WorldWideScience

Sample records for resting respiratory activity

  1. Respiratory water loss during rest and flight in European Starlings (Sturnus vulgaris)

    NARCIS (Netherlands)

    Engel, Sophia; Suthers, Roderick A.; Biebach, Herbert; Visser, G. Henk

    2006-01-01

    Respiratory water loss in Starlings (Sturnus vulgaris) at rest and during flight at ambient temperatures (T-amb) between 6 and 25 degrees C was calculated from respiratory airflow and exhaled air temperature. At rest, breathing frequency f(1.4 +/- 0.3 Hz) and tidal volume V-t (1.9 +/- 0.4 ml) were

  2. A respiratory mask for resting and exercising dogs.

    Science.gov (United States)

    Stavert, D M; Reischl, P; O'Loughlin, B J

    1982-02-01

    A respiratory face mask has been developed for use with unsedated beagles trained to run on a treadmill. The latex rubber mask, shaped to fit the animal's muzzle, incorporates two modified, commercially available, pulmonary valves for separating inspiratory and expiratory flows. The mask has a dead space of 30 cm3 and a flow resistance below 1 cmH2O . 1(-1) . s. The flexible mask is used to measure breath-by-breath respiratory variables over extended periods of time during rest and exercise.

  3. Altered Resting and Exercise Respiratory Physiology in Obesity

    OpenAIRE

    Sood, Akshay

    2009-01-01

    Obesity, particularly severe obesity, affects both resting and exercise-related respiratory physiology. Severe obesity classically produces a restrictive ventilatory abnormality, characterized by reduced expiratory reserve volume. However, obstructive ventilatory abnormality may also be associated with abdominal obesity. Decreased peak work rates are usually seen among obese subjects in a setting of normal or decreased ventilatory reserve and normal cardiovascular response to exercise. Weight...

  4. Effect of training and rest on respiratory mechanical properties in racing sled dogs.

    Science.gov (United States)

    Davis, Michael; Williamson, Katherine; McKenzie, Erica; Royer, Christopher; Payton, Mark; Nelson, Stuart

    2005-02-01

    Racing Alaskan sled dogs develop exercise-induced airway inflammation, similar to that reported for elite human athletes participating in cold-weather sports. These human athletes also have airway hyperresponsiveness, but airway function in sled dogs has not been measured. To compare respiratory mechanical properties in trained, rested Alaskan sled dogs with typical laboratory hounds, and to determine whether subsequent training alters respiratory mechanical properties. Nineteen healthy adult Alaskan sled dogs were compared with five healthy adult mixed-breed laboratory hounds. All dogs were rested for at least 4 months before examination. Respiratory mechanical properties were measured while the dogs were anesthetized and ventilated with a piston ventilator. The mean respiratory resistance and compliance measurements for 20 consecutive breaths were used as baseline values immediately before measurement of respiratory reactivity. Respiratory reactivity was the mean of 20 consecutive breaths immediately after the administration of aerosol histamine, expressed as the percentage change in prehistamine measurements. After the initial examinations, the sled dogs were divided into exercised and controls. Exercised dogs were trained for competitive endurance racing. Both groups were examined after 2 and 4 months of training. Alaskan sled dogs had greater respiratory compliance reactivity to histamine (77.47 +/- 8.58% baseline) compared with laboratory dogs (87.60 +/- 9.22% baseline). There was no effect of training on respiratory mechanical properties detected in racing sled dogs. Racing Alaskan sled dogs have airway dysfunction similar to "ski asthma" that persists despite having 4 months of rest. These findings suggest that repeated exercise in cold conditions can lead to airway disease that does not readily resolve with cessation of exercise.

  5. Resting respiratory sinus arrhythmia is associated with tonic positive emotionality.

    Science.gov (United States)

    Oveis, Christopher; Cohen, Adam B; Gruber, June; Shiota, Michelle N; Haidt, Jonathan; Keltner, Dacher

    2009-04-01

    Resting respiratory sinus arrhythmia (RSAREST) indexes important aspects of individual differences in emotionality. In the present investigation, the authors address whether RSAREST is associated with tonic positive or negative emotionality, and whether RSAREST relates to phasic emotional responding to discrete positive emotion-eliciting stimuli. Across an 8-month, multiassessment study of first-year university students (n = 80), individual differences in RSAREST were associated with positive but not negative tonic emotionality, assessed at the level of personality traits, long-term moods, the disposition toward optimism, and baseline reports of current emotional states. RSAREST was not related to increased positive emotion, or stimulus-specific emotion, in response to compassion-, awe-, or pride-inducing stimuli. These findings suggest that resting RSA indexes aspects of a person's tonic positive emotionality. (c) 2009 APA, all rights reserved.

  6. Activity flow over resting-state networks shapes cognitive task activations.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H

    2016-12-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.

  7. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Rest-Activity Rhythm and Physical Activity in Early-Onset Dementia

    NARCIS (Netherlands)

    Hooghiemstra, A.M.; Eggermont, L.H.P.; Scheltens, P.; van der Flier, W.M.; Scherder, E.J.A.

    2015-01-01

    Background: A substantial part of elderly persons with dementia show rest-activity rhythm disturbances. The rest-activity rhythm is important to study in people with early-onset dementia (EOD) for rest-activity rhythm disturbances are predictive of institutionalization, and caregivers of young

  9. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain : the Baltimore Longitudinal Study on Aging

    NARCIS (Netherlands)

    Seidell, J C; Muller, D C; Sorkin, J D; Andres, R.

    The authors followed 775 men (aged 18-98 years) participating in the Baltimore Longitudinal Study in Aging for an average of ten years. Resting metabolic rate and fasting respiratory exchange ratio (RER) were measured by indirect calorimetry on their first visit and related to subsequent weight

  10. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Science.gov (United States)

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  11. Radiation effects on chemiluminescence of resting and immunologically activated alveolar macrophages

    International Nuclear Information System (INIS)

    Benichou, G.; Dormont, D.; Herodin, F.; Pasquier, C.; Hopital Saint Antoine, 75 - Paris

    1986-01-01

    In resting cells, for low radiation doses, a transient activation of chemiluminescence was observed, maximal at 3 Gy. At 10 Gy, CL returned to the control value; greater doses (above 30 Gy) induced a progressive diminution of the response which was abolished at 100 Gy. Activated alveolar macrophages showed a 30% decrease of the chemiluminescence at 10 Gy. The respiratory burst induced by opsonized zymosan was abolished at 30 Gy. IgG anti-MHC(IgGαB 1 ) activated specifically the GP S2 alveolar macrophages by alloantibody bipolar bridging; by contrast IgG which are directed against non-specific allogeneic determinants (IgG α B 3 ) or specific F(ab') 2 (F(ab') 2 αB 1 ) are unable to stimulate the cells. For all the tested doses, irradiation had no effect on this activation mechanism. The results with the three doses tested (3 Gy, 10 Gy, 30 Gy) are comparable to those using the positive control cells. The same results are obtained with the class II antigens and their specific IgG. (UK)

  12. On the respiratory flow in the cuttlefish sepia officinalis.

    Science.gov (United States)

    Bone, Q; Brown, E; Travers, G

    1994-09-01

    The respiratory flow of water over the gills of the cuttlefish Sepia officinalis at rest is produced by the alternate activity of the radial muscles of the mantle and the musculature of the collar flaps; mantle circular muscle fibres are not involved. Inspiration takes place as the radial fibres contract, thinning the mantle and expanding the mantle cavity. The rise in mantle cavity pressure (up to 0.15 kPa), expelling water via the siphon during expiration, is brought about by inward movement of the collar flaps and (probably) mainly by elastic recoil of the mantle connective tissue network 'wound up' by radial fibre contraction during inspiration. Sepia also shows a second respiratory pattern, in which mantle cavity pressures during expiration are greater (up to 0.25 kPa). Here, the mantle circular fibres are involved, as they are during the large pressure transients (up to 10 kPa) seen during escape jetting. Active contraction of the muscles of the collar flaps is seen in all three patterns of expulsion of water from the mantle cavity, electrical activity increasing with increasing mantle cavity pressures. Respiratory expiration in the resting squid Loligo vulgaris is probably driven as in Sepia, whereas in the resting octopus Eledone cirrhosa, the mantle circular musculature is active during expiration. The significance of these observations is discussed.

  13. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  14. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka; Arunachalam, V; Magu, S P

    2007-11-01

    The effect of 10% azadirachtin granules (alcoholic extract of neem seed kernel mixed with China clay) was studied on the population of bacteria, actinomycetes, fungi, Azotobacter and nitrifying bacteria; soil dehydrogenase, phosphatase and respiratory activities on 0, 15th, 30th, 60th and 90th days after application in sandy loam soil collected from the fields. It was observed that baring the Azotobacter sp., azadirachtin at all the doses exerted a suppressive effect on the rest of the microbial communities and enzyme activities in the initial 15 day period. The population of bacteria, actinomycetes besides phosphatase and respiratory activities recovered after 60th day and subsequently increased significantly. The fungi and nitrifiers were most sensitive groups as their numbers were reduced significantly throughout the studies. The two times and five times recommended dose of azadirachtin had very high biocidal effects on the soil microorganisms and its activities. However, analysis of the data by the Shannon Weaver index showed that azadirachtin reduces both the form and functional microbial diversity at all doses.

  15. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    Science.gov (United States)

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Enhanced persistency of resting and active periods of locomotor activity in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Wataru Sano

    Full Text Available Patients with schizophrenia frequently exhibit behavioral abnormalities associated with its pathological symptoms. Therefore, a quantitative evaluation of behavioral dynamics could contribute to objective diagnoses of schizophrenia. However, such an approach has not been fully established because of the absence of quantitative biobehavioral measures. Recently, we studied the dynamical properties of locomotor activity, specifically how resting and active periods are interwoven in daily life. We discovered universal statistical laws ("behavioral organization" and their alterations in patients with major depressive disorder. In this study, we evaluated behavioral organization of schizophrenic patients (n = 19 and healthy subjects (n = 11 using locomotor activity data, acquired by actigraphy, to investigate whether the laws could provide objective and quantitative measures for a possible diagnosis and assessment of symptoms. Specifically, we evaluated the cumulative distributions of resting and active periods, defined as the periods with physical activity counts successively below and above a predefined threshold, respectively. Here we report alterations in the laws governing resting and active periods; resting periods obeyed a power-law cumulative distribution with significantly lower parameter values (power-law scaling exponents, whereas active periods followed a stretched exponential distribution with significantly lower parameter values (stretching exponents, in patients. Our findings indicate enhanced persistency of both lower and higher locomotor activity periods in patients with schizophrenia, probably reflecting schizophrenic pathophysiology.

  17. Physical activity, Cardio-Respiratory Fitness, and Metabolic Traits in Rural Mexican Tarahumara

    DEFF Research Database (Denmark)

    Christensen, Dirk Lund; Alcala-Sanchez, Imelda; Leal-Berumen, Irene

    2012-01-01

    Objectives: To study the association between physical activity energy expenditure (PAEE) and cardio-respiratory fitness (CRF) with key metabolic traits and anthropometric measures in the Tarahumara of Mexico. Methods: A cross-sectional study was carried out in five rural communities in Chihuahua...... suggests high levels of overweight and hypertension in the Tarahumara, and points to fitness and physical activity as potential intervention targets although findings should be confirmed in larger samples.......) to estimate CRF. Random blood glucose level and resting blood pressure (BP) were measured with standard anthropometrics. Results: Mean (SD) PAEE was 71.2 (30.3) kJ kg21 day21 and CRF was 36.6 (6.5) mlO2 min21 kg21. Mean (SD) glucose was 127.9 (32.4) mg/dl, with 3.3% having diabetes. Mean (SD) systolic...

  18. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    Science.gov (United States)

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  19. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  20. Exercising upper respiratory videoendoscopic evaluation of 100 nonracing performance horses with abnormal respiratory noise and/or poor performance.

    Science.gov (United States)

    Davidson, E J; Martin, B B; Boston, R C; Parente, E J

    2011-01-01

    Although well documented in racehorses, there is paucity in the literature regarding the prevalence of dynamic upper airway abnormalities in nonracing performance horses. To describe upper airway function of nonracing performance horses with abnormal respiratory noise and/or poor performance via exercising upper airway videoendoscopy. Medical records of nonracing performance horses admitted for exercising evaluation with a chief complaint of abnormal respiratory noise and/or poor performance were reviewed. All horses had video recordings of resting and exercising upper airway endoscopy. Relationships between horse demographics, resting endoscopic findings, treadmill intensity and implementation of head and neck flexion during exercise with exercising endoscopic findings were examined. Dynamic upper airway obstructions were observed in 72% of examinations. Head and neck flexion was necessary to obtain a diagnosis in 21 horses. Pharyngeal wall collapse was the most prevalent upper airway abnormality, observed in 31% of the examinations. Complex abnormalities were noted in 27% of the examinations. Resting laryngeal dysfunction was significantly associated with dynamic arytenoid collapse and the odds of detecting intermittent dorsal displacement of the soft palate (DDSP) during exercise in horses with resting DDSP was only 7.7%. Exercising endoscopic observations were different from the resting observations in 54% of examinations. Dynamic upper airway obstructions were common in nonracing performance horses with respiratory noise and/or poor performance. Resting endoscopy was only helpful in determining exercising abnormalities with recurrent laryngeal neuropathy. This study emphasises the importance of exercising endoscopic evaluation in nonracing performance horses with abnormal respiratory noise and/or poor performance for accurate assessment of dynamic upper airway function. © 2010 EVJ Ltd.

  1. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    Science.gov (United States)

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  2. Inductive plethysmography potential as a surrogate for ventilatory measurements during rest and moderate physical exercise

    Directory of Open Access Journals (Sweden)

    Ramona Cabiddu

    2016-01-01

    Full Text Available Background: Portable respiratory inductive plethysmography (RIP systems have been validated for ventilatory assessment during resting conditions and during incremental treadmill exercise. However, in clinical settings and during field-based exercise, intensity is usually constant and submaximal. A demonstration of the ability of RIP to detect respiratory measurements accurately during constant intensity conditions would promote and validate the routine use of portable RIP devices as an alternative to ergospirometry (ES, the current gold standard technique for ventilatory measures. Objective: To investigate the agreement between respiratory variables recorded by a portable RIP device and by ES during rest and constant intensity exercise. Method: Tidal volume (VT, respiratory rate (RR and minute ventilation (VE were concurrently acquired by portable RIP and ES in seven healthy male volunteers during standing rest position and constant intensity treadmill exercise. Results: Significant agreement was found between RIP and ES acquisitions during the standing rest position and constant intensity treadmill exercise for RR and during the standing rest position for VE. Conclusion: Our results suggest that portable RIP devices might represent a suitable alternative to ES during rest and during constant submaximal exercise.

  3. [Effects of transections and electrical coagulations in the medulla oblongata upon the activities in the respiratory muscles of the crucian carp (author's transl)].

    Science.gov (United States)

    Fukuda, H

    1975-06-01

    The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.

  4. Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach.

    Science.gov (United States)

    Stupfel, M; Pletan, Y

    1983-01-01

    Recent developments in human rhythmic respiratory pathology lead to this review of the literature for ultradian rhythms of middle and low frequencies, that is having periods longer than the usual respiratory rates, whose periods are seconds or fractions of seconds. Ultradian respiratory movements for respiratory periods (5 less than tau less than 50 min) have been reported in many species of small laboratory animals (mice, rats, guinea-pigs, rabbits, quails). Long-period respiratory rates (20 less than tau less than 90 min) have been found in human fetuses and infants. But they are more difficult to detect in human adults, except during sleep where they have been related to REM and NONREM activities. These respiratory rhythms of middle and low frequencies are supposed to result from dissipative energy structures related to surface-volume relationships, with interlocking chemical clocks, and to be relevant to a basic rest-activity cycle.

  5. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  6. Predicting Risk-Taking Behavior from Prefrontal Resting-State Activity and Personality

    Science.gov (United States)

    Studer, Bettina; Pedroni, Andreas; Rieskamp, Jörg

    2013-01-01

    Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior. PMID:24116176

  7. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.

    Directory of Open Access Journals (Sweden)

    Dustin J Tracy

    Full Text Available Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for continuous monitoring of physical activity (PA over extended periods (e.g., 24 h/day for 1 week in studies conducted in natural living environment. This approach necessitates the development of new methods separating bedtime rest and activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute accelerometry data were collected from 81 youth (10-18 years old, 47 females during a monitored 24-h stay in a whole-room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating Characteristic (ROC curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group (n = 41 were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist- and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the validation group (n = 40 by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872 and wrist-worn (0.999, 0.980 and 0.943 accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than commonly used automated algorithm for both waist- and wrist-warn accelerometer (all p<0.001. We concluded that cut points developed and validated for waist- and wrist

  8. Do current sports brassiere designs impede respiratory function?

    Science.gov (United States)

    Bowles, Kelly-Ann; Steele, Julie R; Chaunchaiyakul, Rungchai

    2005-09-01

    Although sports brassieres are more effective in limiting breast motion and related breast pain when compared with standard fashion brassieres, some females do not wear sports brassieres during physical activity, as they perceive them to be too tight around the torso, possibly impeding their performance during physical activity. The purpose of this study was to determine whether breast hypertrophy, breast momentum, and/or wearing a sports brassiere impeded respiratory function at rest and during physical activity. Twenty-two active women completed standard resting spirometry maneuvers while not wearing a brassiere. All subjects then completed maximal cycle ergometer testing in two breast support conditions (sports brassiere and no brassiere (NB)), followed by submaximal treadmill exercise tests under three breast support conditions (sports brassiere, no brassiere and fashion brassiere) while standard spirometry, brassiere pressure and comfort were measured. The sports brassiere imparted significantly more pressure on smaller breasted females' torsos when compared with the fashion brassiere (0.861 +/- 0.247 and 0.672 +/- 0.254 N.cm(-2), respectively), although this increased pressure did not appear to significantly affect measured lung volumes or brassiere comfort scores. Brassiere size affected maximal exercise ability (relative VO(2peak): smaller breasted NB: 49.84 +/- 6.15 mL.kg(-1).min(-1); larger breasted NB: 40.76 +/- 4.47 mL.kg(-1).min(-1)) as well as some temporal measures of resting and submaximal respiration. However, no significant difference was found between the no brassiere and brassiere conditions in regards to measured lung volumes. As no significant restriction to exercise performance or respiratory mechanics was found when subjects wore sports brassieres, it was concluded that active females should wear a sports brassiere during physical activity to reduce breast motion and related breast pain.

  9. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing

    Science.gov (United States)

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination. PMID:21957466

  10. Adaption of cardio-respiratory balance during day-rest compared to deep sleep--an indicator for quality of life?

    Science.gov (United States)

    von Bonin, Dietrich; Grote, Vincent; Buri, Caroline; Cysarz, Dirk; Heusser, Peter; Moser, Max; Wolf, Ursula; Laederach, Kurt

    2014-11-30

    Heart rate and breathing rate fluctuations represent interacting physiological oscillations. These interactions are commonly studied using respiratory sinus arrhythmia (RSA) of heart rate variability (HRV) or analyzing cardiorespiratory synchronization. Earlier work has focused on a third type of relationship, the temporal ratio of respiration rate and heart rate (HRR). Each method seems to reveal a specific aspect of cardiorespiratory interaction and may be suitable for assessing states of arousal and relaxation of the organism. We used HRR in a study with 87 healthy subjects to determine the ability to relax during 5 day-resting periods in comparison to deep sleep relaxation. The degree to which a person during waking state could relax was compared to somatic complaints, health-related quality of life, anxiety and depression. Our results show, that HRR is barely connected to balance (LF/HF) in HRV, but significantly correlates to the perception of general health and mental well-being as well as to depression. If relaxation, as expressed in HRR, during day-resting is near to deep sleep relaxation, the subjects felt healthier, indicated better mental well-being and less depressive moods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    Science.gov (United States)

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  13. Transition into daylight saving time influences the fragmentation of the rest-activity cycle

    Directory of Open Access Journals (Sweden)

    Tuulio-Henriksson Annamari

    2006-01-01

    Full Text Available Abstract Background Daylight saving time is widely adopted. Little is known about its influence on the daily rest-activity cycles. We decided to explore the effects of transition into daylight saving time on the circadian rhythm of activity. Methods We monitored the rest-activity cycles with the use of wrist-worn accelerometer on a sample of ten healthy adults for ten days around the transition into summer time. Identical protocols were carried out on the same individuals in two consecutive years, yielding data on 200 person-days for analysis in this study. Results There was no significant effect on the rest-activity cycle in the sample as a whole. Fragmentation of the rest-activity cycle was enhanced in a subgroup of persons having sleep for eight hours or less (P = 0.04 but reduced in those who preferred to sleep for more than eight hours per night (P = 0.05. The average level of motor activity was increased in persons having the morning preference for daily activity patterns (P = 0.01. Conclusion Transition into daylight saving time may have a disruptive effect on the rest-activity cycle in those healthy adults who are short-sleepers or more of the evening type.

  14. Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography

    International Nuclear Information System (INIS)

    Shechter, Guy; Resar, Jon R.; McVeigh, Elliot R.

    2005-01-01

    Magnetic resonance (MR) and computed tomography coronary imaging is susceptible to artifacts caused by motion of the heart. The presence of rest periods during the cardiac and respiratory cycles suggests that images free of motion artifacts could be acquired. In this paper, we studied the rest period (RP) duration of the coronary arteries during a cardiac contraction and a tidal respiratory cycle. We also studied whether three MR motion correction methods could be used to increase the respiratory RP duration. Free breathing x-ray coronary angiograms were acquired in ten patients. The three-dimensional (3D) structure of the coronary arteries was reconstructed from a biplane acquisition using stereo reconstruction methods. The 3D motion of the arterial model was then recovered using an automatic motion tracking algorithm. The motion field was then decomposed into separate cardiac and respiratory components using a cardiac respiratory parametric model. For the proximal-to-middle segments of the right coronary artery (RCA), a cardiac RP (<1 mm 3D displacement) of 76±34 ms was measured at end systole (ES), and 65±42 ms in mid-diastole (MD). The cardiac RP was 80±25 ms at ES and 112±42 ms at MD for the proximal 5 cm of the left coronary tree. At end expiration, the respiratory RP (in percent of the respiratory period) was 26±8% for the RCA and 27±17% for the left coronary tree. Left coronary respiratory RP (<0.5 mm 3D displacement) increased with translation (32% of the respiratory period), rigid body (51%), and affine (79%) motion correction. The RCA respiratory RP using translational (27%) and rigid body (33%) motion correction were not statistically different from each other. Measurements of the cardiac and respiratory rest periods will improve our understanding of the temporal and spatial resolution constraints for coronary imaging

  15. Resting-state beta and gamma activity in Internet addiction.

    Science.gov (United States)

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A Nap But Not Rest or Activity Consolidates Language Learning

    Directory of Open Access Journals (Sweden)

    Stefan Heim

    2017-05-01

    Full Text Available Recent evidence suggests that a period of sleep after a motor learning task is a relevant factor for memory consolidation. However, it is yet open whether this also holds true for language-related learning. Therefore, the present study compared the short- and long-term effects of a daytime nap, rest, or an activity task after vocabulary learning on learning outcome. Thirty healthy subjects were divided into three treatment groups. Each group received a pseudo-word learning task in which pictures of monsters were associated with unique pseudo-word names. At the end of the learning block a first test was administered. Then, one group went for a 90-min nap, one for a waking rest period, and one for a resting session with interfering activity at the end during which a new set of monster names was to be learned. After this block, all groups performed a first re-test of the names that they initially learned. On the morning of the following day, a second re-test was administered to all groups. The nap group showed significant improvement from test to re-test and a stable performance onto the second re-test. In contrast, the rest and the interference groups showed decline in performance from test to re-test, with persistently low performance at re-test 2. The 3 (GROUP × 3 (TIME ANOVA revealed a significant interaction, indicating that the type of activity (nap/rest/interfering action after initial learning actually had an influence on the memory outcome. These data are discussed with respect to translation to clinical settings with suggestions for improvement of intervention outcome after speech-language therapy if it is followed by a nap rather than interfering activity.

  17. Morphology of the Interstitial Tissue of Active and Resting Testis of the Guinea Fowl

    OpenAIRE

    Dharani, Palanisamy; Kumary, S. Usha; Sundaram, Venkatesan; Joseph, Cecilia; Ramesh, Geetha

    2017-01-01

    SUMMARY: The morphology of the interstitial tissue of sexually active and resting testis of the guinea fowl were studied. Six adult health birds of active and resting phases of reproductive cycle were used for this study. The interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells, blood vessels and adrenergic nerve fibres in the present study in both active and resting testes. The interstitial tissue was compact in sexually active tes...

  18. Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.

    Science.gov (United States)

    Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron

    2017-12-01

    To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Sleep and alertness during alternating monophasic and polyphasic rest-activity cycles.

    Science.gov (United States)

    Porcú, S; Casagrande, M; Ferrara, M; Bellatreccia, A

    1998-07-01

    People involved in shift work often have to face altered patterns of sleep and wakefulness. This is particularly true for schedules involving night shifts and/or fragmentation of duty periods throughout the 24-hr day. In such conditions, it can be difficult to obtain satisfactory periods of sleep, and sleepiness on duty is a frequent and dangerous occurrence. The aim of this study was to evaluate sleep and wakefulness periods of subjects whose work schedule was characterized by an alternation of 2 hours of activity and 4 hours of rest (sleep allowed), repeated 4 times throughout the 24-hr day. This schedule was alternated with 24 hours off duty. Nine healthy male volunteers were monitored by means of ambulatory polysomnography while attending their 24-hr rest-activity schedule. Sleep periods were visually scored according to standard criteria. Wake periods were visually scored using both 30 s and 5 s epochs in order to reveal episodes of drowsiness and/or microsleep. Results showed that total sleep time was substantially reduced as compared to the usual 7-8 hour monophasic nocturnal sleep. Subjects did not sleep during the first rest period (11.00-15.00). Time in sleep linearly increased in the course of the 3 remaining rest periods. Normal sleep stage distribution was substantially spared only in the last rest period (3.00-7.00 a.m.). With regard to duty periods, only a few microsleeps were detected and their number did not significantly vary across the four 2-hr activity periods. In conclusion, this rest-activity schedule, despite the considerable sleep reduction, allowed maintaining good levels of vigilance as shown by the virtual absence of EEG microsleeps. Whether future research will prove that this regimen does not cause an impairment of performance, it should be a suitable strategy for the management of continuous operations.

  20. From "rest" to language task: Task activation selects and prunes from broader resting-state network.

    Science.gov (United States)

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael R; Sharan, Ashwini; Tracy, Joseph I

    2017-05-01

    Resting-state networks (RSNs) show spatial patterns generally consistent with networks revealed during cognitive tasks. However, the exact degree of overlap between these networks has not been clearly quantified. Such an investigation shows promise for decoding altered functional connectivity (FC) related to abnormal language functioning in clinical populations such as temporal lobe epilepsy (TLE). In this context, we investigated the network configurations during a language task and during resting state using FC. Twenty-four healthy controls, 24 right and 24 left TLE patients completed a verb generation (VG) task and a resting-state fMRI scan. We compared the language network revealed by the VG task with three FC-based networks (seeding the left inferior frontal cortex (IFC)/Broca): two from the task (ON, OFF blocks) and one from the resting state. We found that, for both left TLE patients and controls, the RSN recruited regions bilaterally, whereas both VG-on and VG-off conditions produced more left-lateralized FC networks, matching more closely with the activated language network. TLE brings with it variability in both task-dependent and task-independent networks, reflective of atypical language organization. Overall, our findings suggest that our RSN captured bilateral activity, reflecting a set of prepotent language regions. We propose that this relationship can be best understood by the notion of pruning or winnowing down of the larger language-ready RSN to carry out specific task demands. Our data suggest that multiple types of network analyses may be needed to decode the association between language deficits and the underlying functional mechanisms altered by disease. Hum Brain Mapp 38:2540-2552, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Human activity and rest in situ.

    Science.gov (United States)

    Roenneberg, Till; Keller, Lena K; Fischer, Dorothee; Matera, Joana L; Vetter, Céline; Winnebeck, Eva C

    2015-01-01

    Our lives are structured by the daily alternation of activity and rest, of wake and sleep. Despite significant advances in circadian and sleep research, we still lack answers to many of the most fundamental questions about this conspicuous behavioral pattern. We strongly believe that investigating this pattern in entrained conditions, real-life and daily contexts-in situ-will help the field to elucidate some of these central questions. Here, we present two common approaches for in situ investigation of human activity and rest: the Munich ChronoType Questionnaire (MCTQ) and actimetry. In the first half of this chapter, we provide detailed instructions on how to use and interpret the MCTQ. In addition, we give an overview of the main insights gained with this instrument over the past 10 years, including some new findings on the interaction of light and age on sleep timing. In the second half of this chapter, we introduce the reader to the method of actimetry and share our experience in basic analysis techniques, including visualization, smoothing, and cosine model fitting of in situ recorded data. Additionally, we describe our new approach to automatically detect sleep from activity recordings. Our vision is that the broad use of such easy techniques in real-life settings combined with automated analyses will lead to the creation of large databases. The resulting power of big numbers will promote our understanding of such fundamental biological phenomena as sleep. © 2015 Elsevier Inc. All rights reserved.

  2. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  3. Physical activity and respiratory muscle strength in elderly: a systematic review

    Directory of Open Access Journals (Sweden)

    Fabio Dutra Pereira

    Full Text Available Introduction The aging will inevitably bring some kind of functional decline in elderly, sarcopenia in this sense stands out because it damages the muscle function and extend also to the respiratory muscles. Objective Systematically review studies that have sought to compare the strength of respiratory muscles between sedentary and physically active elderly in training programs nonspecific respiratory musculature. Materials and methods From the descriptors motor activity, respiratory muscles and elderly, the databases LILACS, MedLine, Cochrane, PEDro, Scirus and Redalyc were consulted. Results Of 1.263 experiments available in said databases, 12 were recovered and 6 were selected due they meet all the inclusion criteria and selection requirements. Conclusion Physical activity programs offered by the selected studies led physically active elderly to have respiratory muscle strength statistically higher than the sedentary. However, this condition did not expressed itself as security to these elderly to present strength levels above of the minimum predictive of normality.

  4. Activity of respiratory system during laser irradiation of brain structures

    Science.gov (United States)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  6. Comparative studies on Fc receptors for IgG on resting and activated T lymphocytes

    International Nuclear Information System (INIS)

    Hueckel, C.; Jensen, H.L.; Rychly, J.; Sandor, M.; Erdei, A.; Gergely, J.

    1986-01-01

    Fc-receptors for IgG (FcγR) on resting (i.e. freshly prepared) and mitogen (Con A) or alloantigen-activated mouse spleen T cells were compared using binding of different markers such as 125 I-labelled immune complexes, 125 I-labelled anti FcγR monoclonal antibody, FITC-labelled aggr. IgG and sheep erythrocytes covered with specific antibody (EA rosetting). C3b receptors were detected by rosetting with sheep erythrocytes covered with antibody and complement (EAC rosetting). The electrophoretic mobility of the cells without or after binding of aggr. IgG was also tested. Differences between resting and activated T cells were found: (1) After activation of T cells by mitogen or alloantigen, a proportion of FcγR-positive cells increased two to four times. (2) FcγR number per FcγR-positive cell seemed to be higher on activated then on resting cells. (3) FcγR-positive resting cells did not shed their FcγR upon incubation at 4 0 C followed by incubation at 37 0 C, but FcγR-positive activated cells shed a remarkable proportion of their FcγR on the same conditions. (4) Binding of aggr. IgG caused a decrease of electrophoretic mobility of activated but not resting cells. (5) FcγR-positive resting cells were also C3b receptor-positive, whereas FcγR-positive activated cells had no detectable C3b receptors. (author)

  7. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    Science.gov (United States)

    Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  9. Resting alpha activity predicts learning ability in alpha neurofeedback

    Directory of Open Access Journals (Sweden)

    Wenya eNan

    2014-07-01

    Full Text Available Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the training parameter changes between two periods, within a short period and across the whole training time. It was found that the resting alpha amplitude measured before training had significant positive correlations with all learning indices and could be used as a predictor for the learning ability prediction. This finding would help the researchers in not only predicting the training efficacy in individuals but also gaining further insight into the mechanisms of alpha neurofeedback.

  10. Differential effects of human activity on Hawaiian spinner dolphins in their resting bays

    Directory of Open Access Journals (Sweden)

    Heather L. Heenehan

    2017-04-01

    Full Text Available Hawaiian spinner dolphins display predictable daily behavior, using shallow bays to rest during the daytime, bays that are also frequented by humans. All previous research on the potential response of Hawaiian spinner dolphins to human activity has been conducted visually, at the surface. In this study we take a different approach by using passive acoustic monitoring to analyze dolphin behavior and assess whether human activity affects the behavior of the animals. We used days (n=99 and hours (n=641 when dolphins were confirmed present in visual surveys between January 9, 2011 and August 15, 2012 and metrics generated from concomitant 30-second sound recordings (n=9615. Previous research found that the dolphins were predictably silent during rest and that acoustic activity matched general activity of the dolphins with higher acoustic activity before and after rest, and silence during rest. The daily pattern of dolphin whistle activity in Bay 2 and 4 (Kealakekua and Kauhako matched what would be expected from this earlier work. However, in Bay 1 and 3 (Makako and Honaunau there was no drop in dolphin whistle activity during rest. After assessing the relationship between time of day and dolphin acoustic activity, data on human presence were used to determine how variability in the dolphins’ acoustic activity might be explained by human activity (i.e. the number of vessels, kayaks and swimmer snorkelers present. Bay 2, the bay with the most human activity, showed no relationship between dolphin whistle activity and human presence (either vessels, kayaks, or swimmer/snorkelers. Although the relationships were weak, Bay 1 displayed a positive relationship between dolphin whistle activity and the number of vessels and swimmer/snorkelers present in the bay. Bay 4 also showed a positive relationship between dolphin whistle activity and the number of swimmer snorkelers. We also documented less sound being added to the soundscape with each additional

  11. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Science.gov (United States)

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  14. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  15. Respiratory Sinus Arrhythmia Activity Predicts Internalizing and Externalizing Behaviors in Non-referred Boys

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-09-01

    Full Text Available Atypical respiratory sinus arrhythmia (RSA, a biomarker of emotion dysregulation, is associated with both externalizing and internalizing behaviors. In addition, social adversity and gender may moderate this association. In this study, we investigated if RSA (both resting RSA and RSA reactivity in an emotion regulation task predicts externalizing and/or internalizing behaviors and the extent to which social adversity moderates this relationship. Two hundred and fifty-three children (at Time 1, mean age = 9.05, SD = 0.60, 48% boys and their caregivers from the community participated in this study. Resting RSA and RSA reactivity were assessed, and caregivers reported children’s externalizing and internalizing behaviors at both Time 1 and Time 2 (1 year later. We found that lower resting RSA (but not RSA reactivity at Time 1 was associated with increased externalizing and internalizing behaviors at Time 2 in boys, even after controlling for the effects of Time 1 behavioral problems and Time 2 age. Moreover, there was a significant interaction effect between Time 1 resting RSA and social adversity such that lower resting RSA predicted higher externalizing and internalizing behaviors in boys only under conditions of high social adversity. Follow-up analyses revealed that these predictive effects were stronger for externalizing behavior than for internalizing behavior. No significant effects were found for girls. Our findings provide further evidence that low resting RSA may be a transdiagnostic biomarker of emotion dysregulation and a predisposing risk factor for both types of behavior problems, in particular for boys who grow up in adverse environments. We conclude that biosocial interaction effects and gender differences should be considered when examining the etiological mechanisms of child psychopathology.

  16. [A case of respiratory dyskinesia due to clebopride malate].

    Science.gov (United States)

    Kawasaki, H; Yamamoto, M; Okayasu, H; Wakayama, Y

    1991-08-01

    Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.

  17. The practice of active rest by workplace units improves personal relationships, mental health, and physical activity among workers

    OpenAIRE

    Michishita, Ryoma; Jiang, Ying; Ariyoshi, Daisuke; Yoshida, Marie; Moriyama, Hideko; Yamato, Hiroshi

    2016-01-01

    Aim: This study was designed to clarify the effects of active rest, with a focus on the practice of short-time group exercise by workplace units, on personal relationships, mental health, physical activity, and work ability among workers. Methods: Fifty-nine white-collar workers (40 males and 19 females) performed our active rest (short-time exercise) program, which consists of warm-up, cognitive functional training, aerobic exercise, resistance training and cool-down for 10 minutes per day, ...

  18. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  19. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  20. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man

    DEFF Research Database (Denmark)

    Savard, G; Strange, S; Kiens, Bente

    1987-01-01

    Increases in plasma noradrenaline (NA) concentration occur during moderate to heavy exercise in man. This study was undertaken to examine the spillover of NA from both resting and contracting skeletal muscle during exercise. Six male subjects performed one-legged knee-extension so that all...... in the exercising leg than in the resting leg both during 50% and 100% leg exercise. These results suggest that contracting skeletal muscle may contribute to a larger extent than resting skeletal muscle to increasing the level of plasma NA during exercise. Contractile activity may influence the NA spillover from...

  1. Cardio-respiratory fitness of young and older active and sedentary men.

    Science.gov (United States)

    Steinhaus, L A; Dustman, R E; Ruhling, R O; Emmerson, R Y; Johnson, S C; Shearer, D E; Shigeoka, J W; Bonekat, W H

    1988-01-01

    Physiological profiles are described for 30 healthy young (20-31 years) and 30 healthy older (50-62 years) men. Half of the individuals in each group reported that during the previous five years they participated frequently in strenuous physical exercises; the other half reported sedentary lifestyles. A treadmill exercise test was used to determine maximal aerobic power (VO2 max). Heart rate and blood pressure were measured during rest, maximal exercise and recovery. The active older men demonstrated significantly lower resting heart rates, lower resting systolic and diastolic blood pressures, higher VO2 max, lower maximal exercise diastolic blood pressure and lower recovery heart rates than the age-matched sedentary men. Compared with the young sedentary men, the older active men had lower resting heart rates and higher VO2 max, walked longer on the treadmill, had lower recovery heart rates and weighed less. Older active men also had higher VO2 max levels than young sedentary men. In summary, physiological profiles of the older active men more closely resembled profiles of active men who were 30 years younger than those of older sedentary men. These results emphasize the range of benefits associated with exercise. PMID:3228686

  2. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    Science.gov (United States)

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  3. Alternative REST Splicing Underappreciated

    OpenAIRE

    Chen, Guo-Lin; Miller, Gregory

    2017-01-01

    As a major orchestrator of the cellular epigenome, the repressor element-1 silencing transcription factor (REST) can either repress or activate thousands of genes depending on cellular context, suggesting a highly context-dependent REST function tuned by environmental cues. While REST shows cell-type non-selective active transcription, an N-terminal REST4 isoform caused by alternative splicing - inclusion of an extra exon (N3c) which introduces a pre-mature stop codon - has been implicated in...

  4. Stop and revive? The effectiveness of nap and active rest breaks for reducing driver sleepiness.

    Science.gov (United States)

    Watling, Christopher N; Smith, Simon S; Horswill, Mark S

    2014-11-01

    The purpose of this study was to compare the effects of two commonly utilized sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed 2 h of simulated driving, followed by a 15-min nap break or a 15-min active rest break, then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break. Copyright © 2014 Society for Psychophysiological Research.

  5. Metabolic, respiratory, and cardiological measurements during exercise and rest

    Science.gov (United States)

    1971-01-01

    Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.

  6. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise.

    Science.gov (United States)

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-10-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.

  8. Heart rate variability biofeedback improves cardiorespiratory resting function during sleep.

    Science.gov (United States)

    Sakakibara, Masahito; Hayano, Junichiro; Oikawa, Leo O; Katsamanis, Maria; Lehrer, Paul

    2013-12-01

    The present study was designed to examine the effect of heart rate variability (HRV) biofeedback on the cardiorespiratory resting function during sleep in daily life. Forty-five healthy young adults were randomly assigned to one of three groups: HRV biofeedback, Autogenic Training(AT), and no-treatment control. Participants in the HRV biofeedback were instructed to use a handheld HRV biofeedback device before their habitual bedtime, those in the AT were asked to listen to an audiotaped instruction before bedtime,and those in the control were asked to engage in their habitual activity before bedtime. Pulse wave signal during sleep at their own residences was measured continuously with a wrist watch-type transdermal photoelectric sensor for three time points. Baseline data were collected on the first night of measurements, followed by two successive nights for HRV biofeedback, AT, or control. Cardiorespiratory resting function was assessed quantitatively as the amplitude of high frequency(HF) component of pulse rate variability, a surrogate measure of respiratory sinus arrhythmia. HF component increased during sleep in the HRV biofeedback group,although it remained unchanged in the AT and control groups. These results suggest that HRV biofeedback before sleep may improve cardiorespiratory resting function during sleep.

  9. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  10. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  11. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    Science.gov (United States)

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-11-01

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m 2 ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  12. Loss of CDKL5 disrupts respiratory function in mice.

    Science.gov (United States)

    Lee, Kun-Ze; Liao, Wenlin

    2018-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is an X-linked gene encoding a serine-threonine kinase that is highly expressed in the central nervous system. Mutations in CDKL5 cause neurological and psychiatric symptoms, including early-onset seizures, motor dysfunction, autistic features and sleep breathing abnormalities in patients. It remains to be addressed whether loss of CDKL5 causes respiratory dysfunction in mice. Here, we examined the respiratory pattern of male Cdkl5 -/y mice at 1-3 months of age during resting breathing and respiratory challenge (i.e., hypoxia and hypercapnia) via whole body plethysmography. The results demonstrated that the resting respiratory frequency and tidal volume of Cdkl5 -/y mice was unaltered compared to that of WT mice at 1 month of age. However, these mutant mice exhibit transient reduction in tidal volume during respiratory challenge even the reduction was restored at 2 months of age. Notably, the sigh-breathing pattern was changed in Cdkl5 -/y mice, showing a transient reduction in sigh volume at 1-2 month of age and long-term attenuation of peak expiratory airflow from 1 to 3 month of age. Therefore, loss of CDKL5 causes breathing deficiency, supporting a CDKL5-mediated regulation of respiratory function in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-07-01

    Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery

  14. The role of stress hormones in the relationship between resting blood pressure and coagulation activity.

    Science.gov (United States)

    Wirtz, Petra H; Ehlert, Ulrike; Emini, Luljeta; Rüdisüli, Katharina; Groessbauer, Sara; Mausbach, Brent T; von Känel, Roland

    2006-12-01

    Systemic hypertension confers a hypercoagulable state. We hypothesized that resting mean blood pressure (MBP) interacts with stress hormones in predicting coagulation activity at rest and with acute mental stress. We measured plasma clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, epinephrine and norepinephrine, and saliva cortisol in 42 otherwise healthy normotensive and hypertensive medication-free men (mean age 43 +/- 14 years) at rest, immediately after stress, and twice during 60 min of recovery from stress. At rest, the MBP-by-epinephrine interaction predicted FVII:C (beta = -0.33, P AUC) predicted D-dimer AUC (beta = 0.34, P = 0.04) independent of MBP. The MBP-by-epinephrine AUC interaction predicted FVII:C AUC (beta = 0.28) and fibrinogen AUC (beta = -0.30), and the MBP-by-norepinephrine AUC interaction predicted FVIII:C AUC (beta = -0.28), all with borderline significance (Ps < 0.09) and independent of age and BMI. MBP significantly altered the association between stress hormones and coagulation activity at rest and, with borderline significance, across the entire stress and recovery interval. Independent of MBP, catecholamines were associated with procoagulant effects and cortisol reactivity dampened the acute procoagulant stress response.

  15. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder.

    Science.gov (United States)

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t -test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD.

  16. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  17. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  18. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD

    Science.gov (United States)

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L.; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F.; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD…

  19. Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Jørgensen, Stine Ringholm; Biensø, Rasmus Sjørup

    2011-01-01

    To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), 6 healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an OGTT and a one-legged knee...

  20. GPi oscillatory activity differentiates tics from the resting state, voluntary movements, and the unmedicated parkinsonian state

    Directory of Open Access Journals (Sweden)

    Joohi Jimenez-Shahed

    2016-09-01

    Full Text Available Background: Deep brain stimulation (DBS is an emerging treatment strategy for severe, medication-refractory Tourette syndrome (TS. Thalamic (Cm-Pf and pallidal (including globus pallidus interna, GPi targets have been the most investigated. While the neurophysiological correlates of Parkinson’s disease (PD in the GPi and subthalamic nucleus (STN are increasingly recognized, these patterns are not well characterized in other disease states. Recent findings indicate that the cross-frequency coupling (CFC between beta band and high frequency oscillations (HFOs within the STN in PD patients is pathologic. Methods: We recorded intraoperative local field potentials (LFPs from the postero-ventrolateral GPi in three adult patients with TS at rest, during voluntary movements, and during tic activity and compared them to the intraoperative GPi-LFP activity recorded from four unmedicated PD patients at rest. Results: In all PD patients, we noted excessive beta band activity (13-30Hz at rest which consistently modulated the amplitude of the co-existent HFOs observed between 200-400Hz, indicating the presence of beta-HFO CFC. In all 3 TS patients at rest, we observed theta band activity (4-7Hz and HFOs. Two patients had beta band activity, though at lower power than theta oscillations. Tic activity was associated with increased high frequency (200-400Hz and gamma band (35-200Hz activity. There was no beta-HFO CFC in TS patients at rest. However, CFC between the phase of 5-10Hz band activity and the amplitude of HFOs was found in two TS patients. During tics, this shifted to CFC between the phase of beta band activity and the amplitude of HFOs in all subjects. Conclusions: To our knowledge this is the first study that shows that beta-HFO CFC exists in the GPi of TS patients during tics and at rest in PD patients, and suggests that this pattern might be specific to pathologic/involuntary movements. Furthermore, our findings suggest that during tics, resting

  1. Generation of activity-rest patterns by dual circadian pacemaker systems : a model

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Daan, Serge

    1992-01-01

    Activity-rest patterns displayed by an animal under various circumstances are suggested to result from the combined influences of two virtually identical circadian pacemaker components. Increased output of each component proportionally increases the probability of activity of the animal. Such a dual

  2. [Publications in respiratory nursing and physiotherapy].

    Science.gov (United States)

    Macián Gisbert, Vicente; Sánchez Gómez, Esperanza

    2011-01-01

    The Respiratory Nursing and Physiotherapy Section of the Spanish Society of Pneumology and Thoracic Surgery, established as a working group more than 19 years ago, has been characterized by a high degree of involvement and collaboration with all the research studies requiring nursing and physiotherapy techniques. However, publication of articles by this collective is scarce compared with that of the rest of the Society and the characteristics, attitudes and limitations of this section pose an obstacle to increasing the number of its publications. This article aims to explain some of the possible reasons that could have given rise to this situation. The new tendencies and the attitude of this collective and the rest of the Society are encouraging and suggest that the work of the Respiratory Nursing and Physiotherapy Section will be better reflected in the future. Copyright © 2011 Sociedad Española de Neumología y Cirugía Torácica. Published by Elsevier Espana. All rights reserved.

  3. Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster

    Science.gov (United States)

    Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar

    2015-02-01

    Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.

  4. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    JD Biller-Takahashi

    Full Text Available The present study evaluated the assay to quantify the respiratory burst activity of blood leukocytes of pacu as an indicator of the innate immune system, using the reduction of nitroblue tetrazolium (NBT to formazan as a measure of the production of reactive oxygen species (ROS. In order to assess the accuracy of the assay, fish were challenged by Aeromonas hydrophila and sampled one week after challenge. The A. hydrophila infection increased the leukocyte respiratory burst activity. The protocol showed a reliable and easy assay, appropriate to determine the respiratory burst activity of blood leukocytes of pacu, a neotropical fish, in the present experimental conditions.

  5. The Behaviour of Gas Bubble during Rest Period of Pulse-Activated Electrolysis Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Vilasmongkolchai Thanet

    2016-01-01

    Full Text Available The pulse-activated electrolyzer has been developed and used for several years. With the capability of enhancing the efficiency of an electrolytic process and easy operation, this technique becomes an interesting process for hydrogen production. Unfortunately during electrolytic reaction, the creation of bubbles becomes a reaction inhibitor and consumes energy. This paper aims to study the proper rest period that gives the bubble free rise-off the solution without additional bubble created. The mathematical method and acoustic emission method were used for investigation of bubble’s rising velocity. The result shows that the variation of rest period on pulse-activated makes production efficiency enhanced. For the practicality of use and set control parameters, duty cycle and frequency were demonstrated instead of rest period.

  6. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Science.gov (United States)

    Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2013-01-01

    Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ). Based on ARSQ data from 813 participants assessed after 5 min eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer's disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease. PMID:23964225

  7. An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal.

    Science.gov (United States)

    Motin, Mohammod Abdul; Karmakar, Chandan Kumar; Palaniswami, Marimuthu

    2016-08-01

    The pulse oximeter's photoplethysmographic (PPG) signals, measure the local variations of blood volume in tissues, reflecting the peripheral pulse modulated by cardiac activity, respiration and other physiological effects. Therefore, PPG can be used to extract the vital cardiorespiratory signals like heart rate (HR), respiratory rate (RR) and respiratory activity (RA) and this will reduce the number of sensors connected to the patient's body for recording vital signs. In this paper, we propose an algorithm based on ensemble empirical mode decomposition with principal component analysis (EEMD-PCA) as a novel approach to estimate HR, RR and RA simultaneously from PPG signal. To examine the performance of the proposed algorithm, we used 45 epochs of PPG, electrocardiogram (ECG) and respiratory signal extracted from the MIMIC database (Physionet ATM data bank). The ECG and capnograph based respiratory signal were used as the ground truth and several metrics such as magnitude squared coherence (MSC), correlation coefficients (CC) and root mean square (RMS) error were used to compare the performance of EEMD-PCA algorithm with most of the existing methods in the literature. Results of EEMD-PCA based extraction of HR, RR and RA from PPG signal showed that the median RMS error (quartiles) obtained for RR was 0 (0, 0.89) breaths/min, for HR was 0.62 (0.56, 0.66) beats/min and for RA the average value of MSC and CC was 0.95 and 0.89 respectively. These results illustrated that the proposed EEMD-PCA approach is more accurate in estimating HR, RR and RA than other existing methods.

  8. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  9. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Directory of Open Access Journals (Sweden)

    B. Alexander eDiaz

    2013-08-01

    Full Text Available Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ. Based on ARSQ data from 813 participants assessed after five minutes eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer’s disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease.

  10. Modulation of blood pressure response to exercise by physical activity and relationship with resting blood pressure during pregnancy.

    Science.gov (United States)

    Bisson, Michèle; Rhéaume, Caroline; Bujold, Emmanuel; Tremblay, Angelo; Marc, Isabelle

    2014-07-01

    To determine whether physical activity and blood pressure (BP) response to exercise in early pregnancy are related to resting BP at the end of pregnancy. Understanding physiological BP responses to exercise during pregnancy will help in improving BP profile and guiding exercise recommendations in pregnant women. Maternal physical activity, cardiorespiratory fitness (VO2peak) and BP (systolic and diastolic) at rest and during exercise (submaximal and relative response) were assessed at 16 weeks of gestation in 61 normotensive pregnant women. BP at 36 weeks of gestation and obstetrical outcomes were collected from maternal charts. Related to resting DBP at 16 weeks (r =  -0.28, P = 0.028), total energy expenditure spend at any physical activity in early pregnancy was also associated with resting SBP at 36 weeks (r =  -0.27, P = 0.038). On the contrary, although related to VO2peak (r =  -0.57, P sports and exercise (r =  -0.29, P = 0.024), the relative SBP response to exercise at 16 weeks was not associated with resting BP at 36 weeks. Strongly associated with resting BP at 16 weeks and also with total energy expenditure, submaximal BP response to exercise at 16 weeks was related to resting SBP and DBP at 36 weeks (r = 0.41, P = 0.001 and r = 0.26, P = 0.051, respectively). In normotensive women, physical activity performed in early pregnancy appears to slightly modulate resting BP in early and late pregnancy. However, further investigations are needed to determine which physical activity-related parameter in response to exercise best predicts BP variations during pregnancy.

  11. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    Science.gov (United States)

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  12. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Science.gov (United States)

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  13. Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging.

    Science.gov (United States)

    Yu, Yunhan; Chan, Chung; Ma, Tianyu; Liu, Yaqiang; Gallezot, Jean-Dominique; Naganawa, Mika; Kelada, Olivia J; Germino, Mary; Sinusas, Albert J; Carson, Richard E; Liu, Chi

    2016-07-01

    Existing respiratory motion-correction methods are applied only to static PET imaging. We have previously developed an event-by-event respiratory motion-correction method with correlations between internal organ motion and external respiratory signals (INTEX). This method is uniquely appropriate for dynamic imaging because it corrects motion for each time point. In this study, we applied INTEX to human dynamic PET studies with various tracers and investigated the impact on kinetic parameter estimation. The use of 3 tracers-a myocardial perfusion tracer, (82)Rb (n = 7); a pancreatic β-cell tracer, (18)F-FP(+)DTBZ (n = 4); and a tumor hypoxia tracer, (18)F-fluoromisonidazole ((18)F-FMISO) (n = 1)-was investigated in a study of 12 human subjects. Both rest and stress studies were performed for (82)Rb. The Anzai belt system was used to record respiratory motion. Three-dimensional internal organ motion in high temporal resolution was calculated by INTEX to guide event-by-event respiratory motion correction of target organs in each dynamic frame. Time-activity curves of regions of interest drawn based on end-expiration PET images were obtained. For (82)Rb studies, K1 was obtained with a 1-tissue model using a left-ventricle input function. Rest-stress myocardial blood flow (MBF) and coronary flow reserve (CFR) were determined. For (18)F-FP(+)DTBZ studies, the total volume of distribution was estimated with arterial input functions using the multilinear analysis 1 method. For the (18)F-FMISO study, the net uptake rate Ki was obtained with a 2-tissue irreversible model using a left-ventricle input function. All parameters were compared with the values derived without motion correction. With INTEX, K1 and MBF increased by 10% ± 12% and 15% ± 19%, respectively, for (82)Rb stress studies. CFR increased by 19% ± 21%. For studies with motion amplitudes greater than 8 mm (n = 3), K1, MBF, and CFR increased by 20% ± 12%, 30% ± 20%, and 34% ± 23%, respectively. For (82)Rb

  14. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  16. Activation of cytokines and NF-kappa B in corneal epithelial cells infected by respiratory syncytial virus: potential relevance in ocular inflammation and respiratory infection

    Directory of Open Access Journals (Sweden)

    Oakes John E

    2004-07-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is a major cause of lower respiratory tract infection, claiming millions of lives annually. The virus infects various cells of the respiratory tract as well as resident inflammatory cells such as macrophages. Infection activates a variety of cellular factors such as cytokines and the pro-inflammatory transcription factor, NF-kappa B, all of which are important players in the respiratory disease. However, the exact natural route of RSV infection and its etiology remain relatively unknown. In this paper, we test the hypothesis that human corneal epithelial cells, which constitute the outermost layer of the cornea, can be infected with RSV, and that the infection leads to the activation of proinflammatory macromolecules. Results Corneal swabs obtained from pediatric patients with acute respiratory disease were found to contain RSV at a high frequency (43 positive out of 72 samples, i.e., 60%. Primary corneal epithelial cells in tissue culture supported robust infection and productive growth of RSV. Infection resulted in the activation of TNF-α, IL-6 and sixteen chemokines as well as NF-κB. Three proinflammatory CXC chemokines (MIG, I-TAC, IP-10 underwent the greatest activation. Conclusions The ocular epithelium is readily infected by RSV. The pro-inflammatory cytokines are likely to play critical roles in the etiology of inflammation and conjunctivitis commonly seen in pediatric patients with respiratory infections. RSV-eye interactions have important implications in RSV transmission, immunopathology of RSV disease, and in the management of conjunctivitis.

  17. Effects of activity-rest schedules on physiological strain and spinal load in hospital-based porters.

    Science.gov (United States)

    Beynon, C; Burke, J; Doran, D; Nevill, A

    2000-10-01

    Workers in physically demanding occupations require rest breaks to recover from physiological stress and biomechanical loading. Physiological stress can increase the risk of developing musculoskeletal disorders and repeated loading of the spine may increase the potential for incurring back pain. The aim of the study was to assess the impact of an altered activity-rest schedule on physiological and spinal loading in hospital-based porters. An existing 4-h activity-rest schedule was obtained from observations on eight male porters. This schedule formed the normal trial, which included two 5- and one 15-min breaks. An alternative 4-h schedule was proposed (experimental condition) that had two breaks each of 12.5 min. It was hypothesized that the experimental trial is more effective in promoting recovery from physiological strain and spinal shrinkage than the normal trial, due to the 5-min breaks being insufficient to allow physiological variables to return to resting levels or the intervertebral discs to reabsorb fluid. Ten males performed both test conditions and oxygen uptake VO2, heart rate, minute ventilation VE, perceived exertion and spinal shrinkage were recorded. There were no significant differences in any of the measured variables between the two trials (p > 0.05). Median heart rates were 78 (range 71-93) and 82 (71-90) beats.min(-1) for the normal trial and the experimental trial respectively, indicating that the activity was of low intensity. The light intensity was corroborated by the oxygen uptakes (0.75, range 0.65-0.94 1.min(-1)). Spinal shrinkage occurred to the same extent in the two trials (2.12 +/- 3.16 mm and 2.88 +/- 2.92 mm in the normal trial and the experimental trial respectively). Varying the length and positioning of the rest breaks did not significantly affect the physiological responses or magnitude of spinal shrinkage between the two trials. More physically demanding work than the porters' schedule should induce greater physiological

  18. Activity changes of the cat paraventricular hypothalamus during phasic respiratory events

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Poe, G R; Rector, D M

    1997-01-01

    We monitored the spatiotemporal organization of cellular activity in the medial paraventricular hypothalamus during spontaneously-occurring periods of increased inspiratory effort followed by prolonged respiratory pauses (sigh/apnea) in the freely-behaving cat. Paraventricular hypothalamic activity...

  19. Respiratory activity variations induced in groups of LD 12:12 synchronized Sprague-Dawley rats by a 100 dB white noise emitted at 12-h intervals.

    Science.gov (United States)

    Stupfel, M; Molin, D; Thierry, H; Busnel, M C

    1980-01-01

    A white noise is emitted during 2 h, either in the middle of the scotoperiod (activity period) or of the photoperiod (rest period), on grouped specific pathogen free (SPF) male Sprague-Dawley rats, LD 12:12 synchronized by light (L = 6 h = 150 lux). Continuous measurements of VCO2, taken as an index of respiratory activity shows: 1. a short increase both after the beginning and the end of the stimulus, with slight time length differences between young and older rats; 2. a slight (2-3%) continued increase during the photoperiod and a high decrease (13%) during the scotoperiod. These VCO2 variations obtained during and after the white noise emission correspond to measurements of activity displacement and observations of behavior performed on a small sample of rats.

  20. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  1. The practice of active rest by workplace units improves personal relationships, mental health, and physical activity among workers.

    Science.gov (United States)

    Michishita, Ryoma; Jiang, Ying; Ariyoshi, Daisuke; Yoshida, Marie; Moriyama, Hideko; Yamato, Hiroshi

    2017-03-28

    This study was designed to clarify the effects of active rest, with a focus on the practice of short-time group exercise by workplace units, on personal relationships, mental health, physical activity, and work ability among workers. Fifty-nine white-collar workers (40 males and 19 females) performed our active rest (short-time exercise) program, which consists of warm-up, cognitive functional training, aerobic exercise, resistance training and cool-down for 10 minutes per day, 3 times per week during their lunch breaks for 10 weeks. Participants from a workplace unit were randomly allocated to the intervention (five workplaces, n=29) or control groups (six workplaces, n=30). The participants' anthropometric measurements, and their Profile of Mood States (POMS) 2, Brief Job Stress Questionnaire (BJSQ), physical activity levels and Work Ability Index were examined at the baseline and after the 10-week intervention. After 10 weeks, physical activity levels, especially the time spent in moderate and vigorous intensity, increased in the intervention group (pworkplace units is important for improving personal relationships, mental health, and physical activity among workers.

  2. Breath pacing system and method for pacing the respiratory activity of a subject

    NARCIS (Netherlands)

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  3. Respiratory diseases and their effects on respiratory function and exercise capacity.

    Science.gov (United States)

    Van Erck-Westergren, E; Franklin, S H; Bayly, W M

    2013-05-01

    Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes. © 2013 EVJ Ltd.

  4. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients

    NARCIS (Netherlands)

    van Someren, E. J.; Kessler, A.; Mirmiran, M.; Swaab, D. F.

    1997-01-01

    Light is known to be an important modulator of circadian rhythms. We tested the hypothesis than an enduring increase in the daytime environmental illumination level improves rest-activity rhythm disturbances in demented patients. Actigraphy was performed before, during, and after 4 weeks of

  5. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW.

    Science.gov (United States)

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    About 10% of trauma-exposed individuals develop PTSD. Although a growing number of studies have investigated resting-state abnormalities in PTSD, inconsistent results suggest a need for a meta-analysis and a systematic review. We conducted a systematic literature search in four online databases using keywords for PTSD, functional neuroimaging, and resting-state. In total, 23 studies matched our eligibility criteria. For the meta-analysis, we included 14 whole-brain resting-state studies, reporting data on 663 participants (298 PTSD patients and 365 controls). We used the activation likelihood estimation approach to identify concurrence of whole-brain hypo- and hyperactivations in PTSD patients during rest. Seed-based studies could not be included in the quantitative meta-analysis. Therefore, a separate qualitative systematic review was conducted on nine seed-based functional connectivity studies. The meta-analysis showed consistent hyperactivity in the ventral anterior cingulate cortex and the parahippocampus/amygdala, but hypoactivity in the (posterior) insula, cerebellar pyramis and middle frontal gyrus in PTSD patients, compared to healthy controls. Partly concordant with these findings, the systematic review on seed-based functional connectivity studies showed enhanced salience network (SN) connectivity, but decreased default mode network (DMN) connectivity in PTSD. Combined, these altered resting-state connectivity and activity patterns could represent neurobiological correlates of increased salience processing and hypervigilance (SN), at the cost of awareness of internal thoughts and autobiographical memory (DMN) in PTSD. However, several discrepancies between findings of the meta-analysis and systematic review were observed, stressing the need for future studies on resting-state abnormalities in PTSD patients. © 2016 Wiley Periodicals, Inc.

  6. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Science.gov (United States)

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  7. Comparison of the Effects of Seated, Supine, and Walking Interset Rest Strategies on Work Rate.

    Science.gov (United States)

    Ouellette, Kristen A; Brusseau, Timothy A; Davidson, Lance E; Ford, Candus N; Hatfield, Disa L; Shaw, Janet M; Eisenman, Patricia A

    2016-12-01

    Ouellette, KA, Brusseau, TA, Davidson, LE, Ford, CN, Hatfield, DL, Shaw, JM, and Eisenman, PA. Comparison of the effects of seated, supine, and walking interset rest strategies on work rate. J Strength Cond Res 30(12): 3396-3404, 2016-The idea that an upright posture should be maintained during the interset rest periods of training sessions is pervasive. The primary aim of this study was to determine differences in work rate associated with 3 interset rest strategies. Male and female members of the CrossFit community (male n = 5, female n = 10) were recruited to perform a strenuous training session designed to enhance work capacity that involved both cardiovascular and muscular endurance exercises. The training session was repeated on 3 separate occasions to evaluate 3 interset rest strategies, which included lying supine on the floor, sitting on a flat bench, and walking on a treadmill (0.67 m·s). Work rate was calculated for each training session by summing session joules of work and dividing by the time to complete the training session (joules of work per second). Data were also collected during the interset rest periods (heart rate [HR], respiratory rate [RR], and volume of oxygen consumed) and were used to explain why one rest strategy may positively impact work rate compared with another. Statistical analyses revealed significant differences (p ≤ 0.05) between the passive and active rest strategies, with the passive strategies allowing for improved work rate (supine = 62.77 ± 7.32, seated = 63.66 ± 8.37, and walking = 60.61 ± 6.42 average joules of work per second). Results also suggest that the passive strategies resulted in superior HR, RR, and oxygen consumption recovery. In conclusion, work rate and physiological recovery were enhanced when supine and seated interset rest strategies were used compared with walking interset rest.

  8. Suprathreshold Heat Pain Response Predicts Activity-Related Pain, but Not Rest-Related Pain, in an Exercise-Induced Injury Model

    Science.gov (United States)

    Coronado, Rogelio A.; Simon, Corey B.; Valencia, Carolina; Parr, Jeffrey J.; Borsa, Paul A.; George, Steven Z.

    2014-01-01

    Exercise-induced injury models are advantageous for studying pain since the onset of pain is controlled and both pre-injury and post-injury factors can be utilized as explanatory variables or predictors. In these studies, rest-related pain is often considered the primary dependent variable or outcome, as opposed to a measure of activity-related pain. Additionally, few studies include pain sensitivity measures as predictors. In this study, we examined the influence of pre-injury and post-injury factors, including pain sensitivity, for induced rest and activity-related pain following exercise induced muscle injury. The overall goal of this investigation was to determine if there were convergent or divergent predictors of rest and activity-related pain. One hundred forty-three participants provided demographic, psychological, and pain sensitivity information and underwent a standard fatigue trial of resistance exercise to induce injury of the dominant shoulder. Pain at rest and during active and resisted shoulder motion were measured at 48- and 96-hours post-injury. Separate hierarchical models were generated for assessing the influence of pre-injury and post-injury factors on 48- and 96-hour rest-related and activity-related pain. Overall, we did not find a universal predictor of pain across all models. However, pre-injury and post-injury suprathreshold heat pain response (SHPR), a pain sensitivity measure, was a consistent predictor of activity-related pain, even after controlling for known psychological factors. These results suggest there is differential prediction of pain. A measure of pain sensitivity such as SHPR appears more influential for activity-related pain, but not rest-related pain, and may reflect different underlying processes involved during pain appraisal. PMID:25265560

  9. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  11. A 24-h assessment of physical activity and cardio-respiratory fitness among female hospital cleaners

    DEFF Research Database (Denmark)

    Larsen, Mette Korshøj; Krustrup, Peter; Jespersen, Tobias

    2013-01-01

    measured. The methods were feasible for the objective 24-h sampling of physical activity and cardio-respiratory fitness among cleaners. Measurements showed that the cleaners walked 20,198 ± 4,627 steps per day. During working hours, the average cardio-respiratory load was 25 ± 6% of heart rate reserve (HRR......). The cleaners had a low estimated cardio-respiratory fitness (34 mlO2/kg/min), a high BMI (50%, >25 kg/m(2)) and blood pressure (50%, >120/>80 mmHg). The high amount of steps, the relatively high cardiovascular load at work and low cardio-respiratory fitness illustrate the need for further investigation...... of the relationship between physical activity at work and in leisure, and cardiovascular health in this population. Practitioner Summary: This study evaluated the feasibility of methods for objective 24-h sampling of physical activity among cleaners; the methods used were found to be feasible. The cleaners had a high...

  12. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes.

    Science.gov (United States)

    Araújo, G W; Beyer, C; Arnold, S

    2008-07-01

    The regulation of mitochondrial energy metabolism plays an essential role in the central nervous system (CNS). Abnormalities of the mitochondrial respiratory chain often accompany neurodegenerative diseases. This makes mitochondria a perfect target for strategies of cellular protection against toxic compounds and pathological conditions. Steroid hormones, such as oestrogen, are well-known to fulfil a protective role in the brain during ischaemic and degenerative processes. Because astrocytes function as the major energy supplier in the CNS, we have analysed oestrogen effects on the mitochondrial respiratory chain of this cell type. In our studies, we applied semi- and quantitative polymerase chain reaction analysis of gene expression and polarographic measurements of the respiratory chain activity of mitochondria. We observed that structural and functional properties were regulated dependent on the oestrogen exposure time and the brain region, but independent of the nuclear oestrogen receptors. We could demonstrate that long-term oestrogen exposure increases the subunit gene expression of respiratory chain complexes and the mitochondrial DNA content, thereby indicating an up-regulation of the amount of mitochondria per cell together with an increase of mitochondrial energy production. This could represent an important indirect mechanism by which long-term oestrogen exposure protects neurones from cell death under neurotoxic conditions. On the other hand, we observed short-term effects of oestrogen on the activity of mitochondrial, proton-pumping respiratory chain complexes. In astrocytes from the cortex, respiratory chain activity was decreased, whereas it was increased in astrocytes from the mesencephalon. An increased production of reactive oxygen species would be the consequence of an increased respiratory chain activity in mesencephalic astrocytes. This could explain the different efficiencies of oestrogen-mediated short-term protection in distinct brain

  13. Rest-activity circadian rhythms and bone mineral density in elderly men

    Directory of Open Access Journals (Sweden)

    Tara S. Rogers

    2017-12-01

    Conclusions: The data demonstrate modest associations between overall circadian rhythmicity of rest and activity (measured by pseudo F-statistic, as well as daytime to nighttime activity ratio (measured by alpha statistic, aBMD and ΔaBMD, but adjustment for covariates related to lifestyle, BMI and comorbidities attenuated most of these associations. These results suggest that RAR patterns are not independently associated with aBMD or four-year ΔaBMD at the total hip or femoral neck in older men, but additional research is needed.

  14. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    Science.gov (United States)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (pdifferent in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57± 7%, respectively; presponse to combined effects of a reduced plasma volume and an increased vascular capacity in flight.

  15. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  16. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Science.gov (United States)

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  17. Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men

    DEFF Research Database (Denmark)

    Rosenkilde, M; Nordby, P; Nielsen, L B

    2010-01-01

    OBJECTIVE: To elucidate if fat oxidation at rest predicts peak fat oxidation during exercise and/or metabolic phenotype in moderately overweight, sedentary men. DESIGN: Cross-sectional study.Subjects:We measured respiratory exchange ratio (RER) at rest in 44 moderately overweight, normotensive...... the International Diabetes Federation criteria, we found that there was a lower accumulation of metabolic risk factors in L-RER than in H-RER (1.6 vs 3.5, P=0.028), and no subjects in L-RER and four of eight subjects in H-RER had the metabolic syndrome. Resting RER was positively correlated with plasma...... triglycerides (Pexercise was positively correlated with plasma free fatty acid concentration at rest (Pexercise and a healthy metabolic...

  18. The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial.

    Science.gov (United States)

    Wingfield, Hailee L; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Trexler, Eric T; Hackney, Anthony C; Weaver, Mark A; Ryan, Eric D

    2015-12-01

    The purpose of this study was to examine the effect of exercise modality and pre-exercise carbohydrate (CHO) or protein (PRO) ingestion on post-exercise resting energy expenditure (REE) and respiratory exchange ratio (RER) in women. Twenty recreationally active women (mean ± SD; age 24.6 ± 3.9 years; height 164.4 ± 6.6 cm; weight 62.7 ± 6.6 kg) participated in this randomized, crossover, double-blind study. Each participant completed six exercise sessions, consisting of three exercise modalities: aerobic endurance exercise (AEE), high-intensity interval running (HIIT), and high-intensity resistance training (HIRT); and two acute nutritional interventions: CHO and PRO. Salivary samples were collected before each exercise session to determine estradiol-β-17 and before and after to quantify cortisol. Post-exercise REE and RER were analyzed via indirect calorimetry at the following: baseline, immediately post (IP), 30 minutes (30 min) post, and 60 minutes (60 min) post exercise. A mixed effects linear regression model, controlling for estradiol, was used to compare mean longitudinal changes in REE and RER. On average, HIIT produced a greater REE than AEE and HIRT (p HIIT produced lower RER compared to either AEE or HIRT after 30 min (p HIIT resulted in the largest increase in REE and largest reduction in RER.

  19. Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected

    International Nuclear Information System (INIS)

    Nilsson, Lena; Goscinski, Tomas; Lindenberger, Marcus; Länne, Toste; Johansson, Anders

    2010-01-01

    Recent studies using photoplethysmographic (PPG) signals from pulse oximeters have shown potential to assess hypovolaemia during spontaneous breathing. This signal is heavily filtered and reports are based on respiratory variations in the small pulse synchronous variation of PPG. There are stronger respiratory variations such as respiratory synchronous variation (PPGr) in the baseline of the unfiltered PPG signal. We hypothesized that PPGr would increase during hypovolaemia during spontaneous breathing. Hemodynamic and respiratory data were recorded together with PPG infrared signals from the finger, ear and forearm from 12 healthy male volunteers, at rest and during hypovolaemia created by the application of a lower body negative pressure (LBNP) of 15, 30 and 60 cmH 2 O. Hemodynamic and respiratory values changed significantly. From rest to the LBNP of 60 cmH 2 O systolic blood pressure fell from median (IQR) 116 (16) to 101 (23) mmHg, the heart rate increased from 58 (16) to 73 (16) beats min −1 , and the respiratory rate increased from 9.5 (2.0) to 11.5 (4.0) breaths min −1 . The amplitude of PPGr did not change significantly at any measurement site. The strongest effect was seen at the ear, where the LBNP of 60 cmH 2 O gave an amplitude increase from 1.0 (0.0) to 1.31 (2.24) AU. PPG baseline respiratory variations cannot be used for detecting hypovolaemia in spontaneously breathing subjects

  20. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal.

    Science.gov (United States)

    Limberg, Jacqueline K; Malterer, Katherine R; Matzek, Luke J; Levine, James A; Charkoudian, Nisha; Miles, John M; Joyner, Michael J; Curry, Timothy B

    2017-08-01

    Individuals with high plasma norepinephrine (NE) levels at rest have a smaller reduction in resting energy expenditure (REE) following β -adrenergic blockade. If this finding extends to the response to a meal, it could have important implications for the role of the sympathetic nervous system in energy balance and weight gain. We hypothesized high muscle sympathetic nerve activity (MSNA) would be associated with a low sympathetically mediated component of energy expenditure following a meal. Fourteen young, healthy adults completed two visits randomized to continuous saline (control) or intravenous propranolol to achieve systemic β -adrenergic blockade. Muscle sympathetic nerve activity and REE were measured (indirect calorimetry) followed by a liquid mixed meal (Ensure). Measures of energy expenditure continued every 30 min for 5 h after the meal and are reported as an area under the curve (AUC). Sympathetic support of energy expenditure was calculated as the difference between the AUC during saline and β -blockade (AUC P ropranolol -AUC S aline , β -REE) and as a percent (%) of control (AUC P ropranolol ÷AUC S aline  × 100). β -REE was associated with baseline sympathetic activity, such that individuals with high resting MSNA (bursts/100 heart beats) and plasma NE had the greatest sympathetically mediated component of energy expenditure following a meal (MSNA: β -REE R  =   -0.58, P =  0.03; %REE R  = -0.56, P =  0.04; NE: β -REE R  = -0.55, P  = 0.0535; %REE R  = -0.54, P  = 0.0552). Contrary to our hypothesis, high resting sympathetic activity is associated with a greater sympathetically mediated component of energy expenditure following a liquid meal. These findings may have implications for weight maintenance in individuals with varying resting sympathetic activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-01-01

    Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact

  2. Activity of Bryophyllum pinnatum S. Kurz extracts on respiratory tract ...

    African Journals Online (AJOL)

    These fractions were subjected to antibacterial testing against respiratory tract pathogenic bacteria. The n-hexane soluble fraction showed activity against the selected microorganism with highest on Staphylococcus aureus (12mm), Klebsiella pneumonia (11mm) and Salmonella typhi (08mm); ethyl acetate soluble fraction ...

  3. Spontaneous group synchronization of movements and respiratory rhythms.

    Directory of Open Access Journals (Sweden)

    Erwan Codrons

    Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

  4. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  5. 5-HTTLPR polymorphism impacts task-evoked and resting-state activities of the amygdala in Han Chinese.

    Science.gov (United States)

    Li, Sufang; Zou, Qihong; Li, Jun; Li, Jin; Wang, Deyi; Yan, Chaogan; Dong, Qi; Zang, Yu-Feng

    2012-01-01

    Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|>2.028, pemotional processing task. 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. They suggest that the effect of 5-HTTLPR on the amygdala may be modulated by ethnic differences.

  6. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    Science.gov (United States)

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).

  7. Velocity profiles in idealized model of human respiratory tract

    Science.gov (United States)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  8. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  9. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  11. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  12. Daily physical-rest activities in relation to nutritional state, metabolism, and quality of life in cancer patients with progressive cachexia.

    Science.gov (United States)

    Fouladiun, Marita; Körner, Ulla; Gunnebo, Lena; Sixt-Ammilon, Petra; Bosaeus, Ingvar; Lundholm, Kent

    2007-11-01

    To evaluate daily physical-rest activities in cancer patients losing weight in relation to disease progression. Physical activity-rest rhythms were measured (ActiGraph, armband sensor from BodyMedia) in relation to body composition (dual-energy X-ray absorptiometry), energy metabolism, exercise capacity (walking test), and self-scored quality of life (SF-36, Hospital Anxiety and Depression Scale) in weight-losing outpatients with systemic cancer (71 +/- 2 years, n = 53). Well-nourished, age-matched, and previously hospitalized non-cancer patients served as controls (74 +/- 4 years, n = 8). Middle-aged healthy individuals were used as reference subjects (49 +/- 5 years, n = 23). Quality of life was globally reduced in patients with cancer (P sleep and bed-rest activities did not differ between patients with cancer and age-matched non-cancer patients. Spontaneous physical activity correlated weakly with maximum exercise capacity in univariate analysis (r = 0.41, P < 0.01). Multivariate analysis showed that spontaneous physical activity was related to weight loss, blood hemoglobin concentration, C-reactive protein, and to subjectively scored items of physical functioning and bodily pain (SF-36; P < 0.05-0.004). Anxiety and depression were not related to spontaneous physical activity. Patient survival was predicted only by weight loss and serum albumin levels (P < 0.01), although there was no such prediction for spontaneous physical activity. Daily physical-rest activities represent variables which probably reflect complex mental physiologic and metabolic interactions. Thus, activity-rest monitoring provides a new dimension in the evaluation of medical and drug interventions during palliative treatment of patients with cancer.

  13. Gastroenterological surgery for patients with chronic respiratory insufficiency.

    Science.gov (United States)

    Shimada, M; Kano, T; Matsuzaki, Y; Miyazaki, N; Ninomiya, K

    1998-01-01

    The aim of this study was to clarify the surgical indications for patients with chronic respiratory insufficiency. Fourteen patients with chronic respiratory insufficiency who underwent abdominal surgical procedures, were retrospectively studied. The surgical indications were carefully determined based primarily on the performance status (PS) of each patient and cardiopulmonary function tests. A PS of equal to or less than 3, which meant the patient's status required bed rest > 50% of the time, and the need for assistance in performing normal activities were all factors considered for surgical indications. During the period studied, two patients were excluded from the surgical indications due to the fact that one was at a terminal stage of pulmonary disease and was completely bedridden (PS = 4), while the other demonstrated active pneumonia with a considerable amount of purulent sputa. Regarding the pulmonary function tests for patients who underwent surgery, the lowest limits of those examinations were as follows: 810 ml of vital capacity (VC), 23.8% of predicted VC, 610 ml of forced expiratory volume in one second (FEV1.0), 38.6% of predicted FEV1.0, 50.5 mmHg of PaO2 while inhaling 4 liters of oxygen and 73.8 mmHg of PaCO2. No surgery related mortality or hospital death within 30 days after operation was observed. Only two patients had cardiopulmonary complications (consisting of pulmonary edema with atrial fibrillation in one patient, and acute myocardial infarction in another patient). However, neither pneumonia, prolonged ventilatory support for more than 2 days, nor the need for a tracheostomy after surgery was observed. Gastroenterological surgery is thus considered to be indicated even for patients with chronic respiratory insufficiency, as long as the PS can be maintained (PS of equal to or less than 3) and no active pneumonia with a considerable amount of purulent sputa is present.

  14. Inactivity-induced respiratory plasticity: Protecting the drive to breathe in disorders that reduce respiratory neural activity☆

    Science.gov (United States)

    Strey, K.A.; Baertsch, N.A.; Baker-Herman, T.L.

    2013-01-01

    Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity. PMID:23816599

  15. Evaluation of Respiratory Muscles Activity by means of Cross Mutual Information Function at Different Levels of Ventilatory Effort

    OpenAIRE

    Alonso López, Joan Francesc; Mañanas Villanueva, Miguel Ángel; Hoyer, Dirk; Bruce, Eugene N.; Zbigniew L., Topor

    2007-01-01

    Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear ...

  16. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    Science.gov (United States)

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  17. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  18. Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson's Disease Patients

    NARCIS (Netherlands)

    Gómez, C.; Olde Dubbelink, K.T.E.; Stam, C.J.; Abasolo, D.; Berendse, H.W.; Hornero, R.

    2011-01-01

    The aim of the present study was to analyze resting-state brain activity in patients with Parkinson's disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage

  19. Distinct migration and contact dynamics of resting and IL-2-activated human natural killer cells

    Directory of Open Access Journals (Sweden)

    Per Erik Olofsson

    2014-03-01

    Full Text Available Natural killer (NK cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor–ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e. the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and IL-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney (HEK 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ motile scanning of the target cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior and contact dynamics.

  20. SRS-A leukotrienes decrease the activity of human respiratory cilia

    DEFF Research Database (Denmark)

    Bisgaard, H; Pedersen, M

    1987-01-01

    We have studied the effects of the slow reacting substance of anaphylaxis (SRS-A) constituents leukotrienes (LT) C4 and D4 on the ciliary activity of human respiratory cells. The ciliary beat frequency on human nasal cells harvested by cell scraping from the inferior turbinate was measured...

  1. Identification of Resting State Networks Involved in Executive Function.

    Science.gov (United States)

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  2. Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector.

    Science.gov (United States)

    Zhao, Yangang; Zhu, Min; Yu, Yanlan; Qiu, Linli; Zhang, Yuanyuan; He, Li; Zhang, Jiqiang

    2017-01-01

    During neurogenesis, specific transcription factors are needed to repress neuronal genes in nonneuronal cells to ensure precise development. Repressor element-1 binding transcription factor (REST), or neuron-restrictive silencer factor (NRSF), has been shown to be an important regulator for the establishment of neuronal specificity. It restricts the expression of neuronal genes by binding to the neuron-restrictive silencer element (NRSE/RE1) domain in neuron-specific genes. REST/NRSF regulates many target genes in stem cells, nonneural cells, and neurons, which are involved in neuronal differentiation, axonal growth, vesicular transport, and release as well as ionic conductance. However, it is also regulated by some cytokines/regulators such as epigenetic factors (microRNAs) and even its truncated isoform. REST/NRSF is widely detected in brain regions and has been shown to be highly expressed in nonneuronal cells, but current findings also reveal that, at least in the human brain, it is also highly expressed in neurons and increases with ageing. However, its loss in expression and cytoplasmic translocation seems to play a pivotal role in several human dementias. Additionally, REST/NRSF knockdown leads to malformations in nerve and nonneural tissues and embryonic lethality. Altered REST/NRSF expression has been not only related to deficient brain functions such as neurodegenerative diseases, mental disorders, brain tumors, and neurobehavioral disorders but also highly correlated to brain injuries such as alcoholism and stroke. Encouragingly, several compounds such as valproic acid and X5050 that target REST/NRSF have been shown to be clinically effective at rescuing seizures or Niemann-Pick type C disease. Surprisingly, studies have also shown that REST/NRSF can function as an activator to induce neuronal differentiation. These findings strongly indicate that REST/NRSF is not only a classical repressor to maintain normal neurogenesis, but it is also a fine

  3. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P state MSNA was decreased by 31% (P state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  4. An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages.

    Science.gov (United States)

    Bowden, Steven D; Ramachandran, Vinoy K; Knudsen, Gitte M; Hinton, Jay C D; Thompson, Arthur

    2010-11-08

    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.

  5. Comparison of respiratory quotient and resting energy expenditure in two regimens of enteral feeding - continuous vs. intermittent in head-injured critically ill patients

    Directory of Open Access Journals (Sweden)

    Indubala Maurya

    2011-01-01

    Full Text Available Introduction: Measurement of respiratory quotient (RQ and resting energy expenditure (REE has been shown to be helpful in designing nutritional regimens. There is a paucity of the literature describing the impact of a feeding regimen on the energy expenditure patterns. Therefore, we studied the effect of continuous vs. intermittent feeding regimen in head-injured patients on mechanical ventilation on RQ and REE . Methods: After institutional ethical approval, this randomized study was conducted in 40 adult male patients with head injury requiring controlled mode of ventilation. Patients were randomly allocated into two groups. Group C: Feeds (30 kcal/kg/day were given for 18 h/day, with night rest for 6 h. Group I: Six bolus feeds (30 kcal/kg/day were given three hourly for 18 h with night rest for 6 h. RQ and REE were recorded every 30 min for 24 h. Blood sugar was measured 4 hourly. Other adverse effects such as feed intolerance, aspiration were noted. Results: Demographic profile and SOFA score were comparable in the two groups. Base line RQ (0.8 vs. 0.86 and REE (1527 vs. 1599 kcal/day were comparable in both the groups (P>0.05. RQ was comparable in both groups during the study period at any time of the day (P>0.05. Base line RQ was compared with all other RQ values measured every half hour and fluctuation from the base line value was insignificant in both groups (P>0.05. REE was comparable in both the groups throughout the study period (P>0.5. Adequacy of feeding as assessed by EI/MREE was 105.7% and 105.3% in group C and group I, respectively. There was no significant difference in the blood sugar levels between the two groups (P>0.05. Conclusion: We found from our study that RQ, REE, and blood sugar remain comparable with two regimens of enteral feeding - continuous vs. intermittent in neurosurgical patients on ventilator support in a ICU setup.

  6. Respiratory muscle stretch gymnastics in patients with post coronary artery bypass grafting pain : Impact on respiratory muscle function, activity, mood and exercise capacity

    OpenAIRE

    會田, 信子; 渋谷, 優子; 吉野, 克樹; Komoda, Masaji; 井上, 智子

    2002-01-01

    A new rehabilitation (New-RH) program including respiratory muscle stretch gymnastics (RMSG) was developed to alleviate post-coronary artery bypass grafting pain (PCP). Effects on respiratory muscle function, pain, activities of daily living (ADL), mood and exercise capacity were investigated. Subjects were 16 consecutive patients undergoing median full sternotomy coronary artery bypass grafting (CABG), and were randomly divided into equal New-RH (S-group) and conventional therapy (C-group) g...

  7. Clinical applications of resting state functional connectivity

    Directory of Open Access Journals (Sweden)

    Michael D Fox

    2010-06-01

    Full Text Available During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level dependent (BOLD signal of fMRI. The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  8. A respiratory monitoring device based on clavicular motion

    International Nuclear Information System (INIS)

    Pitts, D G; Aspinall, R; Patel, M K; Lang, P-O; Sinclair, A J

    2013-01-01

    Respiratory rate is one of the key vital signs yet unlike temperature, heart rate or blood pressure, there is no simple and low cost measurement device for medical use. Here we discuss the development of a respiratory sensor based upon clavicular motion and the findings of a pilot study comparing respiratory rate readings derived from clavicular and thoracic motion with an expiratory breath flow reference sensor. Simultaneously sampled data from resting volunteers (n = 8) was analysed to determine the location of individual breaths in the data set and from these, breath periods and frequency were calculated. Clavicular sensor waveforms were found to be more consistent and of greater amplitude than those from the thoracic device, demonstrating good alignment with the reference waveform. On comparing breath by breath periods a close agreement was observed with the reference, with mean clavicular respiratory rate R 2 values of 0.89 (lateral) and 0.98 (longitudinal-axis). This pilot study demonstrates the viability of clavicular respiratory sensing. The sensor is unobtrusive, unaffected by bioelectrical or electrode problems and easier to determine and more consistent than thoracic motion sensing. With relatively basic signal conditioning and processing requirements, it could provide an ideal platform for a low-cost respiratory monitor. (note)

  9. Combinations of resting RSA and RSA reactivity impact maladaptive mood repair and depression symptoms.

    Science.gov (United States)

    Yaroslavsky, Ilya; Bylsma, Lauren M; Rottenberg, Jonathan; Kovacs, Maria

    2013-10-01

    We examined whether the combined indices of respiratory sinus arrhythmia at rest (resting RSA) and in response to a sad film (RSA reactivity) predict effective and ineffective responses to reduce sadness (adaptive vs. maladaptive mood repair) in women with histories of juvenile-onset depression (n=74) and no history of major mental disorders (n=75). Structural equation models were used to estimate latent resting RSA, depression, and adaptive and maladaptive mood repair and to test the study hypotheses. Results indicated that combinations of resting RSA+RSA reactivity (RSA patterns) predicted maladaptive mood repair, which in turn, mediated the effects of RSA pattern on depression. Further, RSA patterns moderated the depressogenic effects of maladaptive mood repair. RSA patterns were unrelated to adaptive mood repair. Our findings suggest that mood repair is one mechanism through which physiological vulnerabilities adversely affect mental health. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity.

    Science.gov (United States)

    Chan, Russell W; Leong, Alex T L; Ho, Leon C; Gao, Patrick P; Wong, Eddie C; Dong, Celia M; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X

    2017-08-15

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.

  12. Perioperative respiratory adverse events in children with active upper respiratory tract infection who received general anesthesia through an orotracheal tube and inhalation agents

    OpenAIRE

    Kim, So Yeon; Kim, Jeong Min; Lee, Jae Hoon; Kang, Young Ran; Jeong, Seung Ho; Koo, Bon-Nyeo

    2013-01-01

    Background Active upper respiratory tract infection (URI), orotracheal intubation and use of inhalation anesthetics are known risk factors for perioperative respiratory adverse events (RAE). This study investigated the risk factors of perioperative RAE in children with these risk factors. Methods The records of 159 children who underwent general anesthesia with an orotracheal tube and inhalation were reviewed. These patients also had at least one of the following URI symptoms on the day of su...

  13. Brief wakeful resting can eliminate directed forgetting.

    Science.gov (United States)

    Schlichting, Andreas; Bäuml, Karl-Heinz T

    2017-02-01

    When cued to intentionally forget previously encoded memories, participants typically show reduced recall of the memories on a later recall test. We examined how such directed forgetting is affected by a brief period of wakeful resting between encoding and test. Encoding was followed by a "passive" wakeful resting period in which subjects heard emotionally neutral music or perceived neutral pictures, or it was followed by an "active" distraction period in which subjects were engaged in counting or calculation tasks. Whereas typical directed forgetting was present after active distraction, the forgetting was absent after wakeful resting. The findings indicate that the degree to which people can intentionally forget memories is influenced by the cognitive activity that people engage in shortly after learning takes place. The results provide first evidence on the interplay between wakeful resting and intentional forgetting.

  14. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  15. Resting RSA Is Associated with Natural and Self-Regulated Responses to Negative Emotional Stimuli

    Science.gov (United States)

    Demaree, Heath A.; Robinson, Jennifer L.; Everhart, D. Erik; Schmeichel, Brandon J.

    2004-01-01

    Resting respiratory sinus arrhythmia (RSA) was assessed among 111 adult participants. These individuals were then asked to watch a positive or negative affective film in either a natural manner or while exaggerating their facial response. Facial reactions to the film were video-recorded and subsequently rated in terms of facial affect.…

  16. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    Science.gov (United States)

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic

  17. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive.

    Science.gov (United States)

    Levitt, Erica S; Abdala, Ana P; Paton, Julian F R; Bissonnette, John M; Williams, John T

    2015-10-01

    In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of

  18. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity rhythm in midstage Alzheimer's disease

    NARCIS (Netherlands)

    Scherder, E. J.; van Someren, E. J.; Swaab, D. F.

    1999-01-01

    Nightly restlessness in patients with Alzheimer's disease (AD) is probably due to a disorder of circadian rhythms. Transcutaneous electrical nerve stimulation (TENS) was previously reported to increase the strength of coupling of the circadian rest activity rhythm to Zeitgebers in early stage

  19. Sleeping and resting respiratory rates in dogs and cats with medically-controlled left-sided congestive heart failure.

    Science.gov (United States)

    Porciello, F; Rishniw, M; Ljungvall, I; Ferasin, L; Haggstrom, J; Ohad, D G

    2016-01-01

    Sleeping and resting respiratory rates (SRR and RRR, respectively) are commonly used to monitor dogs and cats with left-sided cardiac disease and to identify animals with left-sided congestive heart failure (L-CHF). Dogs and cats with subclinical heart disease have SRRmean values dogs and cats with CHF that is well controlled with medical therapy. In this study, SRR and RRR were measured by the owners of 51 dogs and 22 cats with stable, well-controlled CHF. Median canine SRRmean was 20 breaths/min (7-39 breaths/min); eight dogs were ≥25 breaths/min and one dog only was ≥30 breaths/min. Canine SRRmean was unrelated to pulmonary hypertension or diuretic dose. Median feline SRRmean was 20 breaths/min (13-31 breaths/min); four cats were ≥25 breaths/min and only one cat was ≥30 breaths/min. Feline SRRmean was unrelated to diuretic dose. SRR remained stable during collection in both species with little day-to-day variability. The median canine RRRmean was 24 breaths/min (12-44 breaths/min), 17 were ≥25 breaths/min, seven were ≥30 breaths/min, two were >40 breaths/min. Median feline RRRmean was 24 breaths/min (15-45 breaths/min); five cats had RRRmean ≥25 breaths/min; one had ≥30 breaths/min, and two had ≥40 breaths/min. These data suggest that most dogs and cats with CHF that is medically well-controlled and stable have SRRmean and RRRmean dogs and cats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  1. Behavioral and physiological significance of minimum resting metabolic rate in king penguins.

    Science.gov (United States)

    Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y

    2008-01-01

    Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.

  2. Variations observed in the respiratory activity of potato tubers (Solanum tuberosum L.) after a treatment with gamma radiation

    International Nuclear Information System (INIS)

    Mazon Matanzo, M. P.; Fernandez Gonzalez, J.

    1976-01-01

    The present work studies the variations in the respiratory activity of irradiated and IPC treated potato tubers during a storage period of five months. By immediate effect of gamma radiation we can observe an increase in the oxygen consumption of the parenchyma in relation with the control tubers, such increase persists even fours months after gamma radiation. The respiratory activity is reduced in the IPC treated tubers. In the tissues cultivated in vitro the respiratory activity increases at the end of the cultivation period, not only in the control tissues but also in the irradiated ones, though this increase is greater in the control tissues. (Author) 15 refs

  3. Variations observed in the respiratory activity of potato tubers (Solanum tuberosum L.) after a treatment with gamma radiation

    International Nuclear Information System (INIS)

    Mazon Matanzo, M.P.; Fernandez Gonzalez, J.

    1976-01-01

    The variations in the respiratory activity of irradiated and IPC treated potato tubers during a storage period of five months have been studied. By immediate effect of gamma radiation, an increase in the oxigen consumption of the parenchyma in relation with the control tubers has been observed. Such increase persits even four months after gamma radiation. The respiratory activity is reduced in the IPC treated tubers. In the tissues cultivated ''in vitro'' the respiratory activity increases at the end of the cultivation period, not only in the control tissues but also in the irradiated ones, though this increase is greater in the control tissues.(author) [es

  4. Sympathetic nervous activity decreases during head-down bed rest but not during microgravity

    DEFF Research Database (Denmark)

    Christensen, Niels J; Heer, Martina; Ivanova, Krassimira

    2005-01-01

    We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy......, and at least 2 wk after return to Earth. Because of the long half-life of platelet norepinephrine, data obtained early after landing would still reflect the microgravity state. Platelet norepinephrine decreased markedly during HDBR (P

  5. Assessing the mean strength and variations of the time-to-time fluctuations of resting-state brain activity.

    Science.gov (United States)

    Li, Zhengjun; Zang, Yu-Feng; Ding, Jianping; Wang, Ze

    2017-04-01

    The time-to-time fluctuations (TTFs) of resting-state brain activity as captured by resting-state fMRI (rsfMRI) have been repeatedly shown to be informative of functional brain structures and disease-related alterations. TTFs can be characterized by the mean and the range of successive difference. The former can be measured with the mean squared successive difference (MSSD), which is mathematically similar to standard deviation; the latter can be calculated by the variability of the successive difference (VSD). The purpose of this study was to evaluate both the resting state-MSSD and VSD of rsfMRI regarding their test-retest stability, sensitivity to brain state change, as well as their biological meanings. We hypothesized that MSSD and VSD are reliable in resting brain; both measures are sensitive to brain state changes such as eyes-open compared to eyes-closed condition; both are predictive of age. These hypotheses were tested with three rsfMRI datasets and proven true, suggesting both MSSD and VSD as reliable and useful tools for resting-state studies.

  6. Circadian rest-activity rhythms during benzodiazepine tapering covered by melatonin versus placebo add-on: data derived from a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Lone Baandrup

    2016-10-01

    Full Text Available Abstract Background Patients with severe mental illness often suffer from disruptions in circadian rest-activity cycles, which might partly be attributed to ongoing psychopharmacological medication. Benzodiazepines are frequently prescribed for prolonged periods despite recommendations of only short-term usage. Melatonin, a naturally occurring nocturnal hormone, has the potential to stabilize disrupted circadian rhythmicity. Our aim was to investigate how prolonged-release melatonin affects rest-activity patterns in medicated patients with severe mental illness and if benzodiazepine dose reduction is associated with changes in circadian rhythm parameters. Method Data were derived from a randomized, double-blinded clinical trial with 24 weeks follow-up. Participants were randomized to add-on treatment with prolonged-release melatonin (2 mg or matching placebo, and usual benzodiazepine dosage was gradually tapered. Here we report the results of 72 h of actigraphic assessment of activity-rest cycles performed pre and post tapering. Changes in rest-activity rhythm parameters between the melatonin and placebo group were analyzed using the univariate general linear model. Change in activity counts per 6 h, from baseline to follow-up, in the whole sample was analyzed using paired samples t-test. Results A subsample of 48 patients participated in the actigraphic assessment: 20 in the melatonin group and 28 in the placebo group. Rest-activity cycles varied from regular to highly disrupted. Melatonin significantly increased the interdaily stability and at a trend level decreased the intradaily variability compared with placebo. Benzodiazepine dose reduction was not associated with these circadian rhythm parameters. Activity counts were generally higher after benzodiazepine dose reduction compared with pre tapering, but differences did not reach statistical significance. Conclusion Our data suggest melatonin as an aid during benzodiazepine withdrawal for

  7. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  8. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  9. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    Science.gov (United States)

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  11. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    Science.gov (United States)

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  12. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    Science.gov (United States)

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  13. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Baertsch, Nathan A; Baker-Herman, Tracy L

    2015-04-15

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. Copyright © 2015 the American Physiological Society.

  14. Vena Cava Responsiveness to Controlled Isovolumetric Respiratory Efforts.

    Science.gov (United States)

    Folino, Anna; Benzo, Marco; Pasquero, Paolo; Laguzzi, Andrea; Mesin, Luca; Messere, Alessandro; Porta, Massimo; Roatta, Silvestro

    2017-10-01

    Respirophasic variation of inferior vena cava (IVC) size is affected by large variability with spontaneous breathing. This study aims at characterizing the dependence of IVC size on controlled changes in intrathoracic pressure. Ten healthy subjects, in supine position, performed controlled isovolumetric respiratory efforts at functional residual capacity, attaining positive (5, 10, and 15 mmHg) and negative (-5, -10, and -15 mmHg) alveolar pressure levels. The isovolumetric constraint implies that equivalent changes are exhibited by alveolar and intrathoracic pressures during respiratory tasks. The IVC cross-sectional area equal to 2.88 ± 0.43 cm 2 at baseline (alveolar pressure = 0 mmHg) was progressively decreased by both expiratory and inspiratory efforts of increasing strength, with diaphragmatic efforts producing larger effects than thoracic ones: -55 ± 15% decrease, at +15 mmHg of alveolar pressure (P < .01), -80 ± 33 ± 12% at -15 mmHg diaphragmatic (P < .01), -33 ± 12% at -15 mmHg thoracic. Significant IVC changes in size (P < .01) and pulsatility (P < .05), along with non significant reduction in the response to respiratory efforts, were also observed during the first 30 minutes of supine rest, detecting an increase in vascular filling, and taking place after switching from the standing to the supine position. This study quantified the dependence of the IVC cross-sectional area on controlled intrathoracic pressure changes and evidenced the stronger influence of diaphragmatic over thoracic activity. Individual variability in thoracic/diaphragmatic respiratory pattern should be considered in the interpretation of the respirophasic modulations of IVC size. © 2017 by the American Institute of Ultrasound in Medicine.

  15. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer's disease

    NARCIS (Netherlands)

    Dowling, G.A.; Burr, R.L.; van Someren, E.J.W.; Hubbard, E.M.; Luxenberg, J.S.; Mastick, J.; Cooper, B.A.

    2008-01-01

    OBJECTIVES: To test whether the addition of melatonin to bright-light therapy enhances the efficacy in treating rest-activity (circadian) disruption in institutionalized patients with Alzheimer's disease (AD). DESIGN: Randomized, controlled trial. SETTING: Two nursing homes in San Francisco,

  16. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Science.gov (United States)

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  17. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Directory of Open Access Journals (Sweden)

    Yolanda R Schlumpf

    Full Text Available In accordance with the Theory of Structural Dissociation of the Personality (TSDP, studies of dissociative identity disorder (DID have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP and the "Apparently Normal Part" (ANP, have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls.Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events.DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent

  18. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention.

    Science.gov (United States)

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-07-20

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus ), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).

  19. Resting brain activity varies with dream recall frequency between subjects.

    Science.gov (United States)

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-06-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain 'dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [(15)O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5 ± 0.3 dream recall per week in average), High recallers (5.2 ± 1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain 'dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory.

  20. Comparison of continuously acquired resting state and extracted analogues from active tasks.

    Science.gov (United States)

    Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-10-01

    Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  2. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity.

    Science.gov (United States)

    Kubesch, Nadine Janet; de Nazelle, Audrey; Westerdahl, Dane; Martinez, David; Carrasco-Turigas, Gloria; Bouso, Laura; Guerra, Stefano; Nieuwenhuijsen, Mark J

    2015-04-01

    Exposure to traffic-related air pollution (TRAP) has been associated with adverse respiratory and systemic outcomes. Physical activity (PA) in polluted air may increase pollutant uptake and thereby health effects. The authors aimed to determine the short-term health effects of TRAP in healthy participants and any possible modifying effect of PA. Crossover real-world exposure study comparing in 28 healthy participants pulmonary and inflammatory responses to four different exposure scenarios: 2 h exposure in a high and low TRAP environment, each at rest and in combination with intermittent moderate PA, consisting of four 15 min rest and cycling intervals. Data were analysed using mixed effect models for repeated measures. Intermittent PA compared to rest, irrespective of the TRAP exposure status, increased statistically significant (p≤0.05) pulmonary function (forced expiratory volume in 1 s (34 mL), forced vital capacity (29 mL), forced expiratory flow (FEF25-75%) (91 mL)), lung inflammation (fraction of exhaled nitric oxide, FeNO, (0.89 ppb)), and systemic inflammation markers interleukin-6 (52.3%), leucocytes (9.7%) and neutrophils count (18.8%). Interquartile increases in coarse particulate matter were statistically significantly associated with increased FeNO (0.80 ppb) and neutrophil count (5.7%), while PM2.5 and PM10 (particulate matter smaller than 2.5 and 10 µm in diameter, respectively) increased leucocytes (5.1% and 4.0%, respectively). We found no consistent evidence for an interaction between TRAP and PA for any of the outcomes of interest. In a healthy population, intermittent moderate PA has beneficial effects on pulmonary function even when performed in a highly polluted environment. This study also suggests that particulate air pollution is inducing pulmonary and systemic inflammatory responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Overview of total beta activity index and beta rest in surface waters of the Spanish rivers

    International Nuclear Information System (INIS)

    Pujol, L.; Payeras, J.; Pablo, M. A. de

    2013-01-01

    This work aims to give an overview of the index of total beta activity and the activity index beta rest in surface waters of the main Spanish rivers. These indices are a parameter over water quality that CEDEX comes determined by order of the Ministry of Agriculture, Food and Environment, in water policy. (Author)

  4. Changes in resting-state fMRI in vestibular neuritis.

    Science.gov (United States)

    Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F

    2014-11-01

    Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric

  5. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    Science.gov (United States)

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  6. Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort.

    Science.gov (United States)

    Alonso, Joan Francesc; Mañanas, Miguel A; Hoyer, Dirk; Topor, Zbigniew L; Bruce, Eugene N

    2007-09-01

    Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: (1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); (2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.

  7. The occurrence of respiratory events in young subjects with a frequent rhythmic masticatory muscle activity: a pilot study.

    Science.gov (United States)

    Tsujisaka, Akiko; Haraki, Shingo; Nonoue, Shigeru; Mikami, Akira; Adachi, Hiroyoshi; Mizumori, Takahiro; Yatani, Hirofumi; Yoshida, Atsushi; Kato, Takafumi

    2018-02-21

    Concomitant occurrence of respiratory events can be often overlooked in the clinical practice of SB. This study assessed physiological characteristics of rhythmic masticatory muscle activity (RMMA) and concomitant respiratory events in young SB subjects asymptomatic to obstructive sleep apnea (OSA). Twenty-two subjects (age: 24.1±1.9years; F 8: M 14; BMI: 20.2±1.9kg/m 2 ) were polysomnographically diagnosed as moderate-severe SB. Sleep architecture, oromotor (RMMA and non-specific masseter activity [NSMA]) and apnea/hypopnea events were scored. All subjects showed normal sleep architecture whereas 6 exhibited respiratory events at a mild level of OSA. In all subjects, RMMA predominantly occurred in Stage N1+N2 while NSMA occurred in Stage N1+N2 (approximately 60 %) and in Stage R (up to 30 %). Up to 50% of respiratory events were scored in Stage R. RMMA occurred more frequently in close association (e.g., within 10s) with respiratory events in 6 subjects with OSA than those without. The percentage of RMMA occurring closely to respiratory events was positively correlated with apnea-hypopnea index (AHI) in Stage N1+N2 only while that of NSMA was positively correlated with AHI in Stage N1+N2 and Stage R. A sub-analysis in 6 subjects with OSA, RMMA after respiratory events was followed to arousals while those before respiratory events were mostly associated with central apnea. A subpopulation of young SB subjects can show concomitant respiratory events. Further large sample studies are needed to demonstrate that the occurrence of subclinical respiratory events represents a clinical subtype of SB. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  9. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Huan [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Gao, Zhangfeng [Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410008 (China); Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Li, Zhi, E-mail: lizhi489@163.com [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China)

    2015-08-07

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.

  10. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    International Nuclear Information System (INIS)

    Ren, Huan; Gao, Zhangfeng; Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng; Li, Zhi

    2015-01-01

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST

  11. Water extract of Pueraria lobata Ohwi has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines

    Directory of Open Access Journals (Sweden)

    Tzeng-Jih Lin

    2013-12-01

    Full Text Available Human respiratory syncytial virus (HRSV infects all age groups and causes bronchiolitis, pneumonia, and acute respiratory distress syndrome with a significant mortality rate. To date, only ribavirin has been used to manage HRSV infection. However, ribavirin is expensive with an only modest effect. Furthermore, ribavirin has several side effects, which means it has limited clinical benefit. Pueraria lobata Ohwi (P. lobata is a common ingredient of Ge-Gen-Tang (Kakkon-to and Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to, which are prescriptions of Chinese traditional medicine proven to have antiviral activity against HRSV. Therefore, it was hypothesized that P. lobata might be effective against HRSV. To find a cost-effective therapeutic modality, both human upper (HEp-2 and lower (A549 respiratory tract cell lines were used to test the hypothesis that P. lobata could inhibit HRSV-induced plaque formation. Results showed that the water extract of P. lobata was effective (p < 0.0001 against HRSV-induced plaque formation. P. lobata was more effective when given prior to viral inoculation (p < 0.0001 by inhibiting viral attachment (p < 0.0001 and penetration (p < 0.0001. However, supplementation with P. lobata could not stimulate interferon secretion after HRSV infection. In conclusion, P. lobata has antiviral activity against HRSV-induced plaque formation in airway mucosa mainly by inhibiting viral attachment and internalization. Further identification of effective constituents could contribute to the prevention of HRSV infection.

  12. Regional cerebral blood flow of the patients with schizophrenia. A study using 99mTc-ECD SPECT at rest and activation

    International Nuclear Information System (INIS)

    Hu Ping; Wu Kening; Zeng Shiquan; Lin Zengtao; Yu Jinlong

    1996-01-01

    Regional cerebral blood flow (rCBF) changes of the patients with schizophrenia were observed. 99m Tc-ECD SPECT was performed on 22 patients with schizophrenia and 10 healthy volunteers at rest and activation with a cognitive task: a modified Wisconsin Card Sorting Test. At rest state, only 4 patients have abnormal rCBF pattern: left hemisphere over-perfusion relative to the right. A significant relative activation deficit in the left inferior prefrontal region was revealed in the patients during activation. The patients with schizophrenia may have frontal lobe dysfunction

  13. A microcomputer-based daily living activity recording system.

    Science.gov (United States)

    Matsuoka, Shingo; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton

    2003-01-01

    A new daily living activity recording system has been developed for monitoring health conditions and living patterns, such as respiration, posture, activity/rest ratios and general activity level. The system employs a piezoelectric sensor, a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a 128 MB compact flash memory. The piezoelectric sensor, whose electrical polarization voltage is produced by mechanical strain, detects body movements. Its high-frequency output components reflect body movements produced by walking and running activities, while the low frequency components are mainly respiratory. The dual axis accelerometer detects, from body X and Y tilt angles, whether the patient is standing, sitting or lying down (prone, supine, left side or right side). The detected respiratory, behavior and posture signals are stored by the compact flash memory. After recording, these data are downloaded to a desktop computer and analyzed.

  14. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  15. Temporal relationship between antibiotic use and respiratory virus activities in the Republic of Korea: a time-series analysis.

    Science.gov (United States)

    Ryu, Sukhyun; Kim, Sojung; Kim, Bryan I; Klein, Eili Y; Yoon, Young Kyung; Chun, Byung Chul

    2018-01-01

    Inappropriate use of antibiotics increases resistance and reduces their effectiveness. Despite evidence-based guidelines, antibiotics are still commonly used to treat infections likely caused by respiratory viruses. In this study, we examined the temporal relationships between antibiotic usage and respiratory infections in the Republic of Korea. The number of monthly antibiotic prescriptions and the incidence of acute respiratory tract infections between 2010 and 2015 at all primary care clinics were obtained from the Korean Health Insurance Review and Assessment Service. The monthly detection rates of respiratory viruses, including adenovirus, respiratory syncytial virus, influenza virus, human coronavirus, and human rhinovirus, were collected from Korea Centers for Disease Control and Prevention. Cross-correlation analysis was conducted to quantify the temporal relationship between antibiotic use and respiratory virus activities as well as respiratory infections in primary clinics. The monthly use of different classes of antibiotic, including penicillins, other beta-lactam antibacterials, macrolides and quinolones, was significantly correlated with influenza virus activity. These correlations peaked at the 0-month lag with cross-correlation coefficients of 0.45 ( p  < 0.01), 0.46 ( p  < 0.01), 0.40 ( p  < 0.01), and 0.35 (< 0.01), respectively. Furthermore, a significant correlation was found between acute bronchitis and antibiotics, including penicillin (0.73, p  < 0.01), macrolides (0.74, p  < 0.01), and quinolones (0.45, p  < 0.01), at the 0-month lag. Our findings suggest that there is a significant temporal relationship between influenza virus activity and antibiotic use in primary clinics. This relationship indicates that interventions aimed at reducing influenza cases in addition to effort to discourage the prescription of antibiotics by physicians may help to decrease unnecessary antibiotic consumption.

  16. Respiratory symptoms and active tuberculosis in a prison in Southern Brazil: associated epidemiologic variables

    Directory of Open Access Journals (Sweden)

    Jeane Zanini Rocha

    2013-10-01

    Full Text Available Backgound and Objectives: This study is justified by the high TB prevalence in prisons, which constitutes a public health problem and aims to estimate the prevalence of active tuberculosis (TB and determine the variables associated with respiratory symptoms in a prison in Brazil. Methods: This is a descriptive study of 262 inmates divided into respiratory symptomatic and asymptomatic groups. Samples were evaluated by microscopy following the cultivation of the sputum from symptomatic individuals. Associated epidemiological variables were also evaluated. Results: Among the 262 inmates included, 178 (68% were considered symptomatic, and of these, 25 (14% were diagnosed with active TB. The contribution of culturing in the detection of TB cases was 48%. The prevalence of active TB was 9,542/100.000. Low educational level, use of drugs and alcohol, prison recidivism, and previous TB and HIV-positive status were associated with the presence of respiratory symptoms. Being male, single, black, a prison recidivist, an alcoholic and HIV-seropositive was associated with the development of TB. The rate of TB/HIV co infection was 60%. The outcome was death in 12% of patients. Drug therapy interruption was reported by 96% of patients. Conclusions: The studied population showed a high prevalence of TB and TB/HIV co-infection. In addition, the rates of drug therapy interruption and mortality were alarmingly elevated. KEYWORDS: Epidemiology. Tuberculosis. Coinfections. HIV infection. Prisons.

  17. Cardiorespiratory phase synchronization during normal rest and inward-attention meditation.

    Science.gov (United States)

    Wu, Shr-Da; Lo, Pei-Chen

    2010-06-11

    The cardiac and respiratory systems can be viewed as two self-sustained oscillators with various interactions between them. In this study, the cardiorespiratory phase synchronization (CRPS) quantified by synchrogram was investigated to explore the phase synchronization between these two systems. The synchrogram scheme was applied to electrocardiogram (ECG) and respiration signals. Particular focus was the distinct cardiac-respiratory regulation phenomena intervened by inward-attention meditation and normal relaxation. Four synchronization parameters were measured: frequency ratio, lasting length, number of epochs, and total length. The results showed that normal rest resulted in much weaker CRPS. Statistical analysis reveals that the number of synchronous epochs and the total synchronization length significantly increase (p=0.024 and 0.034 respectively) during meditation. Furthermore, a predominance of 4:1 and 5:1 rhythm-ratio synchronizations was observed during meditation. Consequently, this study concludes that CRPS can be enhanced during meditation, compared with normal relaxation, and reveals a predominance of specific frequency ratios. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  18. Sex Differences in the Relationship Between Depressive Symptoms and Actigraphic Assessments of Sleep and Rest-Activity Rhythms in a Population-Based Sample.

    Science.gov (United States)

    White, Kaitlin Hanley; Rumble, Meredith E; Benca, Ruth M

    2017-05-01

    Depression is often associated with disruptions in sleep and circadian rhythms. We aimed to confirm these relationships via actigraphic assessment in a large, population-based sample and test whether sex moderates these relationships. A total of 418 participants (age = 35-85 years, mean [standard deviation] = 57.04 [11.47]) completed questionnaires and 1 week of actigraphy, used to calculate sleep and rest-activity statistics including mesor (mean activity level), amplitude (height of rhythm), and acrophase (time of day that rhythm peaks). Depressive symptoms, assessed via Center for Epidemiologic Studies Depression Scale, were associated with disrupted sleep and rest-activity rhythms. Furthermore, men demonstrated longer sleep onset latency (SOL, B = -13.28, p continuity and rest-activity rhythms in this population-based sample; however, these relationships differed by sex. Women with greater depressive symptoms exhibited difficulty with sleep continuity, whereas men with greater depressive symptoms demonstrated disruption throughout the 24-hour rhythm.

  19. Activation of respiratory muscles during weaning from mechanical ventilation.

    Science.gov (United States)

    Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael

    2017-04-01

    Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Altered regional and circuit resting-state activity associated with unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Xingchao Wang

    Full Text Available The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI, the key node of cognitive control network (CCN and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC, a key node in the default mode network (DMN. Moreover, seed-based resting-state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network.

  1. The influence of biofeedback training on trapezius activity and rest during occupational computer work

    DEFF Research Database (Denmark)

    Holtermann, A; Søgaard, K; Christensen, H

    2008-01-01

    The aim of this study was to investigate effects of biofeedback training on trapezius activity and rest (gaps) during occupational computer work. A randomized controlled trial with 164 computer workers was performed. Two groups working with computer mouse more than 50% (n = 64) and less than 25% (n....... By improving trapezius inactivity during computer work, biofeedback training may have the potential to prevent trapezius myalgia in computer workers....... muscles during normal computer work was recorded. Changes in discomfort/pain were not recorded. The biofeedback training reduced activity (P

  2. Towards estimation of respiratory muscle effort with respiratory inductance plethysmography signals and complementary ensemble empirical mode decomposition.

    Science.gov (United States)

    Chen, Ya-Chen; Hsiao, Tzu-Chien

    2018-07-01

    Respiratory inductance plethysmography (RIP) sensor is an inexpensive, non-invasive, easy-to-use transducer for collecting respiratory movement data. Studies have reported that the RIP signal's amplitude and frequency can be used to discriminate respiratory diseases. However, with the conventional approach of RIP data analysis, respiratory muscle effort cannot be estimated. In this paper, the estimation of the respiratory muscle effort through RIP signal was proposed. A complementary ensemble empirical mode decomposition method was used, to extract hidden signals from the RIP signals based on the frequency bands of the activities of different respiratory muscles. To validate the proposed method, an experiment to collect subjects' RIP signal under thoracic breathing (TB) and abdominal breathing (AB) was conducted. The experimental results for both the TB and AB indicate that the proposed method can be used to loosely estimate the activities of thoracic muscles, abdominal muscles, and diaphragm. Graphical abstract ᅟ.

  3. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning

    Science.gov (United States)

    Branco, Paulo; Seixas, Daniela; Deprez, Sabine; Kovacs, Silvia; Peeters, Ronald; Castro, São L.; Sunaert, Stefan

    2016-01-01

    Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way. PMID:26869899

  4. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  5. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  6. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    Science.gov (United States)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; hide

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12

  7. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    Science.gov (United States)

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  9. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  10. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    Science.gov (United States)

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  11. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    Science.gov (United States)

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  12. Respiratory acidosis in adolescents with anorexia nervosa hospitalized for medical stabilization: a retrospective study.

    Science.gov (United States)

    Kerem, Nogah C; Riskin, Arieh; Averin, Elvira; Srugo, Isaac; Kugelman, Amir

    2012-01-01

    To examine the effect of malnutrition due to anorexia nervosa (AN) on venous blood gases of adolescents with AN hospitalized for medical stabilization. This retrospective study included 45 adolescents with recent onset (respiratory acidosis (pH 45 mm Hg) was observed in 78% of the patients on admission and only in 35% at discharge (p = .0003). Positive correlations were found between % of weight loss and pCO(2) on admission and between BMI on admission and the delta pCO(2) during hospitalization. Mild respiratory acidosis is common in adolescents with recently diagnosed AN, hospitalized for medical stabilization. Respiratory acidosis improves with bed rest and refeeding. The clinical significance of these findings should be further evaluated. Copyright © 2011 Wiley Periodicals, Inc.

  13. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    International Nuclear Information System (INIS)

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  14. Analysis of respiratory and muscle activity by means of cross information function between ventilatory and myographic signals.

    Science.gov (United States)

    Alonso, J F; Mañanas, M A; Hoyer, D; Topor, Z L; Bruce, E N

    2004-01-01

    Analysis of respiratory muscle activity is a promising technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Evaluation of interactions between muscles is very useful in order to determine the muscular pattern during an exercise. These interactions have already been assessed by means of different linear techniques like cross-spectrum, magnitude squared coherence or cross-correlation. The aim of this work is to evaluate interactions between respiratory and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF), and finding out what information can be extracted from it. Some parameters are defined and calculated from CMIF between ventilatory and myographic signals of three respiratory muscles. Finally, differences in certain parameters were obtained between OSAS patients and healthy subjects indicating different respiratory muscle couplings.

  15. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness.

    Science.gov (United States)

    Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven

    2016-01-01

    The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.

  16. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training?

    Science.gov (United States)

    Radhakrishnan, K; Sharma, V K; Subramanian, S K

    2017-05-10

    Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (prespiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.

  17. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  18. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Benjamin M Hariri

    Full Text Available Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.

  19. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  20. Cytokines in chronically critically ill patients after activity and rest.

    Science.gov (United States)

    Winkelman, Chris; Higgins, Patricia A; Chen, Yea Jyh Kathy; Levine, Alan D

    2007-04-01

    Inflammation, a common problem for patients in the intensive care unit (ICU), frequently is associated with serious and prolonged critical illnesses. To date, no study has examined whether physical activity influences inflammatory factors in critically ill adults. The objectives of this study were to (a) examine the relationships between type and duration of physical activity and serum levels of interleukin 6 (IL-6), a proinflammatory cytokine; IL-10, an anti-inflammatory cytokine; and their ratio and (b) determine if there are associations between cytokines or their ratio and activity or outcomes. This descriptive feasibility study investigated the approaches to measuring levels of physical activity and its relationship to serum levels of IL-6 and IL-10 and the ratio between them in patients with prolonged mechanical ventilation during periods of activity and rest. Measurements included serum IL-6 and IL-10 levels, direct observation and actigraphy, and prospective chart review. Ten critically ill patients who were mechanically ventilated for an average of 10 days in a large, urban, teaching hospital were enrolled. The average ratio of IL-6 to IL-10 improved after an average of 14.7 min of passive physical activity, typically multiple in-bed turns associated with hygiene. IL-6, IL-10, and their ratio were not associated with patient outcomes of weaning success or length of stay. High levels of IL-6 were associated with mortality. Cytokine balance may be improved by low levels of activity among patients with prolonged critical illness. The pattern of cytokines produced after activity may improve patients' recovery from prolonged critical illness and mechanical ventilation.

  1. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    Science.gov (United States)

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  2. "I am resting but rest less well with you." The moderating effect of anxious attachment style on alpha power during EEG resting state in a social context

    NARCIS (Netherlands)

    Verbeke, W.J.M.I.; Pozharliev, R.; van Strien, J.W.; Belschak, F.; Bagozzi, R.P.

    2014-01-01

    We took EEG recordings to measure task-free resting-state cortical brain activity in 35 participants under two conditions, alone (A) or together (T). We also investigated whether psychological attachment styles shape human cortical activity differently in these two settings. The results indicate

  3. What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner

    Science.gov (United States)

    Hurlburt, Russell T.; Alderson-Day, Ben; Fernyhough, Charles; Kühn, Simone

    2015-01-01

    The brain’s resting-state has attracted considerable interest in recent years, but currently little is known either about typical experience during the resting-state or about whether there are inter-individual differences in resting-state phenomenology. We used descriptive experience sampling (DES) in an attempt to apprehend high fidelity glimpses of the inner experience of five participants in an extended fMRI study. Results showed that the inner experiences and the neural activation patterns (as quantified by amplitude of low frequency fluctuations analysis) of the five participants were largely consistent across time, suggesting that our extended-duration scanner sessions were broadly similar to typical resting-state sessions. However, there were very large individual differences in inner phenomena, suggesting that the resting-state itself may differ substantially from one participant to the next. We describe these individual differences in experiential characteristics and display some typical moments of resting-state experience. We also show that retrospective characterizations of phenomena can often be very different from moment-by-moment reports. We discuss implications for the assessment of inner experience in neuroimaging studies more generally, concluding that it may be possible to use fMRI to investigate neural correlates of phenomena apprehended in high fidelity. PMID:26500590

  4. Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing

    DEFF Research Database (Denmark)

    Bousquet, J; Farrell, J; Crooks, G

    2016-01-01

    Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS ...

  5. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  6. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  7. Changes in active and passive smoking in the European Community Respiratory Health Survey

    NARCIS (Netherlands)

    Janson, C; Kunzli, N; de Marco, R; Chinn, S; Jarvis, D; Svanes, C; Heinrich, J; Jogi, R; Gislason, T; Sunyer, J; Ackermann-Liebrich, U; Anto, JM; Cerveri, [No Value; Kerhof, M; Leynaert, B; Luczynska, C; Neukirch, F; Vermeire, P; Wjst, M; Burney, P

    The aim of the present investigation was to study changes and determinants for changes in active and passive smoking. The present study included 9,053 adults from 14 countries that participated in the European Community Respiratory Health Survey II. The mean follow-up period was 8.8 yrs. Change in

  8. Volunteer Work, Religious Commitment, and Resting Pulse Rates.

    Science.gov (United States)

    Krause, Neal; Ironson, Gail; Hill, Peter C

    2017-04-01

    Research indicates that greater involvement in volunteer activities is associated with better health. We aim to contribute to this literature in two ways. First, rather than rely on self-reports of health, measured resting pulse rates serve as the dependent variable. Second, an effort is made to see if religious commitment moderates the relationship between volunteering and resting pulse rates. Data that come from a recent nationwide survey (N = 2265) suggest that volunteer work is associated with lower resting pulse rates. The results also reveal that the relationship between engaging in volunteer work and resting pulse rates improves among study participants who are more deeply committed to religion.

  9. Higher frequency network activity flow predicts lower frequency node activity in intrinsic low-frequency BOLD fluctuations.

    Science.gov (United States)

    Bajaj, Sahil; Adhikari, Bhim Mani; Dhamala, Mukesh

    2013-01-01

    The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based time-frequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC) and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz), we further observed significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow-2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI) data, from the other nodes connecting to that node. These findings imply that so-called resting state is not 'entirely' at rest, the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can reflect underlying structural

  10. Measurement of the deposited activity of the short-lived radon progeny in the human respiratory tract

    International Nuclear Information System (INIS)

    Vezzu, G.; Butterweck-Dempewolf, G.; Schuler, C.

    1998-01-01

    Volunteers were exposed in the radon chamber at Paul Scherrer Institut to an atmosphere enriched with highly unattached radon progeny. The deposited radon progeny activity in the respiratory tract of the volunteers was determined using a low level in-vivo counter. The detector arrangement and its calibration for the measurement of deposited radon progeny activity is described and the results for a mouth and a nose breathing volunteer are presented. For the nose breathing volunteer 55% of the deposited radon progeny activity was located in the head and the remaining 45% in the chest whereas for the mouth breathing volunteer 25% was located in the head and the remaining 75% in the chest. A mean clearance half-life for the deposited radon progeny from the respiratory tract of (2±1) h was obtained from the analyses of the temporal behaviour of the deposited radon progeny activity in the head. (orig.)

  11. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    Science.gov (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cellular defense of the avian respiratory system: effects of Pasteurella multocida on respiratory burst activity of avian respiratory tract phagocytes.

    Science.gov (United States)

    Ochs, D L; Toth, T E; Pyle, R H; Siegel, P B

    1988-12-01

    The respiratory tract of healthy chickens contain few free-residing phagocytic cells. Intratracheal inoculation with Pasteurella multocida stimulated a significant (P less than 0.05) migration of cells to the lungs and air sacs of White Rock chickens within 2 hours after inoculation. We found the maximal number of avian respiratory tract phagocytes (22.9 +/- 14.0 x 10(6] at 8 hours after inoculation. Flow cytometric analysis of these cells revealed 2 populations on the basis of cell-size and cellular granularity. One of these was similar in size and granularity to those of blood heterophils. Only this population was capable of generating oxidative metabolites in response to phorbol myristate acetate. The ability of the heterophils to produce hydrogen peroxide, measured as the oxidation of intracellularly loaded 2',7'-dichlorofluorescein, decreased with time after inoculation. These results suggest that the migration of heterophils, which are capable of high levels of oxidative metabolism, to the lungs and air sacs may be an important defense mechanism of poultry against bacterial infections of the respiratory tract.

  13. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD.

    Science.gov (United States)

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD (ASD/ASD + ADHD) showed reduced theta and alpha power compared to children without ASD (controls/ADHD). Children with ADHD (ADHD/ASD + ADHD) displayed decreased delta power compared to children without ADHD (ASD/controls). Children with ASD + ADHD largely presented as an additive co-occurrence with deficits of both disorders, although reduced theta compared to ADHD-only and reduced delta compared to controls suggested some unique markers. Identifying specific neurophysiological profiles in ASD and ADHD may assist in characterising more homogeneous subgroups to inform treatment approaches and aetiological investigations.

  14. Resting and reactive frontal brain electrical activity (EEG among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    Directory of Open Access Journals (Sweden)

    Elliott A Beaton

    2008-03-01

    Full Text Available Elliott A Beaton1, Louis A Schmidt2, Andrea R Ashbaugh2,5, Diane L Santesso2, Martin M Antony1,3,4, Randi E McCabe1,31Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; 2Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada; 3Anxiety Treatment and Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada; 4Department of Psychology, Ryerson University, Toronto, Ontario, Canada; 5Concordia University, Montreal, Quebec, CanadaAbstract: A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality.Keywords: social anxiety, shyness, sociability

  15. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method.

    Science.gov (United States)

    Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve

    2017-01-01

    Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.

  16. 42 CFR 84.52 - Respiratory hazards; classification.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  17. The Effect of 8 Weeks Yoga Training on Respiratory Function and Heart Rate of Non-Athlete Females

    Directory of Open Access Journals (Sweden)

    KH

    2015-07-01

    Conclusions: Results of this study showed that 8 weeks of practicing yoga and pranayama to increase vital capacity and forced expiratory volume in the first second and decreased heart rate and respiratory rate at rest is. Keywords: Yoga, Pranayama, spirometric indices, heart rate

  18. Worsening of rest-activity circadian rhythm and quality of life in female breast cancer patients along progression of chemotherapy cycles.

    Science.gov (United States)

    Sultan, Armiya; Choudhary, Vivek; Parganiha, Arti

    2017-01-01

    Chemotherapy and its associated side effects can induce the disruption of circadian rest-activity rhythm and may have negative consequences on health-related quality of life (HRQoL) of cancer patients. In the current study, repeated-measures cross-sectional design was implemented to determine the status of circadian rest-activity rhythm and to assess the HRQoL of newly diagnosed female breast cancer patients those were planned to receive six cycles of chemotherapy. Rest activity and HRQoL were assessed in twenty-five patients during chemotherapy cycles 1st (C1), 3rd (C3), and 6th (C6) immediately after they reported to the outdoor ward of the Regional Cancer Center, Pt. J.N.M. Medical College, Dr. B.R. Ambedkar Memorial Hospital, Raipur, India. Wrist actigraphs for consecutive spans of 3-4 days were used to record the rest-activity rhythm, and its parameters were computed with the help of Cosinor Rhythmometry. Quality of life (QoL) parameters were assessed using EORTC QLQ-C30 and QLQ-BR23. Results revealed that average scores of all rhythm parameters, such as MESOR, amplitude, acrophase, rhythm quotient, circadian quotient, peak activity, dichotomy index, and autocorrelation coefficient; and all functional scales of QLQ-C30, such as physical, role, emotional, cognitive, and social, and global quality of life statistically significantly decreased with the increasing number of chemotherapy cycles (C1 to C3 and C6). Scores of symptom scales of QLQ-C30, such as fatigue, pain, dyspnoea, insomnia, appetite loss, and diarrhea increased significantly from C1 to C6. Among the QLQ-BR23 scales, scores of sexual functioning, sexual enjoyment, breast symptoms, and arm symptoms significantly decreased, whereas scores of systemic therapy side effects, and upset by hair loss significantly increased across the chemotherapy cycles. We conclude that rest-activity rhythm disrupted and HRQoL of breast cancer patients worsened along the increasing number of chemotherapy cycles. We

  19. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    Science.gov (United States)

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (Pfood intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (Pfood intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  20. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    Science.gov (United States)

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  1. Zooplankton resting egg banks in permanent and temporary tropical aquatic systems

    Directory of Open Access Journals (Sweden)

    Luciana Rabelo Araújo

    Full Text Available AIM: We evaluated zooplankton resting egg banks and active communities in five coastal lagoons and in five temporary pools, aiming to compare the active and the dormant communities in such environments. As they differ in hydroperiod, we expected that pools present richer resting egg banks in comparison to those found in lagoons. METHODS: Zooplankton community was sampled twice in 2006 (lagoons and in 2010 (pools and resting egg banks were sampled once in December 2007 (lagoons and in May 2010 (pools. Resting eggs were isolated from the sediment by applying the sugar flotation method. RESULTS: In opposition to our expectation, species richness in the resting egg banks of pools did not differ from those of lagoons. Additionally, no difference was found between the active and the dormant zooplankton communities in each water body for both temporary and permanent environments. However, similarity between active and dormant communities was greater in permanent environments than it was in temporary environments. CONCLUSIONS: It seems that the diapause strategy observed in certain tropical zooplankton populations cannot be predicted based on the awareness of the environment type (permanent or temporary, since hatching cues may be species-specific.

  2. Complex network analysis of resting-state fMRI of the brain.

    Science.gov (United States)

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  3. Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing.

    Science.gov (United States)

    Senden, Mario; Goebel, Rainer; Deco, Gustavo

    2012-05-01

    Despite the absence of stimulation or task conditions the cortex exhibits highly structured spatio-temporal activity patterns. These patterns are known as resting state networks (RSNs) and emerge as low-frequency fluctuations (rest. We are interested in the relationship between structural connectivity of the cortex and the fluctuations exhibited during resting conditions. We are especially interested in the effect of degree of connectivity on resting state dynamics as the default mode network (DMN) is highly connected. We find in experimental resting fMRI data that the DMN is the functional network that is most frequently active and for the longest time. In large-scale computational simulations of the cortex based on the corresponding underlying DTI/DSI based neuroanatomical connectivity matrix, we additionally find a strong correlation between the mean degree of functional networks and the proportion of time they are active. By artificially modifying different types of neuroanatomical connectivity matrices in the model, we were able to demonstrate that only models based on structural connectivity containing hubs give rise to this relationship. We conclude that, during rest, the cortex alternates efficiently between explorations of its externally oriented functional repertoire and internally oriented processing as a consequence of the DMN's high degree of connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Dynamic reorganization of human resting-state networks during visuospatial attention.

    Science.gov (United States)

    Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio

    2015-06-30

    Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.

  5. Sparse dictionary learning of resting state fMRI networks.

    Science.gov (United States)

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  6. Resting-state oscillatory activity in children born small for gestational age: a magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Maria eBoersma

    2013-09-01

    Full Text Available Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG in 4-7 year old children to test if children born small for gestational age (SGA show deviations in resting-state brain oscillatory activity. Children born SGA children with postnatally spontaneous catch-up growth (SGA+; 6 boys, 7 girls; mean age 6.3 y (SD=0.9 and children born appropriate for gestational age (AGA; 7 boys, 3 girls; mean age 6.0 y (SD=1.2 participated in a resting-state MEG study. We calculated absolute and relative power spectra and used nonparametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At time of MEG investigation, SGA+ children showed was significantly lower head circumference (HC and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth.

  7. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    Science.gov (United States)

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  8. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.

    Science.gov (United States)

    Payne, Joanna E; Dubois, Alice V; Ingram, Rebecca J; Weldon, Sinead; Taggart, Clifford C; Elborn, J Stuart; Tunney, Michael M

    2017-09-01

    There is a clear need for new antimicrobials to improve current treatment of chronic lung infection in people with cystic fibrosis (CF). This study determined the activities of antimicrobial peptides (AMPs) and ivacaftor, a novel CF transmembrane conductance regulator potentiator, for CF treatment. Antimicrobial activities of AMPs [LL37, human β-defensins (HβD) 1-4 and SLPI] and ivacaftor against clinical respiratory isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., Achromobacter spp. and Stenotrophomonas maltophilia) were determined using radial diffusion and time-kill assays, respectively. Synergy of LL37 and ivacaftor with tobramycin was determined by time-kill, with in vivo activity of ivacaftor and tobramycin compared using a murine infection model. LL37 and HβD3 were the most active AMPs tested, with MICs ranging from 3.2- ≥ 200 mg/L and 4.8- ≥ 200 mg/L, respectively, except for Achromobacter that was resistant. HβD1 and SLPI demonstrated no antimicrobial activity. LL37 demonstrated synergy with tobramycin against 4/5 S. aureus and 2/5 Streptococcus spp. isolates. Ivacaftor demonstrated bactericidal activity against Streptococcus spp. (mean log 10 decrease 3.31 CFU/mL) and bacteriostatic activity against S. aureus (mean log 10 change 0.13 CFU/mL), but no activity against other genera. Moreover, ivacaftor demonstrated synergy with tobramycin, with mean log 10 decreases of 5.72 CFU/mL and 5.53 CFU/mL at 24 h for S. aureus and Streptococcus spp., respectively. Ivacaftor demonstrated immunomodulatory but no antimicrobial activity in a P. aeruginosa in vivo murine infection model. Following further modulation to enhance activity, AMPs and ivacaftor offer real potential as therapeutics to augment antibiotic therapy of respiratory infection in CF. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  10. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  11. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    Science.gov (United States)

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  12. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  13. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    International Nuclear Information System (INIS)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming; Yang, Fang; Li, Qian; Hu, Zheng; Dante, Mantini; Li, Kai

    2017-01-01

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  14. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  15. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism.

    Science.gov (United States)

    Rock, M J; Despot, J; Lemanske, R F

    1990-10-01

    Alveolar macrophages (AMs) and mast cells reside in the airway, and both have been demonstrated to contribute independently to allergic inflammatory responses through the generation of respiratory-burst metabolites and the release of biologically active mediators, respectively. Since mast cell granules (MCGs) contain mediators that could potentially interact with the AM respiratory burst, we investigated the effects of isolated MCGs on this important inflammatory pathway of the AM. MCGs and AMs were obtained by peritoneal and tracheoalveolar lavage, respectively, of Sprague-Dawley rats. First, the overall respiratory-burst activity was measured by luminal-enhanced chemiluminescence (CL), and second, the individual oxygen species contributing to CL (superoxide anion [O2-], hydrogen peroxide [H2O2], and hypochlorous acid) were measured. MCGs alone enhanced AM CL responses to an equivalent degree compared to zymosan-stimulated AMs. However, AMs preincubated with MCGs followed by zymosan stimulation significantly and synergistically enhanced the CL responses. This enhanced CL was not due to an increased production of O2-, H2O2, or hypochlorous acid; in fact, there were decreased measured amounts of O2- and H2O2 from zymosan-stimulated AMs in the presence of MCGs, most likely caused by the content of granules of superoxide dismutase and peroxidase, respectively. The lipoxygenase inhibitor, nordihydroguaiaretic acid, completely abolished the enhanced CL of AM preincubated with MCGs and subsequently stimulated by zymosan, but O2- production was not affected by nordihydroguaiaretic acid. Taken together, these results suggest that derivatives of arachidonic acid metabolism, most likely those of the lipoxygenase pathway, are responsible for the enhanced AM CL response observed in the presence of MCGs. Thus, mast cell-macrophage interactions may be important within the airway in enhancing the generation of mediators that contribute to tissue inflammation and bronchospasm.

  16. pRotective vEntilation with veno-venouS lung assisT in respiratory failure: A protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure.

    Science.gov (United States)

    McNamee, J J; Gillies, M A; Barrett, N A; Agus, A M; Beale, R; Bentley, A; Bodenham, A; Brett, S J; Brodie, D; Finney, S J; Gordon, A J; Griffiths, M; Harrison, D; Jackson, C; McDowell, C; McNally, C; Perkins, G D; Tunnicliffe, W; Vuylsteke, A; Walsh, T S; Wise, M P; Young, D; McAuley, D F

    2017-05-01

    One of the few interventions to demonstrate improved outcomes for acute hypoxaemic respiratory failure is reducing tidal volumes when using mechanical ventilation, often termed lung protective ventilation. Veno-venous extracorporeal carbon dioxide removal (vv-ECCO 2 R) can facilitate reducing tidal volumes. pRotective vEntilation with veno-venouS lung assisT (REST) is a randomised, allocation concealed, controlled, open, multicentre pragmatic trial to determine the clinical and cost-effectiveness of lower tidal volume mechanical ventilation facilitated by vv-ECCO 2 R in patients with acute hypoxaemic respiratory failure. Patients requiring intubation and mechanical ventilation for acute hypoxaemic respiratory failure will be randomly allocated to receive either vv-ECCO 2 R and lower tidal volume mechanical ventilation or standard care with stratification by recruitment centre. There is a need for a large randomised controlled trial to establish whether vv-ECCO 2 R in acute hypoxaemic respiratory failure can allow the use of a more protective lung ventilation strategy and is associated with improved patient outcomes.

  17. A comparison of resting images from two myocardial perfusion tracers

    International Nuclear Information System (INIS)

    Anagnostopoulos, C.; Laney, R.; Pennell, D.; Proukakis, H.; Underwood, R.

    1995-01-01

    We have compared stress-redistribution and delayed rest thallium-201 with rest technetium-99m methoxyisobutylisonitrile (MIBI) tomograms in order to compare the tracers for the assessment of myocardial viability and to validate a rapid protocol combining the two tracers. We studied 30 consecutive patients with known or suspected coronary artery disease [group 1: 16 with normal left ventricular function, mean left ventricular ejection fraction (LVEF) 55%, SD 6%; group 2: 14 with abnormal function, mean LVEF 28%, SD 8%]. 201 Tl was injected during infusion of adenosine followed by acquisition of conventional stress and redistribution tomograms. On a separate day, 201 Tl was injected at rest with imaging 4 h later. 99m Tc-MIBI was then given at rest and imaging was performed. Three images were compared: redistribution 201 Tl, rest 201 Tl, and rest 99m Tc-MIBI. Tracer activity was classified visually and quantitatively in nine segments and segments with>50% activity were defined as containing clinically significant viable myocardium. Mean global tracer uptake as a percentage of maximum was similar in group 1 (rest 201 Tl 69%±12%, redistribution 201 Tl 69%±15%, rest 99m Tc-MIBI 70%±13%), but in group 2 mean tracer uptake was significantly greater in the rest 201 Tl images (59%±16%) than in redistribution 201 Tl images (53%±17%) or rest 99m Tc-MIBI images (53%±19%). Overall agreement for regional uptake score was excellent (κ from 0.79 to 0.84), although there were a significant number of segments with less uptake shown by redistribution 201 Tl and by rest 99m Tc-MIBI than by rest 201 Tl in group 2. The number of segments with significant viable myocardium in group 1 was very similar between the three images but in group 2 rest 201 Tl identified significantly more segments as viable than the other images. (orig./MG) (orig.). With 1 fig., 7 tabs

  18. Effect of Aloe vera extract on the improvement of the respiratory activity of leukocytes of matrinxã during the transport stress

    Directory of Open Access Journals (Sweden)

    Fábio Sabbadin Zanuzzo

    2012-10-01

    Full Text Available This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus, to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS only at 0.1, 0.2, 0.5 and 1 mg/L. Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

  19. Elevation of Serum Acid Sphingomyelinase Activity in Children with Acute Respiratory Syncytial Virus Bronchiolitis.

    Science.gov (United States)

    Yoshida, Shuichiro; Noguchi, Atsuko; Kikuchi, Wataru; Fukaya, Hiroshi; Igarashi, Kiyoshi; Takahashi, Tsutomu

    2017-12-01

    Acid sphingomyelinase (ASM) is a lysosomal enzyme that hydrolyzes sphingomyelin into ceramide, a bioactive lipid to regulate cellular physiological functions. Thus, ASM activation has been reported as a key event in pathophysiological reactions including inflammation, cytokine release, oxidative stress, and endothelial damage in human diseases. Since ASM activation is associated with extracellular ASM secretion through unknown mechanisms, it can be detected by recognizing the elevation of secretory ASM (S-ASM) activity. Serum S-ASM activity has been reported to increase in chronic diseases, acute cardiac diseases, and systemic inflammatory diseases. However, the serum S-ASM has not been investigated in common acute illness. This study was designed to evaluate serum S-ASM activity in children with common acute illness. Fifty children with common acute illness and five healthy children were included in this study. The patients were categorized into five groups based on clinical diagnoses: acute respiratory syncytial virus (RSV) bronchiolitis, adenovirus infection, streptococcal infection, asthma, and other infections due to unknown origin. The serum S-ASM activity was significantly elevated at 6.9 ± 1.6 nmol/0.1 mL/6 h in the group of acute RSV bronchiolitis patients compared with healthy children who had a mean level of 1.8 ± 0.8 nmol/0.1 mL/6 h (p ASM activity was not significantly elevated. The results suggest an association of ASM activation with RSV infection, a cause for common acute illness. This is the first report to describe the elevation of serum S-ASM activity in respiratory tract infection.

  20. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan

    2013-01-01

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  1. The relation of respiratory sinus arrhythmia to later shyness: Moderation by neighborhood quality.

    Science.gov (United States)

    Zhang, Hui; Spinrad, Tracy L; Eisenberg, Nancy; Zhang, Linlin

    2018-05-21

    The purpose of the study was to predict young children's shyness from both internal/biological (i.e., resting respiratory sinus arrhythmia; RSA) and external (i.e., neighborhood quality) factors. Participants were 180 children at 42 (Time 1; T1), 72 (T2), and 84 (T3) months of age. RSA data were obtained at T1 during a neutral film in the laboratory. Mothers reported perceived neighborhood quality at T2 and children's dispositional shyness at T1 and T3. Path analyses indicated that resting RSA interacted with neighborhood quality to predict T3 shyness, even after controlling for earlier family income and T1 shyness. Specifically, high levels of resting RSA predicted low levels of shyness in the context of high neighborhood quality. When neighborhood quality was low, resting RSA was positively related to later shyness. These findings indicate that children's shyness is predicted by more than biological processes and that consideration of the broader context is critical to understanding children's social behavior. © 2018 Wiley Periodicals, Inc.

  2. Does a variation in self-reported physical activity reflect variation in objectively measured physical activity, resting heart rate, and physical fitness? Results from the Tromso study

    DEFF Research Database (Denmark)

    Emaus, Aina; Degerstrøm, Jorid; Wilsgaard, Tom

    2010-01-01

    AIMS: To study the association between self-reported physical activity (PA) and objectively measured PA, resting heart rate, and physical fitness. METHODS: During 2007-08, 5017 men and 5607 women aged 30-69 years attended the sixth survey of the Tromsø study. Self-reported PA during leisure......-time and work were assessed and resting heart rate was measured. In a sub-study, the activity study, PA (Actigraph LLC) and physical fitness (VO₂(max)) were objectively measured among 313 healthy men and women aged 40-44 years. RESULTS: Self-reported leisure PA was significantly correlated with VO₂(max) (ml...... women than men met the international recommendations of 10,000 step counts/day (27% vs. 22%) and the recommendation of at least 30 minutes/day of moderate-to-vigorous intensities (30% vs. 22 %). CONCLUSIONS: The Tromsø physical activity questionnaire has acceptable validity and provides valid estimates...

  3. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.

    Science.gov (United States)

    Lau, W K W; Leung, M-K; Lee, T M C; Law, A C K

    2016-04-26

    Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD). As no effective drug can cure AD, early diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015. We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.

  4. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    Science.gov (United States)

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Silke M Currie

    Full Text Available Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.

  6. Rest and treatment/rehabilitation following sport-related concussion: a systematic review.

    Science.gov (United States)

    Schneider, Kathryn J; Leddy, John J; Guskiewicz, Kevin M; Seifert, Tad; McCrea, Michael; Silverberg, Noah D; Feddermann-Demont, Nina; Iverson, Grant L; Hayden, Alix; Makdissi, Michael

    2017-06-01

    The objective of this systematic review was to evaluate the evidence regarding rest and active treatment/rehabilitation following sport-related concussion (SRC). Systematic review. MEDLINE (OVID), CINAHL (EbscoHost), PsycInfo (OVID), Cochrane Central Register of Controlled Trials (OVID), SPORTDiscus (EbscoHost), EMBASE (OVID) and Proquest DissertationsandTheses Global (Proquest) were searched systematically. Studies were included if they met the following criteria: (1) original research; (2) reported SRC as the diagnosis; and (3) evaluated the effect of rest or active treatment/rehabilitation. Review articles were excluded. Twenty-eight studies met the inclusion criteria (9 regarding the effects of rest and 19 evaluating active treatment). The methodological quality of the literature was limited; only five randomised controlled trials (RCTs) met the eligibility criteria. Those RCTs included rest, cervical and vestibular rehabilitation, subsymptom threshold aerobic exercise and multifaceted collaborative care. A brief period (24-48 hours) of cognitive and physical rest is appropriate for most patients. Following this, patients should be encouraged to gradually increase activity. The exact amount and duration of rest are not yet well defined and require further investigation. The data support interventions including cervical and vestibular rehabilitation and multifaceted collaborative care. Closely monitored subsymptom threshold, submaximal exercise may be of benefit. PROSPERO 2016:CRD42016039570. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  8. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Ping, Li; Su-Fang, Li; Hai-Ying, Han; Zhang-Ye, Dong; Jia, Luo; Zhi-Hua, Guo; Hong-Fang, Xiong; Yu-Feng, Zang; Zhan-Jiang, Li

    2013-01-01

    Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  9. Relationship between respiratory failure and plasma noradrenaline levels in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yamashita, A; Koike, Y; Takahashi, A; Hirayama, M; Murakami, N; Sobue, G

    1997-08-01

    We evaluated plasma noradrenaline (NA) levels at test and during head-up tilt test in 20 patients with sporadic amyotrophic lateral sclerosis (ALS). Their fasting plasma NA levels ranged from 195 to 4227 pg/ml. The average plasma NA level was 483 pg/ml in five ambulatory patients, 341 in two wheelchair-bound patients, 1264 in 11 bedridden patients, and 208 in two respirator-dependent patients whose disability grading was the worst among the four groups. Arterial carbon dioxide (PCO2) was evaluated as a measure of respiratory function. The coefficient of correlation between PCO2 and plasma NA was r = 0.654 (p respiratory failure or lower motor neuron dysfunction may relate to the elevation of plasma NA levels. In the two bedridden patients, plasma NA levels and heart rate at rest increased significantly as the disease progressed. Cardiovascular responses to head-up tilting were normal. These data suggest that the elevation of plasma NA levels may be related to progression of respiratory failure and lower motor neuron dysfunction. In conclusion, sympathetic hyperactivity in ALS is considered to be not primary, but secondary to somatic motor disabilities and respiratory failure.

  10. A strategy for obtaining both resting and psychologically activated state metabolic data from a single PET study using [F-18]-fluorodeoxyglucose(FDG)

    International Nuclear Information System (INIS)

    Chang, J.; Duara, R.; Barker, W.; Apicella, A.; Gilson, A.

    1985-01-01

    When psychological activation is studied with PET using the deoxyglucose method, a stable and specific psychological state for at least 30 minutes is required before commencing the scan. At this time, if the subject reverts to the testing state, a progressive degradation of the activated pattern occurs. However, a strategy could be used to obtain corrected activation state data and resting state data in a single study using a tracer such as FDG. The amount of tracer FDG and FDG-6P in the tissue at the time of study completion, t, will be the sum of the remaining quantity (R) of tracer accumulated in the tissue at the time T, when activation ceases, and the uptake during the subsequent period t-T when resting state glucose transport kinetics apply

  11. [Respiratory handicap. Recognition, evaluation and social benefits].

    Science.gov (United States)

    Marsac, J; Pujet, J C

    1983-01-01

    The medico-social aspects of respiratory handicap pose some perplexing problems, notably in their recognition, rigorous evaluation and in the granting of social security benefits. The clinical and respiratory function data should be standardised and classified according to type and significance of respiratory disease and also according to the degree of co-operation and understanding of the patient. The respiratory handicap should be evaluated after considering the functional disability engendered by the disorder and their socio-professional repercussions. The abnormality in the lungs should be measured by resting tests; the degree of disability by exercise studies; the socio-professional handicap by ergonometric tests to assess the scale of the demands and requirements of family and social and professional life, indeed the cultural and economic style of the individual concerned. Such combined studies would enable recognition of severe chronic respiratory handicap leading to decisions for exemption certificates, such as cases of severe respiratory failure in patients requiring supplementary treatment for oxygen therapy or assisted ventilation. The benefits and grants offered to those with respiratory handicaps would involve a number of rights relating to: care, work, costs of replacement of workers in the event of prolonged sick leave or the benefits of an invalidity pension. There will be other allowances such as invalidity cards, lodging special studies and other rights particularly relating to lodging and special equipment. The present scale is difficult to use both because of its lack of specificity and its ill-chosen terminology. For better balance between the handicap and the benefits offered, a common and more flexible system, with a printed table should be at hand for the doctor to use for certain decisions: long term illness, period of invalidity or early retirement because of medical incapacity. Within each table a sub-section should exist to allow for

  12. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange.

    Science.gov (United States)

    Hillman, Stanley S; Hancock, Thomas V; Hedrick, Michael S

    2013-02-01

    Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O(2) from the environment to the mitochondria necessitating concomitant increases in CO(2) efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O(2) fluxes, though the excess capacity of the lung for O(2) ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O(2) and CO(2) transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O(2) transport and also implicates a respiratory system limit to maximal CO(2) efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO(2) excretion and the cardiovascular system to enhance maximal O(2) uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O(2) perspective, a unique insight from previous work focused solely on O(2) fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.

  13. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  14. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  15. CORRELATION OF PHYSICAL ACTIVITY LEVEL WITH BONE MINERAL DENSITY, CARDIO-RESPIRATORY FITNESS AND BODY COMPOSITION IN POST-MENOPAUSAL WOMEN

    Directory of Open Access Journals (Sweden)

    Niyati N Khona

    2017-09-01

    Full Text Available Background: Due to the hormonal changes in postmenopausal women they are prone for many complications like increased CVD risk factors, osteoporosis, obesity, mood swings and urinary incontinence. Physical inactivity in postmenopausal women leads to higher risk of developing CVD and osteoporosis. The objective was to find out the correlation of physical activity level with BMD, cardio-respiratory fitness and body composition in post-menopausal women Methods: 42 postmenopausal women were included. A detailed clinical evaluation with physical activity level (IPAQ-METS-mins/week, , BMD ( T-Scores, body composition (BMI, waist circumference, BIA & Skin fold calliper for fat %, cardio-respiratory fitness was measured by Balke protocol and VO2peak (ml/kg/min is estimated. Correlation of physical activity level with BMD, cardio-respiratory fitness and body composition were analysed using “Pearson’s product moment correlation co-efficient and Spearman’s rho.” Results: Spearman’s rank correlation rho for IPAQ with VO2 peak was 0.420,BMI was -0.388 and visceral fat was -0.384 indicating moderate positive correlation between IPAQ and cardio-respiratory fitness and weak negative correlation between IPAQ and BMI and visceral fat. Pearson’s product moment correlation coefficient of IPAQ with BMD was 0.147, body fat was -0.234 and waist circumference was -0.256 indicating no correlation. P value was significant for correlation of IPAQ with CRF (0.006, BMI (0.011 and Visceral fat (0.012. Conclusion: There is moderate positive correlation between IPAQ and cardio-respiratory fitness, weak negative correlation between IPAQ and BMI and visceral fat and no correlation between IPAQ and BMD, body fat and waist circumference

  16. Perioperative respiratory adverse events in children with active upper respiratory tract infection who received general anesthesia through an orotracheal tube and inhalation agents.

    Science.gov (United States)

    Kim, So Yeon; Kim, Jeong Min; Lee, Jae Hoon; Kang, Young Ran; Jeong, Seung Ho; Koo, Bon-Nyeo

    2013-08-01

    Active upper respiratory tract infection (URI), orotracheal intubation and use of inhalation anesthetics are known risk factors for perioperative respiratory adverse events (RAE). This study investigated the risk factors of perioperative RAE in children with these risk factors. The records of 159 children who underwent general anesthesia with an orotracheal tube and inhalation were reviewed. These patients also had at least one of the following URI symptoms on the day of surgery: clear or green nasal secretion, dry or moist cough, nasal congestion, or fever. RAE such as laryngospasm, bronchospasm, oxygen desaturation and sustained cough were collected before induction, during intubation, during extubation, after extubation and in the postanesthesia care unit. Forty-five patients had RAE. The patients with RAE were younger than those without RAE. There were more passive smokers and a greater number of intubation attempts in patients with RAE than in those without RAE. The type of surgery and type of inhalation agents were not different between patients with and without RAE. Passive smoking was the only independent risk factor for RAE. In children with an active URI using orotracheal tube and inhalation anesthetics, passive smoking is an important risk factor for RAE.

  17. REST: a toolkit for resting-state functional magnetic resonance imaging data processing.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Song

    Full Text Available Resting-state fMRI (RS-fMRI has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST. REST was developed in MATLAB with graphical user interface (GUI. After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF, and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.. REST is an open-source package and is freely available at http://www.restfmri.net.

  18. Abnormal Baseline Brain Activity in Drug-Naïve Patients with Tourette Syndrome: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    Yonghua eCui

    2014-01-01

    Full Text Available Tourette Syndrome (TS is a childhood-onset chronic disorder characterized by the presence of multiple motor and vocal tics. This study investigated spontaneous low-frequency fluctuations in TS patients during resting-state functional magnetic resonance imaging (fMRI scans. We obtained resting-state fMRI scans from seventeen drug-naïve TS children and fifteen demographically matched healthy children. We computed the amplitude of low frequency fluctuation (ALFF and fractional ALFF (fALFF of resting-state fMRI data to measure spontaneous brain activity, and assessed the between-group differences in ALFF/fALFF and the relationship between ALFF/fALFF and tic severity scores. Our results showed that the children with TS exhibited significantly decreased ALFF in the posterior cingulate gyrus/precuneus and bilateral parietal gyrus. fALFF was decreased in TS children in the anterior cingulated cortex, bilateral middle and superior frontal cortices and superior parietal lobule, and increased in the left putamen and bilateral thalamus. Moreover, we found significantly positive correlations between fALFF and tic severity scores in the right thalamus. Our study provides empirical evidence for abnormal spontaneous neuronal activity in TS patients, which may implicate the underlying neurophysiological mechanism in TS and demonstrate the possibility of applying ALFF/fALFF for clinical TS studies.

  19. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    Science.gov (United States)

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  20. The anti-malarial drug Mefloquine disrupts central autonomic and respiratory control in the working heart brainstem preparation of the rat

    Directory of Open Access Journals (Sweden)

    Lall Varinder K

    2012-12-01

    Full Text Available Abstract Background Mefloquine is an anti-malarial drug that can have neurological side effects. This study examines how mefloquine (MF influences central nervous control of autonomic and respiratory systems using the arterially perfused working heart brainstem preparation (WHBP of the rat. Recordings of nerve activity were made from the thoracic sympathetic chain and phrenic nerve, while heart rate (HR and perfusion pressure were also monitored in the arterially perfused, decerebrate, rat WHBP. MF was added to the perfusate at 1 μM to examine its effects on baseline parameters as well as baroreceptor and chemoreceptor reflexes. Results MF caused a significant, atropine resistant, bradycardia and increased phrenic nerve discharge frequency. Chemoreceptor mediated sympathoexcitation (elicited by addition of 0.1 ml of 0.03% sodium cyanide to the aortic cannula was significantly attenuated by the application of MF to the perfusate. Furthermore MF significantly decreased rate of return to resting HR following chemoreceptor induced bradycardia. An increase in respiratory frequency and attenuated respiratory-related sympathetic nerve discharge during chemoreceptor stimulation was also elicited with MF compared to control. However, MF did not significantly alter baroreceptor reflex sensitivity. Conclusions These studies indicate that in the WHBP, MF causes profound alterations in autonomic and respiratory control. The possibility that these effects may be mediated through actions on connexin 36 containing gap junctions in central neurones controlling sympathetic nervous outflow is discussed.

  1. Resting-state slow wave power, healthy aging and cognitive performance

    OpenAIRE

    Eleni L. Vlahou; Franka Thurm; Iris-Tatjana Kolassa; Winfried Schlee

    2014-01-01

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18–89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show tha...

  2. REST based mobile applications

    Science.gov (United States)

    Rambow, Mark; Preuss, Thomas; Berdux, Jörg; Conrad, Marc

    2008-02-01

    Simplicity is the major advantage of REST based webservices. Whereas SOAP is widespread in complex, security sensitive business-to-business aplications, REST is widely used for mashups and end-user centric applicatons. In that context we give an overview of REST and compare it to SOAP. Furthermore we apply the GeoDrawing application as an example for REST based mobile applications and emphasize on pros and cons for the use of REST in mobile application scenarios.

  3. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood.

    Directory of Open Access Journals (Sweden)

    Manash S Chatterjee

    2010-09-01

    Full Text Available Blood function defines bleeding and clotting risks and dictates approaches for clinical intervention. Independent of adding exogenous tissue factor (TF, human blood treated in vitro with corn trypsin inhibitor (CTI, to block Factor XIIa will generate thrombin after an initiation time (T(i of 1 to 2 hours (depending on donor, while activation of platelets with the GPVI-activator convulxin reduces T(i to ∼20 minutes. Since current kinetic models fail to generate thrombin in the absence of added TF, we implemented a Platelet-Plasma ODE model accounting for: the Hockin-Mann protease reaction network, thrombin-dependent display of platelet phosphatidylserine, VIIa function on activated platelets, XIIa and XIa generation and function, competitive thrombin substrates (fluorogenic detector and fibrinogen, and thrombin consumption during fibrin polymerization. The kinetic model consisting of 76 ordinary differential equations (76 species, 57 reactions, 105 kinetic parameters predicted the clotting of resting and convulxin-activated human blood as well as predicted T(i of human blood under 50 different initial conditions that titrated increasing levels of TF, Xa, Va, XIa, IXa, and VIIa. Experiments with combined anti-XI and anti-XII antibodies prevented thrombin production, demonstrating that a leak of XIIa past saturating amounts of CTI (and not "blood-borne TF" alone was responsible for in vitro initiation without added TF. Clotting was not blocked by antibodies used individually against TF, VII/VIIa, P-selectin, GPIb, protein disulfide isomerase, cathepsin G, nor blocked by the ribosome inhibitor puromycin, the Clk1 kinase inhibitor Tg003, or inhibited VIIa (VIIai. This is the first model to predict the observed behavior of CTI-treated human blood, either resting or stimulated with platelet activators. CTI-treated human blood will clot in vitro due to the combined activity of XIIa and XIa, a process enhanced by platelet activators and which proceeds

  4. Global alliance against chronic respiratory diseases in Italy (GARD-Italy): strategy and activities.

    Science.gov (United States)

    Laurendi, Giovanna; Mele, Sonia; Centanni, Stefano; Donner, Claudio F; Falcone, Franco; Frateiacci, Sandra; Lazzeri, Marta; Mangiacavallo, Antonino; Indinnimeo, Luciana; Viegi, Giovanni; Pisanti, Paola; Filippetti, Giuseppe

    2012-01-01

    The steady increase in incidence of chronic respiratory disease (CRD) now constitutes a serious public health problem. CRDs are often underdiagnosed and many patients are not diagnosed until the CRD is too severe to prevent normal daily activities. The prevention of CRDs and reducing their social and individual impacts means modifying environmental and social factors and improving diagnosis and treatment. Prevention of risk factors (tobacco smoke, allergens, occupational agents, indoor/outdoor air pollution) will significantly impact on morbidity and mortality. The Italian Ministry of Health (MoH) has made respiratory disease prevention a top priority and is implementing a comprehensive strategy with policies against tobacco smoking, indoor/outdoor pollution, obesity, and communicable diseases. Presently these actions are not well coordinated. The Global Alliance against Chronic Respiratory Diseases (GARD), set up by the World Health Organization, envisages national bodies; the GARD initiative in Italy, launched 11/6/2009, represents a great opportunity for the MoH. Its main objective is to promote the development of a coordinated CRD program in Italy. Effective prevention implies setting up a health policy with the support of healthcare professionals and citizen associations at national, regional, and district levels. What is required is a true inter-institutional synergy: respiratory diseases prevention cannot and should not be the responsibility of doctors alone, but must involve politicians/policymakers, as well as the media, local institutions, and schools, etc. GARD could be a significant experience and a great opportunity for Italy to share the GARD vision of a world where all people can breathe freely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  6. Housing conditions affecting interior moisture levels: links to mould growth and children's respiratory health

    Energy Technology Data Exchange (ETDEWEB)

    Wells, John A. [Crosier Kilgour and Partners Ltd. (Canada)], email: john.w@ckpeng.com; Polyzois, Dimos [Department of Civil Engineering, University of Manitoba (Canada)], email: polyzoi@cc.umanitoba.ca; Polyzoi, Eleoussa [Faculty of Education, University of Winnipeg (Canada)], email: l.polyzoi@uwinnipeg.ca

    2011-07-01

    Previous research has demonstrated that a person's respiratory health is affected by high indoor moisture content in their house. The aim of this paper is to provide a better understanding of the link between housing conditions and respiratory health, so that strategies can be implemented to improve the quality of life of children. This study was carried out through the completion of a survey by 3,423 parents in Winnipeg, Canada, the collection of 715 air samples from the residences of 715 parents, and an engineering audit of their homes. This study showed that a strong relationship exists between building moisture content and common home maintenance and that routine maintenance is efficient in significantly reducing the growth of mould which impacts children's respiratory health. This paper provided useful information on the relation between housing conditions and respiratory health problems and the rest of the study will aim at determining which building conditions impact mould growth most.

  7. Circadian rest-activity rhythms during benzodiazepine tapering covered by melatonin versus placebo add-on

    DEFF Research Database (Denmark)

    Baandrup, Lone; Fasmer, Ole Bernt; Glenthøj, Birte Yding

    2016-01-01

    is associated with changes in circadian rhythm parameters. METHOD: Data were derived from a randomized, double-blinded clinical trial with 24 weeks follow-up. Participants were randomized to add-on treatment with prolonged-release melatonin (2 mg) or matching placebo, and usual benzodiazepine dosage...... significantly increased the interdaily stability and at a trend level decreased the intradaily variability compared with placebo. Benzodiazepine dose reduction was not associated with these circadian rhythm parameters. Activity counts were generally higher after benzodiazepine dose reduction compared with pre......BACKGROUND: Patients with severe mental illness often suffer from disruptions in circadian rest-activity cycles, which might partly be attributed to ongoing psychopharmacological medication. Benzodiazepines are frequently prescribed for prolonged periods despite recommendations of only short...

  8. Respiratory cancer database: An open access database of respiratory cancer gene and miRNA.

    Science.gov (United States)

    Choubey, Jyotsna; Choudhari, Jyoti Kant; Patel, Ashish; Verma, Mukesh Kumar

    2017-01-01

    Respiratory cancer database (RespCanDB) is a genomic and proteomic database of cancer of respiratory organ. It also includes the information of medicinal plants used for the treatment of various respiratory cancers with structure of its active constituents as well as pharmacological and chemical information of drug associated with various respiratory cancers. Data in RespCanDB has been manually collected from published research article and from other databases. Data has been integrated using MySQL an object-relational database management system. MySQL manages all data in the back-end and provides commands to retrieve and store the data into the database. The web interface of database has been built in ASP. RespCanDB is expected to contribute to the understanding of scientific community regarding respiratory cancer biology as well as developments of new way of diagnosing and treating respiratory cancer. Currently, the database consist the oncogenomic information of lung cancer, laryngeal cancer, and nasopharyngeal cancer. Data for other cancers, such as oral and tracheal cancers, will be added in the near future. The URL of RespCanDB is http://ridb.subdic-bioinformatics-nitrr.in/.

  9. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    Science.gov (United States)

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  10. Active Video Games as a Training Tool for Individuals With Chronic Respiratory Diseases: A SYSTEMATIC REVIEW.

    Science.gov (United States)

    Butler, Stacey J; Lee, Annemarie L; Goldstein, Roger S; Brooks, Dina

    2018-02-26

    Exercise is an effective treatment for reducing symptom severity and improving quality of life for patients with chronic respiratory diseases. Active video games offer a new and enjoyable way to exercise and have gained popularity in a rehabilitation setting. However, it is unclear whether they achieve comparable physiological and clinical effects as traditional exercise training. A systematic literature search was performed to identify studies that included an active video game component as a form of exercise training and a comparator group in chronic respiratory disease. Two assessors independently reviewed study quality using the Cochrane risk of bias tool and extracted data for exercise capacity, quality of life, and preference of exercise model. Six studies were included in this review. Because of the heterogeneity of the populations, study designs, length of intervention, and outcome measures, meta-analysis could not be performed. Active video game training resulted in comparable training maximal heart rate and dyspnea levels to those achieved when exercising using a treadmill or cycle (n = 5). There was insufficient evidence (n = 3) to determine whether active video game training improved exercise capacity as measured by 6-min walk test or treadmill endurance walking. Although the quality of evidence was low, in a small number of studies active video games induced peak heart rates and dyspnea levels comparable with traditional exercise training. Larger and longer-term randomized controlled trials are needed to establish the impact of video game training for individuals with chronic respiratory diseases.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  11. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Xiaoming Lin

    Full Text Available Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo, a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.

  12. Lasting modulation effects of rTMS on neural activity and connectivity as revealed by resting-state EEG.

    Science.gov (United States)

    Ding, Lei; Shou, Guofa; Yuan, Han; Urbano, Diamond; Cha, Yoon-Hee

    2014-07-01

    The long-lasting neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) are of great interest for therapeutic applications in various neurological and psychiatric disorders, due to which functional connectivity among brain regions is profoundly disturbed. Classic TMS studies selectively alter neural activity in specific brain regions and observe neural activity changes on nonperturbed areas to infer underlying connectivity and its changes. Less has been indicated in direct measures of functional connectivity and/or neural network and on how connectivity/network alterations occur. Here, we developed a novel analysis framework to directly investigate both neural activity and connectivity changes induced by rTMS from resting-state EEG (rsEEG) acquired in a group of subjects with a chronic disorder of imbalance, known as the mal de debarquement syndrome (MdDS). Resting-state activity in multiple functional brain areas was identified through a data-driven blind source separation analysis on rsEEG data, and the connectivity among them was characterized using a phase synchronization measure. Our study revealed that there were significant long-lasting changes in resting-state neural activity, in theta, low alpha, and high alpha bands and neural networks in theta, low alpha, high alpha and beta bands, over broad cortical areas 4 to 5 h after the last application of rTMS in a consecutive five-day protocol. Our results of rsEEG connectivity further indicated that the changes, mainly in the alpha band, over the parietal and occipital cortices from pre- to post-TMS sessions were significantly correlated, in both magnitude and direction, to symptom changes in this group of subjects with MdDS. This connectivity measure not only suggested that rTMS can generate positive treatment effects in MdDS patients, but also revealed new potential targets for future therapeutic trials to improve treatment effects. It is promising that the new connectivity measure

  13. Dose-dependent effects of intravenous lorazepam on cardiovascular activity, plasma catecholamines and psychological function during rest and mental stress

    NARCIS (Netherlands)

    J.H.M. Tulen (Joke); P. Moleman (Peter); F. Boomsma (Frans); H.G. van Steenis (H.); V.J.H.M. van den Heuij (Venantius)

    1991-01-01

    textabstractDose-dependent effects of intravenously administered lorazepam on psychophysiological activity during rest and mental stress were studied in order to examine differential responses to doses which may induce anxiolysis or sedation. In a double-blind randomized cross-over study, nine male

  14. Amyloidosis involving the respiratory system: 5-year′s experience of a multi-disciplinary group′s activity

    Directory of Open Access Journals (Sweden)

    Raffaele Scala

    2015-01-01

    Full Text Available Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients′ clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma. It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  15. Respiratory adaptations in different types of sport.

    Science.gov (United States)

    Lazovic, B; Mazic, S; Suzic-Lazic, J; Djelic, M; Djordjevic-Saranovic, S; Durmic, T; Zikic, D; Zugic, V

    2015-06-01

    Recent studies demonstrated that current European Respiratory Society/American Thoracic Society spirometric reference equations, used in general population, may not be applicable in population of elite athletes. Althought it is well known that physical activity may affect lung volumes, the effect of sporting activity on pulmonary function testing indices was never examined. The aim of this study was to examine the differences in functional respiratory parameters in various types of sports by measuring lung volumes and to extend the existing factors as well as sport disciplines which affect respiratory function the most. A total of 1639 elite male athletes, aged 18-35 years were divided in 4 groups according to the predominant characteristics of training: skill, power, mixed and endurance athletes. They performed basic anthropometric measurements and spirometry. Groups were compared, and Pearson's simple correlation was performed to test the relation between anthropometric and spirometric characteristics of athletes. All anthropometric characteristics significantly differed among groups and correlate with respiratory parameters. The highest correlation was found for body height and weight. Sports participation is associated with respiratory adaptation, and the extent of adaptation depends on type of activity. Endurance sports athletes have higher lung volumes in comparison with skill, mixed and power group of sport.

  16. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    Science.gov (United States)

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  17. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    Science.gov (United States)

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Use of radiotelemetry to evaluate respiratory depression produced by chronic methadone administration.

    Science.gov (United States)

    Lewanowitsch, Tanya; White, Jason M; Irvine, Rodney J

    2004-01-26

    Illicit and therapeutic opioid administration can result in overdose due to opioid-induced respiratory depression. Research investigating the respiratory depressant effects of opioids has been limited due to difficulties associated with acquiring long-term respiratory data. This study examined the novel use of radiotelemetry to measure respiratory rate, heart rate, locomotor activity and blood pressure in rats treated chronically with methadone. Over 4 days of treatment, respiratory rate decreased, but partial tolerance appeared to develop during active (night) periods. Decreased heart rate was observed during the night periods and tolerance appeared to develop to this effect. Activity and blood pressure did not change with treatment. The effects of naloxone hydrochloride and naloxone methiodide administration on the methadone-treated rats were also examined and both antagonists increased respiratory rate and heart rate, with only naloxone hydrochloride producing significant increases in activity. Radiotelemetry offers a means of evaluating drug effects on respiratory rate continually in ambulatory, unstressed animals.

  19. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  20. The self and its resting state in consciousness: an investigation of the vegetative state.

    Science.gov (United States)

    Huang, Zirui; Dai, Rui; Wu, Xuehai; Yang, Zhi; Liu, Dongqiang; Hu, Jin; Gao, Liang; Tang, Weijun; Mao, Ying; Jin, Yi; Wu, Xing; Liu, Bin; Zhang, Yao; Lu, Lu; Laureys, Steven; Weng, Xuchu; Northoff, Georg

    2014-05-01

    Recent studies have demonstrated resting-state abnormalities in midline regions in vegetative state/unresponsive wakefulness syndrome and minimally conscious state patients. However, the functional implications of these resting-state abnormalities remain unclear. Recent findings in healthy subjects have revealed a close overlap between the neural substrate of self-referential processing and the resting-state activity in cortical midline regions. As such, we investigated task-related neural activity during active self-referential processing and various measures of resting-state activity in 11 patients with disorders of consciousness (DOC) and 12 healthy control subjects. Overall, the results revealed that DOC patients exhibited task-specific signal changes in anterior and posterior midline regions, including the perigenual anterior cingulate cortex (PACC) and posterior cingulate cortex (PCC). However, the degree of signal change was significantly lower in DOC patients compared with that in healthy subjects. Moreover, reduced signal differentiation in the PACC predicted the degree of consciousness in DOC patients. Importantly, the same midline regions (PACC and PCC) in DOC patients also exhibited severe abnormalities in the measures of resting-state activity, that is functional connectivity and the amplitude of low-frequency fluctuations. Taken together, our results provide the first evidence of neural abnormalities in both the self-referential processing and the resting state in midline regions in DOC patients. This novel finding has important implications for clinical utility and general understanding of the relationship between the self, the resting state, and consciousness. Copyright © 2013 Wiley Periodicals, Inc.

  1. Assessment of respiratory disorders in relation to solution gas flaring activities in Alberta

    International Nuclear Information System (INIS)

    1998-02-01

    A study was conducted by Alberta Health to address the issue of whether or not flaring of solution gas has a negative impact on human health. The Flaring Working Group of the Clean Air Strategic Alliance initiated this study which focused on the assessment of the relationship between human health disorders (such as asthma, bronchitis, pneumonia and upper respiratory infections) and solution gas flaring activities in rural, urban and aboriginal populations. The personal exposure to flaring emissions was estimated by physical proximity to the source of emissions. A small area was studied in which geographical variations in human health disorders were compared to geographical variations of socioeconomic and environmental factors. Data was gathered from 1989 to 1996 to evaluate long term average conditions and changes over the time period investigated. Notwithstanding physicians' claims for increased rates of respiratory infections and hospitalization attributed to solution gas flaring, the study found no evidence linking respiratory infections and solution gas flaring. This was the conclusion regardless of the measure of health outcomes, the rural-urban status, ethnicity, or age. Nevertheless, the study recommended identification of bio-markers of exposure and effect reflective of the compounds of interest, and the development of a responsive and comprehensive geographic information database that would allow data linkage at all geographic levels for different periods of time. refs., 10 tabs., 15 figs., 1 appendix

  2. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Miriam Kron

    2014-09-01

    Full Text Available Reduced levels of brain-derived neurotrophic factor (BDNF are thought to contribute to the pathophysiology of Rett syndrome (RTT, a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2. In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to

  3. Comparison of asbestos-associated respiratory disease by medical examination between shipyard retiree and workers of active service with asbestos exposure

    International Nuclear Information System (INIS)

    Ikeda, Tooru; Yoshida, Toshiaki; Fujisawa, Hiroyuki; Tanaka, Ayako; Ikeda, Hideki; Kawano, Hiroaki

    2009-01-01

    We examined 407 shipyard workers with asbestos exposure (406 men and one woman; mean age, 60.4 years) for asbestos-associated respiratory disease using the multi-slice chest CT in addition to the regular examinations. After the examination, workers with suspicion of malignancy by the multi-slice CT, other examinations including biopsy were performed to make the final diagnosis. We divided these people into two groups as follows; retiree (133 cases, 132 men and one woman; mean age, 65.9 years) and workers of shipyard active service (274 cases, all men, mean age, 57.6 years). We compared the incidence of asbestos-associated respiratory disease, age, incubation time and work period at asbestos exposure in these two groups. 97 of 133 (72.9%) retired workers and 94 of 274 (34.4%) active service had asbestos-associated respiratory disease as follows: pleural plaque without calcification, 25 cases (18.8%) (retired) and 35 (12.8%) (active service); pleural plaque with calcification, 65 (48.7%) and 51 (18.6%); diffuse pleural thickening, 0 (0%) and 0 (0%); asbestosis, 5 (3.8%) and 6 (2.2%); lung cancer, 1 case (0.8%) and 2 cases (0.7%) and malignant pleural mesothelioma 1 case (0.8%) and none (0%). The rate of workers with total asbestos-associated respiratory disease in the retired group was significantly higher than that in active service (P<0.01). Especially pleural plaque with calcification were detected more in shipyard retired workers than active service workers. The incidence of pleural plaque is related to age and incubation time but not to work period at asbestos exposure. (author)

  4. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  5. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  6. Information Flow Between Resting-State Networks.

    Science.gov (United States)

    Diez, Ibai; Erramuzpe, Asier; Escudero, Iñaki; Mateos, Beatriz; Cabrera, Alberto; Marinazzo, Daniele; Sanz-Arigita, Ernesto J; Stramaglia, Sebastiano; Cortes Diaz, Jesus M

    2015-11-01

    The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method--addressing differences in IF between RSNs for any generic data--can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.

  7. Changes in resting-state functionally connected parietofrontal networks after videogame practice.

    Science.gov (United States)

    Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto

    2013-12-01

    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.

  8. Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease

    Directory of Open Access Journals (Sweden)

    Margherita Bertuzzi

    2018-01-01

    Full Text Available Respiratory epithelia fulfil multiple roles beyond that of gaseous exchange, also acting as primary custodians of lung sterility and inflammatory homeostasis. Inhaled fungal spores pose a continual antigenic, and potentially pathogenic, challenge to lung integrity against which the human respiratory mucosa has developed various tolerance and defence strategies. However, respiratory disease and immune dysfunction frequently render the human lung susceptible to fungal diseases, the most common of which are the aspergilloses, a group of syndromes caused by inhaled spores of Aspergillus fumigatus. Inhaled Aspergillus spores enter into a multiplicity of interactions with respiratory epithelia, the mechanistic bases of which are only just becoming recognized as important drivers of disease, as well as possible therapeutic targets. In this mini-review we examine current understanding of Aspergillus-epithelial interactions and, based upon the very latest developments in the field, we explore two apparently opposing schools of thought which view epithelial uptake of Aspergillus spores as either a curative or disease-exacerbating event.

  9. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  10. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2006-07-01

    Full Text Available HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART. We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.

  11. Effect of rest interval on strength recovery in young and old women.

    Science.gov (United States)

    Theou, Olga; Gareth, Jones R; Brown, Lee E

    2008-11-01

    This study compares the effects of rest intervals on isokinetic muscle torque recovery between sets of a knee extensor and flexor exercise protocol in physically active younger and older women. Twenty young (22.4 +/- 1.7 years) and 16 older (70.7 +/- 4.3 years) women performed three sets of eight maximum repetitions of knee extension/flexion at 60 degrees x s(-1). The rest interval between sets was 15, 30, and 60 seconds and was randomly assigned across three testing days. No significant interaction of rest by set by age group was observed. There was a significant decline in mean knee extensor torque when 15- and 30-second rest intervals were used between sets, but not when a 60-second rest interval was applied for both the young and the old women. No significant decline for mean knee flexor torque was observed in the older women when a 30-second rest interval was used, whereas a longer 60-second rest interval was required in younger women. Active younger and older women require similar rest intervals between sets of a knee extensor exercise (60 seconds) for complete recovery. However, older women recovered faster (30 seconds) than younger women (60 seconds) between sets of a knee flexor exercise. The exercise-to-rest ratio for knee extensors was similar for young and old women (1:2). Old women required only a 1:1 exercise-to-rest ratio for knee flexor recovery, whereas younger women required a longer 1:2 exercise-to-rest ratio. The results of the present study are specific to isokinetic testing and training and are more applicable in rehabilitation and research settings. Practitioners should consider age and gender when prescribing rest intervals between sets.

  12. Change of cortical foot activation following 70 days of head down bed rest.

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael D

    2018-02-28

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to study some of the effects of microgravity on human physiology, cognition, and sensorimotor functions. Previous studies have reported declines in balance control and functional mobility after spaceflight and HDBR. Here we investigated how the brain activation for foot movement changed with HDBR. Eighteen healthy men participated in the current HDBR study. They were in a 6{degree sign} head-down tilt position continuously for 70 days. Functional MRI scans were acquired to estimate brain activation for foot movement pre-, during- and post-HDBR. Another eleven healthy males who did not undergo HDBR participated as control subjects and were scanned at four time points. In the HDBR subjects, the cerebellum, fusiform gyrus, hippocampus, and middle occipital gyrus exhibited HDBR-related increases in activation for foot tapping, whereas no HDBR-associated activation decreases were found. For the control subjects, activation for foot tapping decreased across sessions in a couple of cerebellar regions, while no activation increase with session was found. Furthermore, we observed that less HDBR-related declines in functional mobility and balance control were associated with greater pre-to-post HDBR increases in brain activation for foot movement in several cerebral and cerebellar regions. Our results suggest that more neural control is needed for foot movement as a result of HDBR.

  13. Respiratory exercise in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pinto, Susana; Swash, Michael; de Carvalho, Mamede

    2012-01-01

    We have evaluated the potential role of respiratory exercise by implementing specific inspiratory muscle training in a selected population of early-affected amyotrophic lateral sclerosis (ALS) patients. We studied 26 patients with ALS with normal respiratory function using two groups of patients in a parallel, control-group, randomized, delayed-start design. Patients in the first group (G1) started the active inspiratory exercise programme at entry and were followed for eight months, while the second group (G2) of patients followed a placebo exercise programme for the first four months and then active exercise for the second four-month period. The primary outcome measure was the ALSFRS. Respiratory tests, neurophysiological measurements, fatigue and quality of life scales were secondary outcomes. Analysis of covariance was used to compare changes between and within groups. Results showed that there was no significant difference between the two patient groups. Within-group analysis suggested that inspiratory exercise promotes a transient improvement in the respiratory subscore and in the maximal voluntary ventilation, peak expiratory flow, and sniff inspiratory pressure. In conclusion, there was no clear positive or negative outcome of the respiratory exercise protocol we have proposed, but we cannot rule out a minor positive effect. Exercise regimes merit more detailed clinical evaluation in ALS.

  14. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  15. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    Science.gov (United States)

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  16. F-18 FDG uptake in respiratory muscle mimicking metastasis in patients with gastric cancer

    International Nuclear Information System (INIS)

    Choi, Seung Jin; Hyun, In Young; Kim, Jeong Ho

    2006-01-01

    A 67-year-old man with a history of chronic obstructive pulmonary disease (COPD) underwent F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging of gastric cancer. The projection images of F-18 FDG PET/CT showed intensely increased F-18 FDG uptake in the anterior neck, chest wall, and upper abdomen. We suspected distant metastases of cervical lymph nodes, ribs, and peritoneum in gastric cancer. However, the transaxial images of F-18 FDG PET/CT showed abnormal F-18 FDG uptake in scalene muscles of anterior neck, intercostal muscles of chest wall, and diaphragm of upper abdomen. Patients with COPD use respiratory muscles extensively on the resting condition. These excessive physiologic use of respiratory muscles causes increased F-18 FDG uptake as a result of increased glucose metabolism. The F-18 FDG uptake in respiratory muscles of gastric cancer patient with COPD mimicked distant metastases in cervical lymph nodes, ribs, and peritoneum

  17. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  18. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    Science.gov (United States)

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  19. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells.

    Science.gov (United States)

    Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith; Spivak, Adam M; Nell, Racheal A; Tomescu, Costin; Vadrevu, Surya Kumari; Giron, Leila B; Serra-Peinado, Carla; Genescà, Meritxell; Castellví, Josep; Wu, Guoxin; Del Rio Estrada, Perla M; González-Navarro, Mauricio; Lynn, Kenneth; King, Colin T; Vemula, Sai; Cox, Kara; Wan, Yanmin; Li, Qingsheng; Mounzer, Karam; Kostman, Jay; Frank, Ian; Paiardini, Mirko; Hazuda, Daria; Reyes-Terán, Gustavo; Richman, Douglas; Howell, Bonnie; Tebas, Pablo; Martinez-Picado, Javier; Planelles, Vicente; Buzon, Maria J; Betts, Michael R; Montaner, Luis J

    2018-04-18

    The persistence of HIV reservoirs, including latently infected, resting CD4 + T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4 + T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4 + T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV + or SIV + subjects, we found that most of the circulating memory CD32 + CD4 + T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a T H 2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4 + T cells in peripheral blood or lymphoid tissue; isolated CD32 + resting CD4 + T cells accounted for less than 3% of the total HIV DNA in CD4 + T cells. Cell-associated HIV DNA and RNA loads in CD4 + T cells positively correlated with the frequency of CD32 + CD69 + CD4 + T cells but not with CD32 expression on resting CD4 + T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4 + T cells or of enriched HIV DNA-positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4 + T cells enriched for transcriptionally active HIV after long-term ART. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Resting-state slow wave power, healthy aging and cognitive performance.

    Science.gov (United States)

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  1. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis.

    Directory of Open Access Journals (Sweden)

    Fazal Shirazi

    Full Text Available The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA and benzohydroxamate (BHAM, inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ and itraconazole (ICZ against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS, phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents.

  2. Resting-state brain networks revealed by granger causal connectivity in frogs.

    Science.gov (United States)

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Decreased Respiratory Muscle Function Is Associated with Impaired Trunk Balance among Chronic Stroke Patients: A Cross-sectional Study.

    Science.gov (United States)

    Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee

    2018-06-01

    The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.

  4. Advances in Remote Respiratory Assessments for People with Chronic Obstructive Pulmonary Disease: A Systematic Review.

    Science.gov (United States)

    Baroi, Sidney; McNamara, Renae J; McKenzie, David K; Gandevia, Simon; Brodie, Matthew A

    2018-06-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality. Advances in remote technologies and telemedicine provide new ways to monitor respiratory function and improve chronic disease management. However, telemedicine does not always include remote respiratory assessments, and the current state of knowledge for people with COPD has not been evaluated. Systematically review the use of remote respiratory assessments in people with COPD, including the following questions: What devices have been used? Can acute exacerbations of chronic obstructive pulmonary disease (AECOPD) be predicted by using remote devices? Do remote respiratory assessments improve health-related outcomes? The review protocol was registered (PROSPERO 2016:CRD42016049333). MEDLINE, EMBASE, and COMPENDEX databases were searched for studies that included remote respiratory assessments in people with COPD. A narrative synthesis was then conducted by two reviewers according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Fifteen studies met the inclusion criteria. Forced expiratory volume assessed daily by using a spirometer was the most common modality. Other measurements included resting respiratory rate, respiratory sounds, and end-tidal carbon dioxide level. Remote assessments had high user satisfaction. Benefits included early detection of AECOPD, improved health-related outcomes, and the ability to replace hospital care with a virtual ward. Remote respiratory assessments are feasible and when combined with sufficient organizational backup can improve health-related outcomes in some but not all cohorts. Future research should focus on the early detection, intervention, and rehabilitation for AECOPD in high-risk people who have limited access to best care and investigate continuous as well as intermittent monitoring.

  5. EMF-REST: Generation of RESTful APIs from Models

    OpenAIRE

    Hamza , Ed-Douibi; Cánovas Izquierdo , Javier Luis; Gómez , Abel; Tisi , Massimo; Cabot , Jordi

    2016-01-01

    In the last years, RESTful Web services have become more and more popular as a lightweight solution to connect remote systems in distributed and Cloud-based architectures. However, being an architectural style rather than a specification or standard, the proper design of RESTful Web services is not trivial since developers have to deal with a plethora of recommendations and best practices. Model-Driven Engineering (MDE) emphasizes the use of models and model transformations to raise the level...

  6. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake

    OpenAIRE

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schi?th, H B

    2016-01-01

    BACKGROUND: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. OBJECTIVE: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese...

  7. Estimation of respiratory rates based on photoplethysmographic measurements at the sternum

    DEFF Research Database (Denmark)

    Chreiteh, Shadi; Belhage, Bo; Hoppe, Karsten

    2015-01-01

    rate is extracted using photoplethysmography (PPG) on the chest bone (sternum). Sternal PPG signals were acquired from 10 healthy subjects resting in a supine position. As reference signals, finger PPG, electrocardiogram (ECG), and capnography were simultaneously recorded during spontaneous and paced...... breathing. The sternal PPG signals were then compared with the reference signals in terms of Bland-Altman analysis, the power spectrum analysis and the magnitude squared coherence. The Bland-Altman analysis showed an average bias of 0.21 breaths/min between RR extracted from sternal PPG and capnography....... The respiratory power content at the sternum was 78.8 (38) % in terms of the median and (the interquartile range). The cardiac content was 19 (18.4) % within the cardiac region. The results from the magnitude squared coherence analysis was 0.97 (0.09) in the respiratory region (6 to 27 breaths/min) and 0.98 (0...

  8. Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium - 82 PET

    International Nuclear Information System (INIS)

    Lee, D. S.; Kamg, K. W.; Lee, K. H.; Jeong, J. M.; Kwark, C. E.; Chung, J. K.; Lee, M.C.; Seo, J. D.; Koh, C. S.

    1995-01-01

    We compared stress/rest myocardial Tc-99m-MIBI tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed, rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium, or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709-stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBI scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9(rest) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segmental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day- human studies, these segmental analyses with

  9. The influence of rest period instructions on the default mode network

    Directory of Open Access Journals (Sweden)

    Christopher eBenjamin

    2010-12-01

    Full Text Available The default mode network (DMN refers to regional brain activity that is greater during rest periods than during attention-demanding tasks and many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN, which is the noise produced by functional magnetic resonance imaging (fMRI. However, it is unclear whether different approaches to rest in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimer’s disease. We examined twenty-seven healthy adult volunteers who completed an fMRI experiment with 3 different instructions for rest: (1 relax and be still, (2 attend to SBN, or (3 ignore SBN. Region of interest (ROI analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimer’s disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC exhibited greater activity when specific resting instructions were given (i.e. attend to or ignore SBN compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children.

  10. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  11. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Science.gov (United States)

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  12. Blunted perception of neural respiratory drive and breathlessness in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Charles C. Reilly

    2016-03-01

    Full Text Available The electromyogram recorded from the diaphragm (EMGdi and parasternal intercostal muscle using surface electrodes (sEMGpara provides a measure of neural respiratory drive (NRD, the magnitude of which reflects lung disease severity in stable cystic fibrosis. The aim of this study was to explore perception of NRD and breathlessness in both healthy individuals and patients with cystic fibrosis. Given chronic respiratory loading and increased NRD in cystic fibrosis, often in the absence of breathlessness at rest, we hypothesised that patients with cystic fibrosis would be able to tolerate higher levels of NRD for a given level of breathlessness compared to healthy individuals during exercise. 15 cystic fibrosis patients (mean forced expiratory volume in 1 s (FEV1 53.5% predicted and 15 age-matched, healthy controls were studied. Spirometry was measured in all subjects and lung volumes measured in the cystic fibrosis patients. EMGdi and sEMGpara were recorded at rest and during incremental cycle exercise to exhaustion and expressed as a percentage of maximum (% max obtained from maximum respiratory manoeuvres. Borg breathlessness scores were recorded at rest and during each minute of exercise. EMGdi % max and sEMGpara % max and associated Borg breathlessness scores differed significantly between healthy subjects and cystic fibrosis patients at rest and during exercise. The relationship between EMGdi % max and sEMGpara % max and Borg score was shifted to the right in the cystic fibrosis patients, such that at comparable levels of EMGdi % max and sEMGpara % max the cystic fibrosis patients reported significantly lower Borg breathlessness scores compared to the healthy individuals. At Borg score 1 (clinically significant increase in breathlessness from baseline corresponding levels of EMGdi % max (20.2±12% versus 32.15±15%, p=0.02 and sEMGpara % max (18.9±8% versus 29.2±15%, p=0.04 were lower in the healthy individuals compared to the cystic

  13. Exercising videoendoscopic evaluation of 45 horses with respiratory noise and/or poor performance after laryngoplasty.

    Science.gov (United States)

    Davidson, Elizabeth J; Martin, Benson B; Rieger, Randall H; Parente, Eric J

    2010-12-01

    To (1) assess upper airway function by videoendoscopy in horses performing poorly after laryngoplasty and (2) establish whether dynamic collapse of the left arytenoid can be predicted by the degree of resting postsurgical abduction. Case series. Horses that had left laryngoplasty (n=45). Medical records (June 1993-December 2007) of horses evaluated for abnormal respiratory noise and/or poor performance after laryngoplasty were reviewed. Horses with video recordings of resting and exercising upper airway endoscopy were included and postsurgical abduction categorized. Horses with immediate postoperative endoscopy recordings were also evaluated and postsurgical abduction categorized. Relationships between resting postsurgical abduction and historical information with exercising endoscopic findings were examined. Dynamic collapse of the left arytenoid cartilage was probable in horses with no postsurgical abduction and could not be predicted in horses with grade 3 or 4 postsurgical abduction. Respiratory noise was associated with upper airway obstruction but was not specific for arytenoid collapse. Most horses with a left vocal fold had billowing of the fold during exercise. Other forms of dynamic collapse involved the right vocal fold, aryepiglottic folds, corniculate process of left arytenoid cartilage, dorsal displacement of soft palate, and pharyngeal collapse. Complex obstructions were observed in most examinations and in all horses with exercising collapse of the left arytenoid cartilage. There was no relationship between exercising collapse of the left arytenoid cartilage and grade 3 or 4 postsurgical abduction but was likely in horses with no abduction. © Copyright 2010 by The American College of Veterinary Surgeons.

  14. 76 FR 44372 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respiratory...

    Science.gov (United States)

    2011-07-25

    ... for OMB Review; Comment Request; Respiratory Protection Standard ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respiratory Protection Standard,'' to the Office of Management... Respiratory Protection Standard outlined in 29 CFR 1910.134 assists employers in protecting the health of...

  15. Does resting-state connectivity reflect depressive rumination? A tale of two analyses.

    Science.gov (United States)

    Berman, Marc G; Misic, Bratislav; Buschkuehl, Martin; Kross, Ethan; Deldin, Patricia J; Peltier, Scott; Churchill, Nathan W; Jaeggi, Susanne M; Vakorin, Vasily; McIntosh, Anthony R; Jonides, John

    2014-12-01

    Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Rest-activity rhythm and sleep characteristics associated with depression symptom severity in strained dementia caregivers.

    Science.gov (United States)

    Smagula, Stephen F; Krafty, Robert T; Taylor, Briana J; Martire, Lynn M; Schulz, Richard; Hall, Martica H

    2017-12-01

    Depression is associated with disturbances to sleep and the 24-h sleep-wake pattern (known as the rest-activity rhythm: RAR). However, there remains a need to identify the specific sleep/RAR correlates of depression symptom severity in population subgroups, such as strained dementia caregivers, who are at elevated risk for major depressive disorder. We assessed the cross-sectional associations of sleep/RARs with non-sleep depression symptom severity among 57 (mean age: 74 years, standard deviation: 7.4) strained dementia caregivers who were currently without clinical depression. We derived sleep measures from polysomnography and actigraphy, modelled RARs using a sigmoidally transformed cosine curve and measured non-sleep depression symptom severity using the Hamilton Depression Rating Scale (HRDS) with sleep items removed. The following sleep-wake measures were associated with greater depression symptom severity (absolute Spearman's correlations ranged from 0.23 to 0.32): more time awake after sleep onset (WASO), higher RAR middle level (mesor), relatively shorter active periods (alpha), earlier evening settling time (down-mesor) and less steep RARs (beta). In multivariable analysis, high WASO and low RAR beta were associated independently with depression symptom severity. Predicted non-sleep HDRS means (95% confidence intervals) in caregivers with and without these characteristics were: normal WASO/beta = 3.7 (2.3-5.0), high WASO/normal beta = 5.5 (3.5-7.6), normal WASO/low beta = 6.3 (3.6-8.9) and high WASO/low beta = 8.1 (5.3-10.9). Thus, in our sample of strained caregivers, greater sleep fragmentation (WASO) and less sustained/sharply segregated resting and active periods (low RAR beta) correlate uniquely with depression symptom severity. Longitudinal studies are needed to establish whether these independent sleep-wake correlates of depression symptoms explain heightened depression risk in dementia caregivers. © 2017 European Sleep Research Society.

  17. Respiratory Neuron Activity in the Mesencephalon, Diencephalon and Cerebellum of the Carp

    NARCIS (Netherlands)

    Ballintijn, C.M.; Luiten, P.G.M.; Jüch, P.J.W.

    1979-01-01

    The functional properties, localization and connections of neurons with a respiratory-rhythmic firing pattern in the mesencephalon, diencephalon and cerebellum of the carp were studied. Some neurons acquire respiratory rhythm only as a side effect of respiration via sensory stimulation by movements

  18. Harsh parenting, parasympathetic activity, and development of delinquency and substance use.

    Science.gov (United States)

    Hinnant, J Benjamin; Erath, Stephen A; El-Sheikh, Mona

    2015-02-01

    Stress response systems are thought to play an important role in the development of psychopathology. In addition, family stress may have a significant influence on the development of stress response systems. One potential avenue of change is through alterations to thresholds for the activation of stress responses: Decreased threshold for responding may mark increased stress sensitivity. Our first aim was to evaluate the interaction between thresholds for parasympathetic nervous system (PNS) responding, operationalized as resting respiratory sinus arrhythmia (RSA), and harsh parenting in the prediction of development of delinquency and adolescent substance use (resting RSA as a biomarker of risk). The second aim was to evaluate if resting RSA changes over time as a function of harsh parenting and stress reactivity indexed by RSA withdrawal (altered threshold for stress responding). Our third aim was to evaluate the moderating role of sex in these relations. We used longitudinal data from 251 children ages 8-16 years. Mother-reports of child delinquency and RSA were acquired at all ages. Adolescents self-reported substance use at age 16 years. Family stress was assessed with child-reported harsh parenting. Controlling for marital conflict and change over time in harsh parenting, lower resting RSA predicted increases in delinquency and increased likelihood of drug use in contexts of harsh parenting, especially for boys. Harsh parenting was associated with declining resting RSA for children who exhibited greater RSA withdrawal to stress. Findings support resting PNS activity as a moderator of developmental risk that can be altered over time. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth

    OpenAIRE

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J.; Wilson, Raymond; Beniston, Richard G.; Archer, David B.

    2016-01-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germ...

  20. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  1. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    Science.gov (United States)

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative

  2. Single pyruvate intake induces blood alkalization and modification of resting metabolism in humans.

    Science.gov (United States)

    Olek, Robert A; Luszczyk, Marcin; Kujach, Sylwester; Ziemann, Ewa; Pieszko, Magdalena; Pischel, Ivo; Laskowski, Radoslaw

    2015-03-01

    Three separate studies were performed with the aim to 1) determine the effect of a single sodium pyruvate intake on the blood acid-base status in males and females; 2) compare the effect of sodium and calcium pyruvate salts and establish their role in the lipolysis rate; and 3) quantify the effect of single pyruvate intake on the resting energy metabolism. In all, 48 individuals completed three separate studies. In all the studies, participants consumed a single dose of pyruvate 0.1 g/kg 60 min before commencing the measurements. The whole blood pH, bicarbonate concentration, base excess or plasma glycerol, free fatty acids, glucose concentrations, or resting energy expenditure and calculated respiratory exchange ratio were determined. The analysis of variance for repeated measurements was performed to examine the interaction between treatment and time. The single dose of sodium pyruvate induced blood alkalization, which was more marked in the male than in the female participants. Following the ingestion of sodium or calcium pyruvate, the blood acid-base parameters were higher than in the placebo trial. Furthermore, 3-h postingestion glycerol was lower in both pyruvate trials than in placebo. Resting energy expenditure did not differ between the trials; however, carbohydrate oxidation was increased after sodium pyruvate ingestion. Pyruvate intake induced mild alkalization in a sex-dependent fashion. Moreover, it accelerated carbohydrate metabolism and delayed the rate of glycerol appearance in the blood, but had no effect on the resting energy expenditure. Furthermore, sodium salt seems to have had a greater effect on the blood buffering level than calcium salt. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats.

    Science.gov (United States)

    Felix, M S; Bauer, S; Darlot, F; Muscatelli, F; Kastner, A; Gauthier, P; Matarazzo, V

    2014-09-01

    After incomplete spinal cord injury (SCI), patients and animals may exhibit some spontaneous functional recovery which can be partly attributed to remodeling of injured neural circuitry. This post-lesion plasticity implies spinal remodeling but increasing evidences suggest that supraspinal structures contribute also to the functional recovery. Here we tested the hypothesis that partial SCI may activate cell-signaling pathway(s) at the supraspinal level and that this molecular response may contribute to spontaneous recovery. With this aim, we used a rat model of partial cervical hemisection which injures the bulbospinal respiratory tract originating from the medulla oblongata of the brainstem but leads to a time-dependent spontaneous functional recovery of the paralyzed hemidiaphragm. We first demonstrate that after SCI the PI3K/Akt signaling pathway is activated in the medulla oblongata of the brainstem, resulting in an inactivation of its pro-apoptotic downstream target, forkhead transcription factor (FKHR/FOXO1A). Retrograde labeling of medullary premotoneurons including respiratory ones which project to phrenic motoneurons reveals an increased FKHR phosphorylation in their cell bodies together with an unchanged cell number. Medulla infusion of the PI3K inhibitor, LY294002, prevents the SCI-induced Akt and FKHR phosphorylations and activates one of its death-promoting downstream targets, Fas ligand. Quantitative EMG analyses of diaphragmatic contractility demonstrate that the inhibition of medulla PI3K/Akt signaling prevents spontaneous respiratory recovery normally observed after partial cervical SCI. Such inhibition does not however affect either baseline contractile frequency or the ventilatory reactivity under acute respiratory challenge. Together, these findings provide novel evidence of supraspinal cellular contribution to the spontaneous respiratory recovery after partial SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Directory of Open Access Journals (Sweden)

    Shweta Jain

    Full Text Available Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID, signifying class switch recombination (CSR. Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  5. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Science.gov (United States)

    Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N

    2011-01-01

    Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  6. Efficacy of high-flow oxygen by nasal cannula with active humidification in a patient with acute respiratory failure of neuromuscular origin.

    Science.gov (United States)

    Díaz-Lobato, Salvador; Folgado, Miguel Angel; Chapa, Angel; Mayoralas Alises, Sagrario

    2013-12-01

    The treatment of choice for patients with respiratory failure of neuromuscular origin, especially in patients with hypercapnic respiratory acidosis, is noninvasive ventilation (NIV). Endotracheal intubation and invasive ventilation are indicated for patients with severe respiratory compromise or failure of NIV. In recent years, high-flow oxygen therapy and active humidification devices have been introduced, and emerging evidence suggests that high-flow oxygen may be effective in various clinical settings, such as acute respiratory failure, after cardiac surgery, during sedation and analgesia, in acute heart failure, in hypoxemic respiratory distress, in do-not-intubate patients, in patients with chronic cough and copious secretions, pulmonary fibrosis, or cancer, in critical areas and the emergency department. We report on a patient with amyotrophic lateral sclerosis who arrived at the emergency department with acute hypercapnic respiratory failure. She did not tolerate NIV and refused intubation, but was treated successfully with heated, humidified oxygen via high-flow nasal cannula. Arterial blood analysis after an hour on high-flow nasal cannula showed improved pH, P(aCO2), and awareness. The respiratory acidosis was corrected, and she was discharged after 5 days of hospitalization. Her response to high-flow nasal cannula was similar to that expected with NIV. We discuss the mechanisms of action of heated, humidified high-flow oxygen therapy.

  7. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  8. Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Pils, D; Schmetterer, G

    2001-09-25

    Synechocystis sp. PCC 6803 contains three respiratory terminal oxidases (RTOs): cytochrome c oxidase (Cox), quinol oxidase (Cyd), and alternate RTO (ARTO). Mutants lacking combinations of the RTOs were used to characterize these key enzymes of respiration. Pentachlorophenol and 2-heptyl-4-hydroxy-quinoline-N-oxide inhibited Cyd completely, but had little effect on electron transport to the other RTOs. KCN inhibited all three RTOs but the in vivo K(I) for Cox and Cyd was quite different (7 vs. 27 microM), as was their affinity for oxygen (K(M) 1.0 vs. 0.35 microM). ARTO has a very low respiratory activity. However, when uptake of 3-O-methylglucose, an active H+ co-transport, was used to monitor energization of the cytoplasmic membrane, ARTO was similarly effective as the other RTOs. As removal of the gene for cytochrome c(553) had the same effects as removal of ARTO genes, we propose that the ARTO might be a second Cox. The possible functions, localization and regulation of the RTOs are discussed.

  9. Noninvasive radiographic assessment of cardiovascular function in acute and chronic respiratory failure

    International Nuclear Information System (INIS)

    Berger, H.J.; Matthay, R.A.

    1981-01-01

    Noninvasive radiographic techniques have provided a means of studying the natural history and pathogenesis of cardiovascular performance in acute and chronic respiratory failure. Chest radiography, radionuclide angiocardiography and thallium-201 imaging, and M mode and cross-sectional echocardiography have been employed. Each of these techniques has specific uses, attributes and limitations. For example, measurement of descending pulmonary arterial diameters on the plain chest radiograph allows determination of the presence or absence of pulmonary arterial hypertension. Right and left ventricular performance can be evaluated at rest and during exercise using radionuclide angiocardiography. The biventricular response to exercise and to therapeutic interventions also can be assessed with this approach. Evaluation of the pulmonary valve echogram and echocardiographic right ventricular dimensions have been shown to reflect right ventricular hemodynamics and size. Each of these noninvasive techniques has been applied to the study of patients with respiratory failure and has provided important physiologic data

  10. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Respiratory Pathways Reconstructed by Multi-Omics Analysis in Melioribacter roseus, Residing in a Deep Thermal Aquifer of the West-Siberian Megabasin

    Science.gov (United States)

    Gavrilov, Sergey; Podosokorskaya, Olga; Alexeev, Dmitry; Merkel, Alexander; Khomyakova, Maria; Muntyan, Maria; Altukhov, Ilya; Butenko, Ivan; Bonch-Osmolovskaya, Elizaveta; Govorun, Vadim; Kublanov, Ilya

    2017-01-01

    Melioribacter roseus, a representative of recently proposed Ignavibacteriae phylum, is a metabolically versatile thermophilic bacterium, inhabiting subsurface biosphere of the West-Siberian megabasin and capable of growing on various substrates and electron acceptors. Genomic analysis followed by inhibitor studies and membrane potential measurements of aerobically grown M. roseus cells revealed the activity of aerobic respiratory electron transfer chain comprised of respiratory complexes I and IV, and an alternative complex III. Phylogeny reconstruction revealed that oxygen reductases belonged to atypical cc(o/b)o3-type and canonical cbb3–type cytochrome oxidases. Also, two molybdoenzymes of M. roseus were affiliated either with Ttr or Psr/Phs clades, but not with typical respiratory arsenate reductases of the Arr clade. Expression profiling, both at transcripts and protein level, allowed us to assign the role of the terminal respiratory oxidase under atmospheric oxygen concentration for the cc(o/b)o3 cytochrome oxidase, previously proposed to serve for oxygen detoxification only. Transcriptomic analysis revealed the involvement of both molybdoenzymes of M. roseus in As(V) respiration, yet differences in the genomic context of their gene clusters allow to hypothesize about their distinct roles in arsenate metabolism with the ‘Psr/Phs’-type molybdoenzyme being the most probable candidate respiratory arsenate reductase. Basing on multi-omics data, the pathways for aerobic and arsenate respiration were proposed. Our results start to bridge the vigorously increasing gap between homology-based predictions and experimentally verified metabolic processes, what is especially important for understudied microorganisms of novel lineages from deep subsurface environments of Eurasia, which remained separated from the rest of the biosphere for several geological periods. PMID:28713355

  12. Respiratory Pathways Reconstructed by Multi-Omics Analysis in Melioribacter roseus, Residing in a Deep Thermal Aquifer of the West-Siberian Megabasin

    Directory of Open Access Journals (Sweden)

    Sergey Gavrilov

    2017-06-01

    Full Text Available Melioribacter roseus, a representative of recently proposed Ignavibacteriae phylum, is a metabolically versatile thermophilic bacterium, inhabiting subsurface biosphere of the West-Siberian megabasin and capable of growing on various substrates and electron acceptors. Genomic analysis followed by inhibitor studies and membrane potential measurements of aerobically grown M. roseus cells revealed the activity of aerobic respiratory electron transfer chain comprised of respiratory complexes I and IV, and an alternative complex III. Phylogeny reconstruction revealed that oxygen reductases belonged to atypical cc(o/bo3-type and canonical cbb3–type cytochrome oxidases. Also, two molybdoenzymes of M. roseus were affiliated either with Ttr or Psr/Phs clades, but not with typical respiratory arsenate reductases of the Arr clade. Expression profiling, both at transcripts and protein level, allowed us to assign the role of the terminal respiratory oxidase under atmospheric oxygen concentration for the cc(o/bo3 cytochrome oxidase, previously proposed to serve for oxygen detoxification only. Transcriptomic analysis revealed the involvement of both molybdoenzymes of M. roseus in As(V respiration, yet differences in the genomic context of their gene clusters allow to hypothesize about their distinct roles in arsenate metabolism with the ‘Psr/Phs’-type molybdoenzyme being the most probable candidate respiratory arsenate reductase. Basing on multi-omics data, the pathways for aerobic and arsenate respiration were proposed. Our results start to bridge the vigorously increasing gap between homology-based predictions and experimentally verified metabolic processes, what is especially important for understudied microorganisms of novel lineages from deep subsurface environments of Eurasia, which remained separated from the rest of the biosphere for several geological periods.

  13. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  14. Leptin signaling in skeletal muscle after bed rest in healthy humans

    DEFF Research Database (Denmark)

    Guerra, Borja; Ponce-Gonzalez, Jesus Gustavo; Morales-Alamo, David

    2014-01-01

    . Leptin receptor isoforms (OB-Rs), suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) protein expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation were analyzed by Western blot. RESULTS: After bed rest basal insulin concentration.......4-fold after bed rest (P PTP1B in the deltoid. PTP1B was increased by 90% with bed rest in the vastus lateralis (P ... between the increase in vastus lateralis PTP1B and the increase in both basal insulin concentrations (r = 0.66, P

  15. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  16. Examining the relation between respiratory sinus arrhythmia and depressive symptoms in emerging adults: A longitudinal study.

    Science.gov (United States)

    Yaptangco, Mona; Crowell, Sheila E; Baucom, Brian R; Bride, Daniel L; Hansen, Erik J

    2015-09-01

    Major depressive disorder (MDD) is a debilitating and prevalent disorder associated with lower quality of life and substantial economic burden. Recently, there has been strong interest in respiratory sinus arrhythmia (RSA) as a biological predictor of later depression. Theoretical work suggests that higher resting RSA indexes physiological flexibility and better emotion regulation whereas lower RSA may mark vulnerability for psychopathology. However, empirical findings have varied. This study examined whether lower resting RSA predicted later depressive symptoms in a sample of healthy young adults across one year (n=185). Results indicate that year one (Y1) resting RSA predicted Y2 depressive symptoms. This finding remained significant when accounting for the stability of RSA and depressive symptoms across both time points and when including trait anxiety, body mass index, and medication use in statistical models. Findings provide further support for RSA as a promising biological marker for understanding and predicting depressive symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Selection and spatial arrangement of rest sites within northern tamandua home ranges

    NARCIS (Netherlands)

    Brown, D. D.; Montgomery, R. A.; Millspaugh, J. J.; Jansen, P. A.; Garzon-Lopez, C. X.; Kays, R.

    The distribution of suitable rest sites is considered to be a key determinant of spatial patterns in animal activity. However, it is not immediately evident which landscape features satisfy rest site requirements or how these sites are configured within the home range. We used Global Positioning

  18. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Mead, A F; Petrov, M; Malik, A S; Mitchell, M A; Childers, M K; Bogan, J R; Seidner, G; Kornegay, J N; Stedman, H H

    2014-04-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼ 60%) and an increase in muscle stiffness (∼ 900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD.

  19. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  20. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    Science.gov (United States)

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  1. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Profile of respiratory problems in patients presenting to a referral pulmonary clinic

    Directory of Open Access Journals (Sweden)

    Dasgupta Angira

    2008-01-01

    Full Text Available Analysis of OPD data of 2012 patients in a referral pulmonary clinic at Kolkata was done following a protocol-based approach. Obstructive airway diseases (COPD and asthma were the most common (43% problem followed by infective lung diseases (15% including tuberculosis, bronchogenic carcinoma (8%, ILD (4%, haemopty-sis of undiagnosed etiology (4.5%, chronic cough of undiagnosed etiology (6.5% and pleural diseases (4.6%. Other diseases like obstructive sleep apnoea, sarcoid-osis, systemic diseases with lung involvements etc., and non respiratory problems formed the rest (14.4%.

  3. Respiratory alkalosis

    Science.gov (United States)

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  4. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  5. Respiratory care manpower issues.

    Science.gov (United States)

    Mathews, Paul; Drumheller, Lois; Carlow, John J

    2006-03-01

    Although respiratory care is a relatively new profession, its practitioners are deeply involved in providing patient care in the critical care. In preparation for writing this article, we sought to explore the respiratory therapy manpower needs and activities designed to fulfill those needs in critical care practice. We began by delineating the historical development of respiratory care as a profession, the development of its education, and the professional credentialing system. We then conducted several literature reviews with few articles generated. We requested and received data from the American Association for Respiratory Care (AARC), The National Board for Respiratory Care (NBRC), and the Committee on Accreditation of Respiratory Care education (CoARC) relative to their membership, number of credentialed individuals, and educational program student and graduate data for 2000 through 2004. We then conducted two electronic surveys. Survey 1 was a six-item survey that examined the use of mandatory overtime in respiratory care departments. We used a convenience sample of 30 hospitals stratified by size (or=500 beds). Survey 2 was a five-item instrument distributed by blast E-mail to the Society of Critical Care Medicine's Respiratory Care Section members and members of the RC_World list serve. This survey elicited 51 usable and non-duplicative responses from geographically and size-varied institutions. We analyzed these data in several ways from distribution analysis to one-way analysis of variance procedure and appropriate post hoc analysis techniques. Where appropriate, a matched-pairs analysis was performed and these were compared across the variables intensive care unit (ICU) beds per actual number of respiratory care practitioners (RCPs) and ICU beds per preferred number of RCPs. The data gathered from the professional organizations indicated a relatively stable attrition rate (35.2%+/-1.7-3.1%), even in the face of varying enrollments (6,231 in 2004 vs. 4

  6. Respiratory function in voluntary participating Patagonia sea lions in sternal recumbency

    Directory of Open Access Journals (Sweden)

    Andreas Fahlman

    2016-11-01

    Full Text Available We measured esophageal pressures (n=4, respiratory flow rates (n=5, and expired O2 and CO2 (n=4 in five adult Patagonia sea lions (Otaria flavescens, body mass range 94.3-286.0 kg during voluntary breaths while laying down. The data were used to estimate the dynamic specific lung compliance (sCL, cmH2O-1, the O2 consumption rate (VO2 and CO2 production rates (VCO2 during rest. Our results indicate that the resting tidal volume in Patagonia sea lions is approximately 47-73% of the estimated total lung capacity. The esophageal pressures indicated that expiration is passive during voluntary breaths. The average sCL of dolphins was 0.41±0.11 cmH2O−1, which is similar to those measured in anesthetized sea lions and awake cetaceans, and significantly higher as compared with humans (0.08 cmH2O−1. The average estimated and using breath-by-breath respirometry were 1.023 ± 0.327 L O2 min-1 (range: 0.695-1.514 L O2 min−1 and 0.777 ± 0.318 L CO2 min-1, (range: 0.510-1.235 L CO2 min-1, respectively, which is similar to previously published metabolic measurements from California and Steller sea lions using conventional flow-through respirometry. Our data provide end-tidal gas composition and provide novel data for respiratory physiology in pinnpeds, which may be important for clinical medicine and conservation efforts.

  7. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  8. Respiratory and reproductive paleophysiology of dinosaurs and early birds.

    Science.gov (United States)

    Ruben, John A; Jones, Terry D; Geist, Nicholas R

    2003-01-01

    In terms of their diversity and longevity, dinosaurs and birds were/are surely among the most successful of terrestrial vertebrates. Unfortunately, interpreting many aspects of the biology of dinosaurs and the earliest of the birds presents formidable challenges because they are known only from fossils. Nevertheless, a variety of attributes of these taxa can be inferred by identification of shared anatomical structures whose presence is causally linked to specialized functions in living reptiles, birds, and mammals. Studies such as these demonstrate that although dinosaurs and early birds were likely to have been homeothermic, the absence of nasal respiratory turbinates in these animals indicates that they were likely to have maintained reptile-like (ectothermic) metabolic rates during periods of rest or routine activity. Nevertheless, given the metabolic capacities of some extant reptiles during periods of elevated activity, early birds were probably capable of powered flight. Similarly, had, for example, theropod dinosaurs possessed aerobic metabolic capacities and habits equivalent to those of some large, modern tropical latitude lizards (e.g., Varanus), they may well have maintained significant home ranges and actively pursued and killed large prey. Additionally, this scenario of active, although ectothermic, theropod dinosaurs seems reinforced by the likely utilization of crocodilian-like, diaphragm breathing in this group. Finally, persistent in vivo burial of their nests and apparent lack of egg turning suggests that clutch incubation by dinosaurs was more reptile- than birdlike. Contrary to previous suggestions, there is little if any reliable evidence that some dinosaur young may have been helpless and nestbound (altricial) at hatching.

  9. Multifraction dose response of growing and resting phase hair follicles

    International Nuclear Information System (INIS)

    Vegesna, V.; Withers, H.R.

    1987-01-01

    It has been established in both the clinic and the laboratory that there is a differentiation response to changes in dose per fraction in early and late responding tissues. To study one possible biological reason for differences in early and late responses. The authors selected one kind of cellular entity, the hair follicle, in two different phases of mitotic activity. The follicles are usually in a resting phase (7-12 wks), but mitotic activity can be initiated by plucking the club hairs. This was done on one half of the thorax and then exposing mice to doses of radiation (cesium gamma-ray). Dose responses for epilation between growing (early) and resting (late) follicles were compared for the same mouse. The fractionated response was studied by reducing the dose down to 2.5 Gy/fx. As the literature suggests, the total dose tolerated by a resting (late) follicle increased more than that for a growing (early) follicle

  10. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    OpenAIRE

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  11. Analysis of Altered Baseline Brain Activity in Drug-Naive Adult Patients with Social Anxiety Disorder Using Resting-State Functional MRI

    OpenAIRE

    Qiu, Changjian; Feng, Yuan; Meng, Yajing; Liao, Wei; Huang, Xiaoqi; Lui, Su; Zhu, Chunyan; Chen, Huafu; Gong, Qiyong; Zhang, Wei

    2015-01-01

    Objective We hypothesize that the amplitude of low-frequency fluctuations (ALFF) is involved in the altered regional baseline brain function in social anxiety disorder (SAD). The aim of the study was to analyze the altered baseline brain activity in drug-naive adult patients with SAD. Methods We investigated spontaneous and baseline brain activities by obtaining the resting-state functional magnetic resonance imaging data of 20 drug-na?ve adult SAD patients and 19 healthy controls. Voxels wer...

  12. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    Science.gov (United States)

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  13. Rest and the associated benefits in restorative sleep: a concept analysis.

    Science.gov (United States)

    Helvig, Ashley; Wade, Sonya; Hunter-Eades, Lee

    2016-01-01

    To report an analysis of the concept of rest. Consistency in the literature to describe the concept and use of rest is limited. Concept analysis may be advantageous in rendering an operational definition in the health care setting. This analysis is important to examine the concept of rest for structure and function to promote an understanding of the phenomenon. Rest is a vital component of restorative sleep which has implications for physical, mental and spiritual well-being. Concept analysis. A literature search was conducted in the following databases: PubMed, CINAHL, Medline, ProQuest and an online Internet search with the majority of articles published between 1995-2015. This concept analysis was implemented using the eight step approach developed by Walker and Avant. In health care, rest incorporates the cessation of activity used to promote physical and mental health. Defining attributes of rest include a pathway to calm, inner tranquillity and mental health; base of support; and stillness. Antecedents for rest are time, suitable environment and willingness. Resulting consequences include renewed physical energy, mental clarity and improved health. Rest is a concept that is used frequently in the discipline of nursing but also in various other disciplines. Rest is a basic necessity for restorative sleep to enhance well-being through the restoration of the body, mind and spirit. Defining the concept of rest in the practice of patient care is necessary for consistent use of the term in the development of holistic, patient-centred therapies. © 2015 John Wiley & Sons Ltd.

  14. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones

    DEFF Research Database (Denmark)

    Enríquez Denton, M; Wienecke, Jacob; Zhang, Mengliang

    2012-01-01

    time, the likely amplifying processes at work in respiratory motoneurones. In phrenic motoneurones, which control the most important respiratory muscle, the diaphragm, we found that the mechanism most favoured by investigations in other motoneurones, the activation of persistent inward currents via...

  15. Age and regional cerebral blood flow at rest and during cognitive activity

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Obrist, W.D.; Skolnick, B.E.; Reivich, M.

    1987-01-01

    The relationship between age and regional cerebral blood flow (rCBF) activation for cognitive tasks was investigated with the xenon (Xe 133) inhalation technique. The sample consisted of 55 healthy subjects, ranging in age from 18 to 72 years, who were studied during rest and during the performance of verbal analogy and spatial orientation tasks. The dependent measures were indexes of gray-matter rCBF and average rCBF (gray and white matter) as well as the percentage of gray-matter tissue. Advanced age was associated with reduced flow, particularly pronounced in anterior regions. However, the extent and pattern of rCBF changes during cognition was unaffected by age. For the percentage of gray matter, there was a specific reduction in anterior regions of the left hemisphere. The findings suggest the utility of this research paradigm for investigating neural underpinnings of the effects of dementia on cognitive functioning, relative to the effects of normal aging

  16. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    olayemitoyin

    2008-11-26

    Nov 26, 2008 ... ratio were the most important independent parameters in prediction of RPP. The study shows that ... study of various medical, surgical, and physical interventions on .... increase in myocardial activity and thus the MVO2 at rest.

  17. Decreased respiratory symptoms in cannabis users who vaporize

    Directory of Open Access Journals (Sweden)

    Barnwell Sara

    2007-04-01

    Full Text Available Abstract Cannabis smoking can create respiratory problems. Vaporizers heat cannabis to release active cannabinoids, but remain cool enough to avoid the smoke and toxins associated with combustion. Vaporized cannabis should create fewer respiratory symptoms than smoked cannabis. We examined self-reported respiratory symptoms in participants who ranged in cigarette and cannabis use. Data from a large Internet sample revealed that the use of a vaporizer predicted fewer respiratory symptoms even when age, sex, cigarette smoking, and amount of cannabis used were taken into account. Age, sex, cigarettes, and amount of cannabis also had significant effects. The number of cigarettes smoked and amount of cannabis used interacted to create worse respiratory problems. A significant interaction revealed that the impact of a vaporizer was larger as the amount of cannabis used increased. These data suggest that the safety of cannabis can increase with the use of a vaporizer. Regular users of joints, blunts, pipes, and water pipes might decrease respiratory symptoms by switching to a vaporizer

  18. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  19. Comparison of the effects of single and daily repeated immobilization stress on resting activity and heterotypic sensitization of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Daviu, Núria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2014-03-01

    Acute exposure to severe stressors causes marked activation of the hypothalamic-pituitary-adrenal (HPA) axis that is reflected on the day after higher resting levels of HPA hormones and sensitization of the HPA response to novel (heterotypic) stressors. However, whether a single exposure to a severe stressor or daily repeated exposure to the same (homotypic) stressor modifies these responses to the same extent has not been studied. In this experiment, we studied this issue in adult male Sprague-Dawley rats daily exposed for seven days to a severe stressor such as immobilization on boards (IMO). A first exposure to 1 h IMO resulted in a marked activation of the HPA axis as reflected in plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone, and such activation was significantly reduced after the seventh IMO. On the day after the first IMO, higher resting levels of ACTH and corticosterone and sensitization of their responses to a short exposure to an open-field (OF) were observed, together with a marked hypoactivity in this environment. Repeated exposure to IMO partially reduced hypoactivity, the increase in resting levels of HPA hormones and the ACTH responsiveness to the OF on the day after the last exposure to IMO. In contrast, corticosterone response was gradually increased, suggesting partial dissociation from ACTH. These results indicate that daily repeated exposure to the same stressor partially reduced the HPA response to the homotypic stressor as well as the sensitization of HPA axis activity observed the day after chronic stress cessation.

  20. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  1. Graph-based network analysis of resting-state functional MRI.

    Science.gov (United States)

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  2. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    Science.gov (United States)

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier Gmb

  3. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  4. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  5. Improving Managers' Psychophysical Well-Being: Effectiveness of Respiratory Sinus Arrhythmia Biofeedback.

    Science.gov (United States)

    Munafò, Marianna; Patron, Elisabetta; Palomba, Daniela

    2016-06-01

    High work stress has been consistently associated with disturbed autonomic balance, specifically, lowered vagal cardiac control and increased sympathetic activity, which may lead to increased cardiovascular risk. Stress management procedures have been proposed to reduce autonomic dysfunctions related to work stress in different categories of workers exposed to heightened work demands, while a limited number of studies addressed this issue in managers. The present study was aimed at evaluating the effectiveness of a respiratory sinus arrhythmia (RSA) biofeedback (BF) intervention on psychological and physiological outcomes, in managers with high-level work responsibilities. Thirty-one managers leading outstanding private or public companies were randomly assigned to either a RSA-BF training (RSA-BF; N = 16) or a control group (N = 15). The RSA-BF training consisted of five weekly 45 min sessions, designed to increase RSA, whereas controls had to provide a daily stress diary once a week. After the training, managers in both groups reported reduced heart rate at rest, lower anxiety levels and improvement in health-related quality of life. More importantly, managers in the RSA-BF group showed increased vagal control (as indexed by increased RSA), decreased sympathetic arousal (as indexed by reduced skin conductance and systolic blood pressure) and lower emotional interferences, compared to managers in the control group. Results from this study showed that RSA-BF training was effective in improving cardiac autonomic balance at rest. Moreover, findings from this study underline the effectiveness of biofeedback in reducing psychophysiological negative outcomes associated with stress in managers.

  6. Respiratory sinus arrhythmia during worry forecasts stress-related increases in psychological distress.

    Science.gov (United States)

    Gouin, Jean-Philippe; Deschênes, Sonya S; Dugas, Michel J

    2014-09-01

    Respiratory sinus arrhythmia (RSA) has been conceptualized as an index of emotion regulation abilities. Although resting RSA has been associated with both concurrent and prospective affective responses to stress, the impact of RSA reactivity on emotional responses to stress is inconsistent across studies. The type of emotional stimuli used to elicit these phasic RSA responses may influence the adaptive value of RSA reactivity. We propose that RSA reactivity to a personally relevant worry-based stressor might forecast future affective responses to stress. To evaluate whether resting RSA and RSA reactivity to worry inductions predict stress-related increases in psychological distress, an academic stress model was used to prospectively examine changes in psychological distress from the well-defined low- and high-stress periods. During the low-stress period, 76 participants completed self-report mood measures and had their RSA assessed during a resting baseline, free worry period and worry catastrophizing interview. Participants completed another mood assessment during the high-stress period. Results indicated that baseline psychological distress predicted larger decreases in RSA during the worry inductions. Lower resting RSA and greater RSA suppression to the worry inductions at baseline prospectively predicted larger increases in psychological distress from the low- to high-stress period, even after accounting for the impact of baseline distress on RSA. These results provide further evidence that RSA may represent a unique index of emotion regulation abilities in times of stress.

  7. Effects of transcutaneous electrical nerve stimulation on cognition, behavior, and rest-activity rhythm in children with Attention Deficit Hyperactivity Disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S.; Bouma, A.; Sergeant, J.A.; Scherder, E.J.A.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  8. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Jørgensen, Stine Ringholm; Kiilerich, Kristian

    2012-01-01

    To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both...... than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate....... The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage....

  9. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?

    Science.gov (United States)

    Jahanian, Hesamoddin; Christen, Thomas; Moseley, Michael E; Pajewski, Nicholas M; Wright, Clinton B; Tamura, Manjula K; Zaharchuk, Greg

    2017-07-01

    Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (P a CO 2 ) levels. However, following the proper commands for a breath-holding experiment may be difficult or impossible for many patients. In this study, we evaluated two approaches for obtaining vascular reactivity information using blood oxygenation level-dependent signal fluctuations obtained from resting-state functional magnetic resonance imaging data: physiological fluctuation regression and coefficient of variation of the resting-state functional magnetic resonance imaging signal. We studied a cohort of 28 older adults (69 ± 7 years) and found that six of them (21%) could not perform the breath-holding protocol, based on an objective comparison with an idealized respiratory waveform. In the subjects that could comply, we found a strong linear correlation between data extracted from spontaneous resting-state functional magnetic resonance imaging signal fluctuations and the blood oxygenation level-dependent percentage signal change during breath-holding challenge ( R 2  = 0.57 and 0.61 for resting-state physiological fluctuation regression and resting-state coefficient of variation methods, respectively). This technique may eliminate the need for subject cooperation, thus allowing the evaluation of vascular reactivity in a wider range of clinical and research conditions in which it may otherwise be impractical.

  10. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  11. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  12. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  13. The respiratory microbiome and respiratory infections

    NARCIS (Netherlands)

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  14. Effects of Twenty Days of the Ketogenic Diet on Metabolic and Respiratory Parameters in Healthy Subjects.

    Science.gov (United States)

    Rubini, Alessandro; Bosco, Gerardo; Lodi, Alessandra; Cenci, Lorenzo; Parmagnani, Andrea; Grimaldi, Keith; Zhongjin, Yang; Paoli, Antonio

    2015-12-01

    The effects of the ketogenic diet (KD) on weight loss, metabolic, and respiratory parameters were investigated in healthy subjects. Thirty-two healthy subjects were randomized into two groups. The KD group followed a ketogenic diet for 20 days (KD t 0-t 20), then switched to a low-carbohydrate, no-ketogenic diet for 20 days (KD t 20-t 40), and finally was on a Mediterranean diet (MD) for 2 more months (KD t 40-t 2m). The MD group followed a MD for 20 days (MD t 0-t 20), then followed a MD of 1400 kcal over the next 20 days (MD t 20-t 40), and completed the study with the MD for 2 months (MD t 40-t 2m). Body weight, body fat, respiratory rate, and respiratory gas parameters (including respiratory exchange ratio (RER) and carbon dioxide end-tidal partial pressure (PETCO2), oxygen uptake (VO2), carbon dioxide production (VCO2), and resting energy expenditure (REE)) were measured at each point. A significant decrease (p diets significantly decreased body fat mass, the KD diet overall proved to have a higher percentage of fat loss versus the MD diet. The KD may significantly decrease carbon dioxide body stores, which may theoretically be beneficial for patients with increased carbon dioxide arterial partial pressure due to respiratory insufficiency or failure.

  15. Predictive Modeling of Spinner Dolphin (Stenella longirostris) Resting Habitat in the Main Hawaiian Islands

    Science.gov (United States)

    Thorne, Lesley H.; Johnston, David W.; Urban, Dean L.; Tyne, Julian; Bejder, Lars; Baird, Robin W.; Yin, Suzanne; Rickards, Susan H.; Deakos, Mark H.; Mobley, Joseph R.; Pack, Adam A.; Chapla Hill, Marie

    2012-01-01

    Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood. PMID:22937022

  16. Is recurrent respiratory infection associated with allergic respiratory disease?

    Science.gov (United States)

    de Oliveira, Tiago Bittencourt; Klering, Everton Andrei; da Veiga, Ana Beatriz Gorini

    2018-03-13

    Respiratory infections cause high morbidity and mortality worldwide. This study aims to estimate the relationship between allergic respiratory diseases with the occurrence of recurrent respiratory infection (RRI) in children and adolescents. The International Study of Asthma and Allergies in Childhood questionnaire and a questionnaire that provides data on the history of respiratory infections and the use of antibiotics were used to obtain data from patients. The relationship between the presence of asthma or allergic rhinitis and the occurrence of respiratory infections in childhood was analyzed. We interviewed the caregivers of 531 children aged 0 to 15 years. The average age of participants was 7.43 years, with females accounting for 52.2%. This study found significant relationship between: presence of asthma or allergic rhinitis with RRI, with prevalence ratio (PR) of 2.47 (1.51-4.02) and 1.61 (1.34-1.93), respectively; respiratory allergies with use of antibiotics for respiratory problems, with PR of 5.32 (2.17-13.0) for asthma and of 1.64 (1.29-2.09) for allergic rhinitis; asthma and allergic rhinitis with diseases of the lower respiratory airways, with PR of 7.82 (4.63-13.21) and 1.65 (1.38-1.96), respectively. In contrast, no relationship between upper respiratory airway diseases and asthma and allergic rhinitis was observed, with PR of 0.71 (0.35-1.48) and 1.30 (0.87-1.95), respectively. RRI is associated with previous atopic diseases, and these conditions should be considered when treating children.

  17. Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Science.gov (United States)

    Bousquet, J; Farrell, J; Crooks, G; Hellings, P; Bel, E H; Bewick, M; Chavannes, N H; de Sousa, J Correia; Cruz, A A; Haahtela, T; Joos, G; Khaltaev, N; Malva, J; Muraro, A; Nogues, M; Palkonen, S; Pedersen, S; Robalo-Cordeiro, C; Samolinski, B; Strandberg, T; Valiulis, A; Yorgancioglu, A; Zuberbier, T; Bedbrook, A; Aberer, W; Adachi, M; Agusti, A; Akdis, C A; Akdis, M; Ankri, J; Alonso, A; Annesi-Maesano, I; Ansotegui, I J; Anto, J M; Arnavielhe, S; Arshad, H; Bai, C; Baiardini, I; Bachert, C; Baigenzhin, A K; Barbara, C; Bateman, E D; Beghé, B; Kheder, A Ben; Bennoor, K S; Benson, M; Bergmann, K C; Bieber, T; Bindslev-Jensen, C; Bjermer, L; Blain, H; Blasi, F; Boner, A L; Bonini, M; Bonini, S; Bosnic-Anticevitch, S; Boulet, L P; Bourret, R; Bousquet, P J; Braido, F; Briggs, A H; Brightling, C E; Brozek, J; Buhl, R; Burney, P G; Bush, A; Caballero-Fonseca, F; Caimmi, D; Calderon, M A; Calverley, P M; Camargos, P A M; Canonica, G W; Camuzat, T; Carlsen, K H; Carr, W; Carriazo, A; Casale, T; Cepeda Sarabia, A M; Chatzi, L; Chen, Y Z; Chiron, R; Chkhartishvili, E; Chuchalin, A G; Chung, K F; Ciprandi, G; Cirule, I; Cox, L; Costa, D J; Custovic, A; Dahl, R; Dahlen, S E; Darsow, U; De Carlo, G; De Blay, F; Dedeu, T; Deleanu, D; De Manuel Keenoy, E; Demoly, P; Denburg, J A; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dray, G; Dubakiene, R; Durham, S R; Dykewicz, M S; El-Gamal, Y; Emuzyte, R; Fabbri, L M; Fletcher, M; Fiocchi, A; Fink Wagner, A; Fonseca, J; Fokkens, W J; Forastiere, F; Frith, P; Gaga, M; Gamkrelidze, A; Garces, J; Garcia-Aymerich, J; Gemicioğlu, B; Gereda, J E; González Diaz, S; Gotua, M; Grisle, I; Grouse, L; Gutter, Z; Guzmán, M A; Heaney, L G; Hellquist-Dahl, B; Henderson, D; Hendry, A; Heinrich, J; Heve, D; Horak, F; Hourihane, J O' B; Howarth, P; Humbert, M; Hyland, M E; Illario, M; Ivancevich, J C; Jardim, J R; Jares, E J; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Julge, K; Jung, K S; Just, J; Kaidashev, I; Kaitov, M R; Kalayci, O; Kalyoncu, A F; Keil, T; Keith, P K; Klimek, L; Koffi N'Goran, B; Kolek, V; Koppelman, G H; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Lambrecht, B; Lau, S; Larenas-Linnemann, D; Laune, D; Le, L T T; Lieberman, P; Lipworth, B; Li, J; Lodrup Carlsen, K; Louis, R; MacNee, W; Magard, Y; Magnan, A; Mahboub, B; Mair, A; Majer, I; Makela, M J; Manning, P; Mara, S; Marshall, G D; Masjedi, M R; Matignon, P; Maurer, M; Mavale-Manuel, S; Melén, E; Melo-Gomes, E; Meltzer, E O; Menzies-Gow, A; Merk, H; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Mohammad, G M Y; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; Mösges, R; Mullol, J; Nafti, S; Namazova-Baranova, L; Naclerio, R; Neou, A; Neffen, H; Nekam, K; Niggemann, B; Ninot, G; Nyembue, T D; O'Hehir, R E; Ohta, K; Okamoto, Y; Okubo, K; Ouedraogo, S; Paggiaro, P; Pali-Schöll, I; Panzner, P; Papadopoulos, N; Papi, A; Park, H S; Passalacqua, G; Pavord, I; Pawankar, R; Pengelly, R; Pfaar, O; Picard, R; Pigearias, B; Pin, I; Plavec, D; Poethig, D; Pohl, W; Popov, T A; Portejoie, F; Potter, P; Postma, D; Price, D; Rabe, K F; Raciborski, F; Radier Pontal, F; Repka-Ramirez, S; Reitamo, S; Rennard, S; Rodenas, F; Roberts, J; Roca, J; Rodriguez Mañas, L; Rolland, C; Roman Rodriguez, M; Romano, A; Rosado-Pinto, J; Rosario, N; Rosenwasser, L; Rottem, M; Ryan, D; Sanchez-Borges, M; Scadding, G K; Schunemann, H J; Serrano, E; Schmid-Grendelmeier, P; Schulz, H; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Simons, F E R; Sisul, J C; Skrindo, I; Smit, H A; Solé, D; Sooronbaev, T; Spranger, O; Stelmach, R; Sterk, P J; Sunyer, J; Thijs, C; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valia, E; Valovirta, E; Van Ganse, E; van Hage, M; Vandenplas, O; Vasankari, T; Vellas, B; Vestbo, J; Vezzani, G; Vichyanond, P; Viegi, G; Vogelmeier, C; Vontetsianos, T; Wagenmann, M; Wallaert, B; Walker, S; Wang, D Y; Wahn, U; Wickman, M; Williams, D M; Williams, S; Wright, J; Yawn, B P; Yiallouros, P K; Yusuf, O M; Zaidi, A; Zar, H J; Zernotti, M E; Zhang, L; Zhong, N; Zidarn, M; Mercier, J

    2016-01-01

    Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.

  18. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    Science.gov (United States)

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  19. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    Science.gov (United States)

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  20. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.

    Science.gov (United States)

    Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S

    2017-03-08

    Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across

  1. Effects of Depth of Propofol and Sevoflurane Anesthesia on Upper Airway Collapsibility, Respiratory Genioglossus Activation, and Breathing in Healthy Volunteers

    DEFF Research Database (Denmark)

    Simons, Jeroen C P; Pierce, Eric; Diaz-Gil, Daniel

    2016-01-01

    . Measurements included bispectral index, genioglossus electromyography, ventilation, hypopharyngeal pressure, upper airway closing pressure, and change in end-expiratory lung volume during mask pressure drops. RESULTS: A total of 393 attempted breaths during occlusion maneuvers were analyzed. Upper airway......BACKGROUND: Volatile anesthetics and propofol impair upper airway stability and possibly respiratory upper airway dilator muscle activity. The magnitudes of these effects have not been compared at equivalent anesthetic doses. We hypothesized that upper airway closing pressure is less negative...... closing pressure was significantly less negative at deep versus shallow anesthesia (-10.8 ± 4.5 vs. -11.3 ± 4.4 cm H2O, respectively [mean ± SD]) and correlated with the bispectral index (P airway at deep anesthesia. Respiratory genioglossus activity during airway...

  2. RESTful Web Services Cookbook

    CERN Document Server

    Allamaraju, Subbu

    2010-01-01

    While the REST design philosophy has captured the imagination of web and enterprise developers alike, using this approach to develop real web services is no picnic. This cookbook includes more than 100 recipes to help you take advantage of REST, HTTP, and the infrastructure of the Web. You'll learn ways to design RESTful web services for client and server applications that meet performance, scalability, reliability, and security goals, no matter what programming language and development framework you use. Each recipe includes one or two problem statements, with easy-to-follow, step-by-step i

  3. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  4. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  5. [Temporary disappearance of EEG activity during reversible respiratory failure in rabbits and cats].

    Science.gov (United States)

    Jurco, M; Tomori, Z; Tkácová, R; Calfa, J

    1989-02-01

    The dynamics of changes of EEG activity was studied on the model of reversible respiratory failure in rabbits and cats in pentobarbital anesthesia. During N2 inhalation, apnea of 60 second duration, and subsequent resuscitation the electrocorticogram in bifrontal and bioccipital connection was recorded. Evaluation of 19 episodes of apnea in 7 rabbits and of 25 episodes in 8 cats yielded the following results: 1. During hyperventilation induced by N2 inhalation a certain activation of the EEG was observed (spindles more pronounced, increased occurrence rate of discharges of the reticular activation system). 2. At the onset of apnea the EEG was still distinct, suggesting that primary apnea is presumably not caused by anoxia and the accompanying electric silence of the structures that control respiration. 3. Disappearance of EEG occurred within 50 seconds from the onset of apnea in rabbits and within 30 seconds in cats. 4. After repeated episodes of apnea lasting for 60 sec., artificial ventilation mostly resulted in normalization of EEG.

  6. Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    will lead to a significant shift in current approaches for managing respiratory dysfunction following cervical SCIs. Knowledge obtained from this...cervical spinal cord injury. Exp Neurol 263: 314–324, 2015. Mansel JK, Norman JR. Respiratory complications and management of spinal cord injuries...location (versus the electrode track) while also 92 preserving tissue integrity, poses a further challenge ( Borg et al. 2015; Li et al. 2015; Nuding et 93

  7. The significance of reduced respiratory chain enzyme activities: clinical, biochemical and radiological associations.

    Science.gov (United States)

    Mordekar, S R; Guthrie, P; Bonham, J R; Olpin, S E; Hargreaves, I; Baxter, P S

    2006-03-01

    Mitochondrial diseases are an important group of neurometabolic disorders in children with varied clinical presentations and diagnosis that can be difficult to confirm. To report the significance of reduced respiratory chain enzyme (RCE) activity in muscle biopsy samples from children. Retrospective odds ratio was used to compare clinical and biochemical features, DNA studies, neuroimaging, and muscle biopsies in 18 children with and 48 without reduced RCE activity. Children with reduced RCE activity were significantly more likely to have consanguineous parents, to present with acute encephalopathy and lactic acidaemia and/or within the first year of life; to have an axonal neuropathy, CSF lactate >4 mmol/l; and/or to have signal change in the basal ganglia. There were positive associations with a maternal family history of possible mitochondrial cytopathy; a presentation with failure to thrive and lactic acidaemia, ragged red fibres, reduced fibroblast fatty acid oxidation and with an abnormal allopurinol loading test. There was no association with ophthalmic abnormalities, deafness, epilepsy or myopathy. The association of these clinical, biochemical and radiological features with reduced RCE activity suggests a possible causative link.

  8. Comparison of stress-rest and rest-stress one day myocardial perfusion scintigraphies in detecting coronary artery diseases

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Song, Ho Cheon; Kim, Ji Yeul

    1997-01-01

    It has been shown that both rest and stress myocardial perfusion imaging with technetium agents can be performed on the same day using two different doses injected within few hours. The purpose of this study was to compare the two protocols (stress-rest and rest-stress) in detecting coronary artery diseases. One hundred and sixty patients (101 males, 59 females, mean age 57±9 years) and 120 patients (79 males, 41 females, mean age 59±10 years) underwent stress-rest myocardial perfusion SPECT and rest-stress myocardial perfusion SPECT, respectively. All of them underwent both myocardial perfusion SPECT and coronary angiography within 1 month. A coronary stenosis was considered significant when it compromised the luminal diameter by ≥50%. The chi square test was used to compare differences in sensitivity, specificity and accuracy between the two groups. The overall sensitivity, specificity and accuracy of stress-rest protocol were 99%, 35% and 68%, respectively. Those of rest-stress protocol were 96%, 47% and 78%, respectively. There was no difference between the two protocols in identifying individual diseased coronary artery branches. Therefore, one day stress-rest and rest-stress myocardial SPECT using 99m Tc agents were comparable and were very sensitive tests in detecting coronary artery diseases

  9. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    2014-01-01

    Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

  10. Partnering for optimal respiratory home care: physicians working with respiratory therapists to optimally meet respiratory home care needs.

    Science.gov (United States)

    Spratt, G; Petty, T L

    2001-05-01

    The need for respiratory care services continues to increase, reimbursement for those services has decreased, and cost-containment measures have increased the frequency of home health care. Respiratory therapists are well qualified to provide home respiratory care, reduce misallocation of respiratory services, assess patient respiratory status, identify problems and needs, evaluate the effect of the home setting, educate the patient on proper equipment use, monitor patient response to and complications of therapy, monitor equipment functioning, monitor for appropriate infection control procedures, make recommendations for changes to therapy regimen, and adjust therapy under the direction of the physician. Teamwork benefits all parties and offers cost and time savings, improved data collection and communication, higher job satisfaction, and better patient monitoring, education, and quality of life. Respiratory therapists are positioned to optimize treatment efficacy, maximize patient compliance, and minimize hospitalizations among patients receiving respiratory home care.

  11. Shedding light on restoring respiratory function after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Warren J Alilain

    2009-10-01

    Full Text Available Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following SCI - including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental spinal cord injury. We also discuss how such light induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function.

  12. Analysis of the relationship of lifestyle and some of the parameters of respiratory diseases of children 7 9 years old in Poland and Ukraine

    Directory of Open Access Journals (Sweden)

    M.P. Radziyevska

    2013-10-01

    Full Text Available Purpose defining the relationship between the state of knowledge in the field of preventive health care, lifestyle characteristics, health status of students 7-9 years after an illness of the respiratory system. Developed a diagnostic system for the study of health status and level of physical fitness. Anthropometric measurements were carried out and samples Genchi and Stange, heart rate, blood pressure at rest. The level of adaptation was determined by the method of R.M. Baevsky. Opinion of parents, morphology and function, and medical records 553 students of secondary schools of Kiev and 538 students of Szczecin and Konin. Found that the incidence of respiratory systematically increased. It was found that the lack of physical activity of the body is 60-75% needed to maintain the health and development of physical standards. The ratio of 28 hours of lessons on general subjects with 2 hours of physical training per week in school indicates non-compliance with the physiological regulation of mental and physical stress during the growth and development of children.

  13. Cross coherence independent component analysis in resting and action states EEG discrimination

    International Nuclear Information System (INIS)

    Almurshedi, A; Ismail, A K

    2014-01-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition

  14. Variations in resting energy expenditure: impact on gestational weight gain.

    Science.gov (United States)

    Berggren, E K; O'Tierney-Ginn, P; Lewis, S; Presley, L; De-Mouzon, S Hauguel; Catalano, P M

    2017-10-01

    There are significant variations in gestational weight gain, with many women gaining in excess of the Institute of Medicine guidelines. Unfortunately, efforts to improve appropriate gestational weight gain have had only limited success. To date, interventions have focused primarily on decreasing energy intake and/or increasing physical activity. Maternal resting energy expenditure, which comprises ∼60% of total energy expenditure compared with the ∼20% that comes from physical activity, may be an important consideration in understanding variations in gestational weight gain. Our objective was to quantify the changes in resting energy expenditure during pregnancy and their relationship to gestational weight gain and body composition changes among healthy women. We hypothesized that greater gestational weight gain, and fat mass accrual in particular, are inversely related to variations in resting energy expenditure. We conducted a secondary analysis of a prospective cohort studied before conception and late pregnancy (34-36 weeks). Body composition (estimated using hydrodensitometry) and resting energy expenditure (estimated using indirect calorimetry) were measured. The relationship between the changes in resting energy expenditure and gestational weight gain and the change in fat mass and fat-free mass were quantified. Resting energy expenditure was expressed as kilocalories per kilogram of fat-free mass per day (kilocalories per kilogram of fat-free mass -1 /day -1 ) and kilocalories per day. Correlations are reported as r. Among 51 women, preconception body mass index was 23.0 (4.7) kg/m 2 ; gestational weight gain was 12.8 (4.7) kg. Preconception and late pregnancy resting energy expenditure (kilocalories per day) correlated positively with the change in fat-free mass (r = 0.37, P = .008; r = 0.51, P = .001). Late-pregnancy resting energy expenditure (kilocalories per kilogram of fat-free mass -1 /day -1 ) was inversely associated with the change in fat

  15. Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections.

    Science.gov (United States)

    Nichols, Nicole L; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; pneuron death and provides an opportunity to study compensation for respiratory motor neuron loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Camouflage through an active choice of a resting spot and body orientation in moths.

    Science.gov (United States)

    Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G

    2012-09-01

    Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  17. A close link between metabolic activity and functional connectivity in the resting human brain

    Energy Technology Data Exchange (ETDEWEB)

    Passow, Susanne [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Specht, Karsten [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); Adamsen, Tom Christian [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Chemistry, University of Bergen (Norway); Biermann, Martin; Brekke, Njål [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen (Norway); Craven, Alexander Richard [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Ersland, Lars [Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Grüner, Renate [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Kleven-Madsen, Nina [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); Kvernenes, Ole-Heine [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Schwarzlmüller, Thomas [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Clinical Medicine, University of Bergen (Norway); Olesen, Rasmus [Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus (Denmark); Hugdahl, Kenneth [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Radiology, Haukeland University Hospital, Bergen (Norway); Division of Psychiatry, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway)

    2015-05-18

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  18. A close link between metabolic activity and functional connectivity in the resting human brain

    International Nuclear Information System (INIS)

    Passow, Susanne; Specht, Karsten; Adamsen, Tom Christian; Biermann, Martin; Brekke, Njål; Craven, Alexander Richard; Ersland, Lars; Grüner, Renate; Kleven-Madsen, Nina; Kvernenes, Ole-Heine; Schwarzlmüller, Thomas; Olesen, Rasmus; Hugdahl, Kenneth

    2015-01-01

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  19. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  20. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    Science.gov (United States)

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  1. Systems Integration Using Web Services, REST and SOAP: A Practical Report

    Directory of Open Access Journals (Sweden)

    GARCIA, C. M.

    2017-06-01

    Full Text Available In companies environments, it is normal to exist several systems to ease daily activities. In academic environments, it also happens. However, academic environments may be even more heterogeneous as there are many specialized activities, such as: restaurant, library, academic processes, administrative processes and computer network services, such as email and network authentication. To maintain the data consistency throughout the systems, all the systems must be integrated. This integration was carried out in the Federal University of Lavras by using Simples Object Access Protocol (SOAP as communication protocol. The development of a new system (mobile application, it was noticed that SOAP is very CPU-intensive and slow, as mobile devices have constraints such as internet and processing. Thus, a REST-JSON layer to integrate mobile application and the integration architecture was developed, benefiting from all the resources the integration architecture had. By using this new layer, the offer of functions from the integration architecture was also expanded to REST, attending to other applications without having to make big changes in the code. It was measured that the REST-JSON layer consumes around 73% less data than SOAP. The REST-JSON layer was released, attending to about 5600 installations of the application that requests the integration around 54000 times a day.

  2. REST/NRSF Knockdown Alters Survival, Lineage Differentiation and Signaling in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kaushali Thakore-Shah

    Full Text Available REST (RE1 silencing transcription factor, also known as NRSF (neuron-restrictive silencer factor, is a well-known transcriptional repressor of neural genes in non-neural tissues and stem cells. Dysregulation of REST activity is thought to play a role in diverse diseases including epilepsy, cancer, Down's syndrome and Huntington's disease. The role of REST/NRSF in control of human embryonic stem cell (hESC fate has never been examined. To evaluate the role of REST in hESCs we developed an inducible REST knockdown system and examined both growth and differentiation over short and long term culture. Interestingly, we have found that altering REST levels in multiple hESC lines does not result in loss of self-renewal but instead leads to increased survival. During differentiation, REST knockdown resulted in increased MAPK/ERK and WNT signaling and increased expression of mesendoderm differentiation markers. Therefore we have uncovered a new role for REST in regulation of growth and early differentiation decisions in human embryonic stem cells.

  3. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Science.gov (United States)

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  4. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    Science.gov (United States)

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio

    2016-11-01

    Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. Heterogeneity across imaging studies. Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem.

    Science.gov (United States)

    Bai, Gegenbaoleer; Bao, Yuying; Du, Guoxin; Qi, Yunlong

    2013-05-01

    The impact of rest grazing on arbuscular mycorrhizal fungi (AMF) and the interactions of AMF with vegetation and soil parameters under rest grazing condition were investigated between spring and late summer in a desert steppe ecosystem with different grazing managements (rest grazing with different lengths of resting period, banned or continuous grazing) in Inner Mongolia, China. AMF diversity and colonization, vegetation biomass, soil properties and soil phosphatase activity were examined. In rest grazing areas of 60 days, AMF spore number and diversity index at a 0-10 cm soil depth as well as vesicular and hyphal colonization rates were higher compared with other grazing treatments. In addition, soil organic matter and total N contents were highest and soil alkaline phosphatase was most active under 60-day rest grazing. In August and September, these areas also had the highest amount of aboveground vegetation. The results indicated that resting grazing for an appropriate period of time in spring has a positive effect on AMF sporulation, colonization and diversity, and that under rest grazing conditions, AMF parameters are positively correlated with some soil characteristics.

  6. Efficacy of Interventions to Improve Respiratory Function After Stroke.

    Science.gov (United States)

    Menezes, Kênia Kp; Nascimento, Lucas R; Avelino, Patrick R; Alvarenga, Maria Tereza Mota; Teixeira-Salmela, Luci F

    2018-07-01

    The aim of this study was to systematically review all current interventions that have been utilized to improve respiratory function and activity after stroke. Specific searches were conducted. The experimental intervention had to be planned, structured, repetitive, purposive, and delivered with the aim of improving respiratory function. Outcomes included respiratory strength (maximum inspiratory pressure [P Imax ], maximum expiratory pressure [P Emax ]) and endurance, lung function (FVC, FEV 1 , and peak expiratory flow [PEF]), dyspnea, and activity. The quality of the randomized trials was assessed by the PEDro scale using scores from the Physiotherapy Evidence Database (www.pedro.org.au), and risk of bias was assessed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. The 17 included trials had a mean PEDro score of 5.7 (range 4-8) and involved 616 participants. Meta-analyses showed that respiratory muscle training significantly improved all outcomes of interest: P Imax (weighted mean difference 11 cm H 2 O, 95% CI 7-15, I 2 = 0%), P Emax (8 cm H 2 O, 95% CI 2-15, I 2 = 65%), FVC (0.25 L, 95% CI 0.12-0.37, I 2 = 29%), FEV 1 (0.24 L, 95% CI 0.17-0.30, I 2 = 0%), PEF (0.51 L/s, 95% CI 0.10-0.92, I 2 = 0%), dyspnea (standardized mean difference -1.6 points, 95% CI -2.2 to -0.9; I 2 = 0%), and activity (standardized mean difference 0.78, 95% CI 0.22-1.35, I 2 = 0%). Meta-analyses found no significant results for the effects of breathing exercises on lung function. For the remaining interventions (ie, aerobic and postural exercises) and the addition of electrical stimulation, meta-analyses could not be performed. This systematic review reports 5 possible interventions used to improve respiratory function after stroke. Respiratory muscle training proved to be effective for improving inspiratory and expiratory strength, lung function, and dyspnea, and benefits were carried over to activity. However, there is still no evidence to accept or

  7. Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.

    Science.gov (United States)

    Chang, F C

    1992-02-07

    The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during

  8. Resting EEG deficits in accused murderers with schizophrenia.

    Science.gov (United States)

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong; Li, Liejia

    2011-10-31

    Empirical evidence continues to suggest a biologically distinct violent subtype of schizophrenia. The present study examined whether murderers with schizophrenia would demonstrate resting EEG deficits distinguishing them from both non-violent schizophrenia patients and murderers without schizophrenia. Resting EEG data were collected from five diagnostic groups (normal controls, non-murderers with schizophrenia, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia) at a brain hospital in Nanjing, China. Murderers with schizophrenia were characterized by increased left-hemispheric fast-wave EEG activity relative to non-violent schizophrenia patients, while non-violent schizophrenia patients instead demonstrated increased diffuse slow-wave activity compared to all other groups. Results are discussed within the framework of a proposed left-hemispheric over-processing hypothesis specific to violent individuals with schizophrenia, involving left hemispheric hyperarousal deficits, which may lead to a homicidally violent schizophrenia outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  10. [Respiratory treatments in neuromuscular disease].

    Science.gov (United States)

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  11. Should the pulmonary scintigraphy of pre-surgery examination of bronchial carcinomas be made at rest or under effort?

    International Nuclear Information System (INIS)

    David, N.; Olivier, P.; Arsena, T.; Quiri, N.; Hassan, N.; Haouzi, P.; Borelly, J.; Marie, P.Y.; Karcher, G.; Bertrand, A.

    1997-01-01

    One of the key elements in deciding whether a patient, bearing a bronchial carcinoma, should be subject to a surgery is the predicted value of the post-surgery maximal exhaled volume per second (MEVS), usually determined by means of an at-rest pulmonary perfusion scintigraphy. At the same time, this parameter remains rather badly correlated to mortality and peri-surgical morbidity. The goal of this study was to determine whether under-effort pulmonary perfusion scintigraphy, i.e. in peri-surgical conditions gives different results in this case. Twenty patients bearing bronchial carcinoma have benefited by a pulmonary scintigraphy, successively, in the end of an exercise on ergo-metric bicycle and at rest. Two mCi of Tc-labelled macro-aggregate albumin were injected after effort, then 10 mCi one hour later, at rest. The homo-lateral lung perfusion to tumor, expresses in % of total pulmonary perfusion (% TP), was reduced at rest (-8 ± 6%) and at effort (-10 ± 8%), in comparison with the normal values. On the analysis of ensemble of population (43 ± 7% vs 41 ± 9%, NS) the % TP did not changed significantly between the at-rest and under-effort acquisitions. At the same time, 4 patients presented important variation, amounting up to 20% of total pulmonary perfusion: the % TP increased in 2 cases and decreased in the other 2 cases. In conclusion, in the patients bearing bronchial carcinoma, the relative perfusion of tumoral lung varies under effort in a non-negligible number of cases (4/20). Additional studies are necessary to establish the value of under-effort pulmonary scintigraphy, in the evaluation of the post-surgery respiratory functional capacity

  12. AgNOR Count in Resting Cells (Resting NOR Is a New Prognostic Marker in Invasive Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Mitsuro Tomobe

    2001-01-01

    Full Text Available Purpose: We have previously demonstrated that the AgNOR count in proliferating cells is a predictor of tumor recurrence in superficial bladder tumor (J. Urol. 162 (1999, 63–68. In the present study, we evaluate the type of AgNOR associated with cell cycles as a prognostic factor in invasive bladder tumor using a double staining technique employing both AgNOR and MIB-1 labelling. Materials and methods: Forty-four paraffin sections of invasive bladder tumors were stained simultaneously with AgNOR and MIB-1. The number of AgNORs in proliferating (MIB-1 positive or resting (MIB-1 negative cells were counted from a total of 100 nuclei. Correlations between MIB-1 associated AgNOR count and clinicopathological parameters were statistically analyzed. Results: The AgNOR count in proliferating cells (proliferating NOR was significantly higher than that in resting cells (resting NOR (p < 0.01. The resting NOR in tumors with distant metastases was significantly higher than that in tumors without metastases (p < 0.05. Patients with a low resting NOR tumor had a better prognosis than those with a high resting NOR tumor, whereas the proliferating NOR was not associated with survival. Survival analysis revealed that the resting NOR was the most powerful prognostic marker in patients with invasive bladder tumor (p < 0.05. Conclusions: Resting NOR had a predictive value in the prognosis of patients with invasive bladder tumor. Keywords: Transitional cell carcinoma, invasive, resting cell, AgNORs, MIB-1

  13. Selection and spatial Arrangement of rest sites within Northern tamandua (Tamandua mexicana) home ranges

    NARCIS (Netherlands)

    Brown, D.D.; Montgomery, R.A.; Millspaugh, J.J.; Jansen, P.A.; Garzon-Lopez, C.X.; Kays, R.

    2014-01-01

    The distribution of suitable rest sites is considered to be a key determinant of spatial patterns in animal activity. However, it is not immediately evident which landscape features satisfy rest site requirements or how these sites are configured within the home range. We used Global Positioning

  14. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  15. Respiratory effects of borax dust.

    Science.gov (United States)

    Garabrant, D H; Bernstein, L; Peters, J M; Smith, T J; Wright, W E

    1985-12-01

    The relation of respiratory symptoms, pulmonary function, and abnormalities of chest radiographs to estimated exposures of borax dust has been investigated in a cross sectional study of 629 actively employed borax workers. Ninety three per cent of the eligible workers participated in the study and exposures ranged from 1.1 mg/m3 to 14.6 mg/m3. Symptoms of acute respiratory irritation such as dryness of the mouth, nose, or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath, and chest tightness were related to exposures of 4.0 mg/m3 or more, and were infrequent at exposures of 1.1 mg/m3. Symptoms of persistent respiratory irritation meeting the definition of chronic simple bronchitis were related to exposure among non-smokers. Decrements in the FEV1 as a percentage of predicted were seen among smokers who had heavy cumulative borax exposures (greater than or equal to 80 mg/m3 years) but were not seen among less exposed smokers or among non-smokers. Radiographic abnormalities were uncommon and were not related to dust exposure. Borax dust appears to act as a simple respiratory irritant and perhaps causes small changes in the FEV1 among smokers who are heavily exposed.

  16. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  17. A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.

    Science.gov (United States)

    Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian

    2016-09-01

    Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Acute exposure to realistic acid fog: effects on respiratory function and airway responsiveness in asthmatics.

    OpenAIRE

    Leduc, Dimitri; Fally, Sophie; De Vuyst, Paul; Wollast, Roland; Yernault, Jean Claude

    1995-01-01

    Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fog...

  19. Respiratory pattern changes during costovertebral joint movement.

    Science.gov (United States)

    Shannon, R

    1980-05-01

    Experiments were conducted to determine if costovertebral joint manipulation (CVJM) could influence the respiratory pattern. Phrenic efferent activity (PA) was monitored in dogs that were anesthetized with Dial-urethane, vagotomized, paralyzed, and artificially ventilated. Ribs 6-10 (bilaterally) were cut and separated from ribs 5-11. Branches of thoracic nerves 5-11 were cut, leaving only the joint nerve supply intact. Manual joint movement in an inspiratory or expiratory direction had an inhibitory effect on PA. Sustained displacement of the ribs could inhibit PA for a duration equal to numerous respiratory cycles. CVJM in synchrony with PA resulted in an increased respiratory rate. The inspiratory inhibitory effect of joint receptor stimulation was elicited with manual chest compression in vagotomized spontaneously breathing dogs, but not with artificial lung inflation or deflation. It is concluded that the effect of CVJM on the respiratory pattern is due to stimulation of joint mechanoreceptors, and that they exert their influence in part via the medullary-pontine rhythm generator.

  20. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    NARCIS (Netherlands)

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  1. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  2. Comparison of the in vitro activities of several new fluoroquinolones against respiratory pathogens and their abilities to select fluoroquinolone resistance.

    Science.gov (United States)

    Boswell, F J; Andrews, J M; Jevons, G; Wise, R

    2002-10-01

    In this study the in vitro activities and pharmacodynamic properties of moxifloxacin, levofloxacin, gatifloxacin and gemifloxacin were compared on recently isolated respiratory pathogens and strains of Streptococcus pneumoniae with known mechanisms of fluoroquinolone resistance. In addition, the resistance selection frequencies of moxifloxacin and levofloxacin on three recently isolated respiratory pathogens and four strains of S. pneumoniae with known mechanisms of fluoroquinolone resistance were investigated. The four fluoroquinolones had similar activities against both Moraxella catarrhalis (MIC(90)s 0.015-0.06 mg/L) and Haemophilus influenzae (MIC(90)s 0.008-0.03 mg/L). More marked differences in activity were noted with S. pneumoniae, with MIC(90)s of 0.25, 1, 0.5 and 0.03 mg/L for moxifloxacin, levofloxacin, gatifloxacin and gemifloxacin, respectively. With the S. pneumoniae strains, the four fluoroquinolones exhibited similar concentration-dependent time-kill kinetics. The resistance selection frequencies of levofloxacin were higher than those of moxifloxacin at concentrations equivalent to those at the end of the dosing interval. Therefore moxifloxacin may have less of an impact on the development of resistance than levofloxacin.

  3. Vestibular brain changes within 70 days of head down bed rest.

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2018-03-12

    Head-down-tilt bed rest (HDBR) is frequently utilized as a spaceflight analog research environment to study the effects of axial body unloading and fluid shifts that are associated with spaceflight in the absence of gravitational modifications. HDBR has been shown to result in balance changes, presumably due to sensory reweighting and adaptation processes. Here, we examined whether HDBR results in changes in the neural correlates of vestibular processing. Thirteen men participated in a 70-day HDBR intervention; we measured balance, functional mobility, and functional brain activity in response to vestibular stimulation at 7 time points before, during, and after HDBR. Vestibular stimulation was administered by means of skull taps, resulting in activation of the vestibular cortex and deactivation of the cerebellar, motor, and somatosensory cortices. Activation in the bilateral insular cortex, part of the vestibular network, gradually increased across the course of HDBR, suggesting an upregulation of vestibular inputs in response to the reduced somatosensory inputs experienced during bed rest. Furthermore, greater increase of activation in multiple frontal, parietal, and occipital regions in response to vestibular stimulation during HDBR was associated with greater decrements in balance and mobility from before to after HDBR, suggesting reduced neural efficiency. These findings shed light on neuroplastic changes occurring with conditions of altered sensory inputs, and reveal the potential for central vestibular-somatosensory convergence and reweighting with bed rest. © 2018 Wiley Periodicals, Inc.

  4. Respiratory Home Health Care

    Science.gov (United States)

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  5. Circulating androgens correlate with resting-state MRI in transgender men.

    Science.gov (United States)

    Mueller, Sven C; Wierckx, Katrien; Jackson, Kathryn; T'Sjoen, Guy

    2016-11-01

    Despite mounting evidence regarding the underlying neurobiology in transgender persons, information regarding resting-state activity, particularly after hormonal treatment, is lacking. The present study examined differences between transgender persons on long-term cross-sex hormone therapy and comparisons on two measures of local functional connectivity, intensity of spontaneous resting-state activity (low frequency fluctuations, LFF) and local synchronization of specific brain areas (regional homogeneity, ReHo). Nineteen transgender women (TW, male-to-female), 19 transgender men (TM, female-to-male), 21 non-transgender men (NTM) and 20 non-transgender women (NTW) underwent a resting-state MRI scan. The results showed differences between transgender persons and non-transgender comparisons on both LFF and ReHo measures in the frontal cortex, medial temporal lobe, and cerebellum. More interestingly, circulating androgens correlated for TM in the cerebellum and regions of the frontal cortex, an effect that was associated with treatment duration in the cerebellum. By comparison, no associations were found for TW with estrogens. These data provide first evidence for a potential masculinization of local functional connectivity in hormonally-treated transgender men. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    Science.gov (United States)

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  7. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  8. Effect of ultraviolet exposure on mitochondrial respiratory system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K [Kurume Univ., Fukuoka (Japan). School of Medicine

    1975-09-01

    To find the photodynamic effect of ultraviolet light on the mitochondrial respiratory chain, mitochondria were obtained from rat livers, and the suspension was exposed to an extensive ultraviolet light. The oxygen consumption was measured polarographically with a Clark oxygen electrode. The effect of ultraviolet exposure on the five states of respiratory control (Chance and Williams), the P/O ratio, and the respiratory control index in mitochondria was discussed. The ultraviolet light with a dose of 9.6 x 10/sup 6/ erg/cm/sup 2/ caused the oxidative phosphorylation in mitochondria to uncouple. The 2nd phosphorylation site of the respiratory chain was susceptible to ultraviolet exposure. The stimulation of latent ATPase activity in mitochondria following exposure was observed by increasing exposure of ultraviolet light. However, DNP-stimulated ATPase was found to be stable in activity. The uncoupling of the respiratory chain by ultraviolet exposure was not detected if the mitochondrial suspension was preincubated with bovine serum albumin before exposure. The changes in light absorption of the mitochondrial suspension were followed at 520 nm after exposure. A close correlation was found between the ultraviolet exposure and swelling in mitochondria. But, the reversing contraction was observed by adding ATP to the swelled mitochondria. The peroxide compound was formed in mitochondria irradiated with ultraviolet light. The amount of compounds formed was dependent on the radiant energy of ultraviolet light. The possible mechanisms involved in the photodynamic effect of ultraviolet light to the mitochondrial respiration system were discussed.

  9. APOE-ε4 Allele Altered the Rest-Stimulus Interactions in Healthy Middle-Aged Adults.

    Directory of Open Access Journals (Sweden)

    Feng-Xian Yan

    Full Text Available The apolipoprotein E-ε4 allele is a well-known genetic risk factor for late-onset Alzheimer's disease, which also impacts the cognitive functions and brain network connectivity in healthy middle-aged adults without dementia. Previous studies mainly focused on the effects of apolipoprotein E-ε4 allele on single index using task or resting-state fMRI. However, how these evoked and spontaneous BOLD indices interact with each other remains largely unknown. Therefore, we evaluated the 'rest-stimulus interaction' between working-memory activation and resting-state connectivity in middle-aged apolipoprotein E-ε4 carriers (n=9 and non-carriers (n=8. Four n-back task scans (n = 0, 1, 2, 3 and one resting-state scan were acquired at a 3T clinical MRI scanner. The working-memory beta maps of low-, moderate-, and high-memory loads and resting-state connectivity maps of default mode, executive control, and hippocampal networks were derived and compared between groups. Apolipoprotein E-ε4 carriers presented declined working-memory activation in the high-memory load across whole brain regions and reduced hippocampal connectivity compared with non-carriers. In addition, disrupted rest-stimulus interactions were found in the right anterior insula and bilateral parahippocampal regions for middle-aged adults with apolipoprotein E-ε4 allele. The rest-stimulus interaction improved the detectability of network integrity changes in apolipoprotein E-ε4 carriers, demonstrating the disrupted intrinsic connectivity within the executive-functional regions and the modulated memory-encoding capability within hippocampus-related regions.

  10. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    Science.gov (United States)

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  11. Resting-state fMRI study of patients with fragile X syndrome

    Science.gov (United States)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pright inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  12. Changes in community structure of resting state functional connectivity in unipolar depression.

    Directory of Open Access Journals (Sweden)

    Anton Lord

    Full Text Available Major depression is a prevalent disorder that imposes a significant burden on society, yet objective laboratory-style tests to assist in diagnosis are lacking. We employed network-based analyses of "resting state" functional neuroimaging data to ascertain group differences in the endogenous cortical activity between healthy and depressed subjects.We additionally sought to use machine learning techniques to explore the ability of these network-based measures of resting state activity to provide diagnostic information for depression. Resting state fMRI data were acquired from twenty two depressed outpatients and twenty two healthy subjects matched for age and gender. These data were anatomically parcellated and functional connectivity matrices were then derived using the linear correlations between the BOLD signal fluctuations of all pairs of cortical and subcortical regions.We characterised the hierarchical organization of these matrices using network-based matrics, with an emphasis on their mid-scale "modularity" arrangement. Whilst whole brain measures of organization did not differ between groups, a significant rearrangement of their community structure was observed. Furthermore we were able to classify individuals with a high level of accuracy using a support vector machine, primarily through the use of a modularity-based metric known as the participation index.In conclusion, the application of machine learning techniques to features of resting state fMRI network activity shows promising potential to assist in the diagnosis of major depression, now suggesting the need for validation in independent data sets.

  13. Respiratory muscle stretch gymnastics in patients with post coronary artery bypass grafting pain: impact on respiratory muscle function, activity, mood and exercise capacity.

    Science.gov (United States)

    Aida, Nobuko; Shibuya, Masako; Yoshino, Katsuki; Komoda, Masaji; Inoue, Tomoko

    2002-12-01

    A new rehabilitation (New-RH) program including respiratory muscle stretch gymnastics (RMSG) was developed to alleviate post-coronary artery bypass grafting pain (PCP). Effects on respiratory muscle function, pain, activities of daily living (ADL), mood and exercise capacity were investigated. Subjects were 16 consecutive patients undergoing median full sternotomy coronary artery bypass grafting (CABG), and were randomly divided into equal New-RH (S-group) and conventional therapy (C-group) groups. Rib cage dominant breathing was observed postoperatively in both groups. With preoperative tan deltaVrc/deltaVab, increases at 1-week postoperatively and decreases at discharge for S-group tended to exceed those of C-group (p > .05). Decreased maximum inspiratory and expiratory pressure status for functional residual capacity and percent forced expiratory volume in one second at discharge again only tended to be smaller for S-group (p > .05). S-group displayed significantly reduced pain around both scapulas at discharge (p = .049), and increased mean overall ADL and profile of mood states (POMS)/Vigor scores (p = .031 and p = .018, respectively). POMS/Tension-Anxiety scores at discharge for S-group were significantly smaller than those preoperatively (p = .025), and S-group displayed significantly increased distance walked over 6-minutes at discharge than C-group (p = .029). New-RH improves patient participation in exercise therapy and increases exercise capacity by reducing PCP, relieving anxiety and tension, and improving ADL.

  14. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Fu-Tai Wang

    2015-07-01

    Full Text Available Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD can decompose a signal into several intrinsic mode functions (IMFs that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  15. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S; Bouma, A; Sergeant, JA; Scherder, EJA; Bouma, J.M.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  16. DNA repair capacity in the rat respiratory tract

    International Nuclear Information System (INIS)

    Bond, J.A.; Gubin, J.M.; Johnson, N.F.

    1988-01-01

    A product of alkylating agents and DNA, O 6 -methylguanine, can mispair with thymine, resulting in initiation of a carcinogenic tissue response. O 6 -alkylguanine-DNA alkyltransferase (AGT) is an acceptor protein responsible for repairing O 6 -methylguanine. The purpose of our experiments was to characterize AGT activity in vitro in tissue and cell extracts of the respiratory tract, a target tissue for inhaled alkylating agents. Removal of [ 3 H]Methyl from O 6 -methylguanine was measured by high-pressure liquid chromatography after incubation of tissue and cell extracts with the [ 3 H]DNA. With the exception of tracheal and bronchial extracts, all tissues and cells analyzed contained AGT activity, which increased in proportion to the amount of protein added to reaction flasks. AGT activity in tracheal and bronchial extracts was only detected at the highest protein concentration used (1.5 mg protein/mL) and ranged from 10-15 fmole/mg protein. AGT activity in the respiratory tract was highest in the lung and a region of the nasal tissue (i.e., ethmoturbinates) and ranged from 45-75 fmole/mg protein. These data suggest that methylated DNA in specific regions of the rat respiratory tract should be readily repaired, albeit to different extents. (author)

  17. Emerging indications for extracorporeal membrane oxygenation in adults with respiratory failure.

    Science.gov (United States)

    Abrams, Darryl; Brodie, Daniel

    2013-08-01

    Recent advances in technology have spurred the increasing use of extracorporeal membrane oxygenation (ECMO) in patients with severe hypoxemic respiratory failure. However, this accounts for only a small percentage of patients with respiratory failure. We envision the application of ECMO in many other forms of respiratory failure in the coming years. Patients with less severe forms of acute respiratory distress syndrome, for instance, may benefit from enhanced lung-protective ventilation with the very low tidal volumes made possible by direct carbon dioxide removal from the blood. For those in whom hypercapnia predominates, extracorporeal support will allow for the elimination of invasive mechanical ventilation in some cases. The potential benefits of ECMO may be further enhanced by improved techniques, which facilitate active mobilization. Although ECMO for these and other expanded applications is under active investigation, it has yet to be proven beneficial in these settings in rigorous controlled trials. Ultimately, with upcoming and future technological advances, there is the promise of true destination therapy, which could lead to a major paradigm shift in the management of respiratory failure.

  18. Adult venovenous extracorporeal membrane oxygenation for severe respiratory failure: Current status and future perspectives.

    Science.gov (United States)

    Sen, Ayan; Callisen, Hannelisa E; Alwardt, Cory M; Larson, Joel S; Lowell, Amelia A; Libricz, Stacy L; Tarwade, Pritee; Patel, Bhavesh M; Ramakrishna, Harish

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) for severe acute respiratory failure was proposed more than 40 years ago. Despite the publication of the ARDSNet study and adoption of lung protective ventilation, the mortality for acute respiratory failure due to acute respiratory distress syndrome has continued to remain high. This technology has evolved over the past couple of decades and has been noted to be safe and successful, especially during the worldwide H1N1 influenza pandemic with good survival rates. The primary indications for ECMO in acute respiratory failure include severe refractory hypoxemic and hypercarbic respiratory failure in spite of maximum lung protective ventilatory support. Various triage criteria have been described and published. Contraindications exist when application of ECMO may be futile or technically impossible. Knowledge and appreciation of the circuit, cannulae, and the physiology of gas exchange with ECMO are necessary to ensure lung rest, efficiency of oxygenation, and ventilation as well as troubleshooting problems. Anticoagulation is a major concern with ECMO, and the evidence is evolving with respect to diagnostic testing and use of anticoagulants. Clinical management of the patient includes comprehensive critical care addressing sedation and neurologic issues, ensuring lung recruitment, diuresis, early enteral nutrition, treatment and surveillance of infections, and multisystem organ support. Newer technology that delinks oxygenation and ventilation by extracorporeal carbon dioxide removal may lead to ultra-lung protective ventilation, avoidance of endotracheal intubation in some situations, and ambulatory therapies as a bridge to lung transplantation. Risks, complications, and long-term outcomes and resources need to be considered and weighed in before widespread application. Ethical challenges are a reality and a multidisciplinary approach that should be adopted for every case in consideration.

  19. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    Science.gov (United States)

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to

  20. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    International Nuclear Information System (INIS)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions

  1. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    International Nuclear Information System (INIS)

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M.

    1989-01-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 ± 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 ± 11.3%, 46.5 ± 12.0%, and 37.2 ± 11.0%, respectively. Stroke volume also increased from rest (54.6 ± 17.0 ml/beat) to the point of the anaerobic threshold (65.0 ± 21.2 ml/beat) and then decreased at peak exercise (52.4 ± 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease

  2. Regional Cerebral Blood Flow during Wakeful Rest in Older Subjects with Mild to Severe Obstructive Sleep Apnea.

    Science.gov (United States)

    Baril, Andrée-Ann; Gagnon, Katia; Arbour, Caroline; Soucy, Jean-Paul; Montplaisir, Jacques; Gagnon, Jean-François; Gosselin, Nadia

    2015-09-01

    To evaluate changes in regional cerebral blood flow (rCBF) during wakeful rest in older subjects with mild to severe obstructive sleep apnea (OSA) and healthy controls, and to identify markers of OSA severity that predict altered rCBF. High-resolution (99m)Tc-HMPAO SPECT imaging during wakeful rest. Research sleep laboratory affiliated with a University hospital. Fifty untreated OSA patients aged between 55 and 85 years, divided into mild, moderate, and severe OSA, and 20 age-matched healthy controls. N/A. Using statistical parametric mapping, rCBF was compared between groups and correlated with clinical, respiratory, and sleep variables. Whereas no rCBF change was observed in mild and moderate groups, participants with severe OSA had reduced rCBF compared to controls in the left parietal lobules, left precentral gyrus, bilateral postcentral gyri, and right precuneus. Reduced rCBF in these regions and in areas of the bilateral frontal and left temporal cortex was associated with more hypopneas, snoring, hypoxemia, and sleepiness. Higher apnea, microarousal, and body mass indexes were correlated to increased rCBF in the basal ganglia, insula, and limbic system. While older individuals with severe obstructive sleep apnea (OSA) had hypoperfusion in the sensorimotor and parietal areas, respiratory variables and subjective sleepiness were correlated with extended regions of hypoperfusion in the lateral cortex. Interestingly, OSA severity, sleep fragmentation, and obesity correlated with increased perfusion in subcortical and medial cortical regions. Anomalies with such a distribution could result in cognitive deficits and reflect impaired vascular regulation, altered neuronal integrity, and/or undergoing neurodegenerative processes. © 2015 Associated Professional Sleep Societies, LLC.

  3. Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children

    Science.gov (United States)

    Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

    2011-01-01

    A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…

  4. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI

    Science.gov (United States)

    Williams, Jordan J.; Rouse, Adam G.; Thongpang, Sanitta; Williams, Justin C.; Moran, Daniel W.

    2013-08-01

    Objective. Recent experiments have shown that electrocorticography (ECoG) can provide robust control signals for a brain-computer interface (BCI). Strategies that attempt to adapt a BCI control algorithm by learning from past trials often assume that the subject is attending to each training trial. Likewise, automatic disabling of movement control would be desirable during resting periods when random brain fluctuations might cause unintended movements of a device. To this end, our goal was to identify ECoG differences that arise between periods of active BCI use and rest. Approach. We examined spectral differences in multi-channel, epidural micro-ECoG signals recorded from non-human primates when rest periods were interleaved between blocks of an active BCI control task. Main Results. Post-hoc analyses demonstrated that these states can be decoded accurately on both a trial-by-trial and real-time basis, and this discriminability remains robust over a period of weeks. In addition, high gamma frequencies showed greater modulation with desired movement direction, while lower frequency components demonstrated greater amplitude differences between task and rest periods, suggesting possible specialized BCI roles for these frequencies. Significance. The results presented here provide valuable insight into the neurophysiology of BCI control as well as important considerations toward the design of an asynchronous BCI system.

  5. Developing a multi-component immune model for evaluating the risk of respiratory illness in athletes.

    Science.gov (United States)

    Gleeson, Maree; Pyne, David B; Elkington, Lisa J; Hall, Sharron T; Attia, John R; Oldmeadow, Christopher; Wood, Lisa G; Callister, Robin

    2017-01-01

    Clinical and laboratory identification of the underlying risk of respiratory illness in athletes has proved problematic. The aim of this study was to determine whether clinical data, combined with immune responses to standardised exercise protocols and genetic cytokine polymorphism status, could identify the risk of respiratory illness (symptoms) in a cohort of highly-trained athletes. Male endurance athletes (n=16; VO2max 66.5 ± 5.1 mL.kg-1.min-1) underwent a clinical evaluation of known risk factors by a physician and comprehensive laboratory analysis of immune responses both at rest and after two cycling ergometer tests: 60 min at 65% VO2max (LONG); and 6 x 3 min intervals at 90% VO2max (INTENSE). Blood tests were performed to determine Epstein Barr virus (EBV) status and DNA was genotyped for a panel of cytokine gene polymorphisms. Saliva was collected for measurement of IgA and detection of EBV DNA. Athletes were then followed for 9 months for self-reported episodes of respiratory illness, with confirmation of the underlying cause by a sports physician. There were no associations with risk of respiratory illness identified for any parameter assessed in the clinical evaluations. The laboratory parameters associated with an increased risk of respiratory illnesses in highly-trained athletes were cytokine gene polymorphisms for the high expression of IL-6 and IFN-ɣ; expression of EBV-DNA in saliva; and low levels of salivary IgA concentration. A genetic risk score was developed for the cumulative number of minor alleles for the cytokines evaluated. Athletes prone to recurrent respiratory illness were more likely to have immune disturbances that allow viral reactivation, and a genetic predisposition to pro-inflammatory cytokine responses to intense exercise. Copyright © 2016 International Society of Exercise and Immunology. All rights reserved.

  6. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    International Nuclear Information System (INIS)

    Cicala, Claudia; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-01-01

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs

  7. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  8. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  9. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  10. Dynamic upper respiratory abnormalities in Thoroughbred racehorses in South Africa

    Directory of Open Access Journals (Sweden)

    Javier E. Mirazo

    2014-11-01

    Full Text Available Upper airway endoscopy at rest has been the diagnostic method of choice for equine upper respiratory tract (URT conditions. Development of high-speed treadmill endoscopy improved the sensitivity of URT endoscopy by allowing observation of the horse’s nasopharynx and larynx during exercise. However, treadmill exercise may not always accurately represent the horse’s normal exercise as track surface, rider, tack and environmental variables are altered. Recently, the development of dynamic overground endoscopy (DOE has addressed some of these shortcomings. A retrospective study was undertaken to describe the URT abnormalities detected during DOE in racehorses presenting with poor performance and/or abnormal respiratory noise. Patient records of Thoroughbred racehorses undergoing DOE from November 2011 to August 2012 were reviewed. Data collected included signalment, primary complaint, distance exercised, maximum speed and dynamic airway abnormalities detected. Fifty-two horses underwent DOE for investigation of poor performance and/or abnormal respiratory noise. The main abnormalities detected included axial deviation of the aryepiglottic folds (40%, vocal cord collapse (35%, abnormal arytenoid function (33% and dorsal displacement of the soft palate (25%. A total of 40 horses were diagnosed with one or more abnormalities of the URT (77%. Fifteen horses (29% had a single abnormality and 25 horses (48% had multiple abnormalities. This study showed that DOE is a useful technique for investigating dynamic disorders of the URT in racehorses in South Africa. The total number and type of dynamic pathological conditions were comparable with those identified in similar populations in other geographical locations.

  11. Model-based respiratory motion compensation for emission tomography image reconstruction

    International Nuclear Information System (INIS)

    Reyes, M; Malandain, G; Koulibaly, P M; Gonzalez-Ballester, M A; Darcourt, J

    2007-01-01

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data

  12. Pro REST API development with nodejs

    CERN Document Server

    Doglio, Fernando

    2015-01-01

    Pro REST API Development with Node.js is your guide to managing and understanding the full capabilities of successful REST development. API design is a hot topic in the programming world, but not many resources exist for developers to really understand how you can leverage the advantages. This book will provide a brief background on REST and the tools it provides (well known and not so well known). Understand how there is more to REST than just JSON and URLs. You will then cover and compare the maintained modules currently available in the npm community, including Express, Restify, Vatican,

  13. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  14. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  15. Respiratory clearance of 99mTc-DTPA and pulmonary involvement in sarcoidosis

    International Nuclear Information System (INIS)

    Dusser, D.J.; Collignon, M.A.; Stanislas-Leguern, G.; Barritault, L.G.; Chretien, J.; Huchon, G.J.

    1986-01-01

    To investigate the relationships between the respiratory epithelial clearance of micronic aerosolized /sup 99m/Tc-DTPA (RC-DTPA) and pulmonary function, serum angiotensin-converting enzyme (SACE), and lymphocytic alveolitis in patients with sarcoidosis, RC-DTPA was measured in 49 nonsmokers with pulmonary sarcoidosis and 38 normal nonsmokers. Pulmonary involvement was evaluated on chest roentgenograms (type O = normal, type I = hilar adenopathies, type II = hilar adenopathies associated with parenchymal shadows, type III = parenchymal shadows without adenopathy) and by pulmonary function tests. Serum angiotensin-converting enzyme was determined, and a bronchoalveolar lavage was performed for alveolar lymphocyte differential counting (Ly%). RC-DTPA was increased (greater than or equal to 1.96%/min) in 12 of 31 patients with type II or III involvement but was normal in all 18 patients with type O or I involvement (p = 0.002). Patients with increased RC-DTPA had low FVC, TLC, FEV1, and resting Pao2 (p less than 0.05); resting and exercise AaPo2 were increased (p less than 0.05), but RC-DTPA correlated negatively with FEV1 (p less than 0.01), Pao2 at rest (p less than 0.005), and DLCO (p less than 0.05) and positively with resting and exercise AaPO2 (p less than 0.01). In patients with increased RC-DTPA (42 +/- 17%), Ly% did not differ from Ly% in patients with normal RC-DTPA (34 +/- 16%). SACE was increased in patients with increased RC-DTPA (56 +/- 26 U/ml versus 38 +/- 16 U/ml; p = 0.007) and correlated positively with RC-DTPA (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Determinants of functional coupling between astrocytes and respiratory neurons in the pre-Bötzinger complex.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive.

  17. Slaughter value, meat quality, creatine kinase activity and cortisol levels in the blood serum of growing-finishing pigs slaughtered immediately after transport and after a rest period.

    Science.gov (United States)

    Smiecińska, K; Denaburski, J; Sobotka, W

    2011-01-01

    The experimental materials comprised 44 hybrid [female (Polish Large White x Polish Landrace) x male Duroc] growing-finishing pigs. The animals were randomly divided into two groups: 24 pigs were slaughtered immediately after transport and 20 pigs were slaughtered after a 24-hour rest period in the lairage. The meat content of pork carcasses, carcass dressing percentage, the proximate chemical composition, physicochemical and sensory properties of meat and shear force values were determined. Serum creatine kinase activity and cortisol levels were determined in blood samples collected before transport and during carcass bleeding. Pigs slaughtered immediately after transport, compared with those slaughtered after a 24-hour rest period, were characterized by a higher meat content of the carcass and a higher carcass dressing percentage. Pre-slaughter handling had no effect on pork quality. The incidence of normal-quality meat, partially PSE (pale, soft, exudative) meat and PSE meat was similar in both groups. Chemical analysis showed that the content of dry matter, total protein, fat and minerals in meat was comparable in both groups. As regards the functional properties of the pork, samples from the carcasses of pigs that had rested before slaughter had a higher contribution of the red color component. Meat from pigs slaughtered immediately after transport had more desirable sensory properties. Pre-slaughter resting had a significant effect on those analyzed physiological parameters which were found to be good indicators of pre-slaughter stress. Serum creatine kinase activity and cortisol levels were higher in blood samples collected after transport (during carcass bleeding) than in samples collected before transport, pointing to a strong stress response of animals to pre-slaughter treatment. The decrease in serum cortisol levels in blood samples collected during bleeding from the carcasses of pigs slaughtered after a 24-hour rest period, compared with samples

  18. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    Science.gov (United States)

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to

  19. Induced venous pooling and cardiorespiratory responses to exercise after bed rest

    Science.gov (United States)

    Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.

    1982-01-01

    Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.

  20. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Science.gov (United States)

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dosimetry of the respiratory tract

    International Nuclear Information System (INIS)

    Roy, M.

    1996-01-01

    A new dosimetric model of the human respiratory tract has been recently recommended by the International Commission on Radiological Protection, in ICRP Publication 66. This model was intended to update the previous lung model of the Task Group on Lung Dynamics that was adopted by ICRP in Publication 30. With this aim, extensive reviews of the available knowledge were made for anatomy and physiology of the respiratory tract and for deposition, clearance and biological effects of inhaled radionuclides. Finally, expanded dosimetry requirements resulted in a widely different approach from the former model. The main features of the new model are the followings: instead of calculating the average dose to the total mass of blood filled lung, the model takes account of differences in radiosensitivity of the venous respiratory tract tissues. It applies not only to adult workers but also to all members of the population, and provides reference values for children aged 3 months, 1, 5, 10, and 15 years, and adults. Deposition modelling of airborne gases and aerosols associates age dependent breathing rates, airway dimensions and physical activity, to particle size, density and chemical form of inhaled material. Clearance results of competition between mechanical transport clearance and absorption to blood. At each step of the calculation, adjustment guidance is provided to account for use of exact values of particle sizes and specific dissolution rates of inhaled material in order to calculate their own parameter of retention in the airways, and to assess accurately doses to the respiratory tract. Possible influence of smoking, of respiratory tract diseases and of eventual exposure to airborne toxicants is also addressed. (author)

  2. The effect of physical and psychosocial loads on the trapezius muscle activity during computer keying tasks and rest periods

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Søgaard, Karen; Christensen, Hanne

    2004-01-01

    hand keying task-interspaced with short (30 s) and long (4 min) breaks-in sessions with and without a combination of cognitive and emotional stressors. Adding psychosocial loads to the same physical work did not increase the activity of the trapezius muscle on either the keying or the control side......The overall aim was to investigate the effect of psychosocial loads on trapezius muscle activity during computer keying work and during short and long breaks. In 12 female subjects, surface electromyography (EMG) was recorded bilaterally from the upper trapezius muscle during a standardized one...... resting level. During both short and long breaks, exposure to psychosocial loads also did not increase the activity of the trapezius muscle either on the side of the keying or the control hand. Of note is that during long breaks the muscle activity of the keying side as well as that of the control side...

  3. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Lv Han

    2014-01-01

    Full Text Available Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI technique. The present study used unilateral PT patients (n=42 and age-, sex-, and education-matched normal control subjects (n=42 to investigate the changes in structural and amplitude of low-frequency (ALFF of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients.

  4. How motor, cognitive and musical expertise shapes the brain: Focus on fMRI and EEG resting-state functional connectivity

    DEFF Research Database (Denmark)

    Cantou, Pauline; Platel, Hervé; Desgranges, Béatrice

    2017-01-01

    about functional cerebral reorganization due to expertise at the whole-brain level and might facilitate comparison across studies. Resting-state functional MRI and EEG makes it possible to explore the functional traces of expertise in the brain by measuring temporal correlations of blood oxygen level......, to determine whether there is a domain-specific neural signature of expertise. After highlighting expertise-related changes within resting-state networks for each domain, we discuss their specificity to the trained activity and the methodological considerations concerning different conditions and analyses used......-dependent (BOLD) and spontaneous neural activity fluctuations at rest. Since these correlations are thought to reflect a prior history co-activation of brain regions, we propose reviewing studies that focused on the effects of expertise in the motor, cognitive and musical domains on brain plasticity at rest...

  5. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    Science.gov (United States)

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  6. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion

    Directory of Open Access Journals (Sweden)

    Apoorva Gaidhani

    2017-12-01

    Full Text Available Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.

  7. Implementing hospital-based surveillance for severe acute respiratory infections caused by influenza and other respiratory pathogens in New Zealand

    Directory of Open Access Journals (Sweden)

    Q Sue Huang

    2014-05-01

    Full Text Available Background: Recent experience with pandemic influenza A(H1N1pdm09 highlighted the importance of global surveillance for severe respiratory disease to support pandemic preparedness and seasonal influenza control. Improved surveillance in the southern hemisphere is needed to provide critical data on influenza epidemiology, disease burden, circulating strains and effectiveness of influenza prevention and control measures. Hospital-based surveillance for severe acute respiratory infection (SARI cases was established in New Zealand on 30 April 2012. The aims were to measure incidence, prevalence, risk factors, clinical spectrum and outcomes for SARI and associated influenza and other respiratory pathogen cases as well as to understand influenza contribution to patients not meeting SARI case definition. Methods/Design: All inpatients with suspected respiratory infections who were admitted overnight to the study hospitals were screened daily. If a patient met the World Health Organization’s SARI case definition, a respiratory specimen was tested for influenza and other respiratory pathogens. A case report form captured demographics, history of presenting illness, co-morbidities, disease course and outcome and risk factors. These data were supplemented from electronic clinical records and other linked data sources. Discussion: Hospital-based SARI surveillance has been implemented and is fully functioning in New Zealand. Active, prospective, continuous, hospital-based SARI surveillance is useful in supporting pandemic preparedness for emerging influenza A(H7N9 virus infections and seasonal influenza prevention and control.

  8. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels.

    Science.gov (United States)

    Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H

    2007-01-01

    Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.

  9. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  10. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang

    2016-01-01

    It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  11. Effect of rest-pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols.

    Science.gov (United States)

    Korak, J Adam; Paquette, Max R; Brooks, Justin; Fuller, Dana K; Coons, John M

    2017-09-01

    Rest-pause (4-s unloaded rest between repetitions) training effects on one repetition maximum (1 RM), lifting volume, and neural activation via electromyography (EMG) are currently vague in the literature and can benefit strength and conditioning professionals for resistance training programme design. Therefore, this study compared 1 RM, neural activation via (EMG), and volume differences between rest-pause vs. traditional resistance training. Trained males (N = 20) were randomly assigned to either a rest-pause or a traditional training group. Pre- and post-1 RM testing was recorded. Training sessions were completed twice a week for 4 weeks and consisted of four sets of bench press to volitional fatigue at 80% of pre-test 1 RM with a 2-min rest between sets. Total volume completed was recorded on each training day. Neural activation of the pectoralis major was measured on the first and last training days. A two-way repeated-measures ANOVA indicated both groups significantly increased their 1 RMs following the 4-week training protocol (p  .05). An independent samples t test indicated that total volume lifted was significantly higher for the rest-pause group (56,778 vs. 38,315 lbs; p < .05) throughout the protocol and independently during weeks 2, 3, and 4. While strength and neural activation changes did not differ between groups, both increased 1 RMs and the rest-pause group achieved greater increases in volume than the traditional group. If volume is the focus of training, the rest-pause method should be utilized.

  12. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  13. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  14. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter.

    Directory of Open Access Journals (Sweden)

    Sarah L Noton

    Full Text Available Respiratory syncytial virus (RSV is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1-25 of the trailer complement (TrC promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3' end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3' end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3' terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection.

  15. Correlation in stimulated respiratory neural noise

    Science.gov (United States)

    Hoop, Bernard; Burton, Melvin D.; Kazemi, Homayoun; Liebovitch, Larry S.

    1995-09-01

    Noise in spontaneous respiratory neural activity of the neonatal rat isolated brainstem-spinal cord preparation stimulated with acetylcholine (ACh) exhibits positive correlation. Neural activity from the C4 (phrenic) ventral spinal rootlet, integrated and corrected for slowly changing trend, is interpreted as a fractal record in time by rescaled range, relative dispersional, and power spectral analyses. The Hurst exponent H measured from time series of 64 consecutive signal levels recorded at 2 s intervals during perfusion of the preparation with artificial cerebrospinal fluid containing ACh at concentrations 62.5 to 1000 μM increases to a maximum of 0.875±0.087 (SD) at 250 μM ACh and decreases with higher ACh concentration. Corrections for bias in measurement of H were made using two different kinds of simulated fractional Gaussian noise. Within limits of experimental procedure and short data series, we conclude that in the presence of added ACh of concentration 250 to 500 μM, noise which occurs in spontaneous respiratory-related neural activity in the isolated brainstem-spinal cord preparation observed at uniform time intervals exhibits positive correlation.

  16. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst

    Directory of Open Access Journals (Sweden)

    Elaine Reina

    2013-10-01

    Full Text Available Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS. The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH assays. A standard luminol-dependent chemiluminescence (CL assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P=0.0081. However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P=0.985. P. major (−0.10±0.11, aucubin (0.06±0.16, baicalein (−0.10±0.11, and genistein (−0.18±0.07 all significantly (P<0.0001 inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to

  17. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  18. Low frequency fluctuations in resting-state functional magnetic resonance imaging and their applications

    International Nuclear Information System (INIS)

    Küblböck, M.

    2015-01-01

    Over the course of the last two decades, functional magnetic resonance imaging (fMRI) has emerged as a widely used, highly accepted and very popular method for the assessment of neuronal activity in the human brain. It is a completely non-invasive imaging technique with high temporal resolution, which relies on the measurement of local differences in magnetic susceptibility between oxygenated and deoxygenated blood. Therefore, fMRI can be regarded as an indirect measure of neuronal activity via measurement of localised changes in cerebral blood flow and cerebral oxygen consumption. Maps of neuronal activity are calculated from fMRI data acquired either in the presence of an explicit task (task-based fMRI) or in absence of a task (resting-state fMRI). While in task-based fMRI task-specific patterns of brain activity are subject to research, resting-state fMRI reveals fundamental networks of intrinsic brain activity. These networks are characterized by low-frequency oscillations in the power spectrum of resting-state fMRI data. In the present work, we first introduce the physical principles and the technical background that allow us to measure these changes in blood oxygenation, followed by an introduction to the blood oxygenation level dependent (BOLD) effect and to analysis methods for both task-based and resting-state fMRI data. We also analyse the temporal signal-to-noise ratio (tSNR) of a novel 2D-EPI sequence, which allows the experimenter to acquire several slices simultaneously in order to assess the optimal parameter settings for this sequence at 3T. We then proceed to investigate the temporal properties of measures for the amplitude of low-frequency oscillations in resting-state fMRI data, which are regarded as potential biomarkers for a wide range of mental diseases in various clinical studies and show the high stability and robustness of these data, which are important prerequisites for application as a biomarker as well as their dependency on head motion

  19. Variation of respiratory syncytial virus and the relation with meteorological factors in different winter seasons.

    NARCIS (Netherlands)

    Meerhoff, T.J.; Paget, W.J.; Kimpen, J.L.; Schellevis, F.

    2009-01-01

    Background: Respiratory syncytial virus (RSV) is the most important viral agent causing severe respiratory disease in infants and children. In temperate climates, RSV activity typically peaks during winter. We have described the seasonal variation in RSV activity and investigated which

  20. Gene editing as a promising approach for respiratory diseases.

    Science.gov (United States)

    Bai, Yichun; Liu, Yang; Su, Zhenlei; Ma, Yana; Ren, Chonghua; Zhao, Runzhen; Ji, Hong-Long

    2018-03-01

    Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.