WorldWideScience

Sample records for responses classical analysis

  1. A dose-response analysis for classical Kaposi's sarcoma management by radiotherapy

    International Nuclear Information System (INIS)

    Oysul, K.; Beyzadeoglu, M.; Surenkok, S.; Ozyigit, G.; Dirican, B.

    2008-01-01

    Objective was to evaluate the dose-response relationship in classical Kaposi's sarcoma CKS patients treated with external beam radiotherapy. Between 1993 and 2004, patients with CKS treated at the Department of Radiation Oncology, Gulhane Military Medical School, Ankara, Turkey were evaluated in this retrospective study. The median age at initial presentation was 60 years. First we analyzed the overall response rates for normalized total dose2Gy NTD2Gy of 20Gy. Secondly we searched for whether better response rates could be obtained with the NTD2Gy of >/=20Gy compared to the NTD2Gy of /20Gy and 64% and 24%for NDT2Gyof 20< Gy and these were statistically different p=0.001. Late side effects of radiation therapy were acceptable in all but 4 patients with fibrosis and edema. This retrospective analysis showed that radiotherapy schedules with an NDT2Gy of 20 Gy and above by using local irradiation fields are effective in terms of complete response rates in the management of CKS compared to NDT2Gy of < 20 Gy. (author)

  2. An Analysis of Cross Racial Identity Scale Scores Using Classical Test Theory and Rasch Item Response Models

    Science.gov (United States)

    Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie

    2013-01-01

    Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…

  3. Theoretical analysis and real time implementation of a classical controller with intelligent properties

    Directory of Open Access Journals (Sweden)

    Essam Hendawi

    2018-05-01

    Full Text Available This paper presents theoretical analysis and experimental implementation of a classical controller with intelligent properties. The controller has constant parameters, but it performs as an intelligent controller. The controller design mimics the fuzzy logic controller in a classical form and combines the advantages of classical controllers and properties of intelligent controllers. The designed controller parameters force the controlled variable to behave such as a first order system with a desired time constant. DC motor practical system is used to demonstrate the effectiveness of the presented controller. Root locus and frequency response using Bode diagram are used to help the design of the controller parameters. Simulation and experimental results verify the high performance of the presented controller. Keywords: Classical controller, DC motor, Root locus, Frequency response, Arduino microcontroller

  4. Classical and sequential limit analysis revisited

    Science.gov (United States)

    Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi

    2018-04-01

    Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.

  5. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  6. CLASSICAL AND NON-CLASSICAL PHILOSOPHICAL ANTHROPOLOGY: COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. A. Kozlova

    2018-01-01

    Full Text Available Introduction: The goals and values of human life, the search for the meaning of human existence contain the potential for a meaningful, progressive development of philosophical and anthropological ideas at any time in history. One of the tasks of philosophical anthropology is the formation of the image of man, the choice of ways to achieve the ideal, the methods of comprehension and resolution of universal problems. The increasing processes of differentiation in science led to the formation of different views on the nature of man, to the distinction between classical and non-classical philosophical anthropology. А comparative analysis of these trends is given in this article.Materials and methods: The dialectical method is preferred in the question of research methodology, the hermeneutic and phenomenological approaches are used.Results: The development of philosophical anthropology correlates with the challenges of modernity. By tracking the trends of human change, philosophical anthropology changes the approach to the consideration of its main subject of research. The whole array of disciplines that study man comes to new discoveries, new theories, and philosophical anthropology changes its view of the vision, challenging the principles of classical philosophical anthropology.Classical philosophical anthropology elevates the biological nature of man to a pedestal, non-classical philosophical anthropology actualizes questions of language, culture, thinking, understanding, actualizes the hermeneutic and phenomenological approaches. The desire to understand a person in classical philosophical anthropology is based on the desire to fully reveal the biological mechanisms in a person. The perspective of treating a person in nonclassical philosophical anthropology is polyformen: man as a text, as a dreaming self, as an eternal transition. Non-classical philosophical anthropology, goes from the idea of identity to the idea of variability, from

  7. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Cré peau, Emmanuelle; Sorine, Michel

    2012-01-01

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum

  8. Classical and multilinear harmonic analysis

    CERN Document Server

    Muscalu, Camil

    2013-01-01

    This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this vo...

  9. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  10. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  11. Extinction of Aversive Classically Conditioned Human Sexual Response

    NARCIS (Netherlands)

    Brom, M.; Laan, E.; Everaerd, W.; Spinhoven, P.; Both, S.

    INTRODUCTION: Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish

  12. Extinction of aversive classically conditioned human sexual response

    NARCIS (Netherlands)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie

    2015-01-01

    Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish during an

  13. Invitation to classical analysis

    CERN Document Server

    Duren, Peter

    2012-01-01

    This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differ

  14. A NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems

    International Nuclear Information System (INIS)

    Xu, J.; DeGrassi, G.; Chokshi, N.

    2004-01-01

    Under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with non-classical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were developed and analyzed by BNL for a suite of earthquakes. The BNL analysis was carried out by the Wilson-θ time domain integration method with the system-damping matrix computed using a synthesis formulation as presented in a companion paper [Nucl. Eng. Des. (2002)]. These benchmark problems were subsequently distributed to and analyzed by program participants applying their uniquely developed methods and computer programs. This paper is intended to offer a glimpse at the program, and provide a summary of major findings and principle conclusions with some representative results. The participant's analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving license

  15. A simple white noise analysis of neuronal light responses.

    Science.gov (United States)

    Chichilnisky, E J

    2001-05-01

    A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.

  16. Mathematical modeling improves EC50 estimations from classical dose-response curves.

    Science.gov (United States)

    Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar

    2015-03-01

    The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.

  17. The unfolded protein response has a protective role in yeast models of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Evandro A. De-Souza

    2014-01-01

    Full Text Available Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast, which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.

  18. Calculation of the spin-isospin response functions in an extended semi-classical theory

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-01-01

    We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data

  19. Citation classics in pediatrics: a bibliometric analysis.

    Science.gov (United States)

    Chhapola, Viswas; Tiwari, Soumya; Deepthi, Bobbity; Kanwal, Sandeep Kumar

    2018-03-06

    Citation analysis provides insights into the history and developmental trajectory of scientific fields. Our objective was to perform an analysis of citation classics in the journals of pediatric specialty and to examine their characteristics. Initially, all the journals listed under the category of pediatrics (n = 120) were identified using Journal Citation Reports. Web of science database was then searched (1950-2016) to select the top-100 cited articles in the above identified pediatric journals. The top-100 cited article were categorized according the study design, sub-specialty, country, institutional affiliation, and language. The top-100 articles were published in 18 different journals, with Pediatrics having the highest numbers (n = 40), followed by The Journal of Pediatrics (n = 17). The majority (n = 62) of classics were published after 1990. The most cited article had citation count of 3516 and the least cited had a citation count of 593. The USA (n = 71) was the most commonly represented country, and 60 institutions contributed to 100 articles. Fifteen authors contributed to more than one classic as first or second author. Observational study (n = 55) was the commonest study design across all decades, followed by reviews (n = 12), scale development studies (n = 11), and guidelines (n = 11). Among the pediatric sub-specialties, growth and development articles were highly cited (n = 24), followed by pediatric psychiatry and behavior (n = 21), endocrinology (n = 15), and neonatology (n = 12). The top-100 cited articles in pediatrics identify the impactful authors, journals, institutes, and countries. Observational study design was predominant-implying that inclusion among citation classics is not related to soundness of study design.

  20. Moderate Deviation Analysis for Classical Communication over Quantum Channels

    Science.gov (United States)

    Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco

    2017-11-01

    We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.

  1. Using Classical Test Theory and Item Response Theory to Evaluate the LSCI

    Science.gov (United States)

    Schlingman, Wayne M.; Prather, E. E.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Analyzing the data from the recent national study using the Light and Spectroscopy Concept Inventory (LSCI), this project uses both Classical Test Theory (CTT) and Item Response Theory (IRT) to investigate the LSCI itself in order to better understand what it is actually measuring. We use Classical Test Theory to form a framework of results that can be used to evaluate the effectiveness of individual questions at measuring differences in student understanding and provide further insight into the prior results presented from this data set. In the second phase of this research, we use Item Response Theory to form a theoretical model that generates parameters accounting for a student's ability, a question's difficulty, and estimate the level of guessing. The combined results from our investigations using both CTT and IRT are used to better understand the learning that is taking place in classrooms across the country. The analysis will also allow us to evaluate the effectiveness of individual questions and determine whether the item difficulties are appropriately matched to the abilities of the students in our data set. These results may require that some questions be revised, motivating the need for further development of the LSCI. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  2. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  3. On the Relationship between Classical Test Theory and Item Response Theory: From One to the Other and Back

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2016-01-01

    The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…

  4. A BENCHMARK PROGRAM FOR EVALUATION OF METHODS FOR COMPUTING SEISMIC RESPONSE OF COUPLED BUILDING-PIPING/EQUIPMENT WITH NON-CLASSICAL DAMPING

    International Nuclear Information System (INIS)

    Xu, J.; Degrassi, G.; Chokshi, N.

    2001-01-01

    Under the auspices of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with nonclassical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were analyzed for a suite of earthquakes by program participants applying their uniquely developed methods and computer programs. This paper presents the results of their analyses, and their comparison to the benchmark solutions generated by BNL using time domain direct integration methods. The participant's analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems

  5. Extinction of aversive classically conditioned human sexual response.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie

    2015-04-01

    Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish during an extinction phase. Possible resistance to extinction of aversive conditioned sexual responses may have important clinical implications. However, resistance to extinction of aversive conditioned human sexual response has not been studied using extensive extinction trials. This article aims to study resistance to extinction of aversive conditioned sexual responses in sexually functional men and women. A differential conditioning experiment was conducted, with two erotic pictures as conditioned stimulus (CSs) and a painful stimulus as unconditioned stimuli (USs). Only one CS (the CS+) was followed by the US during the acquisition phase. Conditioned responses were assessed during the extinction phase. Penile circumference and vaginal pulse amplitude were assessed, and ratings of affective value and subjective sexual arousal were obtained. Also, a stimulus response compatibility task was included to assess automatic approach and avoidance tendencies. Men and women rated the CS+ more negative as compared with the CS-. During the first trials of the extinction phase, vaginal pulse amplitude was lower in response to the CS+ than in response to the CS-, and on the first extinction trial women rated the CS+ as less sexually arousing. Intriguingly, men did not demonstrate attenuated genital and subjective sexual response. Aversive conditioning, by means of painful stimuli, only affects sexual responses in women, whereas it does not in men. Although conditioned sexual likes and dislikes are relatively persistent, conditioned affect eventually does extinguish. © 2014 International Society for Sexual Medicine.

  6. Research of Classical and Intelligent Information System Solutions for Criminal Intelligence Analysis

    OpenAIRE

    Šimović, Vladimir

    2001-01-01

    The objective of this study is to present research on classical and intelligent information system solutions used in criminal intelligence analysis in Croatian security system theory. The study analyses objective and classical methods of information science, including artificial intelligence and other scientific methods. The intelligence and classical software solutions researched, proposed, and presented in this study were used in developing the integrated information system for the Croatian...

  7. Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment

    NARCIS (Netherlands)

    Jabrayilov, Ruslan; Emons, Wilco H. M.; Sijtsma, Klaas

    2016-01-01

    Clinical psychologists are advised to assess clinical and statistical significance when assessing change in individual patients. Individual change assessment can be conducted using either the methodologies of classical test theory (CTT) or item response theory (IRT). Researchers have been optimistic

  8. Use of FTA® classic cards for epigenetic analysis of sperm DNA.

    Science.gov (United States)

    Serra, Olga; Frazzi, Raffaele; Perotti, Alessio; Barusi, Lorenzo; Buschini, Annamaria

    2018-02-01

    FTA® technologies provide the most reliable method for DNA extraction. Although FTA technologies have been widely used for genetic analysis, there is no literature on their use for epigenetic analysis yet. We present for the first time, a simple method for quantitative methylation assessment based on sperm cells stored on Whatman FTA classic cards. Specifically, elution of seminal DNA from FTA classic cards was successfully tested with an elution buffer and an incubation step in a thermocycler. The eluted DNA was bisulfite converted, amplified by PCR, and a region of interest was pyrosequenced.

  9. Laban Movement Analysis Approach to Classical Ballet Pedagogy

    Science.gov (United States)

    Whittier, Cadence

    2006-01-01

    As a Certified Laban Movement Analyst and a classically trained ballet dancer, I consistently weave the Laban Movement Analysis/Bartenieff Fundamentals (LMA/BF) theories and philosophies into the ballet class. This integration assists in: (1) Identifying the qualitative movement elements both in the art of ballet and in the students' dancing…

  10. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  11. Stimulus- and response-reinforcer contingencies in autoshaping, operant, classical, and omission training procedures in rats.

    Science.gov (United States)

    Atnip, G W

    1977-07-01

    Separate groups of rats received 500 trials of lever-press training under autoshaping (food delivery followed 10-second lever presentations, or occurred immediately following a response); operant conditioning (responding was necessary for food delivery); and classical conditioning (food followed lever presentations regardless of responding). Each group then received 500 trials on an omission procedure in which food was omitted on trials with a response. Another group received 1000 trials on the omission procedure, and a fifth group, random control, received 1000 uncorrelated presentations of lever and food. The autoshaping, operant, and classical groups reached high response levels by the end of initial training. Acquisition was fastest in the autoshaping group. Responding remained consistently low in the control group. The omission group responded at a level between the control group and the other three groups. During omission training, responding in these three groups declined to the omission-group level. During omission training, the rats continued contacting the lever frequently after lever pressing had declined. Response maintenance under omission training seems not to require topographic similarity between the response and reinforcer-elicited consummatory behaviors.

  12. A Review of Classical Methods of Item Analysis.

    Science.gov (United States)

    French, Christine L.

    Item analysis is a very important consideration in the test development process. It is a statistical procedure to analyze test items that combines methods used to evaluate the important characteristics of test items, such as difficulty, discrimination, and distractibility of the items in a test. This paper reviews some of the classical methods for…

  13. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  14. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  15. Mokken scale analysis : Between the Guttman scale and parametric item response theory

    NARCIS (Netherlands)

    van Schuur, Wijbrandt H.

    2003-01-01

    This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis)

  16. Design and analysis of experiments classical and regression approaches with SAS

    CERN Document Server

    Onyiah, Leonard C

    2008-01-01

    Introductory Statistical Inference and Regression Analysis Elementary Statistical Inference Regression Analysis Experiments, the Completely Randomized Design (CRD)-Classical and Regression Approaches Experiments Experiments to Compare Treatments Some Basic Ideas Requirements of a Good Experiment One-Way Experimental Layout or the CRD: Design and Analysis Analysis of Experimental Data (Fixed Effects Model) Expected Values for the Sums of Squares The Analysis of Variance (ANOVA) Table Follow-Up Analysis to Check fo

  17. Accuracy Combination Test of Classical and Modern Technical Analysis: A Case Study in Stock of PT Wijaya Karya Tbk

    Directory of Open Access Journals (Sweden)

    Agustini Hamid

    2016-05-01

    Full Text Available The research aimed to measure the accuracy and combination of Classic and Modern Technical Analysis. PT Wijaya Karya Tbk (WIKA’s stock in two periods is the sample of research. Technical analysis was used to predict stock prices by observing changes in historical share price. Practically, technical analysis is divided into Classic Technical and Modern. Research was conducted by library study and using a computer software. Microsft Excel was used for the simulation and Chart Nexus for analyzing Modern Technical Analysis. The research period started in January 1, 2013 until December 31, 2013 and January 1, 2014 until December 31, 2014. The Classic Technical Analysis used Support, Resistance, Trendline, and Flag Patern. Meanwhile for Modern Technical Analysis used Moving Average, Stochastic, Moving Average Convergence Divergence (MACD indicator. The Classical Technical Analysis gave less result than Modern Technical Analysis. The classical give 14 investment decisions in two periods. The average return of Classical Technical is 15,50%. Meanwhile the Modern Technical Analysis gave 18 investment decisions in two periods. The average return of Modern Technical is 18,14%. Combining Classic Technical Analysis and Modern Technical Analysis gave 20 investment decisions with the average rate of return 20,41%.

  18. Physiological responses of preterm newborn infants submitted to classical music therapy.

    Science.gov (United States)

    da Silva, Camila Mendes; Cação, Jessica Marcelle R; Silva, Karin Cristina dos S; Marques, Cassia Fernandes; Merey, Leila Simone F

    2013-01-01

    To evaluate the physiological effects of music therapy on hospitalized preterm newborns. A noncontrolled clinical trial including 12 newborn infants with gestational age classical music therapy twice a day (morning and afternoon) for three consecutive days. The variables: heart and respiratory rates, oxygen saturation, diastolic and systolic arterial pressures, and body temperature were analyzed before and immediately after each music therapy session. There was a decrease in the heart rate after the second session of music therapy (paired t-test; p=0.002), and an increase at the end of the third session (paired t-test; p=0.005). Respiratory rate decreased during the fourth and fifth sessions (paired t-test; p=0.01 and 0.03, respectively). Regarding oxygen saturation, there was an increase after the fifth session (p=0.008). Comparison of physiological parameters among sessions, for the six studied sessions, showed only that the gain in oxygen saturation during the fifth session was significantly higher than during the sixth one (Tukey's test after variance analysis; p=0.04). Music therapy may modify short-term physiological responses of hospitalized preterm newborn infants.

  19. Relationships among Classical Test Theory and Item Response Theory Frameworks via Factor Analytic Models

    Science.gov (United States)

    Kohli, Nidhi; Koran, Jennifer; Henn, Lisa

    2015-01-01

    There are well-defined theoretical differences between the classical test theory (CTT) and item response theory (IRT) frameworks. It is understood that in the CTT framework, person and item statistics are test- and sample-dependent. This is not the perception with IRT. For this reason, the IRT framework is considered to be theoretically superior…

  20. Excursions in classical analysis pathways to advanced problem solving and undergraduate research

    CERN Document Server

    Chen, Hongwei

    2010-01-01

    Excursions in Classical Analysis introduces undergraduate students to advanced problem solving and undergraduate research in two ways. Firstly, it provides a colourful tour of classical analysis which places a wide variety of problems in their historical context. Secondly, it helps students gain an understanding of mathematical discovery and proof. In demonstrating a variety of possible solutions to the same sample exercise, the reader will come to see how the connections between apparently inapplicable areas of mathematics can be exploited in problem-solving. This book will serve as excellent preparation for participation in mathematics competitions, as a valuable resource for undergraduate mathematics reading courses and seminars and as a supplement text in a course on analysis. It can also be used in independent study, since the chapters are free-standing.

  1. The classical Stefan problem basic concepts, modelling and analysis

    CERN Document Server

    Gupta, SC

    2003-01-01

    This volume emphasises studies related toclassical Stefan problems. The term "Stefan problem" isgenerally used for heat transfer problems with phase-changes suchas from the liquid to the solid. Stefan problems have somecharacteristics that are typical of them, but certain problemsarising in fields such as mathematical physics and engineeringalso exhibit characteristics similar to them. The term``classical" distinguishes the formulation of these problems fromtheir weak formulation, in which the solution need not possessclassical derivatives. Under suitable assumptions, a weak solutioncould be as good as a classical solution. In hyperbolic Stefanproblems, the characteristic features of Stefan problems arepresent but unlike in Stefan problems, discontinuous solutions areallowed because of the hyperbolic nature of the heat equation. Thenumerical solutions of inverse Stefan problems, and the analysis ofdirect Stefan problems are so integrated that it is difficult todiscuss one without referring to the other. So no...

  2. Combination of classical test theory (CTT) and item response theory (IRT) analysis to study the psychometric properties of the French version of the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF).

    Science.gov (United States)

    Bourion-Bédès, Stéphanie; Schwan, Raymund; Epstein, Jonathan; Laprevote, Vincent; Bédès, Alex; Bonnet, Jean-Louis; Baumann, Cédric

    2015-02-01

    The study aimed to examine the construct validity and reliability of the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) according to both classical test and item response theories. The psychometric properties of the French version of this instrument were investigated in a cross-sectional, multicenter study. A total of 124 outpatients with a substance dependence diagnosis participated in the study. Psychometric evaluation included descriptive analysis, internal consistency, test-retest reliability, and validity. The dimensionality of the instrument was explored using a combination of the classical test, confirmatory factor analysis (CFA), and an item response theory analysis, the Person Separation Index (PSI), in a complementary manner. The results of the Q-LES-Q-SF revealed that the questionnaire was easy to administer and the acceptability was good. The internal consistency and the test-retest reliability were 0.9 and 0.88, respectively. All items were significantly correlated with the total score and the SF-12 used in the study. The CFA with one factor model was good, and for the unidimensional construct, the PSI was found to be 0.902. The French version of the Q-LES-Q-SF yielded valid and reliable clinical assessments of the quality of life for future research and clinical practice involving French substance abusers. In response to recent questioning regarding the unidimensionality or bidimensionality of the instrument and according to the underlying theoretical unidimensional construct used for its development, this study suggests the Q-LES-Q-SF as a one-dimension questionnaire in French QoL studies.

  3. Classic conditioning of the ventilatory responses in rats.

    Science.gov (United States)

    Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J

    1997-10-01

    Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.

  4. The Segal chronogeometric redshift - a classical analysis

    International Nuclear Information System (INIS)

    Fairchild, E.E. Jr.; Washington Univ., St. Louis, Mo.

    1977-01-01

    An error is shown to exist in the Segal chronogeometric redshift theory. The redshift distance relation of z=tan 2 (d/2R) derived by Segal using quantum theory violates the classical correspondence limit. The corrected result derived using simple classical arguments is z=tan 2 (d/R). This result gives the same predictions for small redshift objects but differs for large redshift objects such as quasars. The difference is shown to be caused by inconsistencies in the quantum derivation. Correcting these makes the quantum result equal to the classical result as one would expect from the correspondence principle. The impact of the correction on the predictions of the theory is discussed. (orig.) [de

  5. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Kamper, Peter; Ludvigsen, Maja; Bendix, Knud

    2011-01-01

    Considerable effort has been spent identifying prognostic biomarkers in classic Hodgkin lymphoma (cHL). The aim of our study was to search for possible prognostic parameters in advanced-stage cHL using a proteomics-based strategy. A total of 14 cHL pretreatment tissue samples from younger, advanced......-stage patients were included. Patients were grouped according to treatment response. Proteins that were differentially expressed between the groups were analyzed using 2D-PAGE and identified by liquid chromatography mass spectrometry. Selected proteins were validated using Western blot analysis. One...

  6. On semi-classical questions related to signal analysis

    KAUST Repository

    Helffer, Bernard

    2011-12-01

    This study explores the reconstruction of a signal using spectral quantities associated with some self-adjoint realization of an h-dependent Schrödinger operator -h2(d2/dx2)-y(x), h>0, when the parameter h tends to 0. Theoretical results in semi-classical analysis are proved. Some numerical results are also presented. We first consider as a toy model the sech2 function. Then we study a real signal given by arterial blood pressure measurements. This approach seems to be very promising in signal analysis. Indeed it provides new spectral quantities that can give relevant information on some signals as it is the case for arterial blood pressure signal. © 2011 - IOS Press and the authors. All rights reserved.

  7. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  8. Analysis of obsidian from moho cay, belize: new evidence on classic maya trade routes.

    Science.gov (United States)

    Healy, P F; McKillop, H I; Walsh, B

    1984-07-27

    Trace element analysis of obsidian artifacts from Moho Cay, Belize, reveals that the obsidian derives primarily from the El Chayal outcrop in highland Guatemala and not from the Ixtepeque source. This is contrary to the widely accepted obsidian trade route model for Classic Maya civilization and suggests that Classic Maya obsidian trade was a more complex economic phenomenon than has been recognized.

  9. Overview of classical test theory and item response theory for the quantitative assessment of items in developing patient-reported outcomes measures.

    Science.gov (United States)

    Cappelleri, Joseph C; Jason Lundy, J; Hays, Ron D

    2014-05-01

    The US Food and Drug Administration's guidance for industry document on patient-reported outcomes (PRO) defines content validity as "the extent to which the instrument measures the concept of interest" (FDA, 2009, p. 12). According to Strauss and Smith (2009), construct validity "is now generally viewed as a unifying form of validity for psychological measurements, subsuming both content and criterion validity" (p. 7). Hence, both qualitative and quantitative information are essential in evaluating the validity of measures. We review classical test theory and item response theory (IRT) approaches to evaluating PRO measures, including frequency of responses to each category of the items in a multi-item scale, the distribution of scale scores, floor and ceiling effects, the relationship between item response options and the total score, and the extent to which hypothesized "difficulty" (severity) order of items is represented by observed responses. If a researcher has few qualitative data and wants to get preliminary information about the content validity of the instrument, then descriptive assessments using classical test theory should be the first step. As the sample size grows during subsequent stages of instrument development, confidence in the numerical estimates from Rasch and other IRT models (as well as those of classical test theory) would also grow. Classical test theory and IRT can be useful in providing a quantitative assessment of items and scales during the content-validity phase of PRO-measure development. Depending on the particular type of measure and the specific circumstances, the classical test theory and/or the IRT should be considered to help maximize the content validity of PRO measures. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  10. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  11. Experiments and video analysis in classical mechanics

    CERN Document Server

    de Jesus, Vitor L B

    2017-01-01

    This book is an experimental physics textbook on classical mechanics focusing on the development of experimental skills by means of discussion of different aspects of the experimental setup and the assessment of common issues such as accuracy and graphical representation. The most important topics of an experimental physics course on mechanics are covered and the main concepts are explored in detail. Each chapter didactically connects the experiment and the theoretical models available to explain it. Real data from the proposed experiments are presented and a clear discussion over the theoretical models is given. Special attention is also dedicated to the experimental uncertainty of measurements and graphical representation of the results. In many of the experiments, the application of video analysis is proposed and compared with traditional methods.

  12. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  13. Classicalization of Gravitons and Goldstones

    CERN Document Server

    Dvali, Gia; Kehagias, Alex

    2011-01-01

    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role...

  14. Evaluation of the Methods for Response Analysis under Non-Stationary Excitation

    Directory of Open Access Journals (Sweden)

    R.S. Jangid

    1999-01-01

    Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.

  15. Phenomenological analysis of quantum level correlations and classical repulsion effects in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    The quantum level fluctuation in various systems has been shown to be characterized by the random matrix theory, and to be related to a regular-to-chaos transition in classical system. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of quantum level density is inversely proportional to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  16. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    Science.gov (United States)

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  17. EEG alpha desynchronization in musicians and nonmusicians in response to changes in melody, tempo, and key in classical music.

    Science.gov (United States)

    Overman, Amy A; Hoge, Jessica; Dale, J Alexander; Cross, Jeffrey D; Chien, Alec

    2003-10-01

    Two experiments were performed to examine musicians' and nonmusicians' electroencephalographic (EEG) responses to changes in major dimensions (tempo, melody, and key) of classical music. In Exp. 1, 12 nonmusicians' and 12 musicians' EEGs during melody and tempo changes in classical music showed more alpha desynchronization in the left hemisphere (F3) for changes in tempo than in the right. For melody, the nonmusicians were more right-sided (F4) than left in activation, and musicians showed no left-right differences. In Exp. 2, 18 musicians' and 18 nonmusicians' EEG after a key change in classical music showed that distant key changes elicited more right frontal (F4) alpha desynchronization than left. Musicians showed more reaction to key changes than nonmusicians and instructions to attend to key changes had no significant effect. Classical music, given its well-defined structure, offers a unique set of stimuli to study the brain. Results support the concept of hierarchical modularity in music processing that may be automatic.

  18. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan

    2012-08-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  19. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan; Laleg-Kirati, Taous-Meriem

    2012-01-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  20. Classical genetic analyses of responses to nicotine and ethanol in crosses derived from long- and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1992-04-01

    A classical (Mendelian) genetic analysis of responses to ethanol and nicotine was conducted in crosses derived from mouse lines which were selectively bred for differential duration of loss of the righting response (sleep-time) after ethanol. Dose-response curves for these mice, the long- and short-sleep mouse lines, as well as the derived F1, F2 and backcross (F1 x long-sleep and F1 x short-sleep) generations were generated for several measures of nicotine and ethanol sensitivity. Ethanol sensitivity was assessed using the sleep-time measure. Nicotine sensitivity was tested using a battery of behavioral and physiological tests which included measures of seizure activity, respiration rate, acoustic startle response, Y-maze activities (both crossing and rearing activities), heart rate and body temperature. The inheritance of sensitivities to both of these agents appears to be polygenic and inheritance can be explained primarily by additive genetic effects with some epistasis. Sensitivity to the ethanol sleep-time measure was genetically correlated with sensitivity to both nicotine-induced hypothermia and seizures; the correlation was greater between sleep-time and hypothermia. These data indicate that there is overlap in the genetic regulation of sensitivity to both ethanol and nicotine as measured by some, but not all, tests.

  1. Quantum manifestations of classical resonance zones

    International Nuclear Information System (INIS)

    De Leon, N.; Davis, M.J.; Heller, E.J.

    1984-01-01

    We examine the concept of nodal breakup of wave functions as a criterion for quantum mechanical ergodicity. We find that complex nodal structure of wave functions is not sufficient to determine quantum mechanical ergodicity. The influence of classical resonances [which manifest themselves as classical resonance zones (CRZ)] may also be responsible for the seeming complexity of nodal structure. We quantify this by reexamining one of the two systems studied by Stratt, Handy, and Miller [J. Chem. Phys. 71, 3311 (1974)] from both a quantum mechanical and classical point of view. We conclude that quasiperiodic classical motion can account for highly distorted quantum eigenstates. One should always keep this in mind when addressing questions regarding quantum mechanical ergodicity

  2. Classical genetic analyses of responses to sedative-hypnotic drugs in crosses derived from long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marley, R J; Miner, L L; de Fiebre, N E; Wehner, J M; Collins, A C

    1992-06-01

    A classical (Mendelian) genetic analysis of responses to eight sedative-hypnotic compounds (ethanol, urethane, trifluoroethanol, chloral hydrate, barbital, paraldehyde, methyprylon, pentobarbital) was conducted in crosses derived from mouse lines that were selectively bred for differential duration of anesthesia following ethanol. The sleep-time responses of these mice, the long-sleep (LS) and short-sleep (SS) mouse lines, as well as the F1, F2 and backcross (F1 x LS, F1 x SS) generations were measured. Generally, differences in responses among the generations were greater for water soluble compounds than were differences for more lipid soluble compounds. Also, the inheritance of responses to water soluble compounds could be explained primarily by additive effects of alleles while the inheritance patterns for more lipid soluble compounds were more complex. Genetic correlation with ethanol response decreased with increasing lipophilicity. These results suggest that the selection of the LS-SS mouse lines was specific for water soluble anesthetic agents. Because several of these agents are known to act at GABA receptors, examination of the interactions of compounds which differ in lipid solubility at GABA receptors from LS and SS mice may prove useful in elucidating the mechanism of the anesthetic actions of ethanol and other drugs.

  3. A Critical Review of Concepts and Methods Used in Classical Genome Analysis

    DEFF Research Database (Denmark)

    Seberg, Ole; Petersen, Gitte

    1998-01-01

    A short account of the development of classical genome analysis, the analysis of chromosome behaviour in metaphase I of meiosis, primarily in interspecific hybrids, is given. The application of the concept of homology to describe chromosome pairing between the respective chromosomes of a pair...... breeding but it has no place in systematics. With an increased knowledge and understanding of the mechanism behind meiosis, data useful in a systematic context may eventually be produced....

  4. Experimental design and model choice the planning and analysis of experiments with continuous or categorical response

    CERN Document Server

    Toutenburg, Helge

    1995-01-01

    This textbook gives a representation of the design and analysis of experiments, that comprises the aspects of classical theory for continuous response and of modern procedures for categorical response, and especially for correlated categorical response. Complex designs, as for example, cross-over and repeated measures, are included. Thus, it is an important book for statisticians in the pharmaceutical industry as well as for clinical research in medicine and dentistry.

  5. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  6. Western classical music development: a statistical analysis of composers similarity, differentiation and evolution.

    Science.gov (United States)

    Georges, Patrick

    2017-01-01

    This paper proposes a statistical analysis that captures similarities and differences between classical music composers with the eventual aim to understand why particular composers 'sound' different even if their 'lineages' (influences network) are similar or why they 'sound' alike if their 'lineages' are different. In order to do this we use statistical methods and measures of association or similarity (based on presence/absence of traits such as specific 'ecological' characteristics and personal musical influences) that have been developed in biosystematics, scientometrics, and bibliographic coupling. This paper also represents a first step towards a more ambitious goal of developing an evolutionary model of Western classical music.

  7. Classic Bartter syndrome complicated with profound growth hormone deficiency: a case report.

    Science.gov (United States)

    Adachi, Masanori; Tajima, Toshihiro; Muroya, Koji; Asakura, Yumi

    2013-12-30

    Classic Bartter syndrome is a salt-wasting tubulopathy caused by mutations in the CLCNKB (chloride channel Kb) gene. Although growth hormone deficiency has been suggested as a cause for persistent growth failure in patients with classic Bartter syndrome, in our opinion the diagnoses of growth hormone deficiency has been unconvincing in some reports. Moreover, Gitelman syndrome seems to have been confused with Bartter syndrome in some cases in the literature. In the present work, we describe a new case with CLCNKB gene mutations and review the reported cases of classic Bartter syndrome associated with growth hormone deficiency. Our patient was a Japanese boy diagnosed as having classic Bartter syndrome at eight months of age. The diagnosis of Bartter syndrome was confirmed by CLCNKB gene analysis, which revealed compound heterozygous mutations with deletion of exons 1 to 3 (derived from his mother) and ΔL130 (derived from his father). His medical therapy consisted of potassium (K), sodium chloride, spironolactone, and anti-inflammatory agents; this regime was started at eight months of age. Our patient was very short (131.1cm, -4.9 standard deviation) at 14.3 years and showed profoundly impaired growth hormone responses to pharmacological stimulants: 0.15μg/L to insulin-induced hypoglycemia and 0.39μg/L to arginine. His growth response to growth hormone therapy was excellent. The present case strengthens the association between classic Bartter syndrome and growth hormone deficiency. We propose that growth hormone status should be considered while treating children with classic Bartter syndrome.

  8. Semi-classical analysis of optical model ambiguities

    International Nuclear Information System (INIS)

    Cuer, M.

    1979-01-01

    The ambiguities in the inverse problem at fixed energy in quantum mechanics are analyzed in the framework of the JWKB method. When the classical turning point is unique for all values of the impact parameter (high energies region), the ambiguities proceed only from the quantization of the angular momentum. In the asymptotic region the difference between two particular equivalent potentials changes sign infinitely often. In addition, the set of equivalent potentials which have a given asymptotic form is bounded (except perhaps at the origin). When there are several turning points for small values of the impact parameter (low-energy region), new ambiguities arise from the fact that the parts of the potential that are located between turning points are not ''visible'' in the classical limit. The set of equivalent potentials wich have a given asymptotic form is then not bounded. Mumerical examples (of real and complex equivalent potentials) are given. The optical model ambiguities are studied. The potential depth ambiguities also appear in classical mechanics, but their discrete nature is a quantum property. The VR/sup p//sup( V/)=constant ambiguities can be explained by the quantum corrections to the spiral scattering phenomenon. An attempt to explain why ambiguities arise only with heavy particles scattering is also given

  9. Correlation analysis of quantum fluctuations and repulsion effects of classical dynamics in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  10. Accuracy Combination Test of Classical and Modern Technical Analysis: A Case Study in Stock of PT Wijaya Karya Tbk

    OpenAIRE

    Agustini Hamid

    2016-01-01

    The research aimed to measure the accuracy and combination of Classic and Modern Technical Analysis. PT Wijaya Karya Tbk (WIKA)’s stock in two periods is the sample of research. Technical analysis was used to predict stock prices by observing changes in historical share price. Practically, technical analysis is divided into Classic Technical and Modern. Research was conducted by library study and using a computer software. Microsft Excel was used for the simulation and Chart Nexus for analyzi...

  11. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    Science.gov (United States)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  12. H-classic: a new method to identify classic articles in Implant Dentistry, Periodontics, and Oral Surgery.

    Science.gov (United States)

    De la Flor-Martínez, Maria; Galindo-Moreno, Pablo; Sánchez-Fernández, Elena; Piattelli, Adriano; Cobo, Manuel Jesus; Herrera-Viedma, Enrique

    2016-10-01

    The study of classic papers permits analysis of the past, present, and future of a specific area of knowledge. This type of analysis is becoming more frequent and more sophisticated. Our objective was to use the H-classics method, based on the h-index, to analyze classic papers in Implant Dentistry, Periodontics, and Oral Surgery (ID, P, and OS). First, an electronic search of documents related to ID, P, and OS was conducted in journals indexed in Journal Citation Reports (JCR) 2014 within the category 'Dentistry, Oral Surgery & Medicine'. Second, Web of Knowledge databases were searched using Mesh terms related to ID, P, and OS. Finally, the H-classics method was applied to select the classic articles in these disciplines, collecting data on associated research areas, document type, country, institutions, and authors. Of 267,611 documents related to ID, P, and OS retrieved from JCR journals (2014), 248 were selected as H-classics. They were published in 35 journals between 1953 and 2009, most frequently in the Journal of Clinical Periodontology (18.95%), the Journal of Periodontology (18.54%), International Journal of Oral and Maxillofacial Implants (9.27%), and Clinical Oral Implant Research (6.04%). These classic articles derived from the USA in 49.59% of cases and from Europe in 47.58%, while the most frequent host institution was the University of Gothenburg (17.74%) and the most frequent authors were J. Lindhe (10.48%) and S. Socransky (8.06%). The H-classics approach offers an objective method to identify core knowledge in clinical disciplines such as ID, P, and OS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A semi-classical analysis of Dirac fermions in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maiti, Moitri; Shankar, R

    2012-01-01

    We investigate the semi-classical dynamics of massless Dirac fermions in 2+1 dimensions in the presence of external electromagnetic fields. By generalizing the α matrices by two generators of the SU(2) group in the (2S + 1)-dimensional representation and doing a certain scaling, we formulate an S → ∞ limit where the orbital and the spinor degrees become classical. We solve for the classical trajectories for a free particle on a cylinder and a particle in a constant magnetic field. We compare the semi-classical spectrum, obtained by Bohr–Sommerfeld quantization with the exact quantum spectrum for low values of S. For the free particle, the semi-classical spectrum is exact. For the particle in a constant magnetic field, the semi-classical spectrum reproduces all the qualitative features of the exact quantum spectrum at all S. The quantitative fit for S = 1/2 is reasonably good. (paper)

  14. Overview of Classical Test Theory and Item Response Theory for Quantitative Assessment of Items in Developing Patient-Reported Outcome Measures

    Science.gov (United States)

    Cappelleri, Joseph C.; Lundy, J. Jason; Hays, Ron D.

    2014-01-01

    Introduction The U.S. Food and Drug Administration’s patient-reported outcome (PRO) guidance document defines content validity as “the extent to which the instrument measures the concept of interest” (FDA, 2009, p. 12). “Construct validity is now generally viewed as a unifying form of validity for psychological measurements, subsuming both content and criterion validity” (Strauss & Smith, 2009, p. 7). Hence both qualitative and quantitative information are essential in evaluating the validity of measures. Methods We review classical test theory and item response theory approaches to evaluating PRO measures including frequency of responses to each category of the items in a multi-item scale, the distribution of scale scores, floor and ceiling effects, the relationship between item response options and the total score, and the extent to which hypothesized “difficulty” (severity) order of items is represented by observed responses. Conclusion Classical test theory and item response theory can be useful in providing a quantitative assessment of items and scales during the content validity phase of patient-reported outcome measures. Depending on the particular type of measure and the specific circumstances, either one or both approaches should be considered to help maximize the content validity of PRO measures. PMID:24811753

  15. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  16. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  17. Population structure of the Classic period Maya.

    Science.gov (United States)

    Scherer, Andrew K

    2007-03-01

    This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure. (c) 2006 Wiley-Liss, Inc.

  18. EFFECTS OF PARAMETRIC VARIATIONS ON SEISMIC ANALYSIS METHODS FOR NON-CLASSICALLY DAMPED COUPLED SYSTEMS

    International Nuclear Information System (INIS)

    XU, J.; DEGRASSI, G.

    2000-01-01

    A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters

  19. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    Science.gov (United States)

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Classical and nonclassical symmetries analysis for initial value problems

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Chen Yufu

    2010-01-01

    Classical and nonclassical symmetries are considered to reduce evolution equations with initial conditions in two independent variables. First of all, we rearrange the classical infinitesimal operators such that they leave the initial value problems invariant. Secondly, we give a sufficient condition for the nonclassical symmetry reductions of initial value problems. The generalized Kuramoto-Sivashinsky equation with dispersive effects is considered to examine the algorithms.

  1. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  2. Why Study Classical Languages?

    Science.gov (United States)

    Lieberman, Samuel

    This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…

  3. Rapid learning dynamics in individual honeybees during classical conditioning

    Directory of Open Access Journals (Sweden)

    Evren ePamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  4. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  5. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    Science.gov (United States)

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  6. An empirical comparison of Item Response Theory and Classical Test Theory

    Directory of Open Access Journals (Sweden)

    Špela Progar

    2008-11-01

    Full Text Available Based on nonlinear models between the measured latent variable and the item response, item response theory (IRT enables independent estimation of item and person parameters and local estimation of measurement error. These properties of IRT are also the main theoretical advantages of IRT over classical test theory (CTT. Empirical evidence, however, often failed to discover consistent differences between IRT and CTT parameters and between invariance measures of CTT and IRT parameter estimates. In this empirical study a real data set from the Third International Mathematics and Science Study (TIMSS 1995 was used to address the following questions: (1 How comparable are CTT and IRT based item and person parameters? (2 How invariant are CTT and IRT based item parameters across different participant groups? (3 How invariant are CTT and IRT based item and person parameters across different item sets? The findings indicate that the CTT and the IRT item/person parameters are very comparable, that the CTT and the IRT item parameters show similar invariance property when estimated across different groups of participants, that the IRT person parameters are more invariant across different item sets, and that the CTT item parameters are at least as much invariant in different item sets as the IRT item parameters. The results furthermore demonstrate that, with regards to the invariance property, IRT item/person parameters are in general empirically superior to CTT parameters, but only if the appropriate IRT model is used for modelling the data.

  7. Impact of the initial classic section during a simulated cross-country skiing skiathlon on the cardiopulmonary responses during the subsequent period of skate skiing.

    Science.gov (United States)

    Mourot, Laurent; Fabre, Nicolas; Andersson, Erik; Willis, Sarah J; Hébert-Losier, Kim; Holmberg, Hans-Christer

    2014-08-01

    The aim of this study was to assess potential changes in the performance and cardiorespiratory responses of elite cross-country skiers following transition from the classic (CL) to the skating (SK) technique during a simulated skiathlon. Eight elite male skiers performed two 6 km (2 × 3 km) roller-skiing time trials on a treadmill at racing speed: one starting with the classic and switching to the skating technique (CL1-SK2) and another employing the skating technique throughout (SK1-SK2), with continuous monitoring of gas exchanges, heart rates, and kinematics (video). The overall performance times in the CL1-SK2 (21:12 ± 1:24) and SK1-SK2 (20:48 ± 2:00) trials were similar, and during the second section of each performance times and overall cardiopulmonary responses were also comparable. However, in comparison with SK1-SK2, the CL1-SK2 trial involved significantly higher increases in minute ventilation (V̇E, 89.8 ± 26.8 vs. 106.8 ± 17.6 L·min(-1)) and oxygen uptake (V̇O2; 3.1 ± 0.8 vs 3.5 ± 0.5 L·min(-1)) 2 min after the transition as well as longer time constants for V̇E, V̇O2, and heart rate during the first 3 min after the transition. This higher cardiopulmonary exertion was associated with ∼3% faster cycle rates. In conclusion, overall performance during the 2 time trials did not differ. The similar performance times during the second sections were achieved with comparable mean cardiopulmonary responses. However, the observation that during the initial 3-min post-transition following classic skiing cardiopulmonary responses and cycle rates were slightly higher supports the conclusion that an initial section of classic skiing exerts an impact on performance during a subsequent section of skate skiing.

  8. A Link between Nano- and Classical Thermodynamics: Dissipation Analysis (The Entropy Generation Approach in Nano-Thermodynamics

    Directory of Open Access Journals (Sweden)

    Umberto Lucia

    2015-03-01

    Full Text Available The interest in designing nanosystems is continuously growing. Engineers apply a great number of optimization methods to design macroscopic systems. If these methods could be introduced into the design of small systems, a great improvement in nanotechnologies could be achieved. To do so, however, it is necessary to extend classical thermodynamic analysis to small systems, but irreversibility is also present in small systems, as the Loschmidt paradox highlighted. Here, the use of the recent improvement of the Gouy-Stodola theorem to complex systems (GSGL approach, based on the use of entropy generation, is suggested to obtain the extension of classical thermodynamics to nanothermodynamics. The result is a new approach to nanosystems which avoids the difficulties highlighted in the usual analysis of the small systems, such as the definition of temperature for nanosystems.

  9. Bohmian measures and their classical limit

    KAUST Repository

    Markowich, Peter

    2010-09-01

    We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. Our analysis gives new insight on oscillation and concentration effects in the semi-classical regime. © 2010 Elsevier Inc.

  10. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  11. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  12. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  13. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  14. Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism

    DEFF Research Database (Denmark)

    Hernández-Alvarez, María Isabel; Díaz-Ramos, Angels; Berdasco, María

    2017-01-01

    The molecular mechanisms responsible for the pathophysiological traits of type 2 diabetes are incompletely understood. Here we have performed transcriptomic analysis in skeletal muscle, and plasma metabolomics from subjects with classical and early-onset forms of type 2 diabetes (T2D). Focused...... of type 2 diabetes, and this occurs both in early-onset and in classical type 2 diabetes....

  15. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  16. Significance of non-classical damping in seismic qualification of equipment and piping

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhinav, E-mail: agupta1@ncsu.edu; Bose, Mrinal K.

    2017-06-15

    Highlights: • Damping in coupled building-piping or building-equipment systems is nonlclassical. • Significance of nonclassical damping is illustrated. • Classical damping assumption can over predict or under predict response. • Significance of nonclassical damping increases for very light secondary systems. • Composite modal damping is another form of classical damping. - Abstract: This paper presents a discussion on the significance of non-classical damping in coupled primary-secondary systems such as building-equipment or building-piping. Closed-form expressions are used to illustrate that the effect of non-classical damping is significant in systems with tuned or nearly tuned uncoupled modes when the mass-interaction is sufficiently small. Further, simple primary-secondary systems are used to illustrate that composite modal damping is another form of classical damping for which the transformed damping matrix, obtained after pre- and post-multiplication of the damping matrix with the modal matrix, contains only diagonal terms. Both the composite and the classical damping give almost identical results that can be much different from the corresponding results for non-classical damping. Finally, it is shown that consideration of classical damping (ignoring the off-diagonal terms) can give excessively conservative results in nearly tuned primary-secondary systems. For perfectly tuned primary-secondary systems, however, classical damping can give responses that are much lower than what they should be.

  17. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  18. The difference between the classical and quantum mechanical definitions of scattering cross sections and the problem of the classical limit

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1994-01-01

    A critical analysis of the difference between the classical and quantum mechanical definitions of scattering cross sections for particles is presented. This leads to a clarification of the classical limit problem and suggests precise criteria for its validity. In particular these criteria are derived for both finite and infinite range potentials. (orig.)

  19. Comparative role of potential structure in classical, semiclassical, and quantum mechanics

    International Nuclear Information System (INIS)

    Judson, R.S.; Shi, S.; Rabitz, H.

    1989-01-01

    The corresponding effects of features in the potential on classical, semiclassical, and quantum mechanics are probed using the technique of functional sensitivity analysis. It is shown that the classical and quantum functional sensitivities are equivalent in the classical (small (h/2π)) and harmonic limits. Classical and quantum mechanics are known to react in qualitatively similar ways provided that features on the potential are smooth on the length scale of oscillations in the quantum wave function. By using functional sensitivity analysis, we are able to show in detail how the classical and quantum dynamics differ in the way that they sense the potential. Two examples are given, the first of which is the harmonic oscillator. This problem is well understood by other means but is useful to examine because it illustrates the detailed information about the interaction of the potential and the dynamics which can be provided by functional sensitivity analysis, simplifying the analysis of more complex systems. The second example is the collinear H+H 2 reaction. In that case there are a number of detailed and striking differences between the ways that classical and quantum mechanics react to features on the potential. For features which are broad compared to oscillations in the wave function, the two react in qualitatively the same way. The sensitivities are oscillatory, however, and there are phasing differences between the classical and quantum sensitivity functions. This means that using classical mechanics plus experimental data in an inversion scheme intended to find the ''true'' potential will necessarily introduce sizeable errors

  20. Classical microdosimetry in radiation protection dosimetry and monitoring

    International Nuclear Information System (INIS)

    Waker, A.J.; Schrewe, U.; Burmeister, J.; Dubeau, J.; Surette, R.A.

    2002-01-01

    Classical microdosimetry concerns the measurement and analysis of the spectrum of radiation energy deposition events in simulated microscopic tissue-equivalent sites. Over the past three decades, classical microdosimetry has been extensively applied for the direct measurement of dosimetric quantities, such as the ambient dose equivalent, and for the spectroscopic properties of tissue-equivalent proportional counters that have led to the methods of mixed-field analysis and particle identification. This paper reviews some of the special applications of classical microdosimetry such as the determination of kerma coefficients, differential dosimetry and aviation dosimetry. Also reviewed are some of the technological innovations related to the application of microdosimetry in operational health physics and in particular the development of multi-element proportional counters and detectors based on gas microstrip technology. (author)

  1. Human Leukocyte Antigen (HLA and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections?

    Directory of Open Access Journals (Sweden)

    Nicole B. Crux

    2017-07-01

    Full Text Available The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV and hepatitis C virus (HCV, is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C, class Ib (HLA-E, -F, -G, -H, and class II (HLA-DR, -DQ, -DM, and -DP in immune regulation and viral pathogenesis (e.g., HIV and HCV. To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.

  2. Decoherence and the quantum-to-classical transition

    International Nuclear Information System (INIS)

    Schlosshauer, M.A.

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: - Foundational problems at the quantum-classical border; - The role of the environment and entanglement; - Environment-induced loss of coherence and superselection; - Scattering-induced decoherence and spatial localization; - Master equations; - Decoherence models; - Experimental realization of ''Schroedinger's kittens'' and their decoherence; - Quantum computing, quantum error correction, and decoherence-free subspaces; - Implications of decoherence for interpretations of quantum mechanics and for the ''measurement problem''; - Decoherence in the brain. Written in a lucid and concise style that is accessible to all readers with a basic knowledge of quantum mechanics, this stimulating book tells the ''classical from quantum'' story in a comprehensive and coherent manner that brings together the foundational, technical, and experimental aspects of decoherence. It will be an indispensable resource for newcomers and experts alike. (orig.)

  3. Classical conditioning in the treatment of psoriasis.

    Science.gov (United States)

    Ader, R

    2000-11-01

    It has been argued that the placebo effect represents a learned response. Research is suggested to address the utility of applying principles derived from classical (Pavlovian) conditioning to the design of drug treatment protocols. In the present instance, it is hypothesized that, by capitalizing on conditioned pharmacotherapeutic responses, it may be possible to reduce the cumulative amount of corticosteroid medication used in the treatment of psoriasis.

  4. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  5. Two-slit experiment: quantum and classical probabilities

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2015-01-01

    Inter-relation between quantum and classical probability models is one of the most fundamental problems of quantum foundations. Nowadays this problem also plays an important role in quantum technologies, in quantum cryptography and the theory of quantum random generators. In this letter, we compare the viewpoint of Richard Feynman that the behavior of quantum particles cannot be described by classical probability theory with the viewpoint that quantum–classical inter-relation is more complicated (cf, in particular, with the tomographic model of quantum mechanics developed in detail by Vladimir Man'ko). As a basic example, we consider the two-slit experiment, which played a crucial role in quantum foundational debates at the beginning of quantum mechanics (QM). In particular, its analysis led Niels Bohr to the formulation of the principle of complementarity. First, we demonstrate that in complete accordance with Feynman's viewpoint, the probabilities for the two-slit experiment have the non-Kolmogorovian structure, since they violate one of basic laws of classical probability theory, the law of total probability (the heart of the Bayesian analysis). However, then we show that these probabilities can be embedded in a natural way into the classical (Kolmogorov, 1933) probability model. To do this, one has to take into account the randomness of selection of different experimental contexts, the joint consideration of which led Feynman to a conclusion about the non-classicality of quantum probability. We compare this embedding of non-Kolmogorovian quantum probabilities into the Kolmogorov model with well-known embeddings of non-Euclidean geometries into Euclidean space (e.g., the Poincaré disk model for the Lobachvesky plane). (paper)

  6. An Automated Approach to Syntax-based Analysis of Classical Latin

    Directory of Open Access Journals (Sweden)

    Anjalie Field

    2016-12-01

    Full Text Available The goal of this study is to present an automated method for analyzing the style of Latin authors. Many of the common automated methods in stylistic analysis are based on lexical measures, which do not work well with Latin because of the language’s high degree of inflection and free word order. In contrast, this study focuses on analysis at a syntax level by examining two constructions, the ablative absolute and the cum clause. These constructions are often interchangeable, which suggests an author’s choice of construction is typically more stylistic than functional. We first identified these constructions in hand-annotated texts. Next we developed a method for identifying the constructions in unannotated texts, using probabilistic morphological tagging. Our methods identified constructions with enough accuracy to distinguish among different genres and different authors. In particular, we were able to determine which book of Caesar’s Commentarii de Bello Gallico was not written by Caesar. Furthermore, the usage of ablative absolutes and cum clauses observed in this study is consistent with the usage scholars have observed when analyzing these texts by hand. The proposed methods for an automatic syntax-based analysis are shown to be valuable for the study of classical literature.

  7. Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections

    Directory of Open Access Journals (Sweden)

    Lorraine Andrews

    2012-06-01

    Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.

  8. Unraveling Quantum Annealers using Classical Hardness

    Science.gov (United States)

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  9. Classic-Ada(TM)

    Science.gov (United States)

    Valley, Lois

    1989-01-01

    The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.

  10. Turning big bang into big bounce. I. Classical dynamics

    Science.gov (United States)

    Dzierżak, Piotr; Małkiewicz, Przemysław; Piechocki, Włodzimierz

    2009-11-01

    The big bounce (BB) transition within a flat Friedmann-Robertson-Walker model is analyzed in the setting of loop geometry underlying the loop cosmology. We solve the constraint of the theory at the classical level to identify physical phase space and find the Lie algebra of the Dirac observables. We express energy density of matter and geometrical functions in terms of the observables. It is the modification of classical theory by the loop geometry that is responsible for BB. The classical energy scale specific to BB depends on a parameter that should be fixed either by cosmological data or determined theoretically at quantum level, otherwise the energy scale stays unknown.

  11. On the quantization of classically chaotic system

    International Nuclear Information System (INIS)

    Godoy, N.F. de.

    1988-01-01

    Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt

  12. ENVIRONMENTALISM AND CLASSIC PARADIGMS OF INTERNATIONAL RELATIONS

    OpenAIRE

    D. D. Miniaeva

    2014-01-01

    This article examines an environmentalism integration process into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism) into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism). The main purpose of this study is to reveal the result of this integration. Methods used in this article include analysis and comparison of "ecological" paradigms on selected parameters (the nature of international relations, actors, ta...

  13. Analysis test of understanding of vectors with the three-parameter logistic model of item response theory and item response curves technique

    Directory of Open Access Journals (Sweden)

    Suttida Rakkapao

    2016-10-01

    Full Text Available This study investigated the multiple-choice test of understanding of vectors (TUV, by applying item response theory (IRT. The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming unidimensionality and local independence. Moreover, all distractors of the TUV were analyzed from item response curves (IRC that represent simplified IRT. Data were gathered on 2392 science and engineering freshmen, from three universities in Thailand. The results revealed IRT analysis to be useful in assessing the test since its item parameters are independent of the ability parameters. The IRT framework reveals item-level information, and indicates appropriate ability ranges for the test. Moreover, the IRC analysis can be used to assess the effectiveness of the test’s distractors. Both IRT and IRC approaches reveal test characteristics beyond those revealed by the classical analysis methods of tests. Test developers can apply these methods to diagnose and evaluate the features of items at various ability levels of test takers.

  14. Analysis test of understanding of vectors with the three-parameter logistic model of item response theory and item response curves technique

    Science.gov (United States)

    Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan

    2016-12-01

    This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming unidimensionality and local independence. Moreover, all distractors of the TUV were analyzed from item response curves (IRC) that represent simplified IRT. Data were gathered on 2392 science and engineering freshmen, from three universities in Thailand. The results revealed IRT analysis to be useful in assessing the test since its item parameters are independent of the ability parameters. The IRT framework reveals item-level information, and indicates appropriate ability ranges for the test. Moreover, the IRC analysis can be used to assess the effectiveness of the test's distractors. Both IRT and IRC approaches reveal test characteristics beyond those revealed by the classical analysis methods of tests. Test developers can apply these methods to diagnose and evaluate the features of items at various ability levels of test takers.

  15. Loire Classics: Reviving Classicism in some Loire Poets

    Directory of Open Access Journals (Sweden)

    Wim Verbaal

    2017-06-01

    Full Text Available The term 'Loire poets' has come to refer to a rather undefinable group of poets that in the second half of the eleventh century distinguishes itself through its refined poetics. They are often characterized as medieval humanists thanks to their renewed interest in the classics. Sometimes their movement is labelled a 'classicist' one. But what does this 'classicism' mean? Is it even permitted to speak of medieval 'classicisms'? This contribution approaches the question of whether we can apply this modern label to pre-modern phenomena. Moreover, it explores the changes in attitude towards the classics that sets the Loire poets off from their predecessors and contemporaries. The article focuses on poems by Hildebert of Lavardin, Baudri of Bourgueil, Marbod of Rennes, and Geoffrey of Reims. They are compared with some contemporary poets, such as Reginald of Canterbury and Sigebert of Gembloux.

  16. Lagrangian formulation of classical BMT-theory

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto

    2013-01-01

    Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)

  17. Classical antiparticles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors)

  18. Microsurgery: the top 50 classic papers in plastic surgery: a citation analysis.

    Science.gov (United States)

    Joyce, Cormac Weekes; Carroll, Sean Michael

    2014-03-01

    The number of citations that a published article has received reflects the importance of the paper in the particular area of practice. In microsurgery, thus far, which journal articles are cited most frequently is unknown. The purpose of this study was to identify and analyze the characteristics of the top 50 papers in the field of microsurgery in the plastic surgery literature. The 50 most cited papers published in high impact plastic surgery and microsurgery journals were identified. The articles were ranked in the order of the number of citations received. These 50 classic papers were analyzed for article type, journal distribution, and geographic and institutional origin. Six international journals contributed to the top 50 papers in microsurgery. The most cited paper reported on the early use of the vascularized bone graft and was cited 116 times. The top 50 papers originated from just 10 countries with the United States producing the most. The Preston and Northcote Community Hospital, Melbourne published 5 papers and this was the most productive institution in the top 50. These papers represent many important milestones in the relatively short history of microsurgery. Furthermore, our citation analysis provides useful information to budding authors as to what makes a paper attain a "classic" status.

  19. High-Speed Imaging Analysis of Register Transitions in Classically and Jazz-Trained Male Voices.

    Science.gov (United States)

    Dippold, Sebastian; Voigt, Daniel; Richter, Bernhard; Echternach, Matthias

    2015-01-01

    Little data are available concerning register functions in different styles of singing such as classically or jazz-trained voices. Differences between registers seem to be much more audible in jazz singing than classical singing, and so we hypothesized that classically trained singers exhibit a smoother register transition, stemming from more regular vocal fold oscillation patterns. High-speed digital imaging (HSDI) was used for 19 male singers (10 jazz-trained singers, 9 classically trained) who performed a glissando from modal to falsetto register across the register transition. Vocal fold oscillation patterns were analyzed in terms of different parameters of regularity such as relative average perturbation (RAP), correlation dimension (D2) and shimmer. HSDI observations showed more regular vocal fold oscillation patterns during the register transition for the classically trained singers. Additionally, the RAP and D2 values were generally lower and more consistent for the classically trained singers compared to the jazz singers. However, intergroup comparisons showed no statistically significant differences. Some of our results may support the hypothesis that classically trained singers exhibit a smoother register transition from modal to falsetto register. © 2015 S. Karger AG, Basel.

  20. Classical and quantum analysis of a hetero-triatomic molecular Bose-Einstein condensate model

    International Nuclear Information System (INIS)

    Tonel, A.P.; Kuhn, C.C.N.; Foerster, A.; Santos, G.; Roditi, I.; Santos, Z.V.T.

    2014-11-01

    We investigate an integrable Hamiltonian modelling a hetero-triatomic-molecular Bose-Einstein condensate. This model describes a mixture of two species of atoms in different proportions, which can combine to form a triatomic molecule. Beginning with a classical analysis, we determine the fixed points of the system. Bifurcations of these points separate the parameter space into different regions. Three distinct scenarios are found, varying with the atomic population imbalance. This result suggests the ground state properties of the quantum model exhibits a sensitivity on the atomic population imbalance, which is confirmed by a quantum analysis using different approaches, such as the ground-state expectation values, the behaviour of the quantum dynamics, the energy gap and the ground state fidelity. (author)

  1. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  2. A Classic Through Eternity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.

  3. Classical and quantum effects in noble metal and graphene plasmonics

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2015-01-01

    Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics such as noncla......Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics...... such as nonclassical electrodynamics with a nonlocal response of the plasmons. Nonlocal effects are being explored both theoretically and experimentally in different charge-conducting material systems with examples ranging from sub-10 nanometer noble metal particles to one-atom thin disks of doped graphene....

  4. On the Predictability of Classical Propositional Logic

    OpenAIRE

    Finger, Marcelo; Reis, Poliana

    2013-01-01

    In this work we provide a statistical form of empirical analysis of classical propositional logic decision methods called SAT solvers. This work is perceived as an empirical counterpart of a theoretical movement, called the enduring scandal of deduction, that opposes considering Boolean Logic as trivial in any sense. For that, we study the predictability of classical logic, which we take to be the distribution of the runtime of its decision process. We present a series of experiments that det...

  5. From classical to quantum chaos

    International Nuclear Information System (INIS)

    Zaslavsky, G.M.

    1991-01-01

    The analysis is done for the quantum properties of systems that possess dynamical chaos in classical limit. Two main topics are considered: (i) the problem of quantum macroscopical description of the system and the Ehrenfest-Einstein problem of the validity of the classical approximation; and (ii) the problem of levels spacing distribution for the nonintegrable case. For the first topic the method of projecting on the coherent states base is considered and the ln 1/(h/2π) time for the quasiclassical approximation breaking is described. For the second topic the discussion of GOE and non-GOE distributions is done and estimations and simulations for the non-GOE case are reviewed. (author). 44 refs, 2 figs

  6. Comparison Analysis of Model Predictive Controller with Classical PID Controller For pH Control Process

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-12-01

    Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing   technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.

  7. 100 classic papers of interventional radiology: A citation analysis

    Science.gov (United States)

    Crockett, Matthew T; Browne, Ronan FJ; MacMahon, Peter J; Lawler, Leo

    2015-01-01

    AIM: To define the 100 citation classic papers of interventional radiology. METHODS: Using the database of Journal Citation Reports the 40 highest impact factor radiology journals were chosen. From these journals the 100 most cited interventional radiology papers were chosen and analysed. RESULTS: The top paper received 2497 citations and the 100th paper 200 citations. The average number of citations was 320. Dates of publication ranged from 1953 - 2005. Most papers originated in the United States (n = 67) followed by Italy (n = 20) and France (n = 10). Harvard University (n = 18) and Osped Civile (n = 11) were the most prolific institutions. Ten journals produced all of the top 100 papers with “Radiology” and “AJR” making up the majority. SN Goldberg and T Livraghi were the most prolific authors. Nearly two thirds of the papers (n = 61) were published after 1990. CONCLUSION: This analysis identifies many of the landmark interventional radiology papers and provides a fascinating insight into the changing discourse within the field. It also identifies topics, authors and institutions which have impacted greatly on the specialty. PMID:25918585

  8. 100 classic papers of interventional radiology: A citation analysis.

    Science.gov (United States)

    Crockett, Matthew T; Browne, Ronan Fj; MacMahon, Peter J; Lawler, Leo

    2015-04-28

    To define the 100 citation classic papers of interventional radiology. Using the database of Journal Citation Reports the 40 highest impact factor radiology journals were chosen. From these journals the 100 most cited interventional radiology papers were chosen and analysed. The top paper received 2497 citations and the 100(th) paper 200 citations. The average number of citations was 320. Dates of publication ranged from 1953 - 2005. Most papers originated in the United States (n = 67) followed by Italy (n = 20) and France (n = 10). Harvard University (n = 18) and Osped Civile (n = 11) were the most prolific institutions. Ten journals produced all of the top 100 papers with "Radiology" and "AJR" making up the majority. SN Goldberg and T Livraghi were the most prolific authors. Nearly two thirds of the papers (n = 61) were published after 1990. This analysis identifies many of the landmark interventional radiology papers and provides a fascinating insight into the changing discourse within the field. It also identifies topics, authors and institutions which have impacted greatly on the specialty.

  9. A critical experimental study of the classical tactile threshold theory

    Directory of Open Access Journals (Sweden)

    Medina Leonel E

    2010-06-01

    Full Text Available Abstract Background The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold. Results We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41% for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level. Conclusions Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance

  10. Rapid learning dynamics in individual honeybees during classical conditioning.

    Science.gov (United States)

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  11. The Wigner representation of classical mechanics, quantization and classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, A.O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2{pi} {yields} 0. (author)

  12. The Wigner representation of classical mechanics, quantization and classical limit

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)

  13. Friedrich Nietzsche in Basel: An Apology for Classical Studies

    Science.gov (United States)

    Santini, Carlotta

    2018-01-01

    Alongside his work as a professor of Greek Language and Literature at the University of Basel, Friedrich Nietzsche reflected on the value of classical studies in contemporary nineteenth-century society, starting with a self-analysis of his own classical training and position as a philologist and teacher. Contrary to his well-known aversion to…

  14. Structures in Sound: Analysis of Classical Music Using the Information Length

    Directory of Open Access Journals (Sweden)

    Schuyler Nicholson

    2016-07-01

    Full Text Available We show that music is represented by fluctuations away from the minimum path through statistical space. Our key idea is to envision music as the evolution of a non-equilibrium system and to construct probability distribution functions (PDFs from musical instrument digital interface (MIDI files of classical compositions. Classical music is then viewed through the lens of generalized position and velocity, based on the Fisher metric. Through these statistical tools we discuss a way to quantitatively discriminate between music and noise.

  15. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    International Nuclear Information System (INIS)

    Trappe, Neil; Murphy, J Anthony; Withington, Stafford

    2003-01-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking - for comparison - examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration

  16. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    Science.gov (United States)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  17. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  18. Time motion and video analysis of classical ballet and contemporary dance performance.

    Science.gov (United States)

    Wyon, M A; Twitchett, E; Angioi, M; Clarke, F; Metsios, G; Koutedakis, Y

    2011-11-01

    Video analysis has become a useful tool in the preparation for sport performance and its use has highlighted the different physiological demands of seemingly similar sports and playing positions. The aim of the current study was to examine the performance differences between classical ballet and contemporary dance. In total 93 dance performances (48 ballet and 45 contemporary) were analysed for exercise intensity, changes in direction and specific discrete skills (e. g., jumps, lifts). Results revealed significant differences between the 2 dance forms for exercise intensity (pBallet was characterised by longer periods at rest (38 s x min(-1)) and high to very high exercise intensities (9 s x min(-1)), whilst contemporary dance featured more continuous moderate exercise intensities (27 s x min(-1)). These differences have implications on the energy systems utilised during performance with ballet potentially stressing the anaerobic system more than contemporary dance. The observed high rates in the discrete skills in ballet (5 jumps x min(-1); 2 lifts x min(-1)) can cause local muscular damage, particularly in relatively weaker individuals. In conclusion, classical ballet and contemporary dance performances are as significantly different in the underlying physical demands placed on their performers as the artistic aspects of the choreography. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Why aortic elasticity differs among classical and non-classical mitral valve prolapsed?

    Science.gov (United States)

    Unlu, Murat; Demirkol, Sait; Aparci, Mustafa; Arslan, Zekeriya; Balta, Sevket; Dogan, Umuttan; Kilicarslan, Baris; Ozeke, Ozcan; Celik, Turgay; Iyisoy, Atila

    2014-01-01

    Mitral valve prolapse (MVP) is the most common valvular heart disease and characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. There are two types of MVP, broadly classified as classic (thickness ≥5 mm) and non-classic (thickness elastic properties of the aorta in young male patients with classical and non-classical MVP. In the present study, 63 young adult males (mean age: 22.7 ± 4.2) were included. Patients were divided into classic MVP (n = 27) and non-classic MVP (n = 36) groups. Aortic strain, aortic distensibility and aortic stiffness index were calculated by using aortic diameters obtained by echocardiography and blood pressures measured by sphygmomanometer. There was no significant difference between the groups in terms of age, body mass index, left ventricular mass and ejection fraction. When comparing the MVP group it was found that aortic strain and aortic distensibility were increased (p = 0.0027, p = 0.016, respectively) whereas the aortic stiffness index was decreased (p = 0.06) in the classical MVP group. We concluded that the elastic properties of the aorta is increased in patients with classic MVP. Further large scale studies should be performed to understand of morphological and physiological properties of the aorta in patients with MVP.

  20. Classicality in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)

    2007-05-15

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.

  1. Classicality in quantum mechanics

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2007-01-01

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity

  2. Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives

    NARCIS (Netherlands)

    Durbin, J.; Koopman, S.J.M.

    1998-01-01

    The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian

  3. Classical stability of direct products of spheres in gravitational systems

    International Nuclear Information System (INIS)

    Yasuda, O.

    1984-01-01

    Classical stability of Einstein spaces Ssup(d1) x x x x x Ssup(dn) (dsub(j) >= 2) against all fluctuations is investigated in euclidean gravity with a cosmological constant. It is shown that Ssup(d) is classically stable, while Ssup(d1) x x x x x Ssup(dn) (n >= 2) is classically unstable. As a generalization of this analysis it is proved that a compact Einstein space B 1 x x x x x Bsub(n) (n >= 2) which is a direct product of each Einstein space is classically unstable. Non-Einstein spaces M 2 x S 4 (M 2 x S 2 x S 2 ) are also considered in six-dimensional Einstein-Maxwell theory and are shown to be classically stable (unstable). (orig.)

  4. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Le Roux, Xavier; Uzu, Gaëlle; Calas, Aude; Richaume, Agnès

    2017-03-01

    Titanium-dioxide nanoparticles (TiO 2 -NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO 2 -NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO 2 -NPs at concentrations ranging from 0.05 to 500 mg kg -1  dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO 2 -NPs were measured in the spiking suspensions, as they can be important drivers of TiO 2 -NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO 2 -NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg -1 ) and the highest (100 and 500 mg kg -1 ) TiO 2 -NPs concentrations. Path analyses indicated that TiO 2 -NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO 2 -NPs impact on soil microorganisms.

  5. Why Study Chinese Classics and How to Go about It: Response to Zongjie Wu's "Interpretation, Autonomy, and Transformation--Chinese Pedagogic Discourse in Cross-Cultural Perspective"

    Science.gov (United States)

    Tan, Sor-Hoon

    2011-01-01

    This response to Zongjie Wu's "Interpretation, autonomy, and interpretation" focuses on the "battle between East and West" which contextualizes Wu's proposal to counter the current Western domination of Chinese pedagogic discourse with an "authentic language" recovered from the Chinese classics. It points out that it…

  6. A derivation of the classical limit of quantum mechanics and quantum electrodynamics

    International Nuclear Information System (INIS)

    Ajanapon, P.

    1985-01-01

    Instead of regarding the classical limit as the h → 0, an alternative view based on the physical interpretation of the elements of the density matrix is proposed. According to this alternative view, taking the classical limit corresponds to taking the diagonal elements and ignoring the off-diagonal elements of the density matrix. As illustrations of this alternative approach, the classical limits of quantum mechanics and quantum electrodynamics are derived. The derivation is carried out in two stages. First, the statistical classical limit is derived. Then with an appropriate initial condition, the deterministic classical limit is obtained. In the case of quantum mechanics, it is found that the classical limit of Schroedinger's wave mechanics is at best statistical, i.e., Schroedinger's wave mechanics does not reduce to deterministic (Hamilton's or Newton's) classical mechanics. In order to obtain the latter, it is necessary to start out initially with a mixture at the level of statistical quantum mechanics. The derivation hinges on the use of the Feynman path integral rigorously defined with the aid of nonstandard analysis. Nonstandard analysis is also applied to extend the method to the case of quantum electrodynamics. The fundamental decoupling problem arising form the use of Grassmann variables is circumvented by the use of c-number electron fields, but antisymmetrically tagged. The basic classical (deterministic) field equations are obtained in the classical limit with appropriate initial conditions. The result raises the question as to what the corresponding classical field equations obtained in the classical limit from the renormalized Lagrangian containing infinite counterterms really mean

  7. Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1975-01-01

    The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)

  8. Quantum nodal points as fingerprints of classical chaos

    International Nuclear Information System (INIS)

    Leboeuf, P.; Voros, A.

    1992-08-01

    Semiclassical analysis of the individual eigenfunctions in a quantum system is presented, especially when the classical dynamics is chaotic and the quantum bound states are considered. Quantum maps have emerged as ideal dynamical models for basic studies, with their ability to exhibit classical chaos within a single degree of freedom. On the other hand, phase space techniques have become recognized as extremely powerful for describing quantum states. It is argued that representations of eigenfunctions are essential for semiclassical analysis. An explicit realization of that program in one degree is overviewed, in which the crucial ingredient is a phase-space parametrization of 1-d wave-functions. (K.A.) 44 refs.; 6 figs

  9. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  10. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  11. Seismic structural response analysis using consistent mass matrices having dynamic coupling

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1977-01-01

    The basis for the theoretical development of this paper is the linear matrix equations of motion for an unconstrained structure subject to support excitation. The equations are formulated in terms of absolute displacement, velocity and acceleration vectors. By means of a transformation of the absolute response vectors into displacements, velocities and accelerations relative to the support motions, the homogeneous equations become non-homogeneous and the non-homogeneous boundary conditions become homogeneous with relative displacements, velocities and accelerations being zero at support points. The forcing function or inertial loading vector is shown to consist of two parts. The first part is comprised of the mass matrix times the suppport acceleration function times a vector of structural displacements resulting from a unit vector of support displacements in the direction of excitation. This inertial loading corresponds to the classical seismic loading vector and is indeed the only loading vector for lumped-mass systems. The second part of he inertial loading vectors consists of the mass matrix times the support acceleration function times a vector of structural accelerations resulting from unit support accelerations in the direction of excitation. This term is not present in classical seismic analysis formulations and results from the presence of off-diagonal terms in the mass matrices which give rise to dynamic coupling through the mass matrix. Thus, for lumped-mass models, the classical formulation of the inertial loading vector is correct. However, if dynamic coupling terms are included through off-diagonal terms in the mass matrix, an additional inertia loading vector must be considered

  12. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution. (paper)

  13. Quantum-classical correspondence for the inverted oscillator

    Science.gov (United States)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  14. Assessment of bacterial superficial contamination in classical or ritually slaughtered cattle using metagenetics and microbiological analysis.

    Science.gov (United States)

    Korsak, N; Taminiau, B; Hupperts, C; Delhalle, L; Nezer, C; Delcenserie, V; Daube, G

    2017-04-17

    The aim of this study was to investigate the influence of the slaughter technique (Halal vs Classical slaughter) on the superficial contamination of cattle carcasses, by using traditional microbiological procedures and 16S rDNA metagenetics. The purpose was also to investigate the neck area to identify bacteria originating from the digestive or the respiratory tract. Twenty bovine carcasses (10 from each group) were swabbed at the slaughterhouse, where both slaughtering methods are practiced. Two swabbing areas were chosen: one "legal" zone of 1600cm 2 (composed of zones from rump, flank, brisket and forelimb) and locally on the neck area (200cm 2 ). Samples were submitted to classical microbiology for aerobic Total Viable Counts (TVC) at 30°C and Enterobacteriaceae counts, while metagenetic analysis was performed on the same samples. The classical microbiological results revealed no significant differences between both slaughtering practices; with values between 3.95 and 4.87log CFU/100cm 2 and 0.49 and 1.94log CFU/100cm 2 , for TVC and Enterobacteriaceae respectively. Analysis of pyrosequencing data showed that differences in the bacterial population abundance between slaughtering methods were mainly observed in the "legal" swabbing zone compared to the neck area. Bacterial genera belonging to the Actinobacteria phylum were more abundant in the "legal" swabbing zone in "Halal" samples, while Brevibacterium and Corynebacterium were encountered more in "Halal" samples, in all swabbing areas. This was also the case for Firmicutes bacterial populations (families of Aerococcaceae, Planococcaceae). Except for Planococcoceae, the analysis of Operational Taxonomic Unit (OTU) abundances of bacteria from the digestive or respiratory tract revealed no differences between groups. In conclusion, the slaughtering method does not influence the superficial microbiological pattern in terms of specific microbiological markers of the digestive or respiratory tract. However

  15. What is so ‘classical’ about Classical Reception? Theories, Methodologies and Future Prospects

    OpenAIRE

    Anastasia Bakogianni

    2016-01-01

    This paper delivered at the University of Rio on 3rd June 2015 seeks to explore different approaches to the most fundamental questions in classical reception studies. What is classical reception? And more particularly what is so ‘classical’ about classical reception? It discusses current trends in theory and methodology via an analysis of two cinematic receptions of the ancient story of Electra; one that proclaims its debt to a classical text while the other masks its classical connections.

  16. Classical test theory and Rasch analysis validation of the Upper Limb Functional Index in subjects with upper limb musculoskeletal disorders.

    Science.gov (United States)

    Bravini, Elisabetta; Franchignoni, Franco; Giordano, Andrea; Sartorio, Francesco; Ferriero, Giorgio; Vercelli, Stefano; Foti, Calogero

    2015-01-01

    To perform a comprehensive analysis of the psychometric properties and dimensionality of the Upper Limb Functional Index (ULFI) using both classical test theory and Rasch analysis (RA). Prospective, single-group observational design. Freestanding rehabilitation center. Convenience sample of Italian-speaking subjects with upper limb musculoskeletal disorders (N=174). Not applicable. The Italian version of the ULFI. Data were analyzed using parallel analysis, exploratory factor analysis, and RA for evaluating dimensionality, functioning of rating scale categories, item fit, hierarchy of item difficulties, and reliability indices. Parallel analysis revealed 2 factors explaining 32.5% and 10.7% of the response variance. RA confirmed the failure of the unidimensionality assumption, and 6 items out of the 25 misfitted the Rasch model. When the analysis was rerun excluding the misfitting items, the scale showed acceptable fit values, loading meaningfully to a single factor. Item separation reliability and person separation reliability were .98 and .89, respectively. Cronbach alpha was .92. RA revealed weakness of the scale concerning dimensionality and internal construct validity. However, a set of 19 ULFI items defined through the statistical process demonstrated a unidimensional structure, good psychometric properties, and clinical meaningfulness. These findings represent a useful starting point for further analyses of the tool (based on modern psychometric approaches and confirmatory factor analysis) in larger samples, including different patient populations and nationalities. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Assessing difference between classical test theory and item ...

    African Journals Online (AJOL)

    Assessing difference between classical test theory and item response theory methods in scoring primary four multiple choice objective test items. ... All research participants were ranked on the CTT number correct scores and the corresponding IRT item pattern scores from their performance on the PRISMADAT. Wilcoxon ...

  18. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  19. Item response theory analysis of the Pain Self-Efficacy Questionnaire.

    Science.gov (United States)

    Costa, Daniel S J; Asghari, Ali; Nicholas, Michael K

    2017-01-01

    The Pain Self-Efficacy Questionnaire (PSEQ) is a 10-item instrument designed to assess the extent to which a person in pain believes s/he is able to accomplish various activities despite their pain. There is strong evidence for the validity and reliability of both the full-length PSEQ and a 2-item version. The purpose of this study is to further examine the properties of the PSEQ using an item response theory (IRT) approach. We used the two-parameter graded response model to examine the category probability curves, and location and discrimination parameters of the 10 PSEQ items. In item response theory, responses to a set of items are assumed to be probabilistically determined by a latent (unobserved) variable. In the graded-response model specifically, item response threshold (the value of the latent variable for which adjacent response categories are equally likely) and discrimination parameters are estimated for each item. Participants were 1511 mixed, chronic pain patients attending for initial assessment at a tertiary pain management centre. All items except item 7 ('I can cope with my pain without medication') performed well in IRT analysis, and the category probability curves suggested that participants used the 7-point response scale consistently. Items 6 ('I can still do many of the things I enjoy doing, such as hobbies or leisure activity, despite pain'), 8 ('I can still accomplish most of my goals in life, despite the pain') and 9 ('I can live a normal lifestyle, despite the pain') captured higher levels of the latent variable with greater precision. The results from this IRT analysis add to the body of evidence based on classical test theory illustrating the strong psychometric properties of the PSEQ. Despite the relatively poor performance of Item 7, its clinical utility warrants its retention in the questionnaire. The strong psychometric properties of the PSEQ support its use as an effective tool for assessing self-efficacy in people with pain

  20. What is so ‘classical’ about Classical Reception? Theories, Methodologies and Future Prospects

    Directory of Open Access Journals (Sweden)

    Anastasia Bakogianni

    2016-06-01

    Full Text Available This paper delivered at the University of Rio on 3rd June 2015 seeks to explore different approaches to the most fundamental questions in classical reception studies. What is classical reception? And more particularly what is so ‘classical’ about classical reception? It discusses current trends in theory and methodology via an analysis of two cinematic receptions of the ancient story of Electra; one that proclaims its debt to a classical text while the other masks its classical connections.

  1. Quantum Computing's Classical Problem, Classical Computing's Quantum Problem

    OpenAIRE

    Van Meter, Rodney

    2013-01-01

    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classica...

  2. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  3. Machine learning of frustrated classical spin models. I. Principal component analysis

    Science.gov (United States)

    Wang, Ce; Zhai, Hui

    2017-10-01

    This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.

  4. Development and validation of the Brazilian version of the Attitudes to Aging Questionnaire (AAQ: An example of merging classical psychometric theory and the Rasch measurement model

    Directory of Open Access Journals (Sweden)

    Trentini Clarissa M

    2008-01-01

    Full Text Available Abstract Background Aging has determined a demographic shift in the world, which is considered a major societal achievement, and a challenge. Aging is primarily a subjective experience, shaped by factors such as gender and culture. There is a lack of instruments to assess attitudes to aging adequately. In addition, there is no instrument developed or validated in developing region contexts, so that the particularities of ageing in these areas are not included in the measures available. This paper aims to develop and validate a reliable attitude to aging instrument by combining classical psychometric approach and Rasch analysis. Methods Pilot study and field trial are described in details. Statistical analysis included classic psychometric theory (EFA and CFA and Rasch measurement model. The latter was applied to examine unidimensionality, response scale and item fit. Results Sample was composed of 424 Brazilian old adults, which was compared to an international sample (n = 5238. The final instrument shows excellent psychometric performance (discriminant validity, confirmatory factor analysis and Rasch fit statistics. Rasch analysis indicated that modifications in the response scale and item deletions improved the initial solution derived from the classic approach. Conclusion The combination of classic and modern psychometric theories in a complementary way is fruitful for development and validation of instruments. The construction of a reliable Brazilian Attitudes to Aging Questionnaire is important for assessing cultural specificities of aging in a transcultural perspective and can be applied in international cross-cultural investigations running less risk of cultural bias.

  5. Explaining transgression in respiratory rate observation methods in the emergency department: A classic grounded theory analysis.

    Science.gov (United States)

    Flenady, Tracy; Dwyer, Trudy; Applegarth, Judith

    2017-09-01

    Abnormal respiratory rates are one of the first indicators of clinical deterioration in emergency department(ED) patients. Despite the importance of respiratory rate observations, this vital sign is often inaccurately recorded on ED observation charts, compromising patient safety. Concurrently, there is a paucity of research reporting why this phenomenon occurs. To develop a substantive theory explaining ED registered nurses' reasoning when they miss or misreport respiratory rate observations. This research project employed a classic grounded theory analysis of qualitative data. Seventy-nine registered nurses currently working in EDs within Australia. Data collected included detailed responses from individual interviews and open-ended responses from an online questionnaire. Classic grounded theory (CGT) research methods were utilised, therefore coding was central to the abstraction of data and its reintegration as theory. Constant comparison synonymous with CGT methods were employed to code data. This approach facilitated the identification of the main concern of the participants and aided in the generation of theory explaining how the participants processed this issue. The main concern identified is that ED registered nurses do not believe that collecting an accurate respiratory rate for ALL patients at EVERY round of observations is a requirement, and yet organizational requirements often dictate that a value for the respiratory rate be included each time vital signs are collected. The theory 'Rationalising Transgression', explains how participants continually resolve this problem. The study found that despite feeling professionally conflicted, nurses often erroneously record respiratory rate observations, and then rationalise this behaviour by employing strategies that adjust the significance of the organisational requirement. These strategies include; Compensating, when nurses believe they are compensating for errant behaviour by enhancing the patient's outcome

  6. Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism.

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2018-07-13

    The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  7. Global aspects of classical integrable systems

    CERN Document Server

    Cushman, Richard H

    2015-01-01

    This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

  8. The Golden Beauty: Brain Response to Classical and Renaissance Sculptures

    Science.gov (United States)

    Di Dio, Cinzia; Macaluso, Emiliano; Rizzolatti, Giacomo

    2007-01-01

    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty). PMID:18030335

  9. The golden beauty: brain response to classical and renaissance sculptures.

    Directory of Open Access Journals (Sweden)

    Cinzia Di Dio

    Full Text Available Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas. The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty; the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty.

  10. Non-classical structures of organic compounds: unusual stereochemistry and hypercoordination

    International Nuclear Information System (INIS)

    Minkin, Vladimir I; Minyaev, Ruslan M; Hoffmann, Roald

    2002-01-01

    Non-classical structures of organic compounds are defined as molecules containing non-tetrahedral tetracoordinate and/or hypercoordinate carbon atoms. The evolution of the views on this subject is considered and the accumulated theoretical and experimental data on the structures and dynamic transformations of non-classical organic compounds are systematised. It is shown that computational analysis using the methods and the software potential of modern quantum chemistry has now acquired high predictive capacity and is the most important source of data on the structures of non-classical compounds. The bibliography includes 227 references.

  11. Role of classical conditioning in learning gastrointestinal symptoms.

    Science.gov (United States)

    Stockhorst, Ursula; Enck, Paul; Klosterhalfen, Sibylle

    2007-07-07

    Nausea and/or vomiting are aversive gastrointestinal (GI) symptoms. Nausea and vomiting manifest unconditionally after a nauseogenic experience. However, there is correlative, quasiexperimental and experimental evidence that nausea and vomiting can also be learned via classical (Pavlovian) conditioning and might occur in anticipation of the nauseogenic event. Classical conditioning of nausea can develop with chemotherapy in cancer patients. Initially, nausea and vomiting occur during and after the administration of cytotoxic drugs (post-treatment nausea and vomiting) as unconditioned responses (UR). In addition, 20%-30% of cancer patients receiving chemotherapy report these side effects, despite antiemetic medication, when being re-exposed to the stimuli that usually signal the chemotherapy session and its drug infusion. These symptoms are called anticipatory nausea (AN) and/or anticipatory vomiting (ANV) and are explained by classical conditioning. Moreover, there is recent evidence for the assumption that post-chemotherapy nausea is at least partly influenced by learning. After summarizing the relevant assumptions of the conditioning model, revealing that a context can become a conditioned stimulus (CS), the present paper summarizes data that nausea and/or vomiting is acquired by classical conditioning and, consequently, may be alleviated by conditioning techniques. Our own research has focussed on two aspects and is emphasized here. First, a conditioned nausea model was established in healthy humans using body rotation as the nausea-inducing treatment. The validity of this motion-sickness model to examine conditioning mechanisms in the acquisition and alleviation of conditioned nausea and associated endocrine and immunological responses is summarized. Results from the rotation-induced motion sickness model showed that gender is an important moderator variable to be considered in further studies. This paper concludes with a review of the application of the

  12. Fractal analysis on a classical hard-wall billiard with openings using a two-dimensional set of initial conditions

    International Nuclear Information System (INIS)

    Ree, Suhan

    2003-01-01

    Fractal analysis is performed to measure the chaoticity of a classical hard-wall billiard with openings. We use the circular billiard with a straight cut with two openings, and a two-dimensional (2D) set of initial conditions that produce all possible trajectories of a particle injected from one opening. We numerically compute the fractal dimension of singular points of the function that maps an initial condition to the number of collisions with the wall before the exit, using the box-counting algorithm that uses uniformly distributed points inside the 2D set of initial conditions. Finally, the classical chaotic properties are observed while the parameters of the billiard are varied, and the results are compared with those with the one-dimensional set of initial conditions

  13. The Heritability of Macular Response to Supplemental Lutein and Zeaxanthin: A Classic Twin Study

    Science.gov (United States)

    Hammond, Christopher J.; Liew, S. H. Melissa; Van Kuijk, Frederik J.; Beatty, Stephen; Nolan, John M.; Spector, Tim D.; Gilbert, Clare E.

    2012-01-01

    Purpose. Antioxidant supplements may reduce age-related macular degeneration (AMD) progression. The macular carotenoids are of particular interest because of their biochemical, optical, and anatomic properties. This classic twin study was designed to determine the heritability of macular pigment (MP) augmentation in response to supplemental lutein (L) and zeaxanthin (Z). Methods. A total of 322 healthy female twin volunteers, aged 16–50 years (mean 40 ± 8.7) was enrolled in a prospective, nonrandomized supplement study. Macular pigment optical density (MPOD) measurements using two techniques (2-wavelength fundus autofluorescence [AF] and heterochromatic flicker photometry [HFP]), and serum concentrations of L and Z, were recorded at baseline, and at 3 and 6 months following daily supplementation with 18 mg L and 2.4 mg Z for a study period of 6 months. Results. At baseline, mean MPOD was 0.44 density units (SD 0.21, range 0.04–1.25) using HFP, and 0.41 density units (SD 0.15) using AF. Serum L and Z levels were raised significantly from baseline following 3 months' supplementation (mean increase 223% and 633%, respectively, P < 0.0001 for both), with no MPOD increase. After 6 months' supplementation, a small increase in MPOD was seen (mean increase 0.025 ± 0.16, P = 0.02, using HFP). Subdivision of baseline MPOD into quartiles revealed that baseline levels made no difference to the treatment effect. Genetic factors explained 27% (95% confidence interval [CI] 7–45) of the variation in MPOD response. Distribution profiles of macular pigment did not change in response to supplementation. Conclusions. MPOD response to supplemental L and Z for a period of 6 months was small (an increase over baseline of 5.7% and 3.7%, measured using HFP and AF, respectively), and was moderately heritable. Further study is indicated to investigate the functional and clinical impact of supplementation with the macular carotenoids. PMID:22700713

  14. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  15. AVGVSTINVS HIPONENSIS, VIR CHRISTIANUS, DICENDI PERITUS: Analysis of classical influences in the proposal of Augustinian oratorical training

    Directory of Open Access Journals (Sweden)

    Ivan Baycer Junior

    2010-12-01

    Full Text Available This work will expose an analysis of classical influences present in the proposal of Augustinian oratorical training, being developed in parallel with the study of concepts of rhetoric within Christianity. Aiming to note that the presentation prepared by Augustine of Hippo to the classical eloquence simultaneously reflects the rejection to his past and the ideas inherited by the Christian formation. Thus, it will realize that the old rhetorician proposes bases for a non artificial eloquence, whose bases reflect the Pauline conceptions – strongly influenced by Platonism – and the Latin rhetorical heritage, represented mainly by Cicero. Proposal developed during the fourth book of the treatise De doctrina Christiana, the focus of this study, where we see Augustine to reflect and to base the ideal of simple orator, with wise speech and non artificial. 

  16. Classical mechanics

    CERN Document Server

    Benacquista, Matthew J

    2018-01-01

    This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.

  17. Classical eyeblink conditioning in Parkinson's disease.

    Science.gov (United States)

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  18. Impossibility of secure two-party classical computation

    International Nuclear Information System (INIS)

    Colbeck, Roger

    2007-01-01

    We present attacks that show that unconditionally secure two-party classical computation is impossible for many classes of function. Our analysis applies to both quantum and relativistic protocols. We illustrate our results by showing the impossibility of oblivious transfer

  19. Reading the World's Classics Critically: A Keyword-Based Approach to Literary Analysis in Foreign Language Studies

    Science.gov (United States)

    García, Nuria Alonso; Caplan, Alison

    2014-01-01

    While there are a number of important critical pedagogies being proposed in the field of foreign language study, more attention should be given to providing concrete examples of how to apply these ideas in the classroom. This article offers a new approach to the textual analysis of literary classics through the keyword-based methodology originally…

  20. Malaria parasite evasion of classical complement pathway attack

    DEFF Research Database (Denmark)

    Larsen, Mads Delbo; Ditlev, Sisse; Olmos, Rafael Bayarri

    2017-01-01

    of the protective antibodies that are gradually acquired in response to P. falciparum-IEs. Although this response is dominated by IgG1 and IgG3, complement-mediated attack following activation of the classical pathway does not appear to be a major effector mechanism. We hypothesized that this is related to the knob...... is that the knob-restricted expression of PfEMP1 on the IE surface may serve as a hitherto unappreciated immune evasion mechanism employed by P. falciparum parasites....

  1. Analysis of acute ischemic stroke presenting classic lacunar syndrome. A study by diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Satoshi; Ota, Kazuki; Tamaki, Kinya [Hakujyuji Hospital, Fukuoka (Japan)

    2002-03-01

    We retrospectively assessed the pathophysiological features of acute ischemic stroke presenting ''classic'' lacunar syndrome by using diffusion-weighted imaging (DWI). Subjects were 16 patients who were admitted to our hospital within 24 hours of stroke onset and underwent DWI examination on admission. These were divided into three categorical groups; pure motor hemiplegia (PMH) in 8, sensorimotor stroke (SMS) in 7, and dysarthria-clumsy hand syndrome (DCHS) in 1. The fresh responsible lesions were identified by DWI in the perforating territory in 7 patients with PMH and 7 with SMS. Four (one had two possible response lesions; pons and corona radiata) and five patients in the respective groups were diagnosed as lacunar infarction on admission (the largest dimension of the lesion measuring smaller than 15 mm). On the contralateral side to the neurological symptoms, DWI revealed high intensities in cortex, subcortical white matter, and anterior and posterior border zones in the remaining one patient with PMH and in the precentral arterial region in one with DCHS. They were diagnosed as atherothrombotic infarction resulting from the occlusion of the internal carotid artery and cerebral embolism due to atrial fibrillation, respectively. Three patients with PMH showed progressive deterioration after admission and follow-up DWI study in an acute stage revealed enlargement of heir ischemic lesions. The present study suggests that DWI is a useful imaging technique for diagnosis of clinical categories and observation for pathophsiological alteration in the acute ischemic stroke patients with ''classic'' lacunar syndrome. Our results also indicate a necessity to be aware that various types of fresh ischemic lesions other than a single lacune might possibly be developing in cases with this syndrome. (author)

  2. P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways.

    Science.gov (United States)

    Qu, Yan; Dubyak, George R

    2009-06-01

    Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.

  3. Logical reformulation of quantum mechanics. III. Classical limit and irreversibility

    International Nuclear Information System (INIS)

    Omnes, R.

    1988-01-01

    This paper deals with two questions: (1) It contains a proof of the fact that consistent quantum representations of logic tend to the classical representation of logic when Planck's constant tends to zero. This result is obtained by using the microlocal analysis of partial differential equations and the Weyl calculus, which turn out to be the proper mathematical framework for this type of problems. (2) The analysis of the limitations of this proof turn out to be of physical significance, in particular when one considers quantum systems having for their classical version a Kolmogorov K-system. These limitations are used to show the existence of a best classical description for such a system leading to an objective definition of entropy. It is shown that in such a description the approach to equilibrium is strictly reduced to a Markov process

  4. Algorithms for computerized test construction using classical item parameters

    NARCIS (Netherlands)

    Adema, Jos J.; van der Linden, Willem J.

    1989-01-01

    Recently, linear programming models for test construction were developed. These models were based on the information function from item response theory. In this paper another approach is followed. Two 0-1 linear programming models for the construction of tests using classical item and test

  5. Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, R B; Laur, O Y

    2000-01-01

    Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self-associate form......Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self....... To study lateral and adhesive intercadherin interactions, we examined interactions between two classic cadherins, E- and P-cadherins, in epithelial A-431 cells co-producing both proteins. We showed that these cells exhibited heterocomplexes consisting of laterally assembled E- and P....... The specificity of adhesive interaction was localized to the amino-terminal (EC1) domain of both cadherins. Thus, EC1 domain of classic cadherins exposes two determinants responsible for nonspecific lateral and cadherin type-specific adhesive dimerization....

  6. Economic Analysis of Classical Swine Fever Surveillance in The Netherlands

    NARCIS (Netherlands)

    Guo, X.; Claassen, G.D.H.; Oude Lansink, A.G.J.M.; Loeffen, W.; Saatkamp, H.W.

    2016-01-01

    Classical swine fever (CSF) is a highly contagious pig disease that causes economic losses and impaired animal welfare. Improving the surveillance system for CSF can help to ensure early detection of the virus, thereby providing a better initial situation for controlling the disease. Economic

  7. Classically dynamical behaviour of single particle in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    A detailed analysis of the classically dynamical behaviour of a nucleon in heavy nuclei in terms of the TCSM (two-center shell model) is presented. Poincare section is a convenient and reliable criterion to judge the regularity (or chaoticity) of a classical system. The numerical calculations in this work are carried out for a nucleon in 238 U. The Poincare section map and the Poincare surface of section for different conditions are presented

  8. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  9. A bibliometric analysis of the citation classics of acute appendicitis.

    Science.gov (United States)

    Varzgalis, Manvydas; Bowden, Dermot J; Mc Donald, Ciaran K; Kerin, Michael J

    2017-07-01

    Acute appendicitis is one of the most commonly encountered emergency surgical conditions. An understanding of the most highly cited research works in this field is key to good evidence based clinical practice. To perform a bibliometric analysis on the 100 most frequently cited articles in the field of acute appendicitis. The database of the Institute for Scientific Information (ISI) Web of Science Expanded citation index was searched to identify the 100 most frequently cited articles in the field of acute appendicitis. The web of science expanded citation index tracks article citations made since 1946. The top 100 most frequently cited articles were selected for analysis in this series. The most frequently cited article was cited 649 times and the least cited three article 93 times. The average number of citations per article was 167.74. The top 100 cited articles originated from 17 countries. Over half of the papers originated from the USA. Fifty-one of the papers concentrated on diagnostics of acute appendicitis. Thirty-six papers looked at the treatment of acute appendicitis with 30 of these dealing with the surgical management of the disease. There were 6 studies at level 1a, 20 studies at level 1b and 43,5,17 and 9 studies at levels 2, 3, 4 and 5 respectively. Bibliometric analysis of the citation classics in a given field can provide interesting insights into the relationship between the quality of research outputs and clinical practice. The study of acute appendicitis remains an active field of research with a growing body of higher quality evidence underpinning our clinical practice.

  10. Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

    Science.gov (United States)

    Vázquez-Lozano, J. Enrique; Martínez, Alejandro

    2018-03-01

    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.

  11. Dynamics of unitarization by classicalization

    International Nuclear Information System (INIS)

    Dvali, Gia; Pirtskhalava, David

    2011-01-01

    We study dynamics of the classicalization phenomenon suggested in G. Dvali et al. , according to which a class of non-renormalizable theories self-unitarizes at very high-energies via creation of classical configurations (classicalons). We study this phenomenon in an explicit model of derivatively-self-coupled scalar that serves as a prototype for a Nambu-Goldstone-Stueckelberg field. We prepare the initial state in form of a collapsing wave-packet of a small occupation number but of very high energy, and observe that the classical configuration indeed develops. Our results confirm the previous estimates, showing that because of self-sourcing the wave-packet forms a classicalon configuration with radius that increases with center of mass energy. Thus, classicalization takes place before the waves get any chance of probing short-distances. The self-sourcing by energy is the crucial point, which makes classicalization phenomenon different from the ordinary dispersion of the wave-packets in other interacting theories. Thanks to this, unlike solitons or other non-perturbative objects, the production of classicalons is not only unsuppressed, but in fact dominates the high-energy scattering. In order to make the difference between classicalizing and non-classicalizing theories clear, we use a language in which the scattering cross section in a generic theory can be universally understood as a geometric cross section set by a classical radius down to which waves can propagate freely, before being scattered. We then show, that in non-classicalizing examples this radius shrinks with increasing energy and becomes microscopic, whereas in classicalizing theories expands and becomes macroscopic. We study analogous scattering in a Galileon system and discover that classicalization also takes place there, although somewhat differently. We thus observe, that classicalization is source-sensitive and that Goldstones pass the first test.

  12. Quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  13. Classical and semi-classical solutions of the Yang--Mills theory

    International Nuclear Information System (INIS)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator

  14. Fundamental theories of waves and particles formulated without classical mass

    Science.gov (United States)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  15. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  16. On second quantization methods applied to classical statistical mechanics

    International Nuclear Information System (INIS)

    Matos Neto, A.; Vianna, J.D.M.

    1984-01-01

    A method of expressing statistical classical results in terms of mathematical entities usually associated to quantum field theoretical treatment of many particle systems (Fock space, commutators, field operators, state vector) is discussed. It is developed a linear response theory using the 'second quantized' Liouville equation introduced by Schonberg. The relationship of this method to that of Prigogine et al. is briefly analyzed. The chain of equations and the spectral representations for the new classical Green's functions are presented. Generalized operators defined on Fock space are discussed. It is shown that the correlation functions can be obtained from Green's functions defined with generalized operators. (Author) [pt

  17. Social responsibility of corporations

    Directory of Open Access Journals (Sweden)

    Babić Jovan

    2007-01-01

    Full Text Available The issue at stake in the article is corporate social responsibility. There are two rival theories regarding this issue. According to the classical theory managers are responsible to owners (stockholders and their obligation is to pursue the goal of maximizing the profit. According to the other, stakeholder theory, the interests of all corporate stakeholders, all those affected by business, not only stockholders, must be taken in consideration. In the paper these two theories are subject of thorough ethical analysis.

  18. Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy

    Science.gov (United States)

    Provazza, Justin; Coker, David F.

    2018-05-01

    The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.

  19. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  20. Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen.

    Science.gov (United States)

    Sordo, Yusmel; Suárez, Marisela; Caraballo, Rosalina; Sardina, Talía; Brown, Emma; Duarte, Carlos; Lugo, Joanna; Gil, Lázaro; Perez, Danny; Oliva, Ayme; Vargas, Milagros; Santana, Elaine; Valdés, Rodolfo; Rodríguez, María Pilar

    2018-03-01

    The development of subunit vaccines against classical swine fever is a desirable goal, because it allows discrimination between vaccinated and infected animals. In this study, humoral and cellular immune response elicited in inbred BALB/c mice by immunization with a recombinant classical swine fever virus (CSFV) E2 protein fused to porcine CD154 antigen (E2CD154) was assessed. This model was used as a predictor of immune response in swine. Mice were immunized with E2CD154 emulsified in Montanide ISA50V2 or dissolved in saline on days 1 and 21. Another group received E2His antigen, without CD154, in the same adjuvant. Montanide ISA50V2 or saline served as negative controls for each experimental group. Animals immunized with 12.5 and 2.5 μg/dose of E2CD154 developed the highest titers (>1:2000) of CSFV neutralizing antibodies. Moreover, CSFV specific splenocyte gamma-interferon production, measured after seven and twenty-eight days of immunization, was significantly higher in mice immunized with 12.5 μg of E2CD154. As a conclusion, E2CD154 emulsified in Montanide ISA50 V2 was able to induce a potent humoral and an early cellular immune response in inbred BALB/c mice. Therefore, this immunogen might be an appropriate candidate to elicit immune response in swine, control CSF disease and to eliminate CSFV in swine. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Massive open online courses: The new vector in classical university education

    Directory of Open Access Journals (Sweden)

    Mozhaeva Galina

    2016-01-01

    Full Text Available The influence of Massive Open Online Course (MOOC on classical university education is investigated. Opportunities and prospects of development of MOOC at classical universities, requirements to development and implementation of qualitative MOOC-projects, conditions and mechanisms of integration of MOOC into professional education are studied. Work is performed on the basis of the analysis of experience of the world MOOС-platforms and the Russian universities. The new vector in development of classical university under the influence of MOOC is considered on the example of National Research Tomsk State University (http://www.lektorium.tv/mooc. Questioning more than 5000 participants of MOOС-projects was carried out, motivators of learning are revealed, and marketing potential of MOOC and possibility of analytical work on an assessment of the contingent, quality of education and efficiency of the applied technologies are analyzed. The quantitative analysis of basic data is made; results of he analysis are described and presented in the graphic form

  2. A wave equation interpolating between classical and quantum mechanics

    Science.gov (United States)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  3. Quantum remnants in the classical limit

    International Nuclear Information System (INIS)

    Kowalski, A.M.; Plastino, A.

    2016-01-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  4. Quantum remnants in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)

    2016-09-16

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  5. Learning, Realizability and Games in Classical Arithmetic

    Science.gov (United States)

    Aschieri, Federico

    2010-12-01

    In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modified realizability to a classical fragment of first order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Sigma^0_1 formulas). We introduce a new realizability semantics we call "Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time. Secondly, we extend the class of learning based realizers to a classical version PCFclass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of Godel that provably total functions of PA can be represented in Godel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the transfinite case. Transfinite update procedures have to learn values of transfinite sequences of non computable functions in order to extract witnesses from classical proofs.

  6. Quantum models of classical systems

    International Nuclear Information System (INIS)

    Hájíček, P

    2015-01-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)

  7. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2016-09-05

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  8. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene

    2016-01-01

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  9. The classical theory of the bumpy torus relativistic annulus

    International Nuclear Information System (INIS)

    Hamasaki, S.; Krall, N.A.; Sperling, J.L.

    1983-01-01

    The relativistic electron annulus is a critical component of the bumpy torus magnetic fusion concept. An analysis of the annulus is presented in which the ring steady state is determined by the explicit balance of quasi-linear heating and classical losses, i.e. collisions and synchrotron radiation. Both anisotropy and loss-cone effects are included in the formalism. It is demonstrated that a large number of electron cyclotron harmonics, not just the first and second, contribute in an appreciable way to annulus steady state and power balance. Without a loss cone, the analysis reproduces the relativistic passing electron population observed in bumpy tori on confined drift surfaces near the centre of the bumpy torus cross-section. Loss-cone effects permit an annulus population with large perpendicular pressure to exist. It is shown that the balance between quasi-linear heating and the classical losses cannot account for the experimental scaling of bumpy torus annulus temperature; therefore, processes not included in the classical ring power balance model must contribute in a non-trivial way to observed annulus properties. (author)

  10. Entangled states that cannot reproduce original classical games in their quantum version

    International Nuclear Information System (INIS)

    Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition

  11. Comparative analysis of unilateral removable partial denture and classical removable partial denture by using finite element method

    Directory of Open Access Journals (Sweden)

    Radović Katarina

    2010-01-01

    Full Text Available Introduction. Various mobile devices are used in the therapy of unilateral free-end saddle. Unilateral dentures with precise connectivity elements are not used frequently. In this paper the problem of applying and functionality of unilateral freeend saddle denture without major connector was taken into consideration. Objective. The aim was to analyze and compare a unilateral RPD (removable partial denture and a classical RPD by calculating and analyzing stresses under different loads. Methods. 3D models of unilateral removable partial denture and classical removable partial denture with casted clasps were made by using computer program CATIA V5 (abutment teeth, canine and first premolar, with crowns and abutment tissues were also made. The models were built in full-scale. Stress analyses for both models were performed by applying a force of 300 N on the second premolar, a force of 500 N on the first molar and a force of 700 N on the second molar. Results. The Fault Model Extractor (FME analysis and calculation showed the complete behavior of unilateral removable partial denture and abutments (canine and first premolar, as well as the behavior of RPD under identical loading conditions. Applied forces with extreme values caused high stress levels on both models and their abutments within physiological limits. Conclusion. Having analyzed stresses under same conditions, we concluded that the unilateral RPD and classical RPD have similar physiological values.

  12. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza

    2018-01-01

    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  13. Inclination Mixing in the Classical Kuiper Belt

    Science.gov (United States)

    Volk, Kathryn; Malhotra, Renu

    2011-07-01

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  14. Rectennas at optical frequencies: How to analyze the response

    International Nuclear Information System (INIS)

    Joshi, Saumil; Moddel, Garret

    2015-01-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun

  15. Rectennas at optical frequencies: How to analyze the response

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Saumil; Moddel, Garret, E-mail: moddel@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States)

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  16. Rectennas at optical frequencies: How to analyze the response

    Science.gov (United States)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  17. FREEDOM FRANCHISING AS AN ALTERNATIVE TO THE CLASSIC FRANCHISING

    OpenAIRE

    L. A. Solovova

    2016-01-01

    The article is devoted to the model of freedom franchising and to its comparison with the classic franchising model. The aim of the article is to systemize and enrich the knowledge in the sphere of the franchising model evolution. The author’s task was to identify the key features of the freedom franchising model, to compare the freedom franchising with classic franchising and to formulate the conditions under which the freedom franchising model can be developed. To achieve this the analysis,...

  18. Sum rules in classical scattering

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1981-01-01

    This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients

  19. Objetual Regime of the Maya during Classic period, a proposal

    Directory of Open Access Journals (Sweden)

    Antonio Jaramillo Arango

    2016-06-01

    Full Text Available Within the academic archaeology of the 20th Century, objects were only considered as sources for understanding human action. Based on recent theoretic anthropological proposals, this paper proposes a recursive archaeology, that is, to include the Classic Maya concepts as part of our analysis in order to understand things as truly protagonists of social relationships. In the Maya area, objects have different ways of being in the world which have been identified by the archeology of the Classic period: person-objects, parts of a dividual body and machines. These three ways are explored here through archaeologic contexts and epigraphic texts with the aim of approaching the construction of reality of the Classic Maya. With a multidisciplinary analysis that includes archaeology, epigraphy, history, linguistics and anthropology, a high number of examples coming from different regions in the Maya area is examined. Thus, an overall view of this phenomenon is presented.

  20. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials

    International Nuclear Information System (INIS)

    Dai Shuangxing; Dunn, Martin L; Park, Harold S

    2010-01-01

    We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

  1. Quantum versus classical dynamics in the optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  2. Mathematical physics classical mechanics

    CERN Document Server

    Knauf, Andreas

    2018-01-01

    As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

  3. Generic emergence of classical features in quantum Darwinism

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  4. Classical and quantum simulations of many-body systems

    International Nuclear Information System (INIS)

    Murg, Valentin

    2008-01-01

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  5. The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction.

    Science.gov (United States)

    Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M

    2005-06-01

    The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.

  6. Responsibility and the Moral Phenomenology of Using Self-Driving Cars

    OpenAIRE

    Coeckelbergh, Mark

    2016-01-01

    This paper explores how the phenomenology of using self-driving cars influences conditions for exercising and ascribing responsibility. First, a working account of responsibility is presented, which identifies two classic Aristotelian conditions for responsibility and adds a relational one, and which makes a distinction between responsibility for (what one does) and responsibility to (others). Then, this account is applied to a phenomenological analysis of what happens when we use a self-driv...

  7. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  8. Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: a comparison of worked examples.

    Science.gov (United States)

    Petrillo, Jennifer; Cano, Stefan J; McLeod, Lori D; Coon, Cheryl D

    2015-01-01

    To provide comparisons and a worked example of item- and scale-level evaluations based on three psychometric methods used in patient-reported outcome development-classical test theory (CTT), item response theory (IRT), and Rasch measurement theory (RMT)-in an analysis of the National Eye Institute Visual Functioning Questionnaire (VFQ-25). Baseline VFQ-25 data from 240 participants with diabetic macular edema from a randomized, double-masked, multicenter clinical trial were used to evaluate the VFQ at the total score level. CTT, RMT, and IRT evaluations were conducted, and results were assessed in a head-to-head comparison. Results were similar across the three methods, with IRT and RMT providing more detailed diagnostic information on how to improve the scale. CTT led to the identification of two problematic items that threaten the validity of the overall scale score, sets of redundant items, and skewed response categories. IRT and RMT additionally identified poor fit for one item, many locally dependent items, poor targeting, and disordering of over half the response categories. Selection of a psychometric approach depends on many factors. Researchers should justify their evaluation method and consider the intended audience. If the instrument is being developed for descriptive purposes and on a restricted budget, a cursory examination of the CTT-based psychometric properties may be all that is possible. In a high-stakes situation, such as the development of a patient-reported outcome instrument for consideration in pharmaceutical labeling, however, a thorough psychometric evaluation including IRT or RMT should be considered, with final item-level decisions made on the basis of both quantitative and qualitative results. Copyright © 2015. Published by Elsevier Inc.

  9. Outcome predictors in the management of intramedullary classic ependymoma: An integrative survival analysis.

    Science.gov (United States)

    Wang, Yinqing; Cai, Ranze; Wang, Rui; Wang, Chunhua; Chen, Chunmei

    2018-06-01

    This is a retrospective study.The aim of this study was to illustrate the survival outcomes of patients with classic ependymoma (CE) and identify potential prognostic factors.CE is the most common category of spinal ependymomas, but few published studies have discussed predictors of the survival outcome.A Boolean search of the PubMed, Embase, and OVID databases was conducted by 2 investigators independently. The objects were intramedullary grade II ependymoma according to 2007 WHO classification. Univariate Kaplan-Meier analysis and Log-Rank tests were performed to identify variables associated with progression-free survival (PFS) or overall survival (OS). Multivariate Cox regression was performed to assess hazard ratios (HRs) with 95% confidence intervals (95% CIs). Statistical analysis was performed by SPSS version 23.0 (IBM Corp.) with statistical significance defined as P analysis showed that patients who had undergone total resection (TR) had better PFS and OS than those with subtotal resection (STR) and biopsy (P = .002, P = .004, respectively). Within either univariate or multivariate analysis (P = .000, P = .07, respectively), histological type was an independent prognostic factor for PFS of CE [papillary type: HR 0.002, 95% CI (0.000-0.073), P = .001, tanycytic type: HR 0.010, 95% CI (0.000-0.218), P = .003].It was the first integrative analysis of CE to elucidate the correlation between kinds of factors and prognostic outcomes. Definite histological type and safely TR were foundation of CE's management. 4.

  10. Quantum to classical transition in the Hořava-Lifshitz quantum cosmology

    Science.gov (United States)

    Bernardini, A. E.; Leal, P.; Bertolami, O.

    2018-02-01

    A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.

  11. Modeling the quantum to classical crossover in topologically disordered networks

    International Nuclear Information System (INIS)

    Schijven, P; Kohlberger, J; Blumen, A; Mülken, O

    2012-01-01

    We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)

  12. Quantum and classical mechanics in the phase space representation

    International Nuclear Information System (INIS)

    Shirokov, Yu.M.

    1979-01-01

    The theory of the hamiltonian mechanical systems has been formulated in terms of only such physical and mathematical concepts which are meaningful in both mechanics. For instance the observables in both mechanics are represented as c-number functions of coordinates and momenta. The operations of the usual multiplication of observables as well as Poisson bracket (also treated as a sort of multiplication) are singled out as separate objects which can possess their own structure including h-dependence. This leads to the conclusion that the only primary distinction between classical and quantum mechanics is reduced to the distinction in the form of the algebraic identity for the multiplication operations. All other distinctions are proved to be of the secondary origin. The formalism developed in the paper is especially useful for quantizations and for the transitions (including partial ones) to the classical limits. The transitions in both directions are transparent and accessible for analysis for any quantity at any step of calculations. The unified quantum-classical scattering theory is constructed. The integral quantum Lippman-Schwinder type equation is derived where the free solution term is replaced by the solution of the corresponding classical problem. The iteration of this equation gives the quantum corrections to the classical solution

  13. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation

    Science.gov (United States)

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.

    2004-01-01

    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  14. Clinical Validation of the Nursing Outcome "Swallowing Status" in People with Stroke: Analysis According to the Classical and Item Response Theories.

    Science.gov (United States)

    Oliveira-Kumakura, Ana Railka de Souza; de Araujo, Thelma Leite; Costa, Alice Gabrielle de Sousa; Cavalcante, Tahissa Frota; Lopes, Marcos Venícios de Oliveira; Carvalho, Emilia Campos

    2017-09-19

    To validate clinically the nursing outcome "Swallowing status". The adjustment of the nursing outcome was investigated according to the Classical and Item Response Theories. The models were compared regarding information loss, goodness-of-fit, and differential item functioning. Stability and internal consistency were examined. The nursing outcome has the best fit in the generalized partial credit model with different discrimination parameters. Strong correlations among the scores of each indicator were observed. There was no differential item functioning of the outcome indicators. The scale presented high internal consistency (Cronbach's α = .954) and stability (and > .800). This study presents a valid nursing outcome. Most accurate monitoring of sensitivity to an intervention. Validar clinicamente o resultado de enefermagem "Estado da Deglutição". MÉTODOS: O ajustamento do resultado foi investigado de acordo com as teorias Clássica e de Resposta ao Item. Os modelos foram comparados assumindo parâmetros de itens cruzados de igual discriminação. Investigaram-se as propriedades de bondade do ajuste, funcionamento diferencial dos itens, estabilidade e consistência interna. O resultado se ajustou melhor a partir do Modelo de crédito parcial generalizado, o qual demonstrou unidimensionalidade do resultado e forte correlação entre os escores de cada indicador. Não houve funcionamento diferencial dos indicadores. A consistência interna para a escala global (Cronbach's α = .954) e a estabilidade (>.800) mantiveram-se elevadas. CONCLUSÃO: O estudo apresenta um resultado de enfermagem válido. RELEVÂNCIA PARA A PRÁTICA CLÍNICA: Maior acurácia para monitorar a sensibilidade da intervenção. © 2017 NANDA International, Inc.

  15. Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS

    Directory of Open Access Journals (Sweden)

    Davis Simon J

    2007-09-01

    Full Text Available Abstract Background Deep transcriptome analysis will underpin a large fraction of post-genomic biology. 'Closed' technologies, such as microarray analysis, only detect the set of transcripts chosen for analysis, whereas 'open' e.g. tag-based technologies are capable of identifying all possible transcripts, including those that were previously uncharacterized. Although new technologies are now emerging, at present the major resources for open-type analysis are the many publicly available SAGE (serial analysis of gene expression and MPSS (massively parallel signature sequencing libraries. These technologies have never been compared for their utility in the context of deep transcriptome mining. Results We used a single LongSAGE library of 503,431 tags and a "classic" MPSS library of 1,744,173 tags, both prepared from the same T cell-derived RNA sample, to compare the ability of each method to probe, at considerable depth, a human cellular transcriptome. We show that even though LongSAGE is more error-prone than MPSS, our LongSAGE library nevertheless generated 6.3-fold more genome-matching (and therefore likely error-free tags than the MPSS library. An analysis of a set of 8,132 known genes detectable by both methods, and for which there is no ambiguity about tag matching, shows that MPSS detects only half (54% the number of transcripts identified by SAGE (3,617 versus 1,955. Analysis of two additional MPSS libraries shows that each library samples a different subset of transcripts, and that in combination the three MPSS libraries (4,274,992 tags in total still only detect 73% of the genes identified in our test set using SAGE. The fraction of transcripts detected by MPSS is likely to be even lower for uncharacterized transcripts, which tend to be more weakly expressed. The source of the loss of complexity in MPSS libraries compared to SAGE is unclear, but its effects become more severe with each sequencing cycle (i.e. as MPSS tag length increases

  16. Socio-philosophical background (the theoretical core of classical liberalism

    Directory of Open Access Journals (Sweden)

    N. G. Osipova

    2015-01-01

    Full Text Available In the present article the theoretical core of classical liberalism are revealed through a systematic analysis of the views of social scientists as J. Locke, J. Bentham, J.S. Mill, A. Tocqueville and A. Smith about the nature of relations between the individual and society, individual freedom, an ideal socio-political order and its economic fundamentals and principles of governance. The author in details analyses the genesis and content of the aggregate set of values of classical liberalism, such as individualism, freedom, reason, justice, tolerance, and private property.

  17. Classical and quantum simulations of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Murg, Valentin

    2008-04-07

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  18. Semi-classical estimation of ground state energies on a sphere

    International Nuclear Information System (INIS)

    Sollie, R.

    1989-01-01

    It is considered electrons confined to the surface of a sphere, and calculate the classical electrostatic energies for up to 32 electrons. It is introduced a magnetic field perpendicular to the surface of the sphere, by placing a magnetic monopole at the origin. The classical analysis can be extended by replacing the pair-potential by an effective potential, defined as the quantum mechanical energy of a pair of electrons at the appropriate distance. (A.C.A.S.) [pt

  19. Objetual Regime of the Maya during Classic period, a proposal

    OpenAIRE

    Antonio Jaramillo Arango

    2016-01-01

    Within the academic archaeology of the 20th Century, objects were only considered as sources for understanding human action. Based on recent theoretic anthropological proposals, this paper proposes a recursive archaeology, that is, to include the Classic Maya concepts as part of our analysis in order to understand things as truly protagonists of social relationships. In the Maya area, objects have different ways of being in the world which have been identified by the archeology of the Classic...

  20. Targeting mTOR in HIV-Negative Classic Kaposi's Sarcoma

    Directory of Open Access Journals (Sweden)

    Ofer Merimsky

    2008-01-01

    Full Text Available A 66-year old female with HIV-negative classic Kaposi's sarcoma responded to mTOR targeting by rapamycin. The response was well documented by PET-CT. This case provides supporting evidence that the mTOR pathway may be important in the tumorigenesis of KS and that rapamycin may have activity in this disease.

  1. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  2. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  3. Comparative analysis of four active compounds of Baikal skullcap and its classical TCM prescriptions according to different clinical curative effects

    Directory of Open Access Journals (Sweden)

    Guang-Wei Zhu

    2017-05-01

    Full Text Available Objective: A sensitive HPLC-DAD detection method was established for the comparative analysis of the four active compounds (including baicalin, baicalein, wogonoside and wogonin of Baikal Skullcap and its classical TCM prescriptions according to different clinical curative effects. And analyze the relationship between compatibility of medicines, content and clinical curative effect.

  4. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  5. Quantum classical correspondence in nonrelativistic electrodynamics

    International Nuclear Information System (INIS)

    Ritchie, B.; Weatherford, C.A.

    1999-01-01

    A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter

  6. Classical trajectory in non-relativistic scattering

    International Nuclear Information System (INIS)

    Williams, A.C.

    1978-01-01

    With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory

  7. Analysis of a classical chiral bag model

    International Nuclear Information System (INIS)

    Nadeau, H.

    1985-01-01

    The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes

  8. Observational study of differences in head position for high notes in famous classical and non-classical male singers.

    Science.gov (United States)

    Amarante Andrade, Pedro; Švec, Jan G

    2016-07-01

    Differences in classical and non-classical singing are due primarily to aesthetic style requirements. The head position can affect the sound quality. This study aimed at comparing the head position for famous classical and non-classical male singers performing high notes. Images of 39 Western classical and 34 non-classical male singers during live performances were obtained from YouTube. Ten raters evaluated the frontal rotational head position (depression versus elevation) and transverse head position (retraction versus protraction) visually using a visual analogue scale. The results showed a significant difference for frontal rotational head position. Most non-classical singers in the sample elevated their heads for high notes while the classical singers were observed to keep it around the neutral position. This difference may be attributed to different singing techniques and phonatory system adjustments utilized by each group.

  9. Beyond the borders of classical optical measurements

    International Nuclear Information System (INIS)

    Eisenberg, H.; Khoury, G.; Fonseca, E.; Bouwmeester, D.

    2006-01-01

    Full Text: The limits of optical measurements are the subject to many recent works. It has been shown how by using non-classical photonic states, spatial resolution can exceed the diffraction limit [1]. The same states also improve interference measurements beyond the shot noise and up to the quantum Heisenberg limit [2]. On the other hand, a few methods have been suggested that improve the optical resolution by exploiting classical optical nonlinearities [3]. First, we will present a scheme that exploits the non-local quantum correlations of a second order entangled state produced by optical parametric down-conversion [4]. The scheme results with a non-classical state that can be used in quantum limited interferometry. It is also simply extendable to states of any photon number. Another method will be presented, where nonlinear measurements are induced by projecting the state of light onto the Fock space [5]. This process simulated optical nonlinearities up to the 7th order. We used those measurements to characterize the output of a standard polarization interferometer. Improved resolution was demonstrated, but a detailed analysis reveals the differences to the previous nonclassical approach

  10. Analysis of the Forward-Backward Trajectory Solution for the Mixed Quantum-Classical Liouville Equation

    OpenAIRE

    Hsieh, Chang-Yu; Kapral, Raymond

    2013-01-01

    Mixed quantum-classical methods provide powerful algorithms for the simulation of quantum processes in large and complex systems. The forward-backward trajectory solution of the mixed quantum-classical Liouville equation in the mapping basis [J. Chem. Phys. 137, 22A507 (2012)] is one such scheme. It simulates the dynamics via the propagation of forward and backward trajectories of quantum coherent state variables, and the propagation of bath trajectories on a mean-field potential determined j...

  11. Markkinointiviestintäsuunnitelma : Classic Coffee Oy

    OpenAIRE

    Eerola, Laura

    2015-01-01

    Opinnäytetyön aiheena oli laatia markkinointiviestintäsuunnitelma kalenterivuodelle 2016 vuosikellon muodossa, toimintansa jo vakiinnuttaneelle Classic Coffee Oy:lle. Classic Coffee Oy on vuonna 2011 perustettu, Tampereella toimiva kahvila-alan yritys joka tarjoaa lounaskahvilatoiminnan lisäksi laadukkaita konditoria-palveluita, yritys- ja kokoustarjoiluja sekä tilavuokrausta. Classic Coffee Oy:llä on yksi kahvila, Classic Coffee Tampella. Kahvila sijaitsee Tampellassa, Tampereen keskustan vä...

  12. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired by ...

  13. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude...

  14. Lesbian classics in Germany? A film historical analysis of Mädchen in Uniform (1931 and 1958).

    Science.gov (United States)

    Mayer, Veronika

    2012-01-01

    The films Mädchen in Uniform (Leontine Sagan, 1931, Germany; Géza von Radványi, 1958, Germany) both tell the story of a schoolgirl falling in love with her teacher at a Prussian boarding school. Whereas the 1931 version is regarded as a lesbian classic in queer (German) cinema, the 1958 remake, however, is not even considered part of the lesbian genre. The following analysis examines both films within their historical context to answer the question what makes Mädchen in Uniform (1931) a lesbian film and why the remake did not measure up to its original's significance.

  15. Socio-economic institutions in classical political economy of Ukraine

    Directory of Open Access Journals (Sweden)

    Yu.V. Ushchapovskyy

    2015-09-01

    Full Text Available Fragmentary researches of socio-economic institutions by classical political economy are caused by the absence of social components in its methodological «core». The article concentrates on the ideas of institutionalism in the context of classical political economy formation. The author underlines the necessity to adapt the analysis of socio-economic institutions in the heritage of classical political economy in Ukraine of the 19-th century to the creation of an integral conception of genesis and evolution of institutionalism in Ukrainian economic thought. Following the traditions of European economic science, Ukrainian scientists tried to take into account social contradictions, the needs in democratic transformations of social relations in their works. In spite of absence of the category of «standard (rule» among Adam Smith’s followers, and Ukrainian economists paid attention to a social problematic in the context of traditional researches of classical political economy, there is the necessity to examine socio-economic institutions in their heritage and the possibility of its application to the formation of the paradigm of modern institutionalism. Michail Baludyanskiy considered that a state could limit the freedom of an economic activity only on the base of generally accepted standards, but in this case contributing to safety and freedom of an economic activity. National system of economy, its legislative and management systems must conceptually obey economic policy, Anthropocentrism defined the philosophical conception of Tihon Stepanov’s political economy. He followed methodological holism as he concluded the characteristics of an individual on the base of characteristics of institutions (society. Ivan Vernadskiy’s researches concerning behavior of an individual and his trials to characterize value from a consumer’s point of view don’t fully correspond to traditional classical political economy. To improve Adam Smith’s study

  16. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  17. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George

    2016-01-01

    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  18. Classical Swine Fever—An Updated Review

    Science.gov (United States)

    Blome, Sandra; Staubach, Christoph; Henke, Julia; Carlson, Jolene; Beer, Martin

    2017-01-01

    Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities. PMID:28430168

  19. Classical Swine Fever-An Updated Review.

    Science.gov (United States)

    Blome, Sandra; Staubach, Christoph; Henke, Julia; Carlson, Jolene; Beer, Martin

    2017-04-21

    Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.

  20. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  1. CLASSICS

    Indian Academy of Sciences (India)

    2013-11-11

    Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.

  2. Finite-time quantum-to-classical transition for a Schroedinger-cat state

    International Nuclear Information System (INIS)

    Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina

    2011-01-01

    The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.

  3. Auditory profiles of classical, jazz, and rock musicians: Genre-specific sensitivity to musical sound features

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2016-01-01

    Full Text Available When compared with individuals without explicit training in music, adult musicians have facilitated neural functions in several modalities. They also display structural changes in various brain areas, these changes corresponding to the intensity and duration of their musical training. Previous studies have focused on investigating musicians with training in Western classical music. However, musicians involved in different musical genres may display highly differentiated auditory profiles according to the demands set by their genre, i.e. varying importance of different musical sound features. This hypothesis was tested in a novel melody paradigm including deviants in tuning, timbre, rhythm, melody transpositions, and melody contour. Using this paradigm while the participants were watching a silent video and instructed to ignore the sounds, we compared classical, jazz, and rock musicians’ and non-musicians’ accuracy of neural encoding of the melody. In all groups of participants, all deviants elicited an MMN response, which is a cortical index of deviance discrimination. The strength of the MMN and the subsequent attentional P3a responses reflected the importance of various sound features in each music genre: these automatic brain responses were selectively enhanced to deviants in tuning (classical musicians, timing (classical and jazz musicians, transposition (jazz musicians, and melody contour (jazz and rock musicians. Taken together, these results indicate that musicians with different training history have highly specialized cortical reactivity to sounds which violate the neural template for melody content.

  4. Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features.

    Science.gov (United States)

    Tervaniemi, Mari; Janhunen, Lauri; Kruck, Stefanie; Putkinen, Vesa; Huotilainen, Minna

    2015-01-01

    When compared with individuals without explicit training in music, adult musicians have facilitated neural functions in several modalities. They also display structural changes in various brain areas, these changes corresponding to the intensity and duration of their musical training. Previous studies have focused on investigating musicians with training in Western classical music. However, musicians involved in different musical genres may display highly differentiated auditory profiles according to the demands set by their genre, i.e., varying importance of different musical sound features. This hypothesis was tested in a novel melody paradigm including deviants in tuning, timbre, rhythm, melody transpositions, and melody contour. Using this paradigm while the participants were watching a silent video and instructed to ignore the sounds, we compared classical, jazz, and rock musicians' and non-musicians' accuracy of neural encoding of the melody. In all groups of participants, all deviants elicited an MMN response, which is a cortical index of deviance discrimination. The strength of the MMN and the subsequent attentional P3a responses reflected the importance of various sound features in each music genre: these automatic brain responses were selectively enhanced to deviants in tuning (classical musicians), timing (classical and jazz musicians), transposition (jazz musicians), and melody contour (jazz and rock musicians). Taken together, these results indicate that musicians with different training history have highly specialized cortical reactivity to sounds which violate the neural template for melody content.

  5. Periodontitis promotes the diabetic development of obese rat via miR-147 induced classical macrophage activation.

    Science.gov (United States)

    Xu, Ran; Zeng, Guang; Wang, Shuyong; Tao, Hong; Ren, Le; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Gao, Jing; Li, Daxu

    2016-10-01

    Emerging evidence has indicated the bad effect of periodontal inflammation on diabetes control. However, the exact regulatory mechanisms within the association between periodontitis and diabetic development remain unclear. This study aims to investigate the function of microRNAs in regulating periodontitis-induced inflammation in an obese rat model. Experimental periodontitis was introduced into OLETF and LETO rat. Intraperitoneal glucose tolerance test was performed to detect diabetic development. Serum cytokines levels and microRNAs expression were detected by ELISA and RT-PCR analysis respectively. And, macrophages were isolated for gain- and loss-of-function studies, to investigate the regulatory mechanism of miR-147 in periodontitis-induced inflammation. Periodontitis induced proinflammatory response with classical activated macrophages in both rats, but distinctively aggravated the impaired glucose tolerance of OLETF rat with spontaneous type 2 diabetes. Analysis for serum microRNAs expression showed the distinctive and synergistic upregulation of miR-147 with periodontitis-induced effects in rats, while further experiments demonstrated the positive regulatory mechanism of miR-147 on classical activated macrophages with overexpressed proinflammatory markers, showing M1 phenotype. This study provided new evidence for the positive effect of periodontal inflammation on diabetic development, while the regulatory mechanism of miR-147 on classical macrophage activation, was verified, and presumed to contribute to the impaired glucose tolerance aggravated by periodontitis in obese rats. Besides, this study indicated the application of miR-147 for therapeutic approach in the treatment of diabetes with periodontitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Open Issues of Stress Placement in Classical Names

    Directory of Open Access Journals (Sweden)

    Kajetan Gantar

    2016-12-01

    Full Text Available The paper begins by describing the author’s experiences with the Rules of the Slovene Orthography (1987, a project in which he participated for several years, counselling, for example, against such hybrid possessive adjectives in Slovene as Horačev (‘of Horace’, Properčev (‘of Propertius’, Leibničev (‘of Leibniz’, etc. There follows an analysis of the dilemmas raised by stress placement in classical names, both geographical and personal: dilemmas surprisingly reminiscent of those encountered by classical and later grammarians in stressing Greek names in the Latin language. Indeed, the Slovene tradition has sometimes adopted the Latin stress even with names of Greek origin, and in some cases the established stress is grounded neither in Greek nor Latin but rather borrowed from French or German. For frequently used and long-Slovenised classical names, the author advocates the preservation of the established stress. With names more rarely used, however, experts should be granted the right to keep the original stress without the stigma of ‘literalness’, which excludes this practice from the living language organism. Above all, the paper argues for the right of literary translators to adapt the stress of personal names in poetry translation to the rhythm and rules of the hexameter or other classical metrical schemes.

  7. Classical and quantum chaotic scattering in a muffin tin potential

    International Nuclear Information System (INIS)

    Brandis, S.

    1995-05-01

    In this paper, we study the classical mechanics, the quantum mechanics and the semi-classical approximation of the 2-dimensional scattering from a muffin tin potential. The classical dynamical system for Coulombic muffin tins is proven to be chaotic by explicit construction of the exponentially increasing number of periodic orbits. These are all shown to be completely unstable (hyperbolic). By methods of the thermodynamic formalism we can determine the Hausdorff dimension, escape rate and Kolmogorov-Sinai-entropy of the system. An extended KKR-method is developed to determine the quantum mechanical S-matrix. We compare a few integrable scattering examples with the results of the muffin tin scattering. Characteristic features of the spectrum of eigenphases turn out to be the level repulsion and long range rigidity as compared to a completely random spectrum. In the semiclassical analysis we can rederive the regularized Gutzwiller trace formula directly from the exact KKR-determinant to prove that no further terms contribute in the case of the muffin tin potential. The periodic orbit sum allows to draw some qualitative conclusions about the effects of classical chaos on the quantum mechanics. In the context of scaling systems the theory of almost periodic functions is discussed as a possible mathematical foundation for the semiclassical periodic orbit sums. Some results that can be obtained from this analysis are developed in the context of autocorrelation functions and distribution functions for chaotic scattering systems. (orig.)

  8. Analysis of the enamel hypoplasia using micro-CT scanner versus classical method.

    Science.gov (United States)

    Marchewka, Justyna; Skrzat, Janusz; Wróbel, Andrzej

    2014-01-01

    This article demonstrates the use of micro-CT scanning of the teeth surface for recognizing and evaluating severity of the enamel hypoplasia. To test capabilities of the microtomography versus classical method of evaluation hypoplastic defects of the enamel we selected two human teeth (C, M(2)) showing different types of enamel hypoplasia: linear, pits, and groove. Examined samples derive from archeological material dated on XVII-XVIII AD and excavated in Poland. In the current study we proved that micro-CT scanning is a powerful technique not only for imaging all kinds of the enamel hypoplasia but also allows to perform accurate measurements of the enamel defects. We figure out that contrary to the classical method of scoring enamel defects, the micro-computed tomography yields adequate data which serve for estimating the length of stress episode and length of interval between them.

  9. The vacuum preserving Lie algebra of a classical W-algebra

    International Nuclear Information System (INIS)

    Feher, L.; Tsutsui, I.

    1993-07-01

    We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)

  10. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  11. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  12. Quantum symmetries of classical spaces

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam

    2009-01-01

    We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...

  13. Complementary Roles of the Classical and Lectin Complement Pathways in the Defense against Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2016-01-01

    Aspergillus fumigatus infections are associated with a high mortality rate for immunocompromised patients. The complement system is considered to be important in protection against this fungus, yet the course of activation is unclear. The aim of this study was to unravel the role of the classical......, lectin, and alternative pathways under both immunocompetent and immunocompromised conditions to provide a relevant dual-perspective on the response against A. fumigatus. Conidia (spores) from a clinical isolate of A. fumigatus were combined with various human serum types (including serum deficient...... complement on A. fumigatus, but required classical and/or lectin pathway for initiation. In normal human serum, this initiation came primarily from the classical pathway. However, with a dysfunctional classical pathway (C1q-deficient serum), lectin pathway activated complement and mediated opsonophagocytosis...

  14. Doing classical theology in context

    Directory of Open Access Journals (Sweden)

    Gerrit Neven

    2007-05-01

    Full Text Available This article is about doing classical theology in context. The weight of my argument is that classical text of Karl Barth’s theology is great intellectual text means: being addressed by this text in the context in which one lives. The basic keywords that constitute a rule for reading those texts are “equality”, “event” and “re-contextualisation”. The article contains two sections: The first section elaborates statements about the challenge of the event and the project of rereading classics by way of recontextualisation. The word “event” refers to true and innovating moments in history which one can share, or which one can betray. Classical texts always share in those liberative moments. The question then is in what sense do they present a challenge to the contemporary reader. The second section elaborates the position of man as central and all decisive for doing theology in context now. In this section, the author appeals for a renewal of the classical anthropology as an anthropology of hope. This anthropology contradicts postmodern concepts of otherness.

  15. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  16. Nonlocal origin of response suppression from stimulation outside the classic receptive field in area 17 of the cat.

    Science.gov (United States)

    Brown, H A; Allison, J D; Samonds, J M; Bonds, A B

    2003-01-01

    A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2-7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons. The existence of cells that exhibit no change in peripherally inhibited responses during the GABA application suggests that peripheral influences may arise from outside area 17, presumably from other cortical

  17. Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods

    Science.gov (United States)

    Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.

    2010-01-01

    Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.

  18. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  19. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    International Nuclear Information System (INIS)

    Turner, L

    2004-01-01

    In only 150 pages, not counting appendices, references, or the index, this book is one author's perspective of the massive theoretical and philosophical hurdles in the no-man's-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process) 2. How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process). However, this monograph seems overly ambitious. Although the publisher's description refers to this book as an accessible entre, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand quantum-classical correspondence. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms an infinitesimality condition, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as the Caldeira-Leggett equation, without

  20. Classical Bianchi Type I Cosmology in K-Essence Theory

    International Nuclear Information System (INIS)

    Pimentel, Luis O.; Socorro, J.; Espinoza-García, Abraham

    2014-01-01

    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid (p=γρ) modeling the usual matter content and with cosmological constant Λ. Classical exact solutions for any γ≠1 and Λ=0 are found in closed form, whereas solutions for Λ≠0 are found for particular values in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between the anisotropic parameters and the volume of the universe. We also include a qualitative analysis of the analog of the Friedmann equation.

  1. Quantum-mechanical machinery for rational decision-making in classical guessing game

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung

    2016-02-01

    In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.

  2. Quantum-mechanical machinery for rational decision-making in classical guessing game.

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S; Lee, Jinhyoung

    2016-02-15

    In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.

  3. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  4. Citation Classics from Industrial Marketing Management

    DEFF Research Database (Denmark)

    Lindgreen, Adam; Di Benedetto, C. Anthony

    2017-01-01

    , system sellers and systems integrator, third-party logistics providers, and value). Finally, each of the 30 citation classics is introduced, and the classics' theoretical implications to business-to-business marketing management and fields related to (e.g., supply chain management, strategic management......This article proposes a categorization of what constitutes a citation classic. General observations reveal, with regard to the top 30 citation classics from Industrial Marketing Management, the number of authors per article, country of origin of the lead author, and type of article (literature...... review, qualitative methodology, or quantitative methodology). In addition, these citation classics can be classified by topic (firm performance, goods-dominant and service-dominant logics, Internet and high-technology markets, product innovation, relationships and business networks, supply chains...

  5. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  6. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  7. Classical limit for quantum mechanical energy eigenfunctions

    International Nuclear Information System (INIS)

    Sen, D.; Sengupta, S.

    2004-01-01

    The classical limit problem is discussed for the quantum mechanical energy eigenfunctions using the Wentzel-Kramers-Brillouin approximation, free from the problem at the classical turning points. A proper perspective of the whole issue is sought to appreciate the significance of the discussion. It is observed that for bound states in arbitrary potential, appropriate limiting condition is definable in terms of a dimensionless classical limit parameter leading smoothly to all observable classical results. Most important results are the emergence of classical phase space, keeping the observable distribution functions non-zero only within the so-called classical region at the limit point and resolution of some well-known paradoxes. (author)

  8. The Invention of Infertility in the Classical Greek World:

    Science.gov (United States)

    Flemming, Rebecca

    2013-01-01

    Summary The article examines the understandings of, and responses to, reproductive failure in the classical Greek world. It discusses explanations and treatments for non-procreation in a range of ancient Greek medical texts, focusing on the writings of the Hippocratic Corpus, which devote considerable energy to matters of fertility and generation, and places them alongside the availability of a divine approach to dealing with reproductive disruption, the possibility of asking various deities, including the specialist healing god Asclepius, for assistance in having children. Though the relations between these options are complex, they combine to produce a rich remedial array for those struggling with childlessness, the possibility that any impediment to procreation can be removed. Classical Greece, rather than the nineteenth century, or even 1978, is thus the time when “infertility,” understood as an essentially reversible somatic state, was invented. PMID:24362276

  9. Seven steps towards the classical world

    International Nuclear Information System (INIS)

    Allori, Valia; Duerr, Detlef; Goldstein, Shelly; Zanghi, Nino

    2002-01-01

    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wavefunctions or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical limit becomes very simple: when do the Bohmian trajectories look Newtonian?

  10. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  11. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  12. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons.

    Science.gov (United States)

    Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J

    2017-12-01

    Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Classical confinement and outward convection of impurity ions in the MST RFP

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Eilerman, S.; Nornberg, M.; Reusch, J. A.; Sarff, J. S. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Caspary, K. J.; Chapman, B. E.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Magee, R. M. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Craig, D. [Physics Department, Wheaton College, Wheaton, Illinois 60187 (United States); Fiksel, G. [Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York (United States)

    2012-05-15

    Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.

  14. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  15. Quantum formalism for classical statistics

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  16. The Social Responsibility of Corporate Management: A Classical Critique.

    OpenAIRE

    Philip R. P. Coelho; James E. McClure; John A. Spry

    2002-01-01

    Calls for corporate social responsibility are widespread, yet there is no consensus about what it means; this may be its charm. It is possible to distinguish the fiduciary duty owed to shareholders as expressed by Milton Friedman from all other paradigms of corporate responsibility. Friedman maintains that: “ . . . there is one and only one social responsibility of business- to use its resources and engage in activities designed to increase its profits so long as it stays within the rules of ...

  17. Approaches to Data Analysis of Multiple-Choice Questions

    Science.gov (United States)

    Ding, Lin; Beichner, Robert

    2009-01-01

    This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics…

  18. Diminuendo: Classical Music and the Academy

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…

  19. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  20. Analysis of geometric phase effects in the quantum-classical Liouville formalism.

    Science.gov (United States)

    Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  1. Analysis of geometric phase effects in the quantum-classical Liouville formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ryabinkin, Ilya G.; Izmaylov, Artur F. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4 (Canada); Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Hsieh, Chang-Yu; Kapral, Raymond [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  2. A modified CCFS approach for the seismic analysis of multiply supported MDOF secondary systems

    International Nuclear Information System (INIS)

    Saudy, A.; Ghobarah, A.; Aziz, T.S.

    1992-01-01

    An alternative technique has been developed to evaluate the ordinates of the Cross Cross Floor Spectra (CCFS). The technique properly accounts for the dynamic interaction, tuning and non-classical damping characters of the combined Primary-Secondary (P-S) systems. The approach is able to estimate the peak response of the tuned non-classically damped P-S systems more accurately. In the analysis, two fictions oscillators are attached to the primary system in the course of evaluating the ordinates rather than attaching only one oscillator to the primary system as was previously suggested. Two numerical examples are analyzed by the original and the proposed techniques. The results are compared with the response values obtained using coupled dynamic analysis. The proposed technique proved to be more accurate in estimating the peak response of the secondary system, specially in cases of tuned, non-classically damped P-S systems. (orig.)

  3. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  4. Effect of classic uvulopalatopharyngoplasty and laser-assisted uvulopalatopharyngoplasty on voice acoustics and speech nasalance

    International Nuclear Information System (INIS)

    Mahmoud Y Abu El-ella

    2010-01-01

    Uvulopalatopharyngoplasty (UPPP) is a commonly used surgical technique for oropharyngeal reconstruction in patients with obstructive sleep apnea (OSA). This procedure can be done either through the classic or the laser-assisted uvulopalatopharyngoplasty (LAUP) technique. The purpose of this study was to evaluate the effect of classic UPPP and LAUP on acoustics of voice and speech nasalance, and to compare the effect of each operation on these two domains. Patients and The study included 27 patients with a mean age of 46 years. All patients were diagnosed with OSA based on polysomnographic examination. Patients were divided into two groups according to the type of surgical procedure. Fifteen patients underwent classic UPPP, whereas 12 patients were subjected to LAUP. A full assessment was done for all patients preoperatively and postoperatively, including auditory perceptual assessment (APA) of voice and speech, objective assessment using acoustic voice analysis and nasometry. Auditory perceptual assessment of speech and voice, acoustic analysis of voice and nasometric analysis of speech did not show statistically significant differences between the preoperative and postoperative evaluations in either group (P>.05).The results of this study demonstrated that in patients with OSA, the surgical technique, whether classic UPPP or LAUP, does not have significant effects on the patients' voice quality or their speech outcomes (Author).

  5. Longitudinal vibration of isotropic solid rods: from classical to modern theories

    CSIR Research Space (South Africa)

    Shatalov, M

    2011-12-01

    Full Text Available Vibration of Isotropic Solid Rods: From Classical to Modern Theories Michael Shatalov1,2, Julian Marais2, Igor Fedotov2 and Michel Djouosseu Tenkam2 1Council for Scientific and Industrial Research 2Tshwane University of Technology South Africa 1...). The classical approximate theory of longitudinal vibration of rods was developed during the 18th century by J. D?Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based on the analysis of the one dimensional wave equation and is applicable...

  6. 'Leonard pairs' in classical mechanics

    International Nuclear Information System (INIS)

    Zhedanov, Alexei; Korovnichenko, Alyona

    2002-01-01

    Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)

  7. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  8. Biomechanics of the classic metaphyseal lesion: finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); Coats, Brittany [University of Utah, Department of Mechanical Engineering, Salt Lake City, UT (United States)

    2017-11-15

    The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary. This study focuses on the strain patterns generated from finite element modeling to identify loading scenarios and regions of the cortex that are susceptible to bone failure. A geometric model was constructed from a normal 3-month-old infant's distal tibia and fibula. The model's boundary conditions were set to mimic forceful manipulation of the ankle with eight load modalities (tension, compression, internal rotation, external rotation, dorsiflexion, plantar flexion, valgus bending and varus bending). For all modalities except internal and external rotation, simulations showed increased cortical strains near the subperiosteal bone collar. Tension generated the largest magnitude of cortical strain (24%) that was uniformly distributed near the subperiosteal bone collar. Compression generated the same distribution of strain but to a lesser magnitude overall (15%). Dorsiflexion and plantar flexion generated high (22%) and moderate (14%) localized cortical strains, respectively, near the subperiosteal bone collar. Lower cortical strains resulted from valgus bending, varus bending, internal rotation and external rotation (8-10%). The highest valgus and varus bending cortical strains occurred medially. These simulations suggest that the likelihood of the initial cortical bone failure of the CML is higher along the margin of the subperiosteal bone collar when the ankle is under tension, compression, valgus bending, varus bending, dorsiflexion and plantar flexion, but not under internal

  9. Biomechanics of the classic metaphyseal lesion: finite element analysis

    International Nuclear Information System (INIS)

    Tsai, Andy; Kleinman, Paul K.; Coats, Brittany

    2017-01-01

    The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary. This study focuses on the strain patterns generated from finite element modeling to identify loading scenarios and regions of the cortex that are susceptible to bone failure. A geometric model was constructed from a normal 3-month-old infant's distal tibia and fibula. The model's boundary conditions were set to mimic forceful manipulation of the ankle with eight load modalities (tension, compression, internal rotation, external rotation, dorsiflexion, plantar flexion, valgus bending and varus bending). For all modalities except internal and external rotation, simulations showed increased cortical strains near the subperiosteal bone collar. Tension generated the largest magnitude of cortical strain (24%) that was uniformly distributed near the subperiosteal bone collar. Compression generated the same distribution of strain but to a lesser magnitude overall (15%). Dorsiflexion and plantar flexion generated high (22%) and moderate (14%) localized cortical strains, respectively, near the subperiosteal bone collar. Lower cortical strains resulted from valgus bending, varus bending, internal rotation and external rotation (8-10%). The highest valgus and varus bending cortical strains occurred medially. These simulations suggest that the likelihood of the initial cortical bone failure of the CML is higher along the margin of the subperiosteal bone collar when the ankle is under tension, compression, valgus bending, varus bending, dorsiflexion and plantar flexion, but not under internal

  10. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  11. Classical-driving-assisted entanglement dynamics control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)

    2017-04-15

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.

  12. CLASSICAL MUSIC DECREASE STRESS LEVEL AND BLOOD PRESSURE PRIMIGRAVIDA IN THE THIRD TRIMESTER

    Directory of Open Access Journals (Sweden)

    Ni Ketut Alit Armini

    2017-07-01

    Full Text Available Introduction: Many changes in psychology and biology increase primigravida’s stress in the third trimester. The stress response makes blood pressure being unstable, it causes bad effect for pregnancy. Classical music can be used as one of relaxation facilities that can reduce stress. The aimed of this study were to analyze the effect of classical music on stress level and blood pressure. Method: This study was used a quasy experimental purposive sampling design. The sample in this study were 14 pregnancy women in the third trimester in RSIA Cempaka Putih Permata Surabaya. The independent variable in this study was classical music and the dependent variable were stress level and blood pressure. Data were analyzed by Wilcoxon Signed Rank Test, Mann Withney U Test, Paired t Test and Independent t Test with significance level α≤0.05. Result: The result showed that the stress level in controlled group with p=0.567 and intervention group with p=0.025. The result of blood pressure in controlled group with p=0.522 in systolic blood pressure, p=0.35 in diastolic blood pressure and intervention group showed p=0.103 in systolic blood pressure and p=1.00 in diastolic blood pressure. Discussion: It can be concluded that listening classical music can reduce stress level, stabilize blood pressure, although blood pressure hasn’t significant result but mean of blood pressure show that it was stable. Further studies should be considered to used cortisol to identify stress biology response spesifically.

  13. Classicality of quantum information processing

    International Nuclear Information System (INIS)

    Poulin, David

    2002-01-01

    The ultimate goal of the classicality program is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing, and a step forward in understanding the very foundation of QIP

  14. Digital Classics Outside the Echo-Chamber

    OpenAIRE

    Bodard, Gabriel; Romanello, Matteo

    2016-01-01

    This volume, edited by the organizers of the “Digital Classicist” seminars series, presents research in classical studies, digital classics and digital humanities, bringing together scholarship that addresses the impact of the study of classical antiquity through computational methods on audiences such as scientists, heritage professionals, students and the general public. Within this context, chapters tackle particular aspects, from epigraphy, papyrology and manuscripts, via Greek language, ...

  15. Origin of classical structure in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Claus [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Lohmar, Ingo [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Polarski, David [Laboratoire de Physique Theorique et Astroparticules, UMR 5207 CNRS, Universite de Montpellier II, 34095 Montpellier (France); Starobinsky, Alexei A [Landau Institute for Theoretical Physics, Kosygina St. 2, Moscow 119334 (Russian Federation)

    2007-05-15

    We address the quantum-to-classical transition for primordial fluctuations, that is, the emergence of classical stochastic properties for these fluctuations. We discuss in particular the entanglement entropy for these fluctuations, the decoherence time, and the question of the classical basis (pointer basis) for them. The decoherence time for modes outside the Hubble scale is set by the Hubble parameter. The classical states are narrow Gaussians in the field amplitude.

  16. About the modern house - and the classical

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2010-01-01

    In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965).......In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965)....

  17. Classical algebraic chromodynamics

    International Nuclear Information System (INIS)

    Adler, S.L.

    1978-01-01

    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  18. A century of citation classics in otolaryngology-head and neck surgery journals revisited.

    Science.gov (United States)

    Coelho, Daniel H; Edelmayer, Luke W; Fenton, John E

    2014-06-01

    Citation classics have traditionally been defined in the smaller medical specialties as any article published in a peer-reviewed journal that has received 100 or more citations from other articles also published in peer-reviewed journals. This study aimed to determine patterns of citation classics changes in the medical field otorhinolaryngology and head and neck surgery (OHNS) over the past decade and serves as a follow-up to an original study published in 2002, "A Century of Citation Classics in Otolaryngology-Head & Neck Surgery." Bibliometric analysis. Using the Journal Citation Reports and Web of Science, OHNS journals were selected and assessed for the content of citation classics. Nine-hundred five citation classics were found, over 11-fold more than 1 decade prior. Other significant changes were seen in country of origin, decade of publication, number of authors per article, subspecialty of article, and most frequently discussed topics. The dramatic rise in quantity and nature of citation classics in the past decade may be due to unprecedented advancements in information technology and communication, allowing studies and experiments to be performed, written, reviewed, published, and cited at rapid rates. NA. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Nation and Classical Music

    DEFF Research Database (Denmark)

    Brincker, Benedikte

    The last book Anthony D. Smith wrote before he died, and which will be published in Spring 2017, has the title Nation and Classical Music. Smith had for a long time been intrigued by the intimate relationship between the nation and classical music. At the most manifest level it involves...... them into their compositions thus challenging the romantic musical style searching for an authentic national musical expression. Against the backdrop of the extensive research carried out by Anthony Smith into the relationship between the nation and classical music, the present paper seeks to add...... cultural centers. In doing this, the paper seeks to unfold how composers channeled musical inspiration embedded in cultural environments that cut across national boundaries into national musical traditions thus catering to specific national audiences. The paper is written as a tribute to a great mentor...

  20. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Patricia P. Jumbo-Lucioni

    2013-01-01

    Classic galactosemia is a genetic disorder that results from profound loss of galactose-1P-uridylyltransferase (GALT. Affected infants experience a rapid escalation of potentially lethal acute symptoms following exposure to milk. Dietary restriction of galactose prevents or resolves the acute sequelae; however, many patients experience profound long-term complications. Despite decades of research, the mechanisms that underlie pathophysiology in classic galactosemia remain unclear. Recently, we developed a Drosophila melanogaster model of classic galactosemia and demonstrated that, like patients, GALT-null Drosophila succumb in development if exposed to galactose but live if maintained on a galactose-restricted diet. Prior models of experimental galactosemia have implicated a possible association between galactose exposure and oxidative stress. Here we describe application of our fly genetic model of galactosemia to the question of whether oxidative stress contributes to the acute galactose sensitivity of GALT-null animals. Our first approach tested the impact of pro- and antioxidant food supplements on the survival of GALT-null and control larvae. We observed a clear pattern: the oxidants paraquat and DMSO each had a negative impact on the survival of mutant but not control animals exposed to galactose, and the antioxidants vitamin C and α-mangostin each had the opposite effect. Biochemical markers also confirmed that galactose and paraquat synergistically increased oxidative stress on all cohorts tested but, interestingly, the mutant animals showed a decreased response relative to controls. Finally, we tested the expression levels of two transcripts responsive to oxidative stress, GSTD6 and GSTE7, in mutant and control larvae exposed to galactose and found that both genes were induced, one by more than 40-fold. Combined, these results implicate oxidative stress and response as contributing factors in the acute galactose sensitivity of GALT-null Drosophila and, by

  1. Uncovering of Classical Swine Fever Virus adaptive response to vaccination by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Orton, Richard; Höper, Dirk

    Next Generation Sequencing (NGS) has rapidly become the preferred technology in nucleotide sequencing, and can be applied to unravel molecular adaptation of RNA viruses such as Classical Swine Fever Virus (CSFV). However, the detection of low frequency variants within viral populations by NGS...... is affected by errors introduced during sample preparation and sequencing, and so far no definitive solution to this problem has been presented....

  2. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    Science.gov (United States)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  3. Quantum locking of classical correlations and quantum discord of classical-quantum states

    OpenAIRE

    BOIXO, S.; AOLITA, L.; CAVALCANTI, D.; MODI, K.; WINTER, A.

    2011-01-01

    A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in thi...

  4. Classical and post-classical stages of development of ideas on global conflicts

    Directory of Open Access Journals (Sweden)

    Y. S. Pilipenko

    2016-06-01

    Thus, in the history of the development of ideas about the nature of the conflict, it is possible to allocate three stages. The first stage is a classic, it representatives of which are O. Conte, K. Marx, G. Zimmel. The second stage is post-classical, represented by such scholars as P. Sztompka, G. lutsishin, N. Luhmann, M. Zelenkov, V. Zavalniuk. The third stage is multi-paradigmal, not formed yet, but actively developed by modern sociologists as I. Bekeshkina, Ye. Golovakha, A. Ruchka and other.

  5. A comparison of classical histology to anatomy revealed by hard x-rays

    Science.gov (United States)

    Richter, Claus-Peter; Tan, Xiaodong; Young, Hunter; Stock, Stuart; Robinson, Alan; Byskosh, Orest; Zheng, Jing; Soriano, Carmen; Xiao, Xianghui; Whitlon, Donna

    2016-10-01

    Many diseases trigger morphological changes in affected tissue. Today, classical histology is still the "gold standard" used to study and describe those changes. Classical histology, however, is time consuming and requires chemical tissue manipulations that can result in significant tissue distortions. It is sometimes difficult to separate tissue-processing artifacts from changes caused by the disease process. We show that synchrotron X-ray phase-contrast micro-computed tomography (micro-CT) can be used to examine non-embedded, hydrated tissue at a resolution comparable to that obtained with classical histology. The data analysis from stacks of reconstructed micro-CT images is more flexible and faster than when using the classical, physically embedded sections that are by necessity fixed in a particular orientation. We show that in a three-dimensional (3D) structure with meticulous structural details such as the cochlea and the kidney, micro-CT is more flexible, faster and more convenient for morphological studies and disease diagnoses.

  6. Extremely Low-Metallicity Stars in the Classical Dwarf Galaxies

    NARCIS (Netherlands)

    Starkenburg, E.; DART Team, [Unknown; Aoki, W; Ishigaki, M; Suda, T; Tsujimoto, T; Arimoto, N

    After careful re-analysis of Ca II triplet calibration at low-metallicity, the classical satellites around the Milky Way are found not to be devoided of extremely low-metallicity stars and their (extremely) metal-poor tails are predicted to be much more in agreement with the Milky Way halo. A first

  7. Classical correlations, Bell inequalities, and communication complexity

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Johannes; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Percival, Ian C. [Department of Physics, Univ. of London (United Kingdom)

    2007-07-01

    A computer program is presented which is capable of exploring generalizations of Bell-type inequalities for arbitrary numbers of classical inputs and outputs. Thereby, polytopes can be described which represent classical local realistic theories, classical theories without signaling, or classical theories with explicit signaling. These latter polytopes may also be of interest for exploring basic problems of communication complexity. As a first application the influence of non-perfect detectors is discussed in simple Bell experiments.

  8. The Yale-Classical Archives Corpus

    Directory of Open Access Journals (Sweden)

    Christopher William White

    2016-07-01

    Full Text Available The Yale-Classical Archives Corpus (YCAC contains harmonic and rhythmic information for a dataset of Western European Classical art music. This corpus is based on data from classicalarchives.com, a repository of thousands of user-generated MIDI representations of pieces from several periods of Western European music history. The YCAC makes available metadata for each MIDI file, as well as a list of pitch simultaneities ("salami slices" in the MIDI file. Metadata include the piece's composer, the composer's country of origin, date of composition, genre (e.g., symphony, piano sonata, nocturne, etc., instrumentation, meter, and key. The processing step groups the file's pitches into vertical slices each time a pitch is added or subtracted from the texture, recording the slice's offset (measured in the number of quarter notes separating the event from the file's beginning, highest pitch, lowest pitch, prime form, scale-degrees in relation to the global key (as determined by experts, and local key information (as determined by a windowed key-profile analysis. The corpus contains 13,769 MIDI files by 571 composers yielding over 14,051,144 vertical slices. This paper outlines several properties of this corpus, along with a representative study using this dataset.

  9. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  10. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

    Science.gov (United States)

    Graham, Simon P; Haines, Felicity J; Johns, Helen L; Sosan, Olubukola; La Rocca, S Anna; Lamp, Benjamin; Rümenapf, Till; Everett, Helen E; Crooke, Helen R

    2012-04-05

    Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. On the Predictability of Classical Propositional Logic

    Directory of Open Access Journals (Sweden)

    Poliana M. Reis

    2013-01-01

    Full Text Available In this work we provide a statistical form of empirical analysis of classical propositional logic decision methods called SAT solvers. This work is perceived as an empirical counterpart of a theoretical movement, called the enduring scandal of deduction, that opposes considering Boolean Logic as trivial in any sense. For that, we study the predictability of classical logic, which we take to be the distribution of the runtime of its decision process. We present a series of experiments that determines the run distribution of SAT solvers and discover a varying landscape of distributions, following the known existence of a transition of easy-hard-easy cases of propositional formulas. We find clear distributions for the easy areas and the transitions easy-hard and hard-easy. The hard cases are shown to be hard also for the detection of statistical distributions, indicating that several independent processes may be at play in those cases.

  12. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  13. COMPETITION: CLASSICAL VERSUS NEOCLASSICAL VIEW

    OpenAIRE

    Mihaela Cornelia Sandu

    2013-01-01

    Competition is an important element from economical theory. Over time it has experienced several definitions and classifications much of them being contradictory. In this paper I will make a parallel between classical and neoclassical point of view according to competition. Keywords. Competition; neoclassical theory; classical theory; monopolistic; perfect competition.

  14. Beyond quantum-classical analogies: high time for agreement?

    Science.gov (United States)

    Marrocco, Michele

    Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.

  15. The classical limit of W-algebras

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Ramos, E.

    1992-01-01

    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  16. Effects of Classical Background Music on Stress, Anxiety, and Knowledge of Filipino Baccalaureate Nursing Students.

    Science.gov (United States)

    Evangelista, Kevin; Macabasag, Romeo Luis A; Capili, Brylle; Castro, Timothy; Danque, Marilee; Evangelista, Hanzel; Rivero, Jenica Ana; Gonong, Michell Katrina; Diño, Michael Joseph; Cajayon, Sharon

    2017-10-28

    Previous work on the use of background music suggests conflicting results in various psychological, behavioral, and educational measures. This quasi-experiment examined the effect of integrating classical background music during a lecture on stress, anxiety, and knowledge. A total of 42 nursing students participated this study. We utilized independent sample t-test and multivariate analysis of variance to examine the effect of classical background music. Our findings suggest that the presence or absence of classical background music do not affect stress, anxiety, and knowledge scores (Λ = 0.999 F(3, 78) = 0.029, p = 0.993). We provided literature to explain the non-significant result. Although classical music failed to establish a significant influence on the dependent variables, classical background music during lecture hours can be considered a non-threatening stimulus. We recommend follow up studies regarding the role of classical background music in regulating attention control of nursing students during lecture hours.

  17. Mathematical methods of classical physics

    CERN Document Server

    Cortés, Vicente

    2017-01-01

    This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

  18. Dynamics of quantum-classical differences for chaotic systems

    International Nuclear Information System (INIS)

    Ballentine, L.E.

    2002-01-01

    The differences between quantum and classical dynamics can be studied through the moments and correlations of the position and momentum variables in corresponding quantum and classical statistical states. In chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as (ℎ/2π) 2 , and that the exponent for the growth of these differences is independent of (ℎ/2π). The quantum-classical difference exponent is studied for two quartic potential models, and the results are compared with previous work on the Henon-Heiles model

  19. Wigner-Kirkwood expansion of the quasi-elastic nuclear responses and application to spin-isospin responses

    International Nuclear Information System (INIS)

    Chanfray, G.

    1988-01-01

    We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment

  20. Statistical analysis of 4 types of neck whiplash injuries based on classical meridian theory.

    Science.gov (United States)

    Chen, Yemeng; Zhao, Yan; Xue, Xiaolin; Li, Hui; Wu, Xiuyan; Zhang, Qunce; Zheng, Xin; Wang, Tianfang

    2015-01-01

    As one component of the Chinese medicine meridian system, the meridian sinew (Jingjin, (see text), tendino-musculo) is specially described as being for acupuncture treatment of the musculoskeletal system because of its dynamic attributes and tender point correlations. In recent decades, the therapeutic importance of the sinew meridian has become revalued in clinical application. Based on this theory, the authors have established therapeutic strategies of acupuncture treatment in Whiplash-Associated Disorders (WAD) by categorizing four types of neck symptom presentations. The advantage of this new system is to make it much easier for the clinician to find effective acupuncture points. This study attempts to prove the significance of the proposed therapeutic strategies by analyzing data collected from a clinical survey of various WAD using non-supervised statistical methods, such as correlation analysis, factor analysis, and cluster analysis. The clinical survey data have successfully verified discrete characteristics of four neck syndromes, based upon the range of motion (ROM) and tender point location findings. A summary of the relationships among the symptoms of the four neck syndromes has shown the correlation coefficient as having a statistical significance (P < 0.01 or P < 0.05), especially with regard to ROM. Furthermore, factor and cluster analyses resulted in a total of 11 categories of general symptoms, which implies syndrome factors are more related to the Liver, as originally described in classical theory. The hypothesis of meridian sinew syndromes in WAD is clearly supported by the statistical analysis of the clinical trials. This new discovery should be beneficial in improving therapeutic outcomes.

  1. Creation and Appreciation of “Nature and Man in One” and Chinese Classic Beauty of Garden – Taking the Suzhou classic garden as an example

    Directory of Open Access Journals (Sweden)

    Cui Huaizu

    2015-01-01

    Full Text Available The ideology of “Nature and Man in One” from Taoism, one of the local schools that has the deepest influence on China, demonstrates an admiration and appraise for the nature and shows the thought that man and nature exist in harmony. The ideology “Nature and Man in One” is a basic principle for ancient people to deal with the relation between man and nature, and also provides a corresponding basis and reflects the wisdom of ancestors. The modern society has also provided a reference for harmonious and sustained development of man and nature. Chinese classic garden is an artistic works from the ancient craftsmen. As a representative of Chinese classic garden, Suzhou Garden complies with the philosophical concept “Nature and Man in One” to arrange the mountains and rivers. This article makes a deep analysis on the influence of Taoism cultural deposits on the arrangement of Chinese classic garden based on the connotation of “Nature and Man in One” ideology.

  2. Quantum-classical hybrid dynamics – a summary

    International Nuclear Information System (INIS)

    Elze, Hans-Thomas

    2013-01-01

    A summary of a recently proposed description of quantum-classical hybrids is presented, which concerns quantum and classical degrees of freedom of a composite object that interact directly with each other. This is based on notions of classical Hamiltonian mechanics suitably extended to quantum mechanics.

  3. Mathematical intelligence developed in math learning with classical backsound music of the classical era

    Science.gov (United States)

    Karlimah

    2018-05-01

    This study examines the application of classical music backsound in mathematics learning. The method used is quasi experimental design nonequivalent pretest-posttest control group in elementary school students in Tasikmalaya city, Indonesia. The results showed that classical music contributed significantly to the mathematical intelligence of elementary school students. The mathematical intelligence shown is in the cognitive ability ranging from the level of knowledge to evaluation. High level mathematical intelligence is shown by students in reading and writing integers with words and numbers. The low level of mathematical intelligence exists in projecting the story into a mathematical problem. The implication of this research is the use of classical music backsound on learning mathematics should pay attention to the level of difficulty of mathematics material being studied.

  4. Novel cystathionine β-synthase gene mutations in a Filipino patient with classic homocystinuria.

    Science.gov (United States)

    Silao, Catherine Lynn T; Fabella, Terence Diane F; Rama, Kahlil Izza D; Estrada, Sylvia C

    2015-10-01

    Classic homocystinuria due to cystathionine β-synthase (CBS) deficiency is an autosomal recessive disorder of sulfur metabolism. Clinical manifestations include mental retardation, dislocation of the optic lens (ectopia lentis), skeletal abnormalities and a tendency to thromboembolic episodes. We present the first mutational analysis of CBS in a Filipino patient with classic homocystinuria. Genomic DNA was extracted from peripheral blood collected from a diagnosed Filipino patient with classic homocystinuria. The entire coding region of CBS (17 exons) was amplified using polymerase chain reaction and bidirectionally sequenced using standard protocols. The patient was found to be compound heterozygous for two novel mutations, g.13995G>A [c.982G>A; p.D328K] and g.15860-15868dupGCAGGAGCT [c.1083-1091dupGCAGGAGCT; p. Q362-L364dupQEL]. Four known single-nucleotide polymorphisms (rs234706, rs1801181, rs706208 and rs706209) were also detected in the present patient's CBS. The patient was heterozygous for all the identified alleles. This is the first mutational analysis of CBS done in a Filipino patient with classic homocystinuria who presented with a novel duplication mutation and a novel missense mutation. Homocystinuria due to CBS deficiency is a heterogeneous disorder at the molecular level. © 2015 Japan Pediatric Society.

  5. Emergence of quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C

    2009-01-01

    The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.

  6. Classical and anaplastic seminoma: Difference in survival

    International Nuclear Information System (INIS)

    Bobba, V.S.; Mittal, B.B.; Hoover, S.V.; Kepka, A.

    1987-01-01

    The authors undertook a retrospective study of seminoma patients treated with radiation therapy between 1961 and 1985. The classical group consisted of 66 patients, of whom 47 were stage I and 19 were stage II. The anaplastic group consisted of 21 patients, of whom 11 were stage I, nine were stage II, and one was stage III. The median follow-up was 66 months. The five-year crude survival rate for the entire group was 92%, for classical 96%, and for anaplastic 78% (P<.005). Similarly, there was a significant difference (P<.005) in actuarial relapse-free survival at 5 years between classical and anaplastic seminoma. For classical stage I, the relapse-free actuarial 5-year survival rate was 96; for classical stage II, 84%. For anaplastic stage I the relapse-free actuarial 5-year survival rate was 82%, and for stage II 75%. Six patients in the classical group (9%) failed treatment. In the anaplastic group, five patients or 24 failed treatment. Therefore, the authors' data suggest a difference in survival and failure rate between classical and anaplastic seminoma. Extratesticular seminoma with anaplastic histology has an even worse prognosis

  7. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  8. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    2000-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilisation abilities are also discussed. (author)

  9. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    1999-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilization abilities are also discussed. (author)

  10. Representational Realism, Closed Theories and the Quantum to Classical Limit

    Science.gov (United States)

    de Ronde, Christian

    In this chapter, we discuss the representational realist stance as a pluralistontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions - accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the superposition problem and the contextuality problem, which consider explicitly the conceptual representation of orthodox QM beyond the mere reference to mathematical structures and measurement outcomes. In the final part of the chapter, we revisit, from representational realist perspective, the quantum to classical limit and the orthodox claim that this inter-theoretic relation can be explained through the principle of decoherence.

  11. Structural-Vibration-Response Data Analysis

    Science.gov (United States)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  12. Quantum magnification of classical sub-Planck phase space features

    International Nuclear Information System (INIS)

    Hensinger, W.K.; Heckenberg, N.; Rubinsztein-Dunlop, H.; Delande, D.

    2002-01-01

    Full text: To understand the relationship between quantum mechanics and classical physics a crucial question to be answered is how distinct classical dynamical phase space features translate into the quantum picture. This problem becomes even more interesting if these phase space features occupy a much smaller volume than ℎ in a phase space spanned by two non-commuting variables such as position and momentum. The question whether phase space structures in quantum mechanics associated with sub-Planck scales have physical signatures has recently evoked a lot of discussion. Here we will show that sub-Planck classical dynamical phase space structures, for example regions of regular motion, can give rise to states whose phase space representation is of size ℎ or larger. This is illustrated using period-1 regions of regular motion (modes of oscillatory motion of a particle in a modulated well) whose volume is distinctly smaller than Planck's constant. They are magnified in the quantum picture and appear as states whose phase space representation is of size h or larger. Cold atoms provide an ideal test bed to probe such fundamental aspects of quantum and classical dynamics. In the experiment a Bose-Einstein condensate is loaded into a far detuned optical lattice. The lattice depth is modulated resulting in the emergence of regions of regular motion surrounded by chaotic motion in the phase space spanned by position and momentum of the atoms along the standing wave. Sub-Planck scaled phase space features in the classical phase space are magnified and appear as distinct broad peaks in the atomic momentum distribution. The corresponding quantum analysis shows states of size Ti which can be associated with much smaller classical dynamical phase space features. This effect may considered as the dynamical equivalent of the Goldstone and Jaffe theorem which predicts the existence of at least one bound state at a bend in a two or three dimensional spatial potential

  13. The CLASSIC Project

    CERN Document Server

    Iselin, F Christoph

    1996-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Clas Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty.

  14. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  15. Cinematic Landscapes of Teaching: Lessons from a Narrative of Classic Film

    Science.gov (United States)

    Cary, Lisa J.; Reifel, Stuart

    2005-01-01

    The purpose of this inquiry was to utilize the concept of "landscapes of teaching" in the analysis of a classic film about a venerated teacher, "Goodbye, Mr. Chips" (1939). First, the aim of the analysis is to provide insights into teacher development and to discuss the sacred and mystical dimensions of teaching (Craig, 1995). Second, the analysis…

  16. Chemotherapy Response Assessment by FDG-PET-CT in Early-stage Classical Hodgkin Lymphoma: Moving Beyond the Five-Point Deauville Score

    Energy Technology Data Exchange (ETDEWEB)

    Milgrom, Sarah A., E-mail: samilgrom@mdanderson.org [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Dong, Wenli [Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas (United States); Akhtari, Mani; Smith, Grace L.; Pinnix, Chelsea C. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Mawlawi, Osama [Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas (United States); Rohren, Eric [Department of Radiology, Baylor College of Medicine, Houston, Texas (United States); Garg, Naveen [Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas (United States); Chuang, Hubert [Department of Nuclear Medicine, MD Anderson Cancer Center, Houston, Texas (United States); Yehia, Zeinab Abou; Reddy, Jay P.; Gunther, Jillian R. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Khoury, Joseph D. [Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas (United States); Suki, Tina; Osborne, Eleanor M. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Oki, Yasuhiro; Fanale, Michelle [Department of Lymphoma/Myeloma, MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina S. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States)

    2017-02-01

    Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CT scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined with the

  17. Chemotherapy Response Assessment by FDG-PET-CT in Early-stage Classical Hodgkin Lymphoma: Moving Beyond the Five-Point Deauville Score

    International Nuclear Information System (INIS)

    Milgrom, Sarah A.; Dong, Wenli; Akhtari, Mani; Smith, Grace L.; Pinnix, Chelsea C.; Mawlawi, Osama; Rohren, Eric; Garg, Naveen; Chuang, Hubert; Yehia, Zeinab Abou; Reddy, Jay P.; Gunther, Jillian R.; Khoury, Joseph D.; Suki, Tina; Osborne, Eleanor M.; Oki, Yasuhiro; Fanale, Michelle; Dabaja, Bouthaina S.

    2017-01-01

    Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CT scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined with the

  18. Psychometric properties of the Chinese version of resilience scale specific to cancer: an item response theory analysis.

    Science.gov (United States)

    Ye, Zeng Jie; Liang, Mu Zi; Zhang, Hao Wei; Li, Peng Fei; Ouyang, Xue Ren; Yu, Yuan Liang; Liu, Mei Ling; Qiu, Hong Zhong

    2018-06-01

    Classic theory test has been used to develop and validate the 25-item Resilience Scale Specific to Cancer (RS-SC) in Chinese patients with cancer. This study was designed to provide additional information about the discriminative value of the individual items tested with an item response theory analysis. A two-parameter graded response model was performed to examine whether any of the items of the RS-SC exhibited problems with the ordering and steps of thresholds, as well as the ability of items to discriminate patients with different resilience levels using item characteristic curves. A sample of 214 Chinese patients with cancer diagnosis was analyzed. The established three-dimension structure of the RS-SC was confirmed. Several items showed problematic thresholds or discrimination ability and require further revision. Some problematic items should be refined and a short-form of RS-SC maybe feasible in clinical settings in order to reduce burden on patients. However, the generalizability of these findings warrants further investigations.

  19. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  20. Film models for transport phenomena with fog formation: The classical film model

    NARCIS (Netherlands)

    Brouwers, Jos; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  1. Film models for transport phenomena with fog formation: the classical film model

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  2. Classical Dimensional Transmutation and Confinement

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.

  3. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  4. Classic romance in electronic arrangement

    Directory of Open Access Journals (Sweden)

    Kizin M.M.

    2017-03-01

    Full Text Available this article analyses the transformation of the performing arts of classical romance in the terms of electronic sound and performance via electronic sounds arrangements. The author focuses on the problem of synthesis of electronic sound arrangements and classical romance, offering to acquire the skills of the creative process in constantly changing conditions of live performances.

  5. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  6. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  7. Classical Mechanics as Nonlinear Quantum Mechanics

    International Nuclear Information System (INIS)

    Nikolic, Hrvoje

    2007-01-01

    All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics

  8. X-ray Modeling of Classical Novae

    Science.gov (United States)

    Nemeth, Peter

    2010-01-01

    It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).

  9. Classical Humanism and the Challenge of Modernity. Debates on classical education in Germany c. 1770-1860

    NARCIS (Netherlands)

    van Bommel, S.P.

    2013-01-01

    Classical humanism was a living tradition until far into the nineteenth century. In scholarship, classical (Renaissance) humanism is usually strictly distinguished from so-called ‘neo-humanism,’ which, especially in Germany, reigned supreme at the beginning of the nineteenth century. While most

  10. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  11. Driven topological systems in the classical limit

    Science.gov (United States)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  12. Semi-classical quantization of chaotic billiards

    International Nuclear Information System (INIS)

    Smilansky, U.

    1992-02-01

    The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)

  13. Does classical liberalism imply democracy?

    Directory of Open Access Journals (Sweden)

    David Ellerman

    2015-12-01

    Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.

  14. Emerging Connections: Quantum & Classical Optics Incubator Program Book

    Energy Technology Data Exchange (ETDEWEB)

    Lesky, Marcia [Optical Society of America, Washington, DC (United States)

    2016-11-06

    The Emerging Connections: Quantum & Classical Optics Incubator was a scientific meeting held in Washington, DC on 6-8 November 2016. This Incubator provided unique and focused experiences and valuable opportunities to discuss advances, challenges and opportunities regarding this important area of research. Quantum optics and classical optics have coexisted for nearly a century as two distinct, but consistent descriptions of light in their respective domains. Recently, a number of detailed examinations of the structure of classical light beams have revealed that effects widely thought to be solely quantum in origin also have a place in classical optics. These new quantum-classical connections are informing classical optics in meaningful ways specifically by expanding understanding of optical coherence. Simultaneously, relationships discovered with classical light beams now also serve as a vehicle to illuminate concepts that no longer solely belong to the quantum realm. Interference, polarization, coherence, complementarity and entanglement are a partial list of elementary notions that now appear to belong to both quantum and classical optics. The goal of this meeting was to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work would promote discussion and lead to a more unified understanding of optics.

  15. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    Smailagic, A.

    1981-08-01

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  16. Foucault's contributions for understanding power relations in British classical political economy

    Directory of Open Access Journals (Sweden)

    Danielle Guizzo

    2015-05-01

    Full Text Available This paper analyzes the strategic role played by British classical political economy in constructing new technologies of power. Michel Foucault drew attention to a change that political economists promoted concerning the role of the state, which has been overlooked by historians of economic thought. This paper explores the main arguments provided by the most important British political economists of the 18th and 19th centuries on what concerns population management, State's role and economic dynamics in order to examine Foucault's considerations. Although British classical political economy consolidated the mechanism of markets and economic individuality, thus creating a system of truth that changed economic norms and practices, its discourse also established a political conduct that was responsible for creating mechanisms of control that disseminated new forms of power relations.

  17. Trading quantum for classical resources in quantum data compression

    International Nuclear Information System (INIS)

    Hayden, Patrick; Jozsa, Richard; Winter, Andreas

    2002-01-01

    We study the visible compression of a source E={|φ i >,p i } of pure quantum signal states or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade-off curve Q * (R), where Q * (R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade-off function by a simple formula in terms of only single-signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parametrized states. We also show that our result leads to a number of corollaries characterizing the trade-off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so-called remote state preparation problem. Finally, we develop a probability-free version of our main result which may be interpreted as an answer to the question: ''How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits

  18. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  19. The Generic Mapping Tools 6: Classic versus Modern Mode

    Science.gov (United States)

    Wessel, P.; Uieda, L.; Luis, J. M. F.; Scharroo, R.; Smith, W. H. F.; Wobbe, F.

    2017-12-01

    The Generic Mapping Tools (GMT; gmt.soest.hawaii.edu) is a 25-year old, mature open-source software package for the analysis and display of geoscience data (e.g., interpolate, filter, manipulate, project and plot temporal and spatial data). The GMT "toolbox" includes about 80 core and 40 supplemental modules sharing a common set of command options, file structures, and documentation. GMT5, when released in 2013, introduced an application programming interface (API) to allow programmatic access to GMT from other computing environments. Since then, we have released a GMT/MATLAB toolbox, an experimental GMT/Julia package, and will soon introduce a GMT/Python module. In developing these extensions, we wanted to simplify the GMT learning curve but quickly realized the main stumbling blocks to GMT command-line mastery would be ported to the external environments unless we introduced major changes. With thousands of GMT scripts already in use by scientists around the world, we were acutely aware of the need for backwards compatibility. Our solution, to be released as GMT 6, was to add a modern run mode that complements the classic mode offered so far. Modern mode completely eliminates the top three obstacles for new (and not so new) GMT users: (1) The responsibility to properly stack PostScript layers manually (i.e., the -O -K dance), (2) the responsibility of handling output redirection of PostScript (create versus append), and (3) the need to provide commands with repeated information about regions (-R) and projections (-J). Thus, modern mode results in shorter, simpler scripts with fewer pitfalls, without interfering with classic scripts. Our implementation adds five new commands that begin and end a modern session, simplify figure management, automate the conversion of PostScript to more suitable formats, automate region detection, and offer a new automated subplot environment for multi-panel illustrations. Here, we highlight the GMT modern mode and the

  20. The classic project

    International Nuclear Information System (INIS)

    Iselin, F. Christoph

    1997-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty

  1. Simple regional strain pattern analysis to predict response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Risum, Niels; Jons, Christian; Olsen, Niels T

    2012-01-01

    A classical strain pattern of early contraction in one wall and prestretching of the opposing wall followed by late contraction has previously been associated with left bundle branch block (LBBB) activation and short-term response to cardiac resynchronization therapy (CRT). Aims of this study were...... to establish the long-term predictive value of an LBBB-related strain pattern and to identify changes in contraction patterns during short-term and long-term CRT....

  2. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  3. Frequency Response Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  4. Classical and quantum fingerprinting strategies

    International Nuclear Information System (INIS)

    Scott, A.; Walgate, J.; Sanders, B.

    2005-01-01

    Full text: Fingerprinting enables two parties to infer whether the messages they hold are the same or different when the cost of communication is high: each message is associated with a smaller fingerprint and comparisons between messages are made in terms of their fingerprints alone. When the two parties are forbidden access to a public coin, it is known that fingerprints composed of quantum information can be made exponentially smaller than those composed of classical information. We present specific constructions of classical fingerprinting strategies through the use of constant-weight codes and provide bounds on the worst-case error probability with the help of extremal set theory. These classical strategies are easily outperformed by quantum strategies constructed from line packings and equiangular tight frames. (author)

  5. Scaling, scattering, and blackbody radiation in classical physics

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2017-01-01

    Here we discuss blackbody radiation within the context of classical theory. We note that nonrelativistic classical mechanics and relativistic classical electrodynamics have contrasting scaling symmetries which influence the scattering of radiation. Also, nonrelativistic mechanical systems can be accurately combined with relativistic electromagnetic radiation only provided the nonrelativistic mechanical systems are the low-velocity limits of fully relativistic systems. Application of the no-interaction theorem for relativistic systems limits the scattering mechanical systems for thermal radiation to relativistic classical electrodynamic systems, which involve the Coulomb potential. Whereas the naive use of nonrelativistic scatterers or nonrelativistic classical statistical mechanics leads to the Rayleigh–Jeans spectrum, the use of fully relativistic scatterers leads to the Planck spectrum for blackbody radiation within classical physics. (paper)

  6. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  7. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  8. The classical nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1988-01-01

    The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab

  9. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  10. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  11. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M

    2009-01-01

    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  12. Citation classics in neuro-oncology: assessment of historical trends and scientific progress.

    Science.gov (United States)

    Hachem, Laureen D; Mansouri, Alireza; Juraschka, Kyle; Taslimi, Shervin; Pirouzmand, Farhad; Zadeh, Gelareh

    2017-09-01

    Citation classics represent the highest cited works in a field and are often regarded as the most influential literature. Analyzing thematic trends in citation classics across eras enables recognition of important historical advances within a field. We present the first analysis of the citation classics in neuro-oncology. The Web of Science database was searched using terms relevant to "neuro-oncology." Articles with >400 citations were identified and the top 100 cited articles were evaluated. The top 100 neuro-oncology citation classics consisted of 43 clinical studies (17 retrospective, 10 prospective, 16 randomized trials), 43 laboratory investigations, 8 reviews/meta-analyses, and 6 guidelines/consensus statements. Articles were classified into 4 themes: 13 pertained to tumor classification, 37 to tumor pathogenesis/clinical presentation, 6 to imaging, 44 to therapy (15 chemotherapy, 10 radiotherapy, 5 surgery, 14 new agents). Gliomas were the most common tumor type examined, with 70 articles. There was a significant increase in the number of citation classics in the late 1990s, which was paralleled by an increase in studies examining tumor pathogenesis, chemotherapy, and new agents along with laboratory and randomized studies. The majority of citation classics in neuro-oncology are related to gliomas and pertain to tumor pathogenesis and treatment. The rise in citation classics in recent years investigating tumor biology, new treatment agents, and chemotherapeutics may reflect increasing scientific interest in nonsurgical treatments for CNS tumors and the need for fundamental investigations into disease processes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version

    KAUST Repository

    Niemi, Antti

    2011-06-03

    We perform finite element analysis of the so called Girkmann problem in structural mechanics. The problem involves an axially symmetric spherical shell stiffened with a foot ring and is approached (1) by using the axisymmetric formulation of linear elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used in the second approach. We study the convergence behaviour of the different numerical models and show that accurate stress resultants can be obtained with both models by using effective post-processing formulas. © Springer-Verlag London Limited 2011.

  14. A classical model for the electron

    International Nuclear Information System (INIS)

    Visser, M.

    1989-01-01

    The construction of classical and semi-classical models for the electron has had a long and distinguished history. Such models are useful more for what they teach us about field theory than what they teach us about the electron. In this Letter I exhibit a classical model of the electron consisting of ordinary electromagnetism coupled with a self-interacting version of Newtonian gravity. The gravitational binding energy of the system balances the electrostatic energy in such a manner that the total rest mass of the electron is finite. (orig.)

  15. Classical dynamics of particles and systems

    CERN Document Server

    Marion, Jerry B

    1965-01-01

    Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl

  16. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  17. Supersymmetric classical mechanics

    International Nuclear Information System (INIS)

    Biswas, S.N.; Soni, S.K.

    1986-01-01

    The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)

  18. Dose-response analysis using R

    DEFF Research Database (Denmark)

    Ritz, Christian; Baty, Florent; Streibig, Jens Carl

    2015-01-01

    Dose-response analysis can be carried out using multi-purpose commercial statistical software, but except for a few special cases the analysis easily becomes cumbersome as relevant, non-standard output requires manual programming. The extension package drc for the statistical environment R provides...

  19. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  20. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)

    2010-01-15

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  1. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    International Nuclear Information System (INIS)

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hartmann, Enno; Kalies, Kai-Uwe; Moeller, Steffen; Suganthan, P.N.; Martinetz, Thomas

    2010-01-01

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  2. Polymer quantization of the free scalar field and its classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Laddha, Alok; Varadarajan, Madhavan, E-mail: alok@rri.res.i, E-mail: madhavan@rri.res.i [Raman Research Institute, Bangalore 560 080 (India)

    2010-09-07

    Building on prior work, a generally covariant reformulation of a free scalar field theory on the flat Lorentzian cylinder is quantized using loop quantum gravity (LQG)-type 'polymer' representations. This quantization of the continuum classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum two-point functions for long-wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the 'triangulation' ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG-type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite-dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.

  3. Bohmian mechanics and the emergence of classicality

    International Nuclear Information System (INIS)

    Matzkin, A

    2009-01-01

    Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.

  4. On obtaining classical mechanics from quantum mechanics

    International Nuclear Information System (INIS)

    Date, Ghanashyam

    2007-01-01

    Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality

  5. The Diversity of Classical Archaeology

    DEFF Research Database (Denmark)

    , settlement patterns, landscape archaeology, historiography, and urban archaeology. Additionally, essays on topics such as the early Islamic period and portraiture in the Near East serve to broaden the themes encompassed by this work, and demonstrate the importance of interdisciplinary knowledge in the field......This book is the first volume in the series Studies in Classical Archaeology, founded and edited by professors of classical archaeology, Achim Lichtenberger and Rubina Raja. This volume sets out the agenda for this series. It achieves this by familiarizing readers with a wide range of themes...... and material groups, and highlighting them as core areas of traditional classical archaeology, despite the fact that some have hitherto been neglected. Themes presented in this volume include Greek and Roman portraiture and sculpture, iconography, epigraphy, archaeology, numismatics, the Mediterranean...

  6. Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler

    Directory of Open Access Journals (Sweden)

    Marco Dalai

    2017-07-01

    Full Text Available We review the use of binary hypothesis testing for the derivation of the sphere packing bound in channel coding, pointing out a key difference between the classical and the classical-quantum setting. In the first case, two ways of using the binary hypothesis testing are known, which lead to the same bound written in different analytical expressions. The first method historically compares output distributions induced by the codewords with an auxiliary fixed output distribution, and naturally leads to an expression using the Renyi divergence. The second method compares the given channel with an auxiliary one and leads to an expression using the Kullback–Leibler divergence. In the classical-quantum case, due to a fundamental difference in the quantum binary hypothesis testing, these two approaches lead to two different bounds, the first being the “right” one. We discuss the details of this phenomenon, which suggests the question of whether auxiliary channels are used in the optimal way in the second approach and whether recent results on the exact strong-converse exponent in classical-quantum channel coding might play a role in the considered problem.

  7. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited...

  8. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases...

  9. Classics in the Cloud : A discussion of the problems of classical music and streaming

    OpenAIRE

    Olsen, Tone Cecilie

    2017-01-01

    Master's thesis Music Management MU501 - University of Agder 2017 Streaming services have become the main method of music consumption the last couple of years, and the classical audience have moved to the cloud as well. This paper aims to uncover some of the issues that classical consumers encounter while using streaming services, what the reasons may be that there are problems, and discussing possible solution to benefit either the connoisseur or the novice listener. It brings...

  10. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  11. There is no quantum ontology without classical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)

    2011-07-01

    The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.

  12. Approaches to data analysis of multiple-choice questions

    OpenAIRE

    Lin Ding; Robert Beichner

    2009-01-01

    This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics education research. We minimize mathematics, instead placing emphasis on data interpretation using these approaches.

  13. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    Science.gov (United States)

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  14. Quantum money with classical verification

    Energy Technology Data Exchange (ETDEWEB)

    Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  15. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry

    2014-01-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  16. Quantum-Classical Correspondence Principle for Work Distributions

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2015-09-01

    Full Text Available For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  17. A Classical Introduction to Galois Theory

    CERN Document Server

    Newman, Stephen C

    2012-01-01

    This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic

  18. Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2

    Directory of Open Access Journals (Sweden)

    Priya Londhe

    2018-04-01

    Full Text Available BackgroundMetabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS and osteosarcoma (OS, has not been characterized.MethodsClassical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration.ResultsInhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells.ConclusionThese findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.

  19. A Case of Classic Raymond Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas George Zaorsky

    2012-01-01

    Full Text Available Classic Raymond syndrome consists of ipsilateral abducens impairment, contralateral central facial paresis, and contralateral hemiparesis. However, subsequent clinical observations argued on the presentation of facial involvement. To validate this entity, we present a case of classic Raymond syndrome with contralateral facial paresis. A 50 year-old man experienced acute onset of horizontal diplopia, left mouth drooling and left-sided weakness. Neurological examination showed he had right abducens nerve palsy, left-sided paresis of the lower part of the face and limbs, and left hyperreflexia. A brain MRI showed a subacute infarct in the right mid-pons. The findings were consistent with those of classic Raymond syndrome. To date, only a few cases of Raymond syndrome, commonly without facial involvement, have been reported. Our case is a validation of classic Raymond syndrome with contralateral facial paresis. We propose the concept of two types of Raymond syndrome: (1 the classic type, which may be produced by a lesion in the mid-pons involving the ipsilateral abducens fascicle and undecussated corticofacial and corticospinal fibers; and (2 the common type, which may be produced by a lesion involving the ipsilateral abducens fascicle and undecussated corticospinal fibers but sparing the corticofacial fibers.

  20. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  1. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.

    Science.gov (United States)

    Nishio, Miwako; Saeki, Kumiko

    2014-01-01

    We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.

  2. On Lie point symmetry of classical Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Maharana, Karmadeva

    2001-06-01

    We perform the group analysis of Witten's equations of motion for a particle moving in the presence of a magnetic monopole, and also when constrained to move on the surface of a sphere, which is the classical example of Wess-Zumino-Witten model. We also consider variations of this model. Our analysis gives the generators of the corresponding Lie point symmetries. The Lie symmetry corresponding to Kepler's third law is obtained in two related examples. (author)

  3. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  4. Expert Western Classical Music Improvisers' Strategies

    Science.gov (United States)

    Després, Jean-Philippe; Burnard, Pamela; Dubé, Francis; Stévance, Sophie

    2017-01-01

    The growing interest in musical improvisation is exemplified by the body of literatures evidencing the positive impacts of improvisation learning on the musical apprentice's aptitudes and the increasing presence of improvisation in Western classical concert halls and competitions. However, high-level Western classical music improvisers' thinking…

  5. Mimicking anti-correlations with classical interference

    International Nuclear Information System (INIS)

    Godoy, S; Seifert, B; Wallentowitz, S

    2013-01-01

    It is shown how classical laser light impinging on a beam splitter with internal reflections may mimic anti-correlations of the detected outputs, similar to those observed for anti-bunched light. The experimentally observed anti-correlation may be interpreted as a classical Hong–Ou–Mandel dip. (paper)

  6. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  7. Persistent entanglement in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Everitt, M J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Clark, T D [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Stiffell, P B [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Ralph, J F [Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Bulsara, A R [Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Harland, C J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2005-02-01

    The apparent difficulty in recovering classical nonlinear dynamics and chaos from standard quantum mechanics has been the subject of a great deal of interest over the last 20 years. For open quantum systems-those coupled to a dissipative environment and/or a measurement device-it has been demonstrated that chaotic-like behaviour can be recovered in the appropriate classical limit. In this paper, we investigate the entanglement generated between two nonlinear oscillators, coupled to each other and to their environment. Entanglement-the inability to factorize coupled quantum systems into their constituent parts-is one of the defining features of quantum mechanics. Indeed, it underpins many of the recent developments in quantum technologies. Here, we show that the entanglement characteristics of two 'classical' states (chaotic and periodic solutions) differ significantly in the classical limit. In particular, we show that significant levels of entanglement are preserved only in the chaotic-like solutions.

  8. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed. PMID:29434508

  9. Quantum machine learning: a classical perspective.

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  10. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  11. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  12. Continuous quantum measurement and the quantum to classical transition

    International Nuclear Information System (INIS)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-01-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion

  13. Transport of particles by surface waves: a modification of the classical bouncer model

    International Nuclear Information System (INIS)

    Ragulskis, M; Sanjuan, M A F

    2008-01-01

    We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications

  14. Dynamical chaos: systems of classical mechanics

    International Nuclear Information System (INIS)

    Loskutov, A Yu

    2007-01-01

    This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)

  15. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  16. Classical dynamics and its quantum analogues

    International Nuclear Information System (INIS)

    Park, D.

    1979-01-01

    In this book the author establishes mathematical connections between classical and quantum mechanics, between ray optics and wave optics. The approach is to consider classical mechanics as a limiting case of quantum mechanics, and ray optics as a limiting case of wave optics. The conceptual background is discussed where necessary, so the reader should be already fairly familiar with it. The main goal of this approach is the revelation that classical and quantum theory are not so different conceptually as one thinks at first exposure. The first chapters recall the basic facts about light waves and light rays and demonstrate the construction of Newtonian orbits from Schroedinger waves. In the following the Lagrangian and Hamiltonian formulation of few-body system is developed showing as often as possible the relations to the corresponding quantum systems. To illustrate the theory planetary motion using perturbation theory is treated in some detail and several calculations in general relativity such as the deflection and retardation of light by the sun and the precession of planetary perikelia are included. The final parts deal with the motions of systems of many particles. The quantum mechanics of rigid bodies is presented in analogy with the classical theory and contrasts are noted. There is also a discussion of the roles of spinors in the two theories. The book is intended as a text in classical mechanics for readers which have already some knowledge in classical and quantum mechanics. It may help to deepen their understanding of the relation between the old and new theory and show something of the ways in which new discoveries are made. (orig.) 891 HJ/orig. 892 BRE

  17. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  18. Quantum-classical correspondence in the vicinity of periodic orbits

    Science.gov (United States)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  19. Using module analysis for multiple choice responses

    DEFF Research Database (Denmark)

    Brewe, Eric; Bruun, Jesper; Bearden, Ian

    2016-01-01

    We describe a methodology for carrying out a network analysis of Force Concept Inventory (FCI) responses that aims to identify communities of incorrect responses. This method first treats FCI responses as a bipartite, student X response, network. We then use Locally Adaptive Network Sparsificatio...

  20. Chemometrics in spectroscopy. Part 1. Classical chemometrics

    International Nuclear Information System (INIS)

    Geladi, Paul

    2003-01-01

    An overview is given of chemometrics as it can be applied to spectroscopic and other multivariate data. Major chemometrics and data analysis techniques are described. An important aspect is the focus on soft modeling for situations that are too complicated for the traditional hard models to work. Also measurement noise is given due attention. A small example is used to illustrate some ways of working, mainly by using graphics. Selected literature references are given. Part 1 deals with classical chemometrics. Part 2 presents some newer developments and includes some more elaborated examples

  1. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....

  2. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)

    Science.gov (United States)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  3. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  4. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  5. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  6. An Analysis of the "Classic" Papers in Aesthetic Surgery.

    Science.gov (United States)

    Joyce, Cormac W; Joyce, K M; Kelly, John C; Kelly, Jack L; Carroll, Sean M; Sugrue, Conor

    2015-02-01

    Over the past 50 years, there has been a significant increase in published articles in the medical literature. The aesthetic surgery literature is vast, consisting of a plethora of diverse articles written by a myriad of illustrious authors. Despite this considerable archive of published material, it remains nebulous as to which precise papers have had the greatest impact on our specialty. The aim of our study was to identify and analyse the characteristics of the top 50 papers in the field of aesthetic surgery in the published literature. The 50 most cited papers were identified in several surgical journals through the Web of Science. The articles were ranked in order of the number of citations received. These classic 50 papers were analysed for article type, their journal distribution, level of evidence as well as geographic and institutional origin. Six journals contributed to the top 50 papers in aesthetic surgery with Plastic and Reconstructive Surgery contributing the most with 31 papers.

  7. Complex analysis fundamentals of the classical theory of functions

    CERN Document Server

    Stalker, John

    1998-01-01

    This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...

  8. Classical logic and logicism in human thought

    OpenAIRE

    Elqayam, Shira

    2012-01-01

    This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...

  9. Approaches to data analysis of multiple-choice questions

    Directory of Open Access Journals (Sweden)

    Lin Ding

    2009-09-01

    Full Text Available This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics education research. We minimize mathematics, instead placing emphasis on data interpretation using these approaches.

  10. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Directory of Open Access Journals (Sweden)

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  11. Teaching Tomorrow's Classics.

    Science.gov (United States)

    Tighe, Mary Ann; Avinger, Charles

    1994-01-01

    Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)

  12. Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals.

    Science.gov (United States)

    Miao, Haixing; Adhikari, Rana X; Ma, Yiqiu; Pang, Belinda; Chen, Yanbei

    2017-08-04

    The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.

  13. Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms

    Science.gov (United States)

    Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria

    2012-01-01

    A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…

  14. The effect of verbalization strategy on wisconsin card sorting test performance in schizophrenic patients receiving classical or atypical antipsychotics

    Directory of Open Access Journals (Sweden)

    Cavallaro Roberto

    2006-01-01

    Full Text Available Abstract Background A number of reports showed en encouraging remediation in some patients' executive deficits thanks to the use of 'information processing strategies'. Moreover the impact of antipsychotics on cognitive functions of the schizophrenics is an important issue, especially if an integrated psychosocial treatment is needed. The aim of this paper is to evaluate different executive performance and response to verbalization, a strategy of the Wisconsin Card Sorting Test (WCST remediation, in subjects on classical vs atypical antipsychotic (AP treatment. Methods Sixty-three schizophrenic subjects undertook the WCST under standard and modified (verbalization administration. Subjects were stratified by the kind of WCST response (i.e. good, poor and remediable and AP treatment (i.e. atypical vs. classical. Results Subjects on atypical APs showed a better performance than those on classical ones. More poor performers who did not remediate were seen in the sample with classical Aps while subjects who remediated the performance were seen in the subgroup with atypical APs only. An increase of perseverative and total errors was seen in poor performers subjects on classical APs. Conclusion Subjects on atypicals showed a better cognitive pattern in terms of WCST performance. Since the naturalistic assignment of medication we cannot draw conclusions about its effect on cognitive performance and its interaction with cognitive remediation potential. However the data lead us to hypothesize that subjects with potential room for remediation did so with the atypical APs.

  15. ENVIRONMENTALISM AND CLASSIC PARADIGMS OF INTERNATIONAL RELATIONS

    Directory of Open Access Journals (Sweden)

    D. D. Miniaeva

    2014-06-01

    Full Text Available This article examines an environmentalism integration process into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism. The main purpose of this study is to reveal the result of this integration. Methods used in this article include analysis and comparison of "ecological" paradigms on selected parameters (the nature of international relations, actors, targets, tools, processes. Results of research show that the beginning of the XXI century is distinguished by the development of new types of political concepts that explain interaction of elements in modern international relations in the area of environmental protection. The reason of these changes lies in the phenomena of environmentalism integration into Three paradigms of international relations. However, we cannot say that any of the examined paradigms accumulated all features of environmentalism without their modification. Better to say, it's rather similar to adaptation of environmental ideas. Therefore, to understand modern international relations processes, it is necessary to take into account their environmental element. Purchase on Elibrary.ru > Buy nowDOI: http://dx.doi.org/10.12731/2070-7568-2014-3-4

  16. Optimal Classical Simulation of State-Independent Quantum Contextuality

    Science.gov (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng

    2018-03-01

    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  17. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    Science.gov (United States)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  18. Teaching Classical Mechanics using Smartphones

    OpenAIRE

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2012-01-01

    Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartp...

  19. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  20. Semi-classical analysis of scattering of deformed heavy-ions below the Coulomb barrier

    International Nuclear Information System (INIS)

    Johnson, R.C.; Roberts, E.J.; Sukumar, C.V.; Brink, D.M.

    1995-01-01

    Polarization observables for the sub-Coulomb elastic scattering of a quadrupole deformed projectile of spin 3/2 from a spinless spherical target are evaluated using a new semi-classical method based on a path-integral formalism. Analytic expressions are obtained which agree well with coupled channels calculations and which predict definite deviations from the ''shape-effect'' relations for tensor analyzing powers

  1. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  2. A functional MRI study of happy and sad affective states induced by classical music.

    Science.gov (United States)

    Mitterschiffthaler, Martina T; Fu, Cynthia H Y; Dalton, Jeffrey A; Andrew, Christopher M; Williams, Steven C R

    2007-11-01

    The present study investigated the functional neuroanatomy of transient mood changes in response to Western classical music. In a pilot experiment, 53 healthy volunteers (mean age: 32.0; SD = 9.6) evaluated their emotional responses to 60 classical musical pieces using a visual analogue scale (VAS) ranging from 0 (sad) through 50 (neutral) to 100 (happy). Twenty pieces were found to accurately induce the intended emotional states with good reliability, consisting of 5 happy, 5 sad, and 10 emotionally unevocative, neutral musical pieces. In a subsequent functional magnetic resonance imaging (fMRI) study, the blood oxygenation level dependent (BOLD) signal contrast was measured in response to the mood state induced by each musical stimulus in a separate group of 16 healthy participants (mean age: 29.5; SD = 5.5). Mood state ratings during scanning were made by a VAS, which confirmed the emotional valence of the selected stimuli. Increased BOLD signal contrast during presentation of happy music was found in the ventral and dorsal striatum, anterior cingulate, parahippocampal gyrus, and auditory association areas. With sad music, increased BOLD signal responses were noted in the hippocampus/amygdala and auditory association areas. Presentation of neutral music was associated with increased BOLD signal responses in the insula and auditory association areas. Our findings suggest that an emotion processing network in response to music integrates the ventral and dorsal striatum, areas involved in reward experience and movement; the anterior cingulate, which is important for targeting attention; and medial temporal areas, traditionally found in the appraisal and processing of emotions. Copyright 2006 Wiley-Liss, Inc.

  3. [Today's meaning of classical authors of political thinking].

    Science.gov (United States)

    Weinacht, Paul-Ludwig

    2005-01-01

    How can classical political authors be actualised? The question is asked in a discipline which is founded in old traditions: the political science. One of its great matters is the history of political ideas. Classic authors are treated in many books, but they are viewed in different perspectives; colleagues do not agree with shining and bad examples. For actualising classic we have to go a methodically reflected way: historic not historicistic, with sensibility for classic and christian norms without dogmatism or scepticism. Searching the permanent problems we try to translate the original concepts of the classic authors carefully in our time. For demonstrating our method of actualising, we choose the French classical author Montesquieu. His famous concept of division of powers is misunderstood as a "liberal" mechanism which works in itself in favour of freedom (such as Kant made work a "natural mechanism" in a people of devils in favour of their legality); in reality Montesquieu acknoledges that constitutional und organisational work cannot stabilise themselves but must be found in social character and in human virtues.

  4. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  5. Tarnished Gold: Classical Music in America

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    A few articles have appeared recently regarding the subject of the health of classical music (or more broadly, the fine arts) in America. These include "Classical Music's New Golden Age," by Heather Mac Donald, in the "City Journal" and "The Decline of the Audience," by Terry Teachout, in "Commentary." These articles appeared around the time of…

  6. Classical counterexamples to Bell's inequalities

    International Nuclear Information System (INIS)

    Orlov, Yuri F.

    2002-01-01

    This paper shows that a classical system containing a conventional yes/no decision-making component can behave like a quantum system of spin measurements in many ways (although it lacks a wave function) when, in principle, there are no deterministic decision procedures to govern the decision making, and when probabilistic decision procedures consistent with the system are introduced. Most notably, the system violates Bell's inequalities. Moreover, since the system is simple and macroscopic, its similarities to quantum systems arguably provide an insight into quantum mechanics and, in particular, EPR experiments. Thus, from the qualitative correspondences, decisions↔quantum measurements and the impossibility of deterministic decision procedures↔quantum noncommutativity, we conclude that the violation of Bell's inequalities in quantum mechanics does not require the existence of an unknown nonclassical nonlocality. It can merely be a result of local noncommutativity combined with nonlocalities of the classical type. The proposed classical decision-making system is a nonquantum theoretical construct possessing complementarity features in Bohr's sense

  7. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  8. Classical realizability in the CPS target language

    DEFF Research Database (Denmark)

    Frey, Jonas

    2016-01-01

    Motivated by considerations about Krivine's classical realizability, we introduce a term calculus for an intuitionistic logic with record types, which we call the CPS target language. We give a reformulation of the constructions of classical realizability in this language, using the categorical...... techniques of realizability triposes and toposes. We argue that the presentation of classical realizability in the CPS target language simplifies calculations in realizability toposes, in particular it admits a nice presentation of conjunction as intersection type which is inspired by Girard's ludics....

  9. Secure authentication of classical messages with single photons

    International Nuclear Information System (INIS)

    Tian-Yin, Wang; Qiao-Yan, Wen; Fu-Chen, Zhu

    2009-01-01

    This paper proposes a scheme for secure authentication of classical messages with single photons and a hashed function. The security analysis of this scheme is also given, which shows that anyone cannot forge valid message authentication codes (MACs). In addition, the lengths of the authentication key and the MACs are invariable and shorter, in comparison with those presented authentication schemes. Moreover, quantum data storage and entanglement are not required in this scheme. Therefore, this scheme is more efficient and economical. (general)

  10. A semiclassical analysis of high energy electron diffraction by stacking faults: arrival at the classical limit

    International Nuclear Information System (INIS)

    Smith, A.E.; Chadderton, L.T.

    1978-01-01

    In a recent note the authors summarised results for an extension of Berry's theory to cover the one-dimensional problem of systematic reflections (planes) for a thin crystal sandwich consisting of two identical slabs of lattice parameter 'a' with a relative horizontal displacement 'f'. The diffraction amplitudes at the lower surface of the crystal were shown to depend on a double summation over the various transverse energy states in the upper and lower slab respectively, and on the transitions between them. In this report the authors demonstrate the arrival at the classical limit for the problem and, in particular, indicate briefly the nature of the topologically different classical paths. (Auth.)

  11. Evaluation properties of the French version of the OUT-PATSAT35 satisfaction with care questionnaire according to classical and item response theory analyses.

    Science.gov (United States)

    Panouillères, M; Anota, A; Nguyen, T V; Brédart, A; Bosset, J F; Monnier, A; Mercier, M; Hardouin, J B

    2014-09-01

    The present study investigates the properties of the French version of the OUT-PATSAT35 questionnaire, which evaluates the outpatients' satisfaction with care in oncology using classical analysis (CTT) and item response theory (IRT). This cross-sectional multicenter study includes 692 patients who completed the questionnaire at the end of their ambulatory treatment. CTT analyses tested the main psychometric properties (convergent and divergent validity, and internal consistency). IRT analyses were conducted separately for each OUT-PATSAT35 domain (the doctors, the nurses or the radiation therapists and the services/organization) by models from the Rasch family. We examined the fit of the data to the model expectations and tested whether the model assumptions of unidimensionality, monotonicity and local independence were respected. A total of 605 (87.4%) respondents were analyzed with a mean age of 64 years (range 29-88). Internal consistency for all scales separately and for the three main domains was good (Cronbach's α 0.74-0.98). IRT analyses were performed with the partial credit model. No disordered thresholds of polytomous items were found. Each domain showed high reliability but fitted poorly to the Rasch models. Three items in particular, the item about "promptness" in the doctors' domain and the items about "accessibility" and "environment" in the services/organization domain, presented the highest default of fit. A correct fit of the Rasch model can be obtained by dropping these items. Most of the local dependence concerned items about "information provided" in each domain. A major deviation of unidimensionality was found in the nurses' domain. CTT showed good psychometric properties of the OUT-PATSAT35. However, the Rasch analysis revealed some misfitting and redundant items. Taking the above problems into consideration, it could be interesting to refine the questionnaire in a future study.

  12. Classical resonances and quantum scarring

    International Nuclear Information System (INIS)

    Manderfeld, Christopher

    2003-01-01

    We study the correspondence between phase-space localization of quantum (quasi-)energy eigenstates and classical correlation decay, given by Ruelle-Pollicott resonances of the Frobenius-Perron operator. It will be shown that scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly overlap in phase space (scar in same phase-space regions) if the difference of their eigenenergies is close to the phase of a leading classical resonance. Phase-space localization of quantum states will be measured by L 2 norms of their Husimi functions

  13. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  14. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  15. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  16. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  17. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  18. Particle swarm optimisation classical and quantum perspectives

    CERN Document Server

    Sun, Jun; Wu, Xiao-Jun

    2016-01-01

    IntroductionOptimisation Problems and Optimisation MethodsRandom Search TechniquesMetaheuristic MethodsSwarm IntelligenceParticle Swarm OptimisationOverviewMotivationsPSO Algorithm: Basic Concepts and the ProcedureParadigm: How to Use PSO to Solve Optimisation ProblemsSome Harder Examples Some Variants of Particle Swarm Optimisation Why Does the PSO Algorithm Need to Be Improved? Inertia and Constriction-Acceleration Techniques for PSOLocal Best ModelProbabilistic AlgorithmsOther Variants of PSO Quantum-Behaved Particle Swarm Optimisation OverviewMotivation: From Classical Dynamics to Quantum MechanicsQuantum Model: Fundamentals of QPSOQPSO AlgorithmSome Essential ApplicationsSome Variants of QPSOSummary Advanced Topics Behaviour Analysis of Individual ParticlesConvergence Analysis of the AlgorithmTime Complexity and Rate of ConvergenceParameter Selection and PerformanceSummaryIndustrial Applications Inverse Problems for Partial Differential EquationsInverse Problems for Non-Linear Dynamical SystemsOptimal De...

  19. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  20. Stereotactic Radiosurgery for Classical Trigeminal Neuralgia

    Directory of Open Access Journals (Sweden)

    Henry Kodrat

    2016-04-01

    Full Text Available Trigeminal neuralgia is a debilitating pain syndrome with a distinct symptom mainly excruciating facial pain that tends to come and go unpredictably in sudden shock-like attacks. Medical management remains the primary treatment for classical trigeminal neuralgia. When medical therapy failed, surgery with microvascular decompression can be performed. Radiosurgery can be offered for classical trigeminal neuralgia patients who are not surgical candidate or surgery refusal and they should not in acute pain condition. Radiosurgery is widely used because of good therapeutic result and low complication rate. Weakness of this technique is a latency period, which is time required for pain relief. It usually ranges from 1 to 2 months. This review enlightens the important role of radiosurgery in the treatment of classical trigeminal neuralgia.

  1. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    Science.gov (United States)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  2. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  3. The Effect of String Tension Variation on the Perceived Pitch of a Classical Guitar

    Directory of Open Access Journals (Sweden)

    Wanda Jadwiga Lewis

    2014-09-01

    Full Text Available Actual motion of a vibrating guitar string is a superposition of many possible shapes (modes in which it could vibrate. Each of these modes has a corresponding frequency, and the lowest frequency is associated with a shape idealised as a single wave, referred to as the fundamental mode. The other contributing modes, each with their own progressively higher frequency, are referred to as overtones, or harmonics. By attaching a string to a medium (a soundboard capable of a response to the vibrating string, sound waves are generated. The sound heard is dominated by the fundamental mode, ‘coloured’ by contributions from the overtones, as explained by the classical theory of vibration. The classical theory, however, assumes that the string tension remains constant during vibration, and this cannot be strictly true; when considering just the fundamental mode, string tension will reach two maximum changes, as it oscillates up and down. These changes, occurring twice during the fundamental period match the frequency of the octave higher, 1st overtone. It is therefore plausible to think that the changing tension effect, through increased force on the bridge and, therefore, greater soundboard deflection, could be amplifying the colouring effect of (at least the 1st overtone. In this paper, we examine the possible influence of string tension variation on tonal response of a classical guitar. We use a perturbation model based on the classical result for a string in general vibration in conjunction with a novel method of assessment of plucking force that incorporates the engineering concept of geometric stiffness, to assess the magnitude of the normal force exerted by the string on the bridge. The results of our model show that the effect of tension variation is significantly smaller than that due to the installed initial static tension, and affects predominantly the force contribution arising from the fundamental mode. We, therefore, conclude that string

  4. Item analysis and evaluation in the examinations in the faculty of ...

    African Journals Online (AJOL)

    2014-11-05

    Nov 5, 2014 ... Key words: Classical test theory, item analysis, item difficulty, item discrimination, item response theory, reliability ... the probability of answering an item correctly or of attaining ..... A Monte Carlo comparison of item and person.

  5. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    Science.gov (United States)

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  6. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Directory of Open Access Journals (Sweden)

    Marcos D. Caballero

    2017-04-01

    Full Text Available Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1 at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  7. Classical limit of diagonal form factors and HHL correlators

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2017-01-16

    We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.

  8. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  9. Lie-admissible invariant treatment of irreversibility for matter and antimatter at the classical and operator levels

    International Nuclear Information System (INIS)

    Santilli, R.M.

    2006-01-01

    It was generally believed throughout the 20th century that irreversibility is a purely classical event without operator counterpart. however, a classical irreversible system cannot be consistently decomposed into a finite number of reversible quantum particles (and. vive versa), thus establishing that the origin of irreversibility is basically unknown at the dawn of the 21-st century. To resolve this problem. we adopt the historical analytical representation of irreversibility by Lagrange and Hamilton, that with external terms in their analytic equations; we show that, when properly written, the brackets of the time evolution characterize covering Lie-admissible algebras; we prove that the formalism has fully consistent operator counterpart given by the Lie-admissible branch of hadronic mechanics; we identify mathematical and physical inconsistencies when irreversible formulations are treated with the conventional mathematics used for reversible systems; we show that when the dynamical equations are treated with a novel irreversible mathematics, Lie-admissible formulations are fully consistent because invariant at both the classical and operator levels; and we complete our analysis with a number of explicit applications to irreversible processes in classical mechanics, particle physics and thermodynamics. The case of closed-isolated systems verifying conventional total conservation laws, yet possessing an irreversible structure, is treated via the simpler Lie-isotopic branch of hadronic mechanics. The analysis is conducted for both matter and antimatter at the classical and operator levels to prevent insidious inconsistencies occurring for the sole study of matter or, separately, antimatter

  10. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  11. Reinventing classics: the hidden design strategies of renowned chefs

    OpenAIRE

    Agogué , Marine; Hatchuel , Armand

    2015-01-01

    International audience; Reinventing classics is a well-used yet complex design pattern. Indeed, a reinterpreted classic needs to relate to the original object while simultaneously challenging the initial model and providing a new and fresh look to the well established classic. However, this design strategy remains understudied, and we aimed to contribute to the literature by addressing the lack of theoretical models for reinventing classics. Reinterpreting tradition is a key process for chefs...

  12. New derivation of quantum equations from classical stochastic arguments

    OpenAIRE

    Bergeron, H.

    2003-01-01

    In a previous article [H. Bergeron, J. Math. Phys. 42, 3983 (2001)], we presented a method to obtain a continuous transition from classical to quantum mechanics starting from the usual phase space formulation of classical mechanics. This procedure was based on a Koopman-von Neumann approach where classical equations are reformulated into a quantumlike form. In this article, we develop a different derivation of quantum equations, based on purely classical stochastic arguments, taking some elem...

  13. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    Science.gov (United States)

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  14. Is the classical law of the addition of probabilities violated in quantum interference?

    International Nuclear Information System (INIS)

    Arsenovic, Dusan; Bozic, Mirjana; Vuskovic, Lepsa

    2002-01-01

    We analyse and compare the positive and negative arguments on whether quantum interference violates the classical law of the addition of probabilities. The analysis takes into account the results of recent interference experiments in neutron, electron and atom optics. Nonclassical behaviour of atoms was found in atomic experiments where the measurements included their time of arrival and space distribution. We determine probabilities of elementary events associated with the nonclassical behaviour of particles in interferometers. We show that the emergence of the interference pattern in the process of accumulation of such elementary events is consistent with the classical law of the addition of probabilities

  15. Possibility to obtain the classical Faraday effect with a recoiless gamma ray emission

    International Nuclear Information System (INIS)

    Barb, Danila; Rogalski, Mircea

    1975-01-01

    The possibility to obtain the classical Faraday effect with a linearly polarized Moessbauer radiation, which passes through a Moessbauer absorber in a longitudinal applied magnetic field was studied. As in the classical optics, the emergent radiation is linearly polarized and his plane of polarization rotated. The same problem for the case of the magnetic field of the absorber making an angle theta=0 with the gamma radiation direction is solved. This enables to do a better analysis of the experimental data. The application of the formulae in the case of iron-57 shows a good agreement with the experiments [fr

  16. Comparison of the classic TVT and TVT-Secur.

    Science.gov (United States)

    Abduljabbar, H S O; Al-Shamrany, H M A; Al-Basri, S F; Abduljabar, H H; Tawati, D A; Owidhah, S P

    2013-01-01

    Tension-free vaginal tape (TVT) is a well-established surgical procedure for the treatment of female stress urinary incontinence (SUI) and TVT-Secur was designed to reduce the undesired complications and to minimize the operative procedure as much as possible. To present the authors' experience in using the classic TVT and TVT-Secur and to evaluate and compare complications and short- and long-term results. A retrospective study and analysis of 230 patients presented with SUI at King Abdulaziz University Hospital (KAUH) and United Doctor Hospital (UDH) from March 1, 2007 until July 3, 2010. Classical TVT and TVT-Secur with or without associated operation were performed. All patients were controlled at six months and complications, as well as objective results, have been reported. The study was approved by ethical committee of KAUH. All patients with SUI admitted to KAUH and UDH for sub-urethral tape were analyzed (230 patients); 149 had classical TVT and 81 had TVT-Secur. Their age ranged from 30 years to 73 years with a mean of 49.8 years and std of 9.4. Their parity ranged from two to 15 with a mean of 6.2 and std of 2.4. One hundred eighty patients had SUI and 50 patients had mixed incontinence. The type of anesthesia used was general anesthesia in 69.6% (160) of cases and regional anesthesia in form of epidural or spine in 30.4% (70) of cases. Operative complications revealed a bladder perforation in 3.5% (eight) of cases and 2.2% had bleeding of more than 200 ml, and 53 patients which contribute to 23% had retention and required a catheter for 48 hours or more. After three months, it was observed that erosion of the mesh occurred in three cases. Fourteen cases (7%) continue to have SUI failure rate. The classical TVT and TVT-Secur were found to be very effective, easy, and safe procedures and with excellent results.

  17. Linguistic Investigations into Ellipsis in Classical Sanskrit

    Science.gov (United States)

    Gillon, Brendan S.

    Ellipsis is a common phenomenon of Classical Sanskrit prose. No inventory of the forms of ellipsis in Classical Sanskrit has been made. This paper presents an inventory, based both on a systematic investigation of one text and on examples based on sundry reading.

  18. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  19. Evidence-based Frameworks for Teaching and Learning in Classical Singing Training: A Systematic Review.

    Science.gov (United States)

    Crocco, Laura; Madill, Catherine J; McCabe, Patricia

    2017-01-01

    The study systematically reviews evidence-based frameworks for teaching and learning of classical singing training. This is a systematic review. A systematic literature search of 15 electronic databases following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines was conducted. Eligibility criteria included type of publication, participant characteristics, intervention, and report of outcomes. Quality rating scales were applied to support assessment of the included literature. Data analysis was conducted using meta-aggregation. Nine papers met the inclusion criteria. No complete evidence-based teaching and learning framework was found. Thematic content analysis showed that studies either (1) identified teaching practices in one-to-one lessons, (2) identified student learning strategies in one-to-one lessons or personal practice sessions, and (3) implemented a tool to enhance one specific area of teaching and learning in lessons. The included studies showed that research in music education is not always specific to musical genre or instrumental group, with four of the nine studies including participant teachers and students of classical voice training only. The overall methodological quality ratings were low. Research in classical singing training has not yet developed an evidence-based framework for classical singing training. This review has found that introductory information on teaching and learning practices has been provided, and tools have been suggested for use in the evaluation of the teaching-learning process. High-quality methodological research designs are needed. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Classical Curriculum Design

    Science.gov (United States)

    George, Judith W.

    2009-01-01

    The article identifies some key findings in pedagogical research over recent decades, placing them within a framework of logical curriculum development and current practice in quality assurance and enhancement. Throughout, the ideas and comments are related to the practice of teaching classics in university. (Contains 1 figure and 3 notes.)