettenis, Peggy T; Veltman, Dick J; Kreukels, Baudewijntje P

    2017-12-01

    It is hypothesized that transpeople show sex-atypical differentiation of the brain. Various structural neuroimaging studies provide support for this notion, but little is known about the sexual differentiation of functional resting-state networks in transpeople. In this study we therefore aimed to determine whether brain functional connectivity (FC) patterns in transpeople are sex-typical or sex-atypical, before and after the start of cross-sex hormone therapy (CHT). We acquired resting-state functional magnetic resonance data in 36 transpeople (22 with female sex assigned at birth), first during gonadal suppression, and again four months after start of CHT, and in 37 cisgender people (20 females), both sessions without any hormonal intervention. We used independent component analysis to identify the default mode network (DMN), salience network (SN), and left and right working memory network (WMN). These spatial maps were used for group comparisons. Within the DMN, SN, and left WMN similar FC patterns were found across groups. However, within the right WMN, cisgender males showed significantly greater FC in the right caudate nucleus than cisgender females. There was no such sex difference in FC among the transgender groups and they did not differ significantly from either of the cisgender groups. CHT (in transgender participants) and circulating sex steroids (in cisgender participants) did not affect FC. Our findings may suggest that cisgender males and females experience a dissimilar (early) differentiation of the right WMN and that such differentiation is less pronounced in transpeople. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study.

    Sanefuji, Masafumi; Craig, Michael; Parlatini, Valeria; Mehta, Mitul A; Murphy, Declan G; Catani, Marco; Cerliani, Leonardo; Thiebaut de Schotten, Michel

    2017-01-01

    Two core symptoms characterize Attention Deficit Hyperactivity Disorder (ADHD) subtypes: inattentiveness and hyperactivity-impulsivity. While previous brain imaging research investigated ADHD as if it was a homogenous condition, its two core symptoms may originate from different brain mechanisms. We, therefore, hypothesized that the functional connectivity of cortico-striatal and attentional networks would be different between ADHD subtypes. We studied 165 children (mean age 10.93 years; age range, 7-17 year old) diagnosed as having ADHD based on their revised Conner's rating scale score and 170 typical developing individuals (mean age 11.46 years; age range, 7-17 year old) using resting state functional fMRI. Groups were matched for age, IQ and head motion during the MRI acquisition. We fractionated the ADHD group into predominantly inattentive, hyperactive-impulsive and combined subtypes based on their revised Conner's rating scale score. We then analyzed differences in resting state functional connectivity of the cortico-striatal and attentional networks between these subtypes. We found a double dissociation of functional connectivity in the cortico-striatal and ventral attentional networks, reflecting the subtypes of the ADHD participants. Particularly, the hyperactive-impulsive subtype was associated with increased connectivity in cortico-striatal network, whereas the inattentive subtype was associated with increased connectivity in the right ventral attention network. Our study demonstrated for the first time a right lateralized, double dissociation between specific networks associated with hyperactivity-impulsivity and inattentiveness in ADHD children, providing a biological basis for exploring symptom dimensions and revealing potential targets for more personalized treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.

    Qian, Andan; Wang, Xin; Liu, Huiru; Tao, Jiejie; Zhou, Jiejie; Ye, Qiong; Li, Jiance; Yang, Chuang; Cheng, Jingliang; Zhao, Ke; Wang, Meihao

    2018-03-21

    Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.

  17. When elephants fall asleep: A literature review on elephant rest with case studies on elephant falling bouts, and practical solutions for zoo elephants.

    Schiffmann, Christian; Hoby, Stefan; Wenker, Christian; Hård, Therese; Scholz, Robert; Clauss, Marcus; Hatt, Jean-Michel

    2018-05-01

    Little attention has been paid to the resting and sleeping behavior of zoo elephants so far. An important concern is when elephants avoid lying down, due to degenerative joint and foot disease, social structure, or stressful environmental changes. Inability or unwillingness to lie down for resting is an important welfare issue, as it may impair sleep. We emphasize the importance of satisfying rest in elephants by reviewing the literature on resting behavior in elephants (Loxodonta africana and Elephas maximus) as well as the documentation of four cases from European zoos and our own direct observations in a zoo group of four female African elephants during 12 entire days. The common denominator in the case reports is the occurrence of a falling bout out of a standing position subsequently to a cessation of lying rest for different periods of time. Although well-known in horses as "episodic collapse" or "excessive drowsiness," this syndrome has not been described in elephants before. To enable its detection, we recommend nocturnal video monitoring for elephant-keeping institutions. The literature evaluation as well as own observational data suggest an inverse relationship between lying rest and standing rest. Preventative measures consist of enclosure modifications that facilitate lying rest (e.g., sand hills) or standing rest in a leaning position as a substitute. Anecdotal observations suggest that the provision of appropriate horizontal environmental structures may encourage safe, sleep-conducive standing rest. We provide drawings on how to install such structures. Effects of providing such structures should be evaluated in the future. © 2018 Wiley Periodicals, Inc.

  18. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale

    2013-01-01

    Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  19. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  20. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder : A Controlled fMRI Perfusion Study

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jaencke, Lutz

    2014-01-01

    Background: In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part'' (EP) and the "Apparently Normal Part'' (ANP), have

  1. Stop and revive? The effectiveness of nap and active rest breaks for reducing driver sleepiness.

    Watling, Christopher N; Smith, Simon S; Horswill, Mark S

    2014-11-01

    The purpose of this study was to compare the effects of two commonly utilized sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed 2 h of simulated driving, followed by a 15-min nap break or a 15-min active rest break, then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break. Copyright © 2014 Society for Psychophysiological Research.

  2. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  3. Liquid droplet radiator performance studies

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  4. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  5. Posture Used in fMRI-PET Elicits Reduced Cortical Activity and Altered Hemispheric Asymmetry with Respect to Sitting Position: An EEG Resting State Study

    Chiara Spironelli

    2017-12-01

    Full Text Available Horizontal body position is a posture typically adopted for sleeping or during brain imaging recording in both neuroscience experiments and diagnostic situations. Recent literature showed how this position and similar ones with head down are associated to reduced plasticity, impaired pain and emotional responses. The present study aimed at further understanding the decrease of cortical activity associated with horizontal body position by measuring high-frequency EEG bands – typically associated with high-level cognitive activation – in a resting state experimental condition. To this end, two groups of 16 female students were randomly assigned to either sitting control (SC or 2-h horizontal Bed Rest condition (hBR while EEG was recorded from 38 scalp recording sites. The hBR group underwent several body transitions, from sitting to supine, and from supine to sitting. Results revealed a clear effect of horizontal posture: the hBR group showed, compared to its baseline and to SC, reduced High-Beta and Gamma EEG band amplitudes throughout the 2-h of hBR condition. In addition, before and after the supine condition, hBR group as well as SC exhibited a greater left vs. right frontal activation in both EEG bands while, on the contrary, the supine position induced a bilateral and reduced activation in hBR participants. The cortical sources significantly more active in SC compared with hBR participants included the left Inferior Frontal Gyrus and left Insula. Results are discussed in relation to the differences among neuroimaging methods (e.g., fMRI, EEG, NIRS, which can be partially explained by posture-induced neural network changes.

  6. Fornix white matter is correlated with resting state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment- a preliminary study

    Elizabeth Grace Kehoe

    2015-02-01

    Full Text Available In this study we wished to examine the relationship between the structural connectivity of the fornix, a white matter (WM tract in the limbic system which is affected in amnestic mild cognitive impairment (aMCI and Alzheimer’s disease (AD, and the resting state functional connectivity (FC of two key related subcortical structures, the thalamus and hippocampus. Twenty-two older healthy controls (HC and 18 older adults with aMCI underwent multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical deconvolution (CSD-based tractography. The FC between the thalamus and hippocampus was calculated using a region-of-interest approach from which the mean time series were exacted and correlated. Diffusion tensor imaging (DTI measures of the white matter microstructure of the fornix were correlated against the Fisher Z correlation values from the FC analysis. There was no difference between the groups in the fornix white matter measures, nor in the resting state FC of the thalamus and hippocampus. We did however find that the relationship between functional and structural connectivity differed significantly between the groups. In the HCs there was a significant positive association between linear diffusion (CL in the fornix and the FC of the thalamus and hippocampus, however there was no relationship between these measures in the aMCI group. These preliminary findings suggest that in aMCI, the relationship between the functional and structural connectivity of regions of the limbic system may be significantly altered compared to healthy ageing. The combined use of DWI and fMRI may advance our understanding of neural network changes in aMCI, and elucidate subtle changes in the relationship between structural and functional brain networks.

  7. Scarred for the Rest of My Career? Career-Long Effects of Abusive Leadership on Professional Athlete Aggression and Task Performance.

    Carleton, Erica L; Barling, Julian; Christie, Amy M; Trivisonno, Melissa; Tulloch, Kelsey; Beauchamp, Mark R

    2016-08-01

    Based on the contention that leadership has sustained effects on followers even after the leader-follower relationship has ended, we investigated the career-long effects of abusive coach leadership on athlete aggression and task performance. Abusive leadership scores were derived from ratings by two independent raters' evaluations of coaches' biographies, and athlete aggression and task performance data were derived from objective sources. Data were obtained from players (N = 693) and coaches (N = 57) involved in the National Basketball Association (NBA) between the 2000-2001 and 2005-2006 seasons. Controlling for tenure, salary, team winning percentage, and absence due to injuries, multilevel modeling showed that exposure to abusive leadership influenced both the trajectory of psychological aggression and task performance over players' careers. These findings suggest that the effects of abusive leadership extend far longer than currently acknowledged, thus furthering our understanding of the nature and effects of abusive leadership.

  8. Dipoles at rest

    Griffiths, D.J.

    1992-01-01

    In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed

  9. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background: In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part'' (EP) and the "Apparently Normal Part'' (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods: Arterial ...

  10. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  11. IMMUNOMETABOLIC RESPONSES AFTER SHORT AND MODERATE REST INTERVALS TO STRENGTH EXERCISE WITH AND WITHOUT SIMILAR TOTAL VOLUME.

    Ricardo Agostinete

    2016-10-01

    Full Text Available This study investigated the influence of short and moderate intervals of recovery with and without equated volume during an acute bout exhaustive strength exercise on metabolic, hormonal and inflammatory responses in healthy adults. Eight physically active men (23.5 ±3.1 performed three randomized sequences: Short (70% of 1RM with 30 seconds of rest; Moderate (70% of 1RM with 90 seconds of rest; and Volume-Equated Short (70% of 1 RM with 30 seconds of rest between sets with a repetition volume equal to that performed in Moderate. All sequences of exercises were performed until movement failure in the squat, bench press and T-bar row exercises, respectively. Glucose, lactate, testosterone, IL-6, IL-10, IL-1ra and MCP-1 levels were assessed at rest, immediate post-exercise, and 1 hour post. There was a main effect of time for testosterone (p<0.001. The post hoc indicated differences between post-exercise and rest and post-1 hour and post-exercise (p<0.001. Lactate increased post-exercise when compared to pre and post-1 hour (p<0.001 and maintained higher post-1 hour in relation to rest. IL-6 was greater post-exercise than rest (p= 0.045 and post-1 hour and rest (p= 0.020. IL-10 was greater post-exercise (p= 0.007 and post-1 hour (p=0.002 than rest. IL-1ra increased post-exercise in relation to rest (p=0.003 and MCP-1 was greater post-exercise than rest (p<0.001 and post-1 hour (p=0.043. There were no significant differences between conditions or interaction. Thus, both short and moderate intervals of recovery induced greater metabolic, hormonal and inflammatory responses after acute bout of exhaustive strength exercise in healthy adult.

  12. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  13. Altered brain network in Amyotrophic Lateral Sclerosis: a resting graph theory-based network study at voxel-wise level

    Chaoyang eZhou

    2016-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  14. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  15. Long Rest Interval Promotes Durable Testosterone Responses in High-Intensity Bench Press.

    Scudese, Estevão; Simão, Roberto; Senna, Gilmar; Vingren, Jakob L; Willardson, Jeffrey M; Baffi, Matheus; Miranda, Humberto

    2016-05-01

    The purpose of this study was to examine the influence of rest period duration (1 vs. 3 minute between sets) on acute hormone responses to a high-intensity and equal volume bench press workout. Ten resistance-trained men (25.2 ± 5.6 years; 78.2 ± 5.7 kg; 176.7 ± 5.4 cm; bench press relative strength: 1.3 ± 0.1 kg per kilogram of body mass) performed 2 bench press workouts separated by 1 week. Each workout consisted of 5 sets of 3 repetitions performed at 85% of 1 repetition maximum, with either 1- or 3-minute rest between sets. Circulating concentrations of total testosterone (TT), free testosterone (FT), cortisol (C), testosterone/cortisol ratio (TT/C), and growth hormone (GH) were measured at preworkout (PRE), and immediately (T0), 15 minutes (T15), and 30 minutes (T30) postworkout. Rating of perceived exertion was recorded before and after each set. For TT, both rest lengths enhanced all postexercise verifications (T0, T15, and T30) compared with PRE, with 1 minute showing decreases on T15 and T30 compared with T0. For FT, both 1- and 3-minute rest protocols triggered augmentations on distinct postexercise moments (T0 and T15 for 1 minute; T15 and T30 for 3-minute) compared with PRE. The C values did not change throughout any postexercise verification for either rests. The TT/C ratio was significantly elevated for both rests in all postexercise moments compared with PRE. Finally, GH values did not change for both rest lengths. In conclusion, although both short and long rest periods enhanced acute testosterone values, the longer rest promoted a long-lasting elevation for both TT and FT.

  16. REST: a toolkit for resting-state functional magnetic resonance imaging data processing.

    Xiao-Wei Song

    Full Text Available Resting-state fMRI (RS-fMRI has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST. REST was developed in MATLAB with graphical user interface (GUI. After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF, and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.. REST is an open-source package and is freely available at http://www.restfmri.net.

  17. Study on the Argument of "Menstruation" in Late Nineteenth-Century America : Focusing on M. P. Jacobi's The Question of Rest for Women during Menstruation

    横山, 美和

    2012-01-01

    This article examines the argument concerning “menstruation” in late nineteenth-century America. With regard to an expansion of women's higher education, Sex in Education (1873) by Dr. Edward Clarke generated a controversy by stating that young women needed rest during menstruation; therefore the rigor of higher education would fail their health. Dr. Mary Putnam Jacobi refuted this argument in The Question of Rest for Women during Menstruation (1877). She attempted to combat the male research...

  18. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    B. Alexander eDiaz

    2013-08-01

    Full Text Available Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ. Based on ARSQ data from 813 participants assessed after five minutes eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer’s disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease.

  19. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2013-01-01

    Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ). Based on ARSQ data from 813 participants assessed after 5 min eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer's disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease. PMID:23964225

  20. Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: A pilot study

    Goswami N

    2015-02-01

    Full Text Available Nandu Goswami,1 Voyko Kavcic,2 Uros Marusic,3 Bostjan Simunic,3 Andreas Rössler,1 Helmut Hinghofer-Szalkay,1 Rado Pisot3 1Institute of Physiology, Medical University of Graz, Graz, Austria; 2Institute of Gerontology, Wayne State University, Detroit, MI, USA; 3Institute for Kinesiology Research, University of Primorska, Ankaran, Slovenia Abstract: We investigated the effects of bed rest (BR immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT, on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16 of ages 53–65 years on endothelial function were studied using EndoPAT®, a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean at baseline to 1.61±0.16 following immobilization (P=0.62 in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14 (P=0.09 in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program (R28. Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018 compared to subjects who had cognitive training (+0.11 (calculated from the first day of BR study, it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results

  1. Assessment of synchronous neural activities revealed by regional homogeneity in individuals with acute eye pain: a resting-state functional magnetic resonance imaging study

    Tang L

    2018-04-01

    Full Text Available Li-Yuan Tang,1,* Hai-Jun Li,2,* Xin Huang,1 Jing Bao,1 Zubin Sethi,3 Lei Ye,1 Qing Yuan,1 Pei-Wen Zhu,1 Nan Jiang,1 Gui-Ping Gao,1 Yi Shao1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; 3The Department of Medicine, University of Miami, Coral Gables, FL, USA *These authors contributed equally to this work Objective: Previous neuroimaging studies have demonstrated that pain-related diseases are associated with brain function and anatomical abnormalities, whereas altered synchronous neural activity in acute eye pain (EP patients has not been investigated. The purpose of this study was to explore whether or not synchronous neural activity changes were measured with the regional homogeneity (ReHo method in acute EP patients.Methods: A total of 20 patients (15 males and 5 females with EP and 20 healthy controls (HCs consisting of 15 and 5 age-, sex-, and education-matched males and females, respectively, underwent resting-state functional magnetic resonance imaging. The ReHo method was applied to assess synchronous neural activity changes.Results: Compared with HCs, acute EP patients had significantly lower ReHo values in the left precentral/postcentral gyrus (Brodmann area [BA]3/4, right precentral/postcentral gyrus (BA3/4, and left middle frontal gyrus (BA6. In contrast, higher ReHo values in acute EP patients were observed in the left superior frontal gyrus (BA11, right inferior parietal lobule (BA39/40, and left precuneus (BA7. However, no relationship was found between the mean ReHo signal values of the different areas and clinical manifestations, which included both the duration and degree of pain in EP patients.Conclusion: Our study highlighted that acute EP patients showed altered synchronous neural activities in many brain regions, including somatosensory regions. These

  2. DIRAC RESTful API

    Casajus Ramo, A; Graciani Diaz, R; Tsaregorodtsev, A

    2012-01-01

    The DIRAC framework for distributed computing has been designed as a flexible and modular solution that can be adapted to the requirements of any community. Users interact with DIRAC via command line, using the web portal or accessing resources via the DIRAC python API. The current DIRAC API requires users to use a python version valid for DIRAC. Some communities have developed their own software solutions for handling their specific workload, and would like to use DIRAC as their back-end to access distributed computing resources easily. Many of these solutions are not coded in python or depend on a specific python version. To solve this gap DIRAC provides a new language agnostic API that any software solution can use. This new API has been designed following the RESTful principles. Any language with libraries to issue standard HTTP queries may use it. GSI proxies can still be used to authenticate against the API services. However GSI proxies are not a widely adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the user credentials to a third party solution. These delegated credentials allow the third party software to query to DIRAC on behalf of the users. This new API will further expand the possibilities communities have to integrate DIRAC into their distributed computing models.

  3. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not

  4. Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Pan Z

    2018-01-01

    Full Text Available Zhi-Ming Pan,1 Hai-Jun Li,1 Jing Bao,1 Nan Jiang,1 Qing Yuan,1 Shelby Freeberg,2 Pei-Wen Zhu,1 Lei Ye,1 Ming-Yang Ma,1 Xin Huang,1 Yi Shao1 1Department of Ophthalmology and Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Ophthalmology, University of Florida, Gainesville, FL, USA Objective: Many previous studies have reported that pain symptoms can lead to significant brain function and anatomical changes, whereas the intrinsic brain activity changes in acute eye pain (EP patients remain unknown. Using the amplitude of low-frequency fluctuation (ALFF method, this study aimed to evaluate the spontaneous brain activity alterations and their relationships with clinical features in acute EP patients.Participants and methods: A total of 20 patients with EP (15 males and 5 females and 20 healthy controls (HCs; 15 males and 5 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was applied to assess spontaneous brain activity changes. The ALFF values of the EP patients were distinguished from those of the HCs using a receiver operating characteristic curve. Pearson’s correlation analysis was used to investigate the relationships between the mean ALFF signal values from many brain regions and the clinical features in EP patients.Results: Compared with the HCs, acute EP patients had significantly lower ALFF in the left and right precentral/postcentral gyrus and left precuneus. In contrast, acute EP patients showed higher ALFF values in the right and left parahippocampal gyri and left caudate. However, no relationship was observed between the mean ALFF signal values from the different areas and clinical manifestations in the acute EP patients.Conclusion: We demonstrated that acute EP patients showed abnormal intrinsic brain activities in the precentral/postcentral gyrus and limbic system

  5. The Effect of Rest Interval Length on Repetition Consistency and Perceived Exertion During Near Maximal Loaded Bench Press Sets.

    Scudese, Estevão; Willardson, Jeffrey M; Simão, Roberto; Senna, Gilmar; de Salles, Belmiro F; Miranda, Humberto

    2015-11-01

    The purpose of this study was to compare different rest intervals between sets on repetition consistency and ratings of perceived exertion (RPE) during consecutive bench press sets with an absolute 3RM (3 repetition maximum) load. Sixteen trained men (23.75 ± 4.21 years; 74.63 ± 5.36 kg; 175 ± 4.64 cm; bench press relative strength: 1.44 ± 0.19 kg/kg of body mass) attended 4 randomly ordered sessions during which 5 consecutive sets of the bench press were performed with an absolute 3RM load and 1, 2, 3, or 5 minutes of rest interval between sets. The results indicated that significantly greater bench press repetitions were completed with 2, 3, and 5 minutes vs. 1-minute rest between sets (p ≤ 0.05); no significant differences were noted between the 2, 3, and 5 minutes rest conditions. For the 1-minute rest condition, performance reductions (relative to the first set) were observed commencing with the second set; whereas for the other conditions (2, 3, and 5 minutes rest), performance reductions were not evident until the third and fourth sets. The RPE values before each of the successive sets were significantly greater, commencing with the second set for the 1-minute vs. the 3 and 5 minutes rest conditions. Significant increases were also evident in RPE immediately after each set between the 1 and 5 minutes rest conditions from the second through fifth sets. These findings indicate that when utilizing an absolute 3RM load for the bench press, practitioners may prescribe a time-efficient minimum of 2 minutes rest between sets without significant impairments in repetition performance. However, lower perceived exertion levels may necessitate prescription of a minimum of 3 minutes rest between sets.

  6. Surface-Based Regional Homogeneity in First-Episode, Drug-Naïve Major Depression: A Resting-State fMRI Study

    Hui-Jie Li

    2014-01-01

    Full Text Available Background. Previous volume-based regional homogeneity (ReHo studies neglected the intersubject variability in cortical folding patterns. Recently, surface-based ReHo was developed to reduce the intersubject variability and to increase statistical power. The present study used this novel surface-based ReHo approach to explore the brain functional activity differences between first-episode, drug-naïve MDD patients and healthy controls. Methods. Thirty-three first-episode, drug-naïve MDD patients and 32 healthy controls participated in structural and resting-state fMRI scans. MDD patients were rated with a 17-item Hamilton Rating Scale for Depression prior to the scan. Results. In comparison with the healthy controls, MDD patients showed reduced surface-based ReHo in the left insula. There was no increase in surface-based ReHo in MDD patients. The surface-based ReHo value in the left insula was not significantly correlated with the clinical information or the depressive scores in the MDD group. Conclusions. The decreased surface-based ReHo in the left insula in MDD may lead to the abnormal top-down cortical-limbic regulation of emotional and cognitive information. The surface-based ReHo may be a useful index to explore the pathophysiological mechanism of MDD.

  7. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Yongxin Li

    2017-08-01

    Full Text Available For some patients with medically refractory epilepsy (MRE, surgery is a safe and effective treatment for controlling epilepsy. However, the functional consequences of such surgery on brain activity and connectivity in children remain unknown. In the present study, we carried out a longitudinal study using resting-state functional magnetic resonance imaging in 10 children with MRE before and again at a mean of 79 days after surgery, as well as in a group of 28 healthy controls. Compared with the controls, children with epilepsy exhibited abnormalities in intrinsic activity in the thalamus, putamen, pallidum, insula, hippocampus, cerebellum, and cingulate gyrus both before and after surgery. Longitudinal analyses showed that the amplitude of low frequency fluctuations (ALFF increased in the parietal–frontal cortex and decreased in the deep nuclei from pre- to post-surgery. The percentage changes in ALFF values in the deep nuclei were positively correlated with the age of epilepsy onset. Functional connectivity (FC analyses demonstrated a reorganization of FC architecture after surgery. These changes in brain activity and FC after surgery might indicate that the previously disrupted functional interactions were reorganized after surgery. All these results provide preliminary evidence that the age of epilepsy onset may have some potential to predict the outcome of brain functional reorganization after surgery in children with MRE.

  8. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study

    Katarzyna Giertuga

    2017-05-01

    Full Text Available Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups.

  9. Long-term total sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study

    Dai XJ

    2015-03-01

    Full Text Available Xi-Jian Dai,1,2* Chun-Lei Liu,3,4* Ren-Lai Zhou,3 Hong-Han Gong,1 Bin Wu,5 Lei Gao,1 Yi-Xiang J Wang2 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of China; 3Beijing Key Lab of Applied Experimental Psychology, School of Psychology, and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China; 4School of Education, Qufu Normal University, Qufu, Shandong, People’s Republic of China; 5National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, People’s Republic of China *These authors have contributed equally to this work Objective: The aim of this study is to use resting-state functional connectivity (rsFC and amplitude of low-frequency fluctuation (ALFF methods to explore intrinsic default-mode network (DMN impairment after sleep deprivation (SD and its relationships with clinical features. Methods: Twelve healthy male subjects underwent resting-state functional magnetic resonance imaging twice: once following rested wakefulness (RW and the other following 72 hours of total SD. Before the scans, all subjects underwent the attention network test (ANT. The independent component analysis (ICA, rsFC, and ALFF methods were used to examine intrinsic DMN impairment. Receiver operating characteristic (ROC curve was used to distinguish SD status from RW status. Results: Compared with RW subjects, SD subjects showed a lower accuracy rate (RW =96.83%, SD =77.67%; P<0.001, a slower reaction time (RW =695.92 ms; SD =799.18 ms; P=0.003, a higher lapse rate (RW =0.69%, SD =19.29%; P<0.001, and a higher intraindividual coefficient of variability in reaction time (RW =0.26, SD =0

  10. Comparison of the Effects of Seated, Supine, and Walking Interset Rest Strategies on Work Rate.

    Ouellette, Kristen A; Brusseau, Timothy A; Davidson, Lance E; Ford, Candus N; Hatfield, Disa L; Shaw, Janet M; Eisenman, Patricia A

    2016-12-01

    Ouellette, KA, Brusseau, TA, Davidson, LE, Ford, CN, Hatfield, DL, Shaw, JM, and Eisenman, PA. Comparison of the effects of seated, supine, and walking interset rest strategies on work rate. J Strength Cond Res 30(12): 3396-3404, 2016-The idea that an upright posture should be maintained during the interset rest periods of training sessions is pervasive. The primary aim of this study was to determine differences in work rate associated with 3 interset rest strategies. Male and female members of the CrossFit community (male n = 5, female n = 10) were recruited to perform a strenuous training session designed to enhance work capacity that involved both cardiovascular and muscular endurance exercises. The training session was repeated on 3 separate occasions to evaluate 3 interset rest strategies, which included lying supine on the floor, sitting on a flat bench, and walking on a treadmill (0.67 m·s). Work rate was calculated for each training session by summing session joules of work and dividing by the time to complete the training session (joules of work per second). Data were also collected during the interset rest periods (heart rate [HR], respiratory rate [RR], and volume of oxygen consumed) and were used to explain why one rest strategy may positively impact work rate compared with another. Statistical analyses revealed significant differences (p ≤ 0.05) between the passive and active rest strategies, with the passive strategies allowing for improved work rate (supine = 62.77 ± 7.32, seated = 63.66 ± 8.37, and walking = 60.61 ± 6.42 average joules of work per second). Results also suggest that the passive strategies resulted in superior HR, RR, and oxygen consumption recovery. In conclusion, work rate and physiological recovery were enhanced when supine and seated interset rest strategies were used compared with walking interset rest.

  11. Can resting B cells present antigen to T cells

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  12. Study of the $K^{+}K^{-} \\pi^{+}\\pi^{-}\\pi^{0}$ final state in antiproton annihilation at rest in gaseous hydrogen at NTP with the OBELIX spectrometer

    Nichitiu, F; Balestra, F; Bertin, A; Bonomi, G; Botta, E; Bressani, Tullio; Bruschi, M; Bussa, M P; Busso, L; Calvo, D; Capponi, M; Cerello, P G; Cicalò, C; Costa, S; D'Isep, D; De Castro, S; De Galco, A; Denisov, O; Donzella, A; Feliciello, A; Filippi, A; Filippini, V; Fontana, A; Galli, D; Garfagnini, R; Giacobbe, B; Gianotti, P; Gorchakov, O E; Grasso, A; Guaraldo, C; Iazzi, F; Lanaro, A; Lodi-Rizzini, E; Lucherini, V; Maggiora, A; Marcello, S; Marconi, U; Masoni, A; Massa, I; Mauro, S; Minetti, B; Mirfakhraee, N; Montagna, P; Panzarasa, A; Panzieri, D; Petrascu, C; Piccinini, M; Poli, M; Prakhov, S N; Puddu, G; Rosca, A; Rotondi, A; Rozhdestvensky, A M; Salvini, P; Semprini-Cesari, N; Spighi, R; Tessaro, S; Tosello, F; Tretyak, V I; Usai, G L; Vagnoni, V M; Vecchi, S; Venturelli, L; Villa, M; Vitale, A; Zenoni, A; Zoccoli, A

    2002-01-01

    A spin-parity analysis of a sample of pp to K/sup +/K/sup -/ pi /sup +/ pi /sup -/ pi /sup 0/ annihilation events taken at rest in gaseous H/sub 2/ at NTP is reported. The invariant mass spectrum of the K/sup +/K/sup -/ pi /sup 0/ system shows the presence of the E/t resonance pattern at 1.42 GeV. The analysis of this signal confirms the results obtained by the OBELIX Collaboration in previous works, namely: the existence of two pseudoscalar states at 1.413+or-0.002 and 1.460+or-0.012 GeV with widths 0.051+or-0.004 and 0.120+or-0.015 GeV, respectively. The pp system in the /sup 3/P/sub 1/ wave shows also a signal corresponding to the axial vector f/sub 1/ (1420) decaying to K*K with mass 1.420+or-0.003 GeV and width 0.061+or-0.005 GeV. A study of the incoherent phase space background shows that its origin is mostly due to the reflection of a resonant state in the K/sup +/K /sup -/ pi /sup +/ pi /sup -/ system. The isobar decomposition of this resonant state is mainly f/sub 0/(1370)( pi pi )/sub S/, its parame...

  13. Frequency-dependent changes in the amplitude of low-frequency fluctuations in patients with Wilson's disease: a resting-state fMRI study.

    Hu, Xiaopeng; Chen, Siyi; Huang, Chang-Bing; Qian, Yinfeng; Yu, Yongqiang

    2017-06-01

    To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.

  14. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  15. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Gao, Bin; Wang, Yiquan; Liu, Weibo; Chen, Zhiyu; Zhou, Heshan; Yang, Jinyu; Cohen, Zachary; Zhu, Yihong; Zang, Yufeng

    2015-01-01

    Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  16. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study.

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-12-05

    Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.

  17. The effect of EC-IC bypass surgery on resting cerebral blood flow and cerebrovascular reserve capacity studied with stable Xe-CT and acetazolamide test

    Yamashita, T.; Kashiwagi, S.; Nakano, S.; Takasago, T.; Abiko, S.; Shiroyama, Y.; Hayashi, M.; Ito, H. (Yamaguchi Univ. School of Medicine (Japan). Dept. of Neurosurgery)

    1991-06-01

    Cerebral blood flow (CBF) and cerebrovascular reserve capacity (CRC) were measured by stable xenon computerized tomography (Xe-CT) and acetazolamide test in 15 patients with cerebrovascular disease before and after extracranial-intracranial (EC-IC) bypass surgery for minor stroke, reversible ischemic neurological deficit or transient ischemic attack. All had angiographically shown occlusive lesions of the major arterial trunk. In the present series, global analysis showed that the bypass did not increase the resting rCBF, but did increase the rCRC. We divided the patients into four groups according to the preoperative resting rCBF and rCRC. All 3 patients with normal resting rCBF and reduced rCRC showed postoperative improvement of rCRC. Of 6 patients with reduced CBF and reduced CRC, three had postoperative increase in resting CBF and four had increased CRC. One of two patients with reduced CBF and normal CRC showed only an increase in CRC. We propose that reduced CRC or reduced CBF with reduced CRC are criteria for selection of candidates for bypass surgery. We conclude that Xe-CT with the Diamox test is a useful and simple method for evaluating cerebral hemodynamics. Preoperative grouping with a combination of preoperative resting rCBF and preoperative rCRC is useful for predicting the effect of EC-IC bypass surgery. (orig.).

  18. Physiology Of Prolonged Bed Rest

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  19. Effects of prestudy and poststudy rest on memory: Support for temporal interference accounts of forgetting.

    Ecker, Ullrich K H; Tay, Jia-Xin; Brown, Gordon D A

    2015-06-01

    According to interference-based theories of memory, including temporal-distinctiveness theory, both prestudy and poststudy rest should have beneficial impacts on memory performance. Specifically, higher temporal isolation of a memorandum should reduce proactive and/or retroactive interference, and thus should result in better recall. In the present study, we investigated the effects of prestudy and poststudy rest in a free recall paradigm. Participants studied three lists of words, separated by either a short or a long period of low mental activity (a tone-detection task). Recall targeted the second list; this list was studied in one of four conditions, defined by the fully crossed factors of prestudy and poststudy rest duration. Two experiments revealed a beneficial effect of prestudy rest (and, to a lesser extent, of poststudy rest) on list recall. This result is in line with interference-based theories of memory. By contrast, a beneficial effect of prestudy rest is not predicted by consolidation accounts of memory and forgetting; our results thus require additional assumptions and/or a better specification of the consolidation process and its time course in order to be reconciled with consolidation theory.

  20. The influence of rest period instructions on the default mode network

    Christopher eBenjamin

    2010-12-01

    Full Text Available The default mode network (DMN refers to regional brain activity that is greater during rest periods than during attention-demanding tasks and many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN, which is the noise produced by functional magnetic resonance imaging (fMRI. However, it is unclear whether different approaches to rest in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimer’s disease. We examined twenty-seven healthy adult volunteers who completed an fMRI experiment with 3 different instructions for rest: (1 relax and be still, (2 attend to SBN, or (3 ignore SBN. Region of interest (ROI analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimer’s disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC exhibited greater activity when specific resting instructions were given (i.e. attend to or ignore SBN compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children.

  1. Resting alpha activity predicts learning ability in alpha neurofeedback

    Wenya eNan

    2014-07-01

    Full Text Available Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the training parameter changes between two periods, within a short period and across the whole training time. It was found that the resting alpha amplitude measured before training had significant positive correlations with all learning indices and could be used as a predictor for the learning ability prediction. This finding would help the researchers in not only predicting the training efficacy in individuals but also gaining further insight into the mechanisms of alpha neurofeedback.

  2. Effects of behavioral activation on default mode network connectivity in subthreshold depression: A preliminary resting-state fMRI study.

    Yokoyama, Satoshi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Takamura, Masahiro; Mori, Asako; Shiota, Syouichi; Ichikawa, Naho; Jinnin, Ran; Yamawaki, Shigeto

    2018-02-01

    Subthreshold depression is a risk factor for major depressive disorder, and it is known to have a negative impact on quality of life (QOL). Although behavioral activation, which is one type of cognitive behavioral therapy, is an effective psychological intervention for subthreshold depression, neural mechanisms of behavioral activation are unclear. Enhanced functional connectivity between default mode network (DMN) and the other regions has been demonstrated in participants with subthreshold depression. The purpose of this study was to examine the effects of behavioral activation on DMN abnormalities by using resting-state functional MRI (rs-fMRI). Participants with subthreshold depression (N =40) were randomly assigned to either an intervention group or a non-intervention group. They were scanned using rs-fMRI before and after the intervention. Independent component analysis indicated three subnetworks of the DMN. Analyzing intervention effects on functional connectivity of each subnetwork indicated that connectivity of the anterior DMN subnetwork with the dorsal anterior cingulate was reduced after the intervention. Moreover, this reduction was correlated with an increase in health-related QOL. We did not compare the findings with healthy participants. Further research should be conducted by including healthy controls to verify the results of this study. Mechanisms of behavioral activation might be related to enhanced ability to independently use the dACC and the DMN, which increases an attention control to positive external stimuli. This is the first study to investigate neural mechanisms of behavioral activation using rs-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: a resting-PET brain metabolism study.

    Laura Moreno-López

    Full Text Available INTRODUCTION: Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. METHODS: Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM (using Statistical Parametric Mapping voxel-based (VB whole-brain analyses. In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. RESULTS: The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. CONCLUSIONS: Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.

  4. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method.

    Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve

    2017-01-01

    Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.

  5. Altered pattern of spontaneous brain activity in the patients with end-stage renal disease: a resting-state functional MRI study with regional homogeneity analysis.

    Xue Liang

    Full Text Available PURPOSE: To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI with a regional homogeneity (ReHo algorithm. MATERIALS AND METHODS: rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years and 20 healthy controls (13 male, 7 female, 36±10.27 years. Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST] and laboratory tests were performed in all patients. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration. RESULTS: Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL, medial frontal cortex (MFC and left precuneus (PCu. The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL (all P0.05, AlphaSim corrected. CONCLUSION: Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN, frontal and parietal lobes might be trait-related in MNE. The Re

  6. Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity.

    Vasily A Vakorin

    2016-12-01

    Full Text Available Accurate means to detect mild traumatic brain injury (mTBI using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz, together with increased connectivity in the slower alpha band (8-12 Hz. A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI.

  7. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  8. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific

  9. Altered Functional Connectivity of the Basal Nucleus of Meynert in Mild Cognitive Impairment: A Resting-State fMRI Study

    Hui Li

    2017-05-01

    Full Text Available Background: Cholinergic dysfunction plays an important role in mild cognitive impairment (MCI. The basal nucleus of Meynert (BNM provides the main source of cortical cholinergic innervation. Previous studies have characterized structural changes of the cholinergic basal forebrain in individuals at risk of developing Alzheimer’s disease (AD. However, whether and how functional connectivity of the BNM (BNM-FC is altered in MCI remains unknown.Objective: The aim of this study was to identify alterations in BNM-FC in individuals with MCI as compared to healthy controls (HCs, and to examine the relationship between these alterations with neuropsychological measures in individuals with MCI.Method: One-hundred-and-one MCI patients and 103 HCs underwent resting-state functional magnetic resonance imaging (rs-fMRI. Imaging data were processed with SPM8 and CONN software. BNM-FC was examined via correlation in low frequency fMRI signal fluctuations between the BNM and all other brain voxels. Group differences were examined with a covariance analysis with age, gender, education level, mean framewise displacement (FD and global correlation (GCOR as nuisance covariates. Pearson’s correlation was conducted to evaluate the relationship between the BNM-FC and clinical assessments.Result: Compared with HCs, individuals with MCI showed significantly decreased BNM-FC in the left insula extending into claustrum (insula/claustrum. Furthermore, greater decrease in BNM-FC with insula/claustrum was associated with more severe impairment in immediate recall during Auditory Verbal Learning Test (AVLT in MCI patients.Conclusion: MCI is associated with changes in BNM-FC to the insula/claustrum in relation to cognitive impairments. These new findings may advance research of the cholinergic bases of cognitive dysfunction during healthy aging and in individuals at risk of developing AD.

  10. EMF-REST: Generation of RESTful APIs from Models

    Hamza , Ed-Douibi; Cánovas Izquierdo , Javier Luis; Gómez , Abel; Tisi , Massimo; Cabot , Jordi

    2016-01-01

    In the last years, RESTful Web services have become more and more popular as a lightweight solution to connect remote systems in distributed and Cloud-based architectures. However, being an architectural style rather than a specification or standard, the proper design of RESTful Web services is not trivial since developers have to deal with a plethora of recommendations and best practices. Model-Driven Engineering (MDE) emphasizes the use of models and model transformations to raise the level...

  11. Bilateral changes in forearm oxygen consumption at rest and after exercise in patients with unilateral Repetitive Strain Injury : A case control study

    J. Oosterhof; D. Thijssen; M. Hopman; J. Brunnekreef

    2011-01-01

    To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper

  12. Effects of morphine and alcohol on functional brain connectivity during "resting state": A placebo-controlled crossover study in healthy young men

    Khalili-Mahani, N.; Zoethout, R.M.; Beckmann, Christian; Baerends, E.J.; de Kam, M.L.; Soeter, R.P.; Dahan, A.; van Buchem, M.A.; van Gerven, J.M.; Rombouts, S.A.

    2012-01-01

    A major challenge in central nervous system (CNS) drug research is to develop a generally applicable methodology for repeated measurements of drug effects on the entire CNS, without task-related interactions and a priori models. For this reason, data-driven resting-state fMRI methods are promising

  13. Neuroaging through the Lens of the Resting State Networks

    Filippo Cieri

    2018-01-01

    Full Text Available Resting state functional magnetic resonance imaging (rs-fMRI allows studying spontaneous brain activity in absence of task, recording changes of Blood Oxygenation Level Dependent (BOLD signal. rs-fMRI enables identification of brain networks also called Resting State Networks (RSNs including the most studied Default Mode Network (DMN. The simplicity and speed of execution make rs-fMRI applicable in a variety of normal and pathological conditions. Since it does not require any task, rs-fMRI is particularly useful for protocols on patients, children, and elders, increasing participant’s compliance and reducing intersubjective variability due to the task performance. rs-fMRI has shown high sensitivity in identification of RSNs modifications in several diseases also in absence of structural modifications. In this narrative review, we provide the state of the art of rs-fMRI studies about physiological and pathological aging processes. First, we introduce the background of resting state; then we review clinical findings provided by rs-fMRI in physiological aging, Mild Cognitive Impairment (MCI, Alzheimer Dementia (AD, and Late Life Depression (LLD. Finally, we suggest future directions in this field of research and its potential clinical applications.

  14. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  15. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state.

    Zhou, Fuqing; Huang, Suhua; Zhuang, Ying; Gao, Lei; Gong, Honghan

    2017-01-01

    New neuroimaging techniques have led to significant advancements in our understanding of cerebral mechanisms of primary insomnia. However, the neuronal low-frequency oscillation remains largely uncharacterized in chronic primary insomnia (CPI). In this study, the amplitude of low-frequency fluctuation (ALFF), a data-driven method based on resting-state functional MRI, was used to examine local intrinsic activity in 27 patients with CPI and 27 age-, sex-, and education-matched healthy controls. We examined neural activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz), because blood-oxygen level dependent (BOLD) fluctuations in different low-frequency bands may present different neurophysiological manifestations that pertain to a spatiotemporal organization. The ALFF associated with the primary disease effect was widely distributed in the cerebellum posterior lobe (CPL), dorsal and ventral prefrontal cortex, anterior cingulate cortex, precuneus, somatosensory cortex, and several default-mode sub-regions. Several brain regions (i.e., the right cerebellum, anterior lobe, and left putamen) exhibited an interaction between the frequency band and patient group. In the slow-5 band, increased ALFF of the right postcentral gyrus/inferior parietal lobule (PoCG/IPL) was enhanced in association with the sleep quality (ρ = 0.414, P  = 0.044) and anxiety index (ρ = 0.406, P  = 0.049) of the CPI patients. These findings suggest that during chronic insomnia, the intrinsic functional plasticity primarily responds to the hyperarousal state, which is the loss of inhibition in sensory-informational processing. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations.

  16. Resting energy expenditure and body composition in patients with head and neck cancer: An observational study leading to a new predictive equation.

    Souza, Micheline Tereza Pires; Singer, Pierre; Ozorio, Gislaine Aparecida; Rosa, Vitor Modesto; Alves, Maria Manuela Ferreira; Mendoza López, Rossana Verónica; Waitzberg, Dan L

    2018-02-05

    Patients with head and neck cancer have changes in body composition and resting energy expenditure (REE) related to significant inflammatory processes. We investigated REE and body composition in a population of patients with head and neck cancer, comparing the measured REE with predicted energy expenditure and deriving an equation of anthropometric values and body composition. This retrospective, observational, descriptive study of a single center included patients with head and neck cancer. We evaluated nutritional status by body mass index (BMI) and Patient-Generated Subjective Global Assessment (PG-SGA), body composition by electric bioimpedance, and REE by indirect calorimetry (IC). We included 140 patients, most of whom were men (80.7%), 60 y or older (58.6%), and had advanced disease (77.9%). Most were malnourished by BMI standards (77.9%) and severely malnourished according to the PG-SGA (49.3%), with a fat-free mass below the ideal values (82.9%) associated with sarcopenia (92.1%). Hypermetabolism was 57%. When comparing REE with the Harris-Benedict formula, we found the agreement limits from -546 613 to 240 708, the mean difference was -152 953 (95% confidence interval [CI], -185 844 to -120 062) and Pitman's variance test was r = -0.294 (P = 0.001). When we included the activity factor and the thermogenesis factor in REE and compared with Harris-Benedict, we found the agreement limits from -764.423 to 337.087, a mean difference of -213.668 (95% CI -259.684 to -167.652), and the Pitman's variance text at r = -0.292 (P = 0.001). Predictive equations, generally recommended by guidelines, are imprecise when compared with IC measures. Therefore, we suggest a new predictive equation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Altered Rich-Club and Frequency-Dependent Subnetwork Organization in Mild Traumatic Brain Injury: A MEG Resting-State Study

    Marios Antonakakis

    2017-08-01

    Full Text Available Functional brain connectivity networks exhibit “small-world” characteristics and some of these networks follow a “rich-club” organization, whereby a few nodes of high connectivity (hubs tend to connect more densely among themselves than to nodes of lower connectivity. The Current study followed an “attack strategy” to compare the rich-club and small-world network organization models using Magnetoencephalographic (MEG recordings from mild traumatic brain injury (mTBI patients and neurologically healthy controls to identify the topology that describes the underlying intrinsic brain network organization. We hypothesized that the reduction in global efficiency caused by an attack targeting a model's hubs would reveal the “true” underlying topological organization. Connectivity networks were estimated using mutual information as the basis for cross-frequency coupling. Our results revealed a prominent rich-club network organization for both groups. In particular, mTBI patients demonstrated hyper-synchronization among rich-club hubs compared to controls in the δ band and the δ-γ1, θ-γ1, and β-γ2 frequency pairs. Moreover, rich-club hubs in mTBI patients were overrepresented in right frontal brain areas, from θ to γ1 frequencies, and underrepresented in left occipital regions in the δ-β, δ-γ1, θ-β, and β-γ2 frequency pairs. These findings indicate that the rich-club organization of resting-state MEG, considering its role in information integration and its vulnerability to various disorders like mTBI, may have a significant predictive value in the development of reliable biomarkers to help the validation of the recovery from mTBI. Furthermore, the proposed approach might be used as a validation tool to assess patient recovery.

  19. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: a resting-state functional MRI study

    Daihong Liu

    2016-09-01

    Full Text Available Type 2 diabetes mellitus (T2DM has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo and functional connectivity (FC analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus and lower ReHo in right fusiform gyrus, right precentral gyrus and right medial orbit of the superior frontal gyrus. Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test forward scores revealed significant correlations with the ReHo values of the right precentral gyrus (ρ = 0.527, p = 0.014 and FC between the right fusiform gyrus and middle temporal gyrus (ρ = -0.437, p = 0.048. Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM-associated brain

  20. Performance appraisal of coaches: Acomparative study | Surujlal ...

    Within the sport environment, the performance appraisal of coaches continues to be an issue. The performance appraisal of coaches is critical to sport organizations since major decisions like rewarding or terminating coaches is based on it. The purpose of this study was to examine whether any differences exist with regard ...

  1. US QCD computational performance studies with PERI

    Zhang, Y; Fowler, R; Huck, K; Malony, A; Porterfield, A; Reed, D; Shende, S; Taylor, V; Wu, X

    2007-01-01

    We report on some of the interactions between two SciDAC projects: The National Computational Infrastructure for Lattice Gauge Theory (USQCD), and the Performance Engineering Research Institute (PERI). Many modern scientific programs consistently report the need for faster computational resources to maintain global competitiveness. However, as the size and complexity of emerging high end computing (HEC) systems continue to rise, achieving good performance on such systems is becoming ever more challenging. In order to take full advantage of the resources, it is crucial to understand the characteristics of relevant scientific applications and the systems these applications are running on. Using tools developed under PERI and by other performance measurement researchers, we studied the performance of two applications, MILC and Chroma, on several high performance computing systems at DOE laboratories. In the case of Chroma, we discuss how the use of C++ and modern software engineering and programming methods are driving the evolution of performance tools

  2. Rest and exercise ventricular function in adults with congenital ventricular septal defects

    Jablonsky, G.; Hilton, J.D.; Liu, P.P.; Morch, J.E.; Druck, M.N.; Bar-Shlomo, B.Z.; McLaughlin, P.R.

    1983-01-01

    Rest and exercise right and left ventricular function were compared using equilibrium gated radionuclide angiography in 19 normal sedentary control subjects and 34 patients with hemodynamically documented congenital ventricular septal defect (VSD). Gated radionuclide angiography was performed at rest and during each level of graded supine bicycle exercise to fatigue. Heart rate, blood pressure, maximal work load achieved, and right and left ventricular ejection fractions were assessed. The control subjects demonstrated an increase in both the left and right ventricular ejection fractions with exercise. All study groups failed to demonstrate an increase in ejection fraction in either ventricle with exercise. Furthermore, resting left ventricular ejection fraction in Groups 2 and 3 was lower than that in the control subjects and resting right ventricular ejection fraction was lower in Group 3 versus control subjects. Thus left and right ventricular function on exercise were abnormal in patients with residual VSD as compared with control subjects; rest and exercise left ventricular ejection fractions remained abnormal despite surgical closure of VSD in the remote past; resting left and right ventricular function was abnormal in patients with Eisenmenger's complex; lifelong volume overload may be detrimental to myocardial function

  3. A comparative study of long-term effect of tobacco on resting whole mouth salivary flow rate and pH

    Sabarni Chakrabarty

    2015-01-01

    Full Text Available Introduction: The taste receptors responsible for salivary secretion are constantly being affected by the harmful by-products of tobacco, and it is believed that tobacco usage on a long-term basis can decrease the sensitivity of taste receptors leading to decreased salivary reflex. It is hypothesized that long-term tobacco usage might lead to altered taste receptors′ response, changing the salivary flow rate (SFR. Unstimulated whole mouth SFR and salivary pH play an important role in the causation of various oral changes and conditions. Aims: The aim of this study is to determine the effects of long-term use of tobacco on SFR and salivary pH and the oral and dental health among tobacco chewers, smokers, and control group. Settings and Design: Cross-sectional study. Materials and Methods: The study comprised a total of 90 patients who were grouped into smokers (group A, smokeless tobacco chewers (group B, and controls (group C. Each group consisted of 30 healthy male adults. Resting whole mouth saliva was collected from every patient; SFR was calculated and then salivary pH was assessed using the salivary pH strips, depending on the color change of the indicator paper strip when compared with a color chart. Statistical Analysis Used: Data were analyzed using the Statistical Package for Social Service (SPSS computer software. Student′s t-test, analysis of variance (ANOVA, and Z-test were applied to assess between-group differences. Results: The mean (±SD SFR was found to be 0.77 (±0.23 ml/min for group A, 0.63 (±0.16 ml/min for group B, and 1.08 (±0.08 ml/min for group C, and on comparing the groups, the result was significant. The mean (±SD pH was found to be 6.8 (±0.20 for group A, 6.65 (±0.30 for group B, and 7.06 (±0.23 for group C and was also found to be significant on comparison. Conclusions: It is concluded from this experimental study on long-term tobacco users that smokeless and smoked forms of tobacco adversely affect

  4. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).

  5. Tai Chi Chuan and Baduanjin Mind-Body Training Changes Resting-State Low-Frequency Fluctuations in the Frontal Lobe of Older Adults: A Resting-State fMRI Study

    Jing Tao

    2017-10-01

    Full Text Available Age-related cognitive decline is a significant public health concern. Recently, non-pharmacological methods, such as physical activity and mental training practices, have emerged as promising low-cost methods to slow the progression of age-related memory decline. In this study, we investigated if Tai Chi Chuan (TCC and Baduanjin modulated the fractional amplitude of low-frequency fluctuations (fALFF in different frequency bands (low-frequency: 0.01–0.08 Hz; slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz and improved memory function. Older adults were recruited for the randomized study. Participants in the TCC and Baduanjin groups received 12 weeks of training (1 h/day for 5 days/week. Participants in the control group received basic health education. Each subject participated in memory tests and fMRI scans at the beginning and end of the experiment. We found that compared to the control group: (1 TCC and Baduanjin groups demonstrated significant improvements in memory function; (2 TCC increased fALFF in the dorsolateral prefrontal cortex (DLPFC in the slow-5 and low-frequency bands; and (3 Baduanjin increased fALFF in the medial PFC in the slow-5 and low-frequency bands. This increase was positively associated with memory function improvement in the slow-5 and low-frequency bands across the TCC and Baduanjin groups. Our results suggest that TCC and Baduanjin may work through different brain mechanisms to prevent memory decline due to aging.

  6. The practice of active rest by workplace units improves personal relationships, mental health, and physical activity among workers

    Michishita, Ryoma; Jiang, Ying; Ariyoshi, Daisuke; Yoshida, Marie; Moriyama, Hideko; Yamato, Hiroshi

    2016-01-01

    Aim: This study was designed to clarify the effects of active rest, with a focus on the practice of short-time group exercise by workplace units, on personal relationships, mental health, physical activity, and work ability among workers. Methods: Fifty-nine white-collar workers (40 males and 19 females) performed our active rest (short-time exercise) program, which consists of warm-up, cognitive functional training, aerobic exercise, resistance training and cool-down for 10 minutes per day, ...

  7. Volunteer Work, Religious Commitment, and Resting Pulse Rates.

    Krause, Neal; Ironson, Gail; Hill, Peter C

    2017-04-01

    Research indicates that greater involvement in volunteer activities is associated with better health. We aim to contribute to this literature in two ways. First, rather than rely on self-reports of health, measured resting pulse rates serve as the dependent variable. Second, an effort is made to see if religious commitment moderates the relationship between volunteering and resting pulse rates. Data that come from a recent nationwide survey (N = 2265) suggest that volunteer work is associated with lower resting pulse rates. The results also reveal that the relationship between engaging in volunteer work and resting pulse rates improves among study participants who are more deeply committed to religion.

  8. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-05-15

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse.

  9. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Enkvist, J.; Edland, A.; Svenson, Ola

    2000-05-01

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse

  10. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  11. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  12. A combination of whey protein and potassium bicarbonate supplements during head-down-tilt bed rest: Presentation of a multidisciplinary randomized controlled trial (MEP study)

    Buehlmeier, Judith; Mulder, Edwin; Noppe, Alexandra; Frings-Meuthen, Petra; Angerer, Oliver; Rudwill, Floriane; Biolo, Gianni; Smith, Scott M.; Blanc, Stéphane; Heer, Martina

    2014-02-01

    Inactivity, as it appears during space flight and in bed rest, induces reduction of lean body and bone mass, glucose intolerance, and weakening of the cardiovascular system. Increased protein intake, whey protein in particular, has been proposed to counteract some of these effects, but has also been associated with negative effects on bone, likely caused by a correspondingly high ratio of acid to alkali precursors in the diet.

  13. Methodology for self-report of rest pain (or spontaneous pain) vs evoked pain in chronic neuropathic conditions: a prospective observational pilot study

    He, David; Grant, Brian; Holden, Ronald R.; Gilron, Ian

    2017-01-01

    Abstract. Introduction:. The distinction between pain at rest and pain evoked by touch or movement has important clinical implications and may be associated with different mechanisms. However, current methods of clinical pain assessment pay little attention to directly distinguishing between these contrasting components of symptom burden. Objectives:. We developed the 10-item “Functional Impact of Neuropathic Evoked and Spontaneous Symptom Evaluation” questionnaire designed to distinguish ...

  14. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  15. Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study

    Chang, Haifeng; Li, Wei; Li, Qiang; Chen, Jiajie; Zhu, Jia; Ye, Jianjun; Liu, Jierong; Li, Zhe; Li, Yongbin; Shi, Ming; Wang, Yarong; Wang, Wei

    2016-01-01

    Background Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT. Met...

  16. Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study.

    Chang, Haifeng; Li, Wei; Li, Qiang; Chen, Jiajie; Zhu, Jia; Ye, Jianjun; Liu, Jierong; Li, Zhe; Li, Yongbin; Shi, Ming; Wang, Yarong; Wang, Wei

    2016-08-18

    Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT. Forty MMT patients were included and received a 12-month follow-up. All patients were given baseline resting-state fMRI scans by using a 3.0 T GE Signa Excite HD whole-body MRI system. Monthly self-report and urine test were used to assess heroin relapse or non-relapse. Subjective craving was measured with visual analog scale. The correlation between ReHo and the degree of heroin relapse was analyzed. Compared with the non-relapsers, ReHo values were increased in the bilateral medial orbitofrontal cortex, right caudate, and right cerebellum of the heroin relapsers while those in the left parahippocampal gyrus, left middle temporal gyrus, right lingual gyrus, and precuneus were decreased in heroin relapsers. Importantly, altered ReHo in the right caudate were positively correlated with heroin relapse rates or subjective craving response. Using the resting-state fMRI technique by analysis of ReHo, we provided the first resting-state fMRI evidence that right caudate may serve as a potential biomarker for heroin relapse prediction and also as a promising target for reducing relapse risk.

  17. A Study of Vicon System Positioning Performance

    Pierre Merriaux

    2017-07-01

    Full Text Available Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today’s life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  18. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  19. Serial thallium-201 imaging at rest in patients with unstable and stable angina pectoris: relationship of myocardial perfusion at rest to presenting clinical syndrome

    Brown, K.A.; Okada, R.D.; Boucher, C.A.; Phillips, H.R.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    In order to determine whether there are differences in myocardial perfusion at rest among patients with various unstable and stable angina syndromes, serial thallium-201 imaging was performed at rest in 19 patients presenting with rapidly worsening exertional angina (unstable angina, group A), 12 patients with rest angina alone without exertional symptoms (unstable angina, group B), and 34 patients with chronic stable angina. No patient had an episode of angina within 4 hours of study. Nineteen of 19 (100%) patients in group A demonstrated transient defects compared to only 3 of 12 (25%) patients in group B (p less than 0.0001) and 4 of 34 (12%) stable angina patients (p less than 0.0001). The majority of zones demonstrating transient defects in group A were associated with hypokinesis of the corresponding left ventriculogram segment without associated ECG evidence of previous infarction. There were no significant differences in the frequency of persistent thallium defects, severity of angiographic coronary artery disease, or frequency of regional wall motion abnormalities of myocardial segments supplied by stenotic coronary arteries among the three groups of patients. Transient defects have been shown to reflect reduction in regional coronary blood flow to viable myocardium. Therefore, we conclude that regional resting hypoperfusion of viable myocardium is far more common in patients with exertional unstable angina symptoms than in patients with rest angina alone or chronic stable angina

  20. Time preferences, study effort, and academic performance

    Non, J.A.; Tempelaar, D.T.

    2014-01-01

    We analyze the relation between time preferences, study effort, and academic performance among first-year Business and Economics students. Time preferences are measured by stated preferences for an immediate payment over larger delayed payments. Data on study efforts are derived from an electronic

  1. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    Ren, Huan [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Gao, Zhangfeng [Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410008 (China); Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Li, Zhi, E-mail: lizhi489@163.com [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China)

    2015-08-07

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.

  2. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    Ren, Huan; Gao, Zhangfeng; Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng; Li, Zhi

    2015-01-01

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST

  3. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning

    Branco, Paulo; Seixas, Daniela; Deprez, Sabine; Kovacs, Silvia; Peeters, Ronald; Castro, São L.; Sunaert, Stefan

    2016-01-01

    Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way. PMID:26869899

  4. Carrier and symbol synchronization system performance study

    Lindsey, W. C.

    1976-01-01

    Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.

  5. A Combined Study of SLC6A15 Gene Polymorphism and the Resting-State Functional Magnetic Resonance Imaging in First-Episode Drug-Naive Major Depressive Disorder.

    Wang, Lijuan; Liu, Zhifen; Cao, Xiaohua; Li, Jianying; Zhang, Aixia; Sun, Ning; Yang, Chunxia; Zhang, Kerang

    2017-09-01

    The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). However, the mechanism underlying the effects of how the SLC6A15 gene affects functional brain activity of patients with MDD remains unknown. In the present study, we investigated the effect of the SLC6A15 gene polymorphism, rs1545843, on resting-state brain function in MDD with the imaging genomic technology and the regional homogeneity (ReHo) method. Sixty-seven MDD patients and 44 healthy controls underwent functional magnetic resonance imaging scans and genotyping. The differences in ReHo between genotypes were initially tested using the student's t test. We then performed a 2 × 2 (genotypes × disease status) analysis of variance to identify the main effects of genotypes, disease status, and their interactions in MDD. MDD patients with A+ genotypes showed decreased ReHo in the medial cingulum compared with MDD patients with the GG genotype. This was in contrast to normal controls with A+ genotypes who showed increased ReHo in the posterior cingulum and the frontal, temporal, and parietal lobes and decreased ReHo in the left corpus callosum, compared with controls with the GG genotypes. The main effect of disease was found in the frontal, parietal, and temporal lobes. The main effect of genotypes was found in the left corpus callosum and the frontal lobe. There was no interaction between rs1545843 genotypes and disease status. We found