Sample records for response speed variability

  1. Within-person variability in response speed as an indicator of cognitive impairment in older adults.

    Strauss, Esther; Bielak, Allison A M; Bunce, David; Hunter, Michael A; Hultsch, David F


    Within-person variability may be an important indicator of central nervous system compromise. In this study, within-person variability in response speed was examined in community-dwelling older adults, ages 64-92 years, using a new framework that takes into account both the extent (single versus multiple domains affected) and nature (amnestic versus non-amnestic) of the cognitive impairment. Those with multiple domains of impairment were more variable than those who showed an isolated area of impairment, regardless of whether memory was one of the domains affected. Further, for those with difficulties in two or more non-memory domains, increased variability was most evident in more cognitively demanding situations, when individuals had to manipulate information held briefly in mind, switch cognitive set or inhibit an automatic response. Finally, group differentiation was better achieved when within-person variability as opposed to mean speed of performance was considered.

  2. Variable speed generators

    Boldea, Ion


    With the deregulation of electrical energy production and distribution, says Boldea (Polytechnical Institute, Timisoara, Romania) producers are looking for ways to tailor their electricity for different markets. Variable-speed electric generators are serving that purpose, up to the 400 megavolt ampere unit size, in Japan since 1996 and Germany sinc

  3. Speed control variable rate irrigation

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  4. Constant versus variable response signal delays in speed accuracy trade-offs : Effects of advance preparation for processing time

    Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf


    In two experiments, we used response signals (RSs) to control processing time and trace out speed accuracy trade-off (SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is l...

  5. Constant versus variable response signal delays in speed--accuracy trade-offs: effects of advance preparation for processing time.

    Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf


    In two experiments, we used response signals (RSs) to control processing time and trace out speed--accuracy trade-off(SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is little effect of advance preparation for a given processing time, suggesting that the discrimination mechanisms underlying SAT functions are driven solely by bottom-up information processing in perceptual discrimination tasks.

  6. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University


    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  7. Utilization technique on variable speed device


    This reports of workshop on power technology describes using technique on variable speed device, which deals with alternating current situation and prospect of current variable speed device, technical trend and prospect of electronics, reduce expenses by variable speed device, control technique, measurement technology, high voltage variable speed device, recent trend of inverter technology, low voltage and high voltage variable speed device control device, operating variable speed device in cooling fan, FDF application and defect case of variable speed device, cooling pump application of water variable transformer, inverter application and energy effect of ventilation equipment, application of variable speed device and analysis of the result of operation and study for application of variable speed technology.

  8. Variable Speed Rotor System, Phase I

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  9. Variable Speed Limit (VSL) - Best Management Practice [Summary


    In variable speed limit (VSL) zones, the speed : limit changes in response to traffic congestion, : adverse weather, or road conditions. VSL zones are : often highly automated and have been employed : successfully in several U.S. and European : locat...

  10. Variable Speed Limit (VSL) - Best Management Practice


    The Variable Speed Limit (VSL) system on the I-4 corridor in Orlando was implemented by Florida Department of Transportation in 2008, and since its deployment, it was revealed that the majority of traffic exceeds the speed limit by more mph when the ...

  11. Variable-speed, portable routing skate

    Pesch, W. A.


    Lightweight, portable, variable-speed routing skate is used on heavy metal subassemblies which are impractical to move to a stationary machine. The assembly, consisting of the housing with rollers, router, and driving mechanism with transmission, weighs about forty pounds. Both speed and depth of cut are adjustable.

  12. Rural variable speed limits : phase II.


    The Wyoming Department of Transportation (WYDOT) installed its first variable speed limit (VSL) corridor along : Interstate 80 in the Elk Mountain Corridor in the Spring of 2009 in an effort to improve safety and reduce road closures, : particularly ...

  13. Handbook of asynchronous machines with variable speed

    Razik, Hubert


    This handbook deals with the asynchronous machine in its close environment. It was born from a reflection on this electromagnetic converter whose integration in industrial environments takes a wide part. Previously this type of motor operated at fixed speed, from now on it has been integrated more and more in processes at variable speed. For this reason it seemed useful, or necessary, to write a handbook on the various aspects from the motor in itself, via the control and while finishing by the diagnosis aspect. Indeed, an asynchronous motor is used nowadays in industry where variation speed a

  14. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)


    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  15. Variable speed drives boost air handler benefits

    Twenty-four separate roof-top air handlers, controlled by variable speed ac motor drives, provide comfort and ventilation for employees at a 500,000 sq. ft. sportswear distribution center in southern Virginia. They were chosen over optional packaged HVAC units because of their flexibility, efficiency, and short payback advantages. The operation of the units is described.

  16. Using Variable Speed Control on Pump Application

    Dr.Sc. Aida Spahiu


    Full Text Available Pumps are one of the most common variable speed drive (VSD system applications and special interest has focused on improving their energy efficiency by using variable speed control instead of throttling or other less efficient flow control methods. Pumps are the single largest user of electricity in industry in the European Union, consuming 160 TWh per annum of electricity and accounting for 79 million tonnes of carbon dioxide (CO2 emissions [1]. Centrifugal pumps are the most likely pump style to provide a favorable return based on energy savings when applied with a variable speed drive. To help illustrate this, are conducted benchmark testing to document various head and flow scenarios and their corresponding effect on energy savings. Paper shows the relationship of static and friction head in the energy efficiency equation and the effect of motor, pump and VSD efficiencies. The received results are good reference points for engineers and managers of water sector in Albania to select the best prospects for maximizing efficiency and energy savings.

  17. Small variable speed hermetic reciprocating compressors for domestic refrigerators

    Rasmussen, Bjarne D.


    This paper contains both a theoretical and experimental investigation of some of the fundamental characteristics of a smal variable speed hermetic reciprocating compressor intended for application in domestic refrigeration. The results of a previously published simulation model for variable speed...

  18. Variable speed electrical driving systems; Entrainements electriques a vitesse variable

    Bonal, J. [ESE, Promethee, Groupe Schneider (France)


    This book is the first of a series of 3 volumes which synthesize the most recent knowledge on variable speed electrical driving systems. It is devoted to electronic and electromechanical engineers and technicians and to manufacturers of electrical equipments involving such systems. after a recall of basic electrotechnical and mechanical notions, this book focusses on the functionalities and criteria of definition of driving systems, and shows the interactions between the different parts of these equipments. It develops a methodological approach of the choice for the most suitable technology with respect to the application under consideration. Various industrial sectors are concerned and a particular attention is paid to the driving of receptive turbo-machineries which play a major role in the energy balance sheet of the industrial electrical power force. (J.S.) 28 refs.

  19. Evaluation of variable advisory speed limits in work zones.


    Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard ...

  20. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Han Dong


    Full Text Available To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluidlastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution pitch link load is observed to be reduced by 87.6% compared with the increase of 56.3% by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  1. Variable speed control for Vertical Axis Wind Turbine

    Galinos, Christos; Larsen, Torben J.

    A robust variable speed control for vertical axis wind turbine applications is implemented. It is a PI rotor speed controller based on an induction generator model operated at variable frequency. The generator dynamics are approximated by a first order differential equation with a prescribed slip....... In order to allow variability in the rotor speed an inverter is assumed which changes the nominal generator speed. Below rated power the optimum tip speed ratio is tracked, while above the power is constrained to rated. The wind speed which is needed in the control it is considered as a known signal...... the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...

  2. The economics of a variable speed wind-diesel

    Moll, W.


    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  3. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)


    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  4. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    S. B. Potter


    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  5. Virtual inertia for variable speed wind turbines

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus


    electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system......’s inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...

  6. Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine

    Morgan Rossander


    Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.

  7. Pitch Angle Control for Variable Speed Wind Turbines

    Chen, Zhe; Zhang, Jianzhong; Cheng, M


    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  8. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Hunt, A.; Easley, S.


    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  9. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)


    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  10. Efficiency improvement of variable speed electrical drives for HVAC applications

    Abrahamsen, F.; Blaabjerg, F.; Pedersen, J.K. [Aalborg Univ., Inst. of Energy Technology, Aalborg East (Denmark)


    A large part of the produced electrical energy is consumed by ventilators, pumps and compressors, the so-called HVAC applications. A lot of this energy can be saved by speed control, but even with the large saving obtained alone by introduction of variable speed, it is still essential to optimise the control of the variable speed drive and to optimise the electrical machine with respect to efficiency. Experiments are made with energy optimal induction motor control on a 2.2 kW variable speed pump system. It is demonstrated that 10% of the consumed energy can typically be saved by energy optimal motor control compared with constant V/Hz control. In a comparison of induction motors and permanent magnet synchronous motors for a variable speed pump application it is shown that for 2.2 kW motors an investment in high-efficiency or PM motors are typically paid back within 2.5 years and 7 years respectively. For a 90 kW PM motor the pay-back time would be 24 years. It is today not profitable to use PM motors for variable speed HVAC applications above 2 kW rated motor power. A further study is required to determine this limit in power rating more precisely. (orig.)

  11. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe


    operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power...... oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  12. Survey of variable speed operation of wind turbines

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering


    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  13. Variable current speed controller for eddy current motors

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.


    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  14. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines

    Hansen, A D; Bindner, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A [Vestas Wind Systems A/S, Lem (Denmark)


    The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)

  15. Observer Backstepping Control for Variable Speed Wind Turbine

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens


    . The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a globally......This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  16. Overview of Variable-Speed Power-Turbine Research

    Welch, Gerard E.


    The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.

  17. Assessment of Japanese variable speed heat pump technology

    Ushimaru, Kenji


    An analysis of critical component technologies and design methodologies for Japanese variable speed heat pumps are presented. The market for variable speed heat pumps in Japan is predominantly residential split-type, between the fractional to 2.5 ton capacity range. Approximately 1.1 million residential inverter-driven heat pumps were sold in 1987. Based on the market trends, component technology and several advanced features are described. Similarities and differences between Japanese and US system design methodologies are discussed. Finally, the outlook for future technology trends is briefly described. 8 refs., 6 figs., 1 tab.


    Michał MATOWICKI


    Full Text Available Many previous studies have confirmed the strong relationship between speed compliance and the frequency and severity of traffic accidents. Variable speed limit (VSL system as a measure to improve traffic safety enables the freeway system to change its posted speed limit based on various traffic and environmental conditions. Such system helps drivers to recognize the upcoming events, to adjust their driving style and in such way to address speed variation of the traffic flow. This is called speed harmonization. Although many studies researching the effect of VSL system on the traffic stream can be found, there are only few addressing its influence on the drivers behavior, particularly focusing on their tolerance limit and compliance, which has crucial meaning for future design of controlling algorithms. This study was prepared to inspect this grey area by studying the data from the VSL system at Prague city ring, describing the influence of the highway management system and its influence on drivers.

  19. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Yanting Hu


    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  20. Exterior rotor permanent magnet generator in variable speed applications

    Sattar, Rauf


    This thesis explores approaches for converting rotational mechanical power from diesel engines into electrical power of fixed frequency and voltage. Advances in high energy permanent magnets and power electronics are enabling technologies that provide opportunities for electrical machines with increased efficiency and compact size for variable speed power generation. The overall objective was to design a permanent magnet machine with concentrated winding that could be used in variable spe...

  1. Active surge control for variable speed axial compressors.

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan


    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Variable speed hermetic reciprocating compressors for domestic refrigerators

    Rasmussen, Bjarne D.


    This article describes the results of a both theoretical and experimental investigation of the performance of variable speed hermetic reciprocating compressors for domestic refrigerators. The investigation was performed as a part of a larger research project with the objective of reducing...

  3. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe


    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  4. Walking speed-related changes in stride time variability: effects of decreased speed

    Dubost Veronique


    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  5. Power system integration and control of variable speed wind turbines

    Eek, Jarle


    coupled to the mechanical torque development, while tower oscillations and blade flapping are coupled to thrust influence. However, a more flexible structure will give stronger coupling between torque and thrust. From the reactive power control and voltage stability analysis, it is concluded that voltage control at the local terminal of each wind turbine in a wind farm is the best solution. This follows from the fundamental property of highest voltage to reactive power sensitivity at the generator low voltage terminal. It is also shown that tight power control at the point of common coupling may lead to too high voltage levels at the turbine terminals and that tap-changing transformers are necessary to avoid over-voltage. Variable speed wind turbines operated for maximum power extraction are not contributing to spinning reserves or providing any inertial response.

  6. Variable sound speed in interacting dark energy models

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy


    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  7. Considering Variable Road Geometry in Adaptive Vehicle Speed Control

    Xinping Yan


    Full Text Available Adaptive vehicle speed control is critical for developing Advanced Driver Assistance Systems (ADAS. Vehicle speed control considering variable road geometry has become a hotspot in ADAS research. In this paper, first, an exploration of intrinsic relationship between vehicle operation and road geometry is made. Secondly, a collaborative vehicle coupling model, a road geometry model, and an AVSC, which can respond to variable road geometry in advance, are developed. Then, based on H∞ control method and the minimum energy principle, a performance index is specified by a cost function for the proposed AVSC, which can explicitly consider variable road geometry in its optimization process. The proposed AVSC is designed by the Hamilton-Jacobi Inequality (HJI. Finally, simulations are carried out by combining the vehicle model with the road geometry model, in an aim of minimizing the performance index of the AVSC. Analyses of the simulation results indicate that the proposed AVSC can automatically and effectively regulate speed according to variable road geometry. It is believed that the proposed AVSC can be used to improve the economy, comfort, and safety effects of current ADAS.

  8. A conceptual framework for evaluating variable speed generator options for wind energy applications

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.


    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  9. An Analysis of Variable-Speed Wind Turbine Power-Control Methods with Fluctuating Wind Speed

    Seung-Il Moon


    Full Text Available Variable-speed wind turbines (VSWTs typically use a maximum power-point tracking (MPPT method to optimize wind-energy acquisition. MPPT can be implemented by regulating the rotor speed or by adjusting the active power. The former, termed speed-control mode (SCM, employs a speed controller to regulate the rotor, while the latter, termed power-control mode (PCM, uses an active power controller to optimize the power. They are fundamentally equivalent; however, since they use a different controller at the outer control loop of the machine-side converter (MSC controller, the time dependence of the control system differs depending on whether SCM or PCM is used. We have compared and analyzed the power quality and the power coefficient when these two different control modes were used in fluctuating wind speeds through computer simulations. The contrast between the two methods was larger when the wind-speed fluctuations were greater. Furthermore, we found that SCM was preferable to PCM in terms of the power coefficient, but PCM was superior in terms of power quality and system stability.

  10. Load flow analysis for variable speed offshore wind farms

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede


    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  11. Adaptive Torque Control of Variable Speed Wind Turbines

    Johnson, K. E.


    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  12. Intelligent control for large-scale variable speed variable pitch wind turbines

    Xinfang ZHANG; Daping XU; Yibing LIU


    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  13. Impact of stimulus uncanniness on speeded response

    Kohske eTakahashi


    Full Text Available In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat.

  14. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Murat Karabacak


    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  15. Transient analysis of a variable speed rotary compressor

    Park, Youn Cheol


    A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.

  16. Variable speed control in wells turbine-based oscillating water column devices: optimum rotational speed

    Lekube, J.; Garrido, A. J.; Garrido, I.


    The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.

  17. Grid impact of variable-speed wind turbines

    Larsson, Aa [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P [Risoe National Lab., Roskilde (Denmark); Santjer, F [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)


    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  18. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Weihao Hu; Yunqian Zhang; Zhe Chen; Yanting Hu


    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the sign...

  19. Control of variable speed variable pitch wind turbine based on a disturbance observer

    Ren, Haijun; Lei, Xin


    In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.

  20. Comparison between OpenFOAM CFD & BEM theory for variable speedvariable pitch HAWT

    ElQatary Islam


    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  1. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Pierce, K.; Migliore, P.


    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  2. Fuzzy logic based variable speed wind generation system

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.


    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  3. Level of recall, retrieval speed, and variability on the Cued-Recall Retrieval Speed Task (CRRST) in individuals with amnestic mild cognitive impairment.

    Ramratan, Wendy S; Rabin, Laura A; Wang, Cuiling; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B; Buschke, Herman


    Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = -0.13; p cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults.

  4. Step-by-step variability of swing phase trajectory area during steady state walking at a range of speeds

    Hurt, Christopher P.; Brown, David A.


    Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202

  5. The Benefit of Variable-Speed Turbine Operation for Low Temperature Thermal Energy Power Recovery

    Brasz, Joost J.


    This paper analyzes, given the large variation in turbine discharge pressure with changing ambient temperatures, whether variable-speed radial-inflow turbine operation has a similar benefit for Organic Rankine Cycle (ORC) power recovery systems as variable-speed centrifugal compression has for chiller applications. The benefit of variable-speed centrifugal compression over fixed-speed operation is a reduction in annual electricity consumption of almost 40 %. Air-conditioning systems are by ne...

  6. Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis.

    Mazerolle, Erin L; Wojtowicz, Magdalena A; Omisade, Antonina; Fisk, John D


    Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing-remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing-remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain-behavior relationships in neurologic disorders with widespread white matter pathology.

  7. Variability of Wind Speeds and Power over Europe

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.


    of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  8. Wind generator with electronic variable-speed drives

    David, A.; Buchheit, N.; Jakobsen, H.


    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  9. Variable-Speed Power-Turbine Research at Glenn Research Center

    Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.


    The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.

  10. Modelling of Station of Pumping by Variable Speed

    Benretem A.


    Full Text Available An increased energetic efficiency will make it possible to decrease the factory operating costs and hence to increase productivity. The centrifugal pumps are largely used because of their relatively simple operation and of their purchase price. One analyses thorough requirements imposed by the pumping plants is decisive. It is important to keep in mind the fact that the pumps consume approximately 20% of energy in the world. They constitute the possibility for the most significant efficiency improvement. They can reach their maximum effectiveness only with one pressure and a given flow. The approach suggested makes it possible to adapt with accuracy and effectiveness of system output of the industrial process requirements. The variable speed drive is one of best and effective techniques studied to reach this objective. The appearance of this technique comes only after the evolution obtained in the field of power electronics systems precisely static inverters as well as the efforts made by the researchers in the field of electric drive systems. This work suggested is the result of an in-depth study on the effectiveness of this new technique applied for the centrifugal pumps.

  11. A novel technology for control of variable speed pumped storage power plant

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar


    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  12. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.


    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  13. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Melicio, R. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)


    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (author)

  14. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Jesús Peláez Vara


    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  15. AC-DC integrated load flow calculation for variable speed offshore wind farms

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede


    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  16. On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve

    Filipe, Jorge; Bessa, Ricardo; Moreira, Carlos; Silva, Bernardo


    The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.

  17. Variable speed limit system for Elk Mountain corridor.


    Determining an appropriate speed for the current conditions can be difficult for the driver. Equally difficult is for law : enforcement agencies to enforce and cite someone going too fast for conditions. In many cases, drivers are cited for going : t...

  18. Variable speed limits system for Elk Mountain corridor.


    "Determining an appropriate speed for the current conditions can be difficult for the driver. Equally difficult is for law : enforcement agencies to enforce and cite someone going too fast for conditions. In many cases, drivers are cited for going : ...

  19. Design and Construction of Variable Direct Current Speed Drive ...

    controlled rectifiers from the viewpoint of simplicity and cost effectiveness to act as power converter and controller. Design and construction of constituent circuits such as acceleration/deceleration, speed and current amplifier and the trigger ...

  20. Impact and injury response of long track speed skaters

    Forbes, P.A.; Swartjes, F.H.M.; Ruimerman, R.; Willems, J.W.M.


    The following study presents a combined numerical-experimental investigation into the impact and injury response of long track speed skaters when impacting the protective boarding around the track. The high speeds common within the sport combined with the inherent slipperiness of the ice create a

  1. High-speed LWR transients simulation for optimizing emergency response

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.


    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  2. Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink

    Min-Yan DI


    Full Text Available This article is studied on currently a very active field of researching sinusoidal pulse width modulation (SPWM frequency speed control system, and strengthen researched on the simulation model of speed control system with MATLAB / Simulink / Power System simulation tools, thus we can find the best way to simulation. We apply it to the actual conveyor belt, frequency conversion motor, when the obtained simulation results are compared with the measured data, we prove that the method is practical and effective. The results of our research have a guiding role for the future engineering and technical personnel in asynchronous motor SPWM VVVF CAD design.

  3. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana


    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  4. Integration of Variable Speed Pumped Hydro Storage in Automatic Generation Control Systems

    Fulgêncio, N.; Moreira, C.; Silva, B.


    Pumped storage power (PSP) plants are expected to be an important player in modern electrical power systems when dealing with increasing shares of new renewable energies (NRE) such as solar or wind power. The massive penetration of NRE and consequent replacement of conventional synchronous units will significantly affect the controllability of the system. In order to evaluate the capability of variable speed PSP plants participation in the frequency restoration reserve (FRR) provision, taking into account the expected performance in terms of improved ramp response capability, a comparison with conventional hydro units is presented. In order to address this issue, a three area test network was considered, as well as the corresponding automatic generation control (AGC) systems, being responsible for re-dispatching the generation units to re-establish power interchange between areas as well as the system nominal frequency. The main issue under analysis in this paper is related to the benefits of the fast response of variable speed PSP with respect to its capability of providing fast power balancing in a control area.

  5. Optimal multivariable control of a wind turbine with variable speed

    Steinbuch, M.


    The control system design for a 310 kW horizontal axis wind energy conversion system with a synchronous generator and DC link is investigated. Because the wind turbine system has multiple inputs (pitch angle, field vollage alld delay angle), and multiple outputs, (speed and power), and because the

  6. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    Yuan Bo


    Full Text Available According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  7. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    Yuan, Bo; Zong, Jin; Xu, Zhicheng


    According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  8. Bedform response to flow variability

    Nelson, J.M.; Logan, B.L.; Kinzel, P.J.; Shimizu, Y.; Giri, S.; Shreve, R.L.; McLean, S.R.


    Laboratory observations and computational results for the response of bedform fields to rapid variations in discharge are compared and discussed. The simple case considered here begins with a relatively low discharge over a flat bed on which bedforms are initiated, followed by a short high-flow period with double the original discharge, during which the morphology of the bedforms adjusts, followed in turn by a relatively long period of the original low discharge. For the grain size and hydraulic conditions selected, the Froude number remains subcritical during the experiment, and sediment moves predominantly as bedload. Observations show rapid development of quasi-two-dimensional bedforms during the initial period of low flow with increasing wavelength and height over the initial low-flow period. When the flow increases, the bedforms rapidly increase in wavelength and height, as expected from other empirical results. When the flow decreases back to the original discharge, the height of the bedforms quickly decreases in response, but the wavelength decreases much more slowly. Computational results using an unsteady two-dimensional flow model coupled to a disequilibrium bedload transport model for the same conditions simulate the formation and initial growth of the bedforms fairly accurately and also predict an increase in dimensions during the high-flow period. However, the computational model predicts a much slower rate of wavelength increase, and also performs less accurately during the final low-flow period, where the wavelength remains essentially constant, rather than decreasing. In addition, the numerical results show less variability in bedform wavelength and height than the measured values; the bedform shape is also somewhat different. Based on observations, these discrepancies may result from the simplified model for sediment particle step lengths used in the computational approach. Experiments show that the particle step length varies spatially and

  9. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well


    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean

  10. Pitch Angle Control for Variable Speed Wind Turbines

    Mouna Ben Smida


    Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.

  11. Energy Implications of Retrofitting Retail Sector Rooftop Units with Stepped-Speed and Variable-Speed Functionality

    Studer, D.; Romero, R.; Herrmann, L.; Benne, K.


    Commercial retailers understand that retrofitting constant-speed RTU fan motors with stepped- or variable-speed alternatives could save significant energy in most U.S. climate zones. However, they lack supporting data, both real-world and simulation based, on the cost effectiveness and climate zone-specific energy savings associated with this measure. Thus, building managers and engineers have been unable to present a compelling business case for fan motor upgrades to upper management. This study uses whole-building energy simulation to estimate the energy impact of this type of measure so retailers can determine its economic feasibility.

  12. UDE-based control of variable-speed wind turbine systems

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang


    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  13. Flicker study on variable speed wind turbines with doubly fed induction generators

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede


    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...... show the wind turbine output reactive power control provides an effective means for flicker mitigation regardless of mean wind speed, turbulence intensity and short circuit capacity ratio.......Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines...

  14. DC Motor Parameter Identification Using Speed Step Responses

    Wei Wu


    Full Text Available Based on the DC motor speed response measurement under a step voltage input, important motor parameters such as the electrical time constant, the mechanical time constant, and the friction can be estimated. A power series expansion of the motor speed response is presented, whose coefficients are related to the motor parameters. These coefficients can be easily computed using existing curve fitting methods. Experimental results are presented to demonstrate the application of this approach. In these experiments, the approach was readily implemented and gave more accurate estimates than conventional methods.

  15. Assessing intraindividual variability in sustained attention: reliability, relation to speed and accuracy, and practice effects



    Full Text Available We investigated the psychometric properties of competing measures of sustained attention. 179 subjects were assessed twice within seven day's time with a test designed to measure sustained attention, or concentration, respectively. In addition to traditional performance indices [i.e., speed (MRT and accuracy (E%], we evaluated two intraindividual response time (RT variability measures: standard deviation (SDRT and coefficient of variation (CVRT. For the overall test, both indices were reliable. SDRT showed good to acceptable retest reliability for all subtests. For CVRT, retest reliability coefficients ranged from very good to not satisfactory. While the reversed-word recognition test proved highly reliable, the mental calculation test and the arrows test were not sufficiently reliable. CVRT was only slightly correlated but SDRT was highly correlated with MRT. In contrast to substantial practice gains for MRT, SDRT and E%, only CVRT proved to be stable. In conclusion, CVRT appears to be a potential index for assessing performance variability: it is reliable for the overall test, only moderately correlated with speed, and virtually not affected by practice. However, before applying CVRT in practical assessment settings, additional research is required to elucidate the impact of task-specific factors on the reliability of this performance measure.

  16. Work zone variable speed limit systems: Effectiveness and system design issues.


    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  17. Applications of variable speed control for contending with recurrent highway congestion.


    This research project developed vital operational guidelines for design of a variable speed limit (VSL) system and its integrated operations with ramp metering control in contending with recurrent highway congestion. The developed guidelines can serv...

  18. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology


    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  19. Objectifying Tactics: Athlete and Race Variability in Elite Short-Track Speed Skating.

    Konings, Marco J; Hettinga, Florentina J


    To objectively capture and understand tactical considerations in a race, the authors explored whether race-to-race variation of an athlete and the variation of competitors within a race could provide insight into how and when athletes modify their pacing decisions in response to other competitors. Lap times of elite 500-, 1000-, and 1500-m short-track speed-skating competitions from 2011 to 2016 (N = 6965 races) were collected. Log-transformed lap and finishing times were analyzed with mixed linear models. To determine within-athlete race-to-race variability, athlete identity (between-athletes differences) and the residual (within-athlete race-to-race variation) were added as random effects. To determine race variability, race identity (between-races differences) and the residual (within-race variation) were added as random effects. Separate analyses were performed for each event. Within-athlete race-to-race variability of the finishing times increased with prolonged distance of the event (500-m, CV = 1.6%; 1000-m, CV = 2.8%; 1500-m, CV = 4.1%), mainly due to higher within-athlete race-to-race variability in the initial phase of 1000-m (3.3-6.9%) and 1500-m competitions (8.7-12.2%). During these early stages, within-race variability is relatively low in 1000-m (1.1-1.4%) and 1500-m (1.3-2.8%) competitions. The present study demonstrated how analyses of athlete and race variability could provide insight into tactical pacing decisions in sports where finishing position is emphasized over finishing time. The high variability of short-track skaters is a result of the decision to alter initial pacing behavior based on the behavior of other competitors in their race, emphasizing the importance of athlete-environment interactions in the context of pacing.

  20. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    Kim, Woohyun; Braun, James E.


    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  1. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar


    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  2. Using variable speed drives technology to reap rewards of efficient HVAC design



    Electric motors are continuously running at full speed with vanes and throttles used to modulate the output, in most HVAC applications. This results in an excessive wastage of electrical energy, and the solution is the variable speed drive, which can save vast amounts of energy in fans, pumps and compressors across the HVAC system. Users of traditional control methods will not benefit from the energy savings that are possible through variable speed drives because the motor speed remains the same, with the result that some, and in some cases most, of the energy drawn will be wasted. Variable speed drives are more efficient because they control output by regulating the motor speed, rather than run the motor at full speed and use restrictions to reduce the flow. Recently, small so-called micro-drives have been launched, cutting the cost for most variable speed operation. Variable speed motors can also introduce new features to the HVAC system. An example of how drives can save money and improve the indoor climate is cited for Heathrow airport. There, the gateroom was earlier controlled by modulating valves in both heater and cooler coils, with two fans that operated continuously at rated speed. This system was very inefficient because the occupancy of the gateroom varied between zero and maximum several times daily. A new system was installed using two AC drives, in which one drive controls the supply air fan and the other the return air fan. The energy savings amounted to 89% during two tests and 77% in a third. A pump installation in the district heating system of Strasbourg, Germany, showed the savings that are possible in pump applications

  3. Radiation response of high speed CMOS integrated circuits

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.


    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  4. Time series analysis of wind speed using VAR and the generalized impulse response technique

    Ewing, Bradley T. [Area of Information Systems and Quantitative Sciences, Rawls College of Business and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX 79409-2101 (United States); Kruse, Jamie Brown [Center for Natural Hazard Research, East Carolina University, Greenville, NC (United States); Schroeder, John L. [Department of Geosciences and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Smith, Douglas A. [Department of Civil Engineering and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States)


    This research examines the interdependence in time series wind speed data measured in the same location at four different heights. A multiple-equation system known as a vector autoregression is proposed for characterizing the time series dynamics of wind. Additionally, the recently developed method of generalized impulse response analysis provides insight into the cross-effects of the wind series and their responses to shocks. Findings are based on analysis of contemporaneous wind speed time histories taken at 13, 33, 70 and 160 ft above ground level with a sampling rate of 10 Hz. The results indicate that wind speeds measured at 70 ft was the most variable. Further, the turbulence persisted longer at the 70-ft measurement than at the other heights. The greatest interdependence is observed at 13 ft. Gusts at 160 ft led to the greatest persistence to an 'own' shock and led to greatest persistence in the responses of the other wind series. (author)

  5. Modelling and control of variable speed wind turbines for power system studies

    Michalke, Gabriele; Hansen, Anca Daniela


    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  6. Control design for a pitch-regulated, variable speed wind turbine

    Hansen, M.H.; Hansen, Anca Daniela; Larsen, Torben J.


    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domainanalysis of these controllers are however...... different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: • Very similar step responses in rotor speed, pitch angle, and powerare seen for simulations with steps in wind speed. • All controllers show a peak in power...... for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. • Responses of rotor speed, pitchangle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage...

  7. Acoustic response variability in automotive vehicles

    Hills, E.; Mace, B. R.; Ferguson, N. S.


    A statistical analysis of a series of measurements of the audio-frequency response of a large set of automotive vehicles is presented: a small hatchback model with both a three-door (411 vehicles) and five-door (403 vehicles) derivative and a mid-sized family five-door car (316 vehicles). The sets included vehicles of various specifications, engines, gearboxes, interior trim, wheels and tyres. The tests were performed in a hemianechoic chamber with the temperature and humidity recorded. Two tests were performed on each vehicle and the interior cabin noise measured. In the first, the excitation was acoustically induced by sets of external loudspeakers. In the second test, predominantly structure-borne noise was induced by running the vehicle at a steady speed on a rough roller. For both types of excitation, it is seen that the effects of temperature are small, indicating that manufacturing variability is larger than that due to temperature for the tests conducted. It is also observed that there are no significant outlying vehicles, i.e. there are at most only a few vehicles that consistently have the lowest or highest noise levels over the whole spectrum. For the acoustically excited tests, measured 1/3-octave noise reduction levels typically have a spread of 5 dB or so and the normalised standard deviation of the linear data is typically 0.1 or higher. Regarding the statistical distribution of the linear data, a lognormal distribution is a somewhat better fit than a Gaussian distribution for lower 1/3-octave bands, while the reverse is true at higher frequencies. For the distribution of the overall linear levels, a Gaussian distribution is generally the most representative. As a simple description of the response variability, it is sufficient for this series of measurements to assume that the acoustically induced airborne cabin noise is best described by a Gaussian distribution with a normalised standard deviation between 0.09 and 0.145. There is generally

  8. Speed

    First page Back Continue Last page Overview Graphics. Speed. The rate of information transferred per second is the speed of the information. Measured in bits per second. Need for speed on the net: You-Tube phenomenon; IPTV; 3D Video telephony. Online gaming; HDTV.

  9. LOFT PSMG Speed Control System frequency response analysis

    Hansen, H.R.


    An analysis was done to gain insight into the shape of the open loop frequency response of the PSMG Speed Control System. The results of the analysis were used as a guide to groom the proportional band and reset time settings of the 2 mode controller in the speed control system. The analysis shows that when an actuator with a timing of 90 degrees per 60 seconds is installed in the system the proportional band and reset time should be 316% and 1 minute. Whereas when grooming the system a proportional band and reset time of 150% and 1.5 minutes were found to be appropriate. The closeness of the settings show that even though a linear model was used to describe the non-linear PSMG Speed Control System, it was accurate enough to be used as a guide to groom the proportional band and reset time settings

  10. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering


    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  11. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion


    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  12. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao


    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind......Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...

  13. Variable speed wind turbine generator system with current controlled voltage source inverter

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.


    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  14. Variable speed wind turbine generator system with current controlled voltage source inverter

    Muyeen, S.M., E-mail: [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)


    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  15. Automated Bearing Fault Diagnosis Using 2D Analysis of Vibration Acceleration Signals under Variable Speed Conditions

    Sheraz Ali Khan


    Full Text Available Traditional fault diagnosis methods of bearings detect characteristic defect frequencies in the envelope power spectrum of the vibration signal. These defect frequencies depend upon the inherently nonstationary shaft speed. Time-frequency and subband signal analysis of vibration signals has been used to deal with random variations in speed, whereas design variations require retraining a new instance of the classifier for each operating speed. This paper presents an automated approach for fault diagnosis in bearings based upon the 2D analysis of vibration acceleration signals under variable speed conditions. Images created from the vibration signals exhibit unique textures for each fault, which show minimal variation with shaft speed. Microtexture analysis of these images is used to generate distinctive fault signatures for each fault type, which can be used to detect those faults at different speeds. A k-nearest neighbor classifier trained using fault signatures generated for one operating speed is used to detect faults at all the other operating speeds. The proposed approach is tested on the bearing fault dataset of Case Western Reserve University, and the results are compared with those of a spectrum imaging-based approach.

  16. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede


    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  17. The experimental studies of operating modes of a diesel-generator set at variable speed

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.


    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  18. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Hui Wang


    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  19. Dynamic response of high speed centrifuge for reprocessing plant

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.


    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  20. Energy saving opportunity with variable speed drive in primary air-handling unit

    Li, J.S.M.


    Air conditioners used in the court buildings in Kowloon City, Hong Kong were retrofitted with variable speed drives in the primary air handling unit (PAU) in an effort to reduce energy consumption. The initial effect of this retrofit was investigated along with the feasibility of using a carbon dioxide (CO 2 ) based demand control ventilation to reduce energy consumption while optimizing indoor air quality. The air flow in most air conditioning fans is either constant or controlled by motorized inlet guide vanes. Although this controls the flow and may reduce the load on the fan, this constriction adds an energy loss, resulting in inefficient operation. Variable speed drives should be used on the PAU in order to maintain system efficiency. As the speed of the fans are reduced, the flow will decrease proportionally, while the power required by the fan will reduce the cube of the speed. Therefore, if the fresh air supply can be controlled by reducing the speed of the fan motor, then flow control would be more efficient. The energy saving associated with variable fresh air supply flow rate was evaluated along with the cost to building owners. This paper presented the results of the potential energy and cost savings associated with this retrofit, and included implementation cost and pay back period. It was estimated that about 20 per cent of power consumption and electricity costs can be saved per year, with a simple payback period of 2 years. 7 refs., 3 tabs., 3 figs

  1. Match-to-match variability in high-speed running activity in a professional soccer team.

    Carling, Christopher; Bradley, Paul; McCall, Alan; Dupont, Gregory


    This study investigated variability in competitive high-speed running performance in an elite soccer team. A semi-automated tracking system quantified running performance in 12 players over a season (median 17 matches per player, 207 observations). Variability [coefficient of variation (CV)] was compared for total sprint distance (TSD, >25.2 km/h), high-speed running (HSR, 19.8-25.2 km/h), total high-speed running (THSR, ≥19.8 km/h); THSR when the team was in and out of ball possession, in individual ball possession, in the peak 5 min activity period; and distance run according to individual maximal aerobic speed (MAS). Variability for % declines in THSR and distance covered at ≥80% MAS across halves, at the end of play (final 15 min vs. mean for all 15 min periods) and transiently (5 min period following peak 5 min activity period), was analysed. Collectively, variability was higher for TSD versus HSR and THSR and lowest for distance run at ≥80% MAS (CVs: 37.1%, 18.1%, 19.8% and 11.8%). THSR CVs when the team was in/out of ball possession, in individual ball possession and during the peak 5 min period were 31.5%, 26.1%, 60.1% and 23.9%. Variability in THSR declines across halves, at the end of play and transiently, ranged from 37.1% to 142.6%, while lower CVs were observed in these metrics for running at ≥80% MAS (20.9-53.3%).These results cast doubt on the appropriateness of general measures of high-speed activity for determining variability in an elite soccer team, although individualisation of HSR thresholds according to fitness characteristics might provide more stable indicators of running performance and fatigue occurrence.

  2. Control of variable speed wind turbine with doubly-fed induction generator

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)


    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  3. Spatial and temporal variability of mean daily wind speeds in the Czech Republic, 1961-2015

    Brázdil, Rudolf; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Štěpánek, Petr; Dobrovolný, Petr


    Roč. 72, č. 3 (2017), s. 197-216 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:67179843 Keywords : mean daily wind speed * spatial variability * temporal variability * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  4. Mixed convection heat transfer simulation in a rectangular channel with a variable speed rotational cylinder

    Khan, Md Imran; Billah, Md. Mamun; Rahman, Mohammed Mizanur; Hasan, Mohammad Nasim


    Numerical simulation of steady two-dimensional heat transfer in a rectangular channel with a centered variable speed cylinder has been performed in this paper. In this setup, an isoflux heater is placed at the bottom wall of the channel while the upper wall is kept isothermal with a low temperature. The cylinder's peripheral speed to maximum inlet fluid velocity ratio (ξ) is varied from 0.5 to 1.5 for both clockwise and anticlockwise rotational cases. Air has been considered as working fluid while other system parameters such as Grashof and Reynolds numbers are varied. The effects of rotational speed, Grashof and Reynolds numbers on the streamline pattern, isothermal lines, local and average Nusselt number are analyzed and presented. It is observed the cylinder's rotational direction and speed has a significant effect on the flow pattern, temperature distribution as well as heat transfer characteristics.

  5. Potential electricity savings by variable speed control of compressor for air conditioning systems

    Nasution, Henry [Bung Hatta University, Department of Mechanical Engineering, Faculty of Industrial Engineering, Padang, West Sumatera (Indonesia); Wan Hassan, Mat Nawi [Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, Skudai, Johor Bahru-Darul Ta' zim (Malaysia)


    The potential of a variable-speed compressor running on a controller to provide enhanced load-matching capability, energy saving and thermal comfort for application in air-conditioning system is demonstrated. An air-conditioning system, originally operated on a constant speed mode, is retrofitted with an inverter and a PID controller. The system was installed to a thermal environmental room together with a data acquisition system to monitor energy consumption and temperature of the room. Measurements were taken 2 h daily at a time interval of 5 min for an on/off and an inverter variable-speed conditions. The results indicate that thermal comfort of the room together with energy saving can be obtained through a proper selection of K for the controller. At a temperature setting of 22 C, the energy saving for the system is estimated to reach 25.3% for PID controllers. (orig.)

  6. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    Hu, Weihao; Chen, Zhe; Wang, Yue


    capacity, grid impedance angle) are analyzed. Flicker mitigation is realized by output reactive power control of the variable speed wind turbines with PMSG. Simulation results show the output reactive power control is an effective measure to mitigate the flicker during continuous operation of grid......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...... in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated during continuous operation. The dependence of flicker emission on wind characteristics (mean speed, turbulence intensity), 3p torque oscillations due to wind shear and tower shadow effects and grid conditions (short circuit...

  7. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan


    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  8. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K


    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.


    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  10. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    Li, Hui; Chen, Zhe; Polinder, H.


    of different wind generator systems, the other presents the optimization results and evaluation of variable speed wind generator systems. In this report, firstly, it gives an overview of various wind generator topologies, including their advantages and disadvantages, market status and developing trends. Next...

  11. Analysis of the short-term overproduction capability of variable speed wind turbines

    Hansen, Anca Daniela; Altin, Müfit; Margaris, Ioannis D.


    Emphasis in this article is on variable speed wind turbines (VSWTs) capability to provide short-term overproduction and better understanding of VSWTs’ mechanical and electrical limits to deliver such support. VSWTs’ short-term overproduction capability is of primary concern for the transmission...

  12. Dynamic modelling and analysis of a wind turbine with variable speed

    Steinbuch, M.


    On behalf of the operation of the Dutch National Wind Farm, which is under construction now, a study is being performed on the control system design of variable speed wind turbines. To realize this a non-linear dynamic model of a wind turbine with synchronous generator and AC/ DC/AC conversion has

  13. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    Diepeveen, N.F.B.; Jarquin-Laguna, A.


    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  14. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    Jarquin Laguna, A.; Diepeveen, N.F.B.


    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  15. Evaluation of variable speed limits on I-270/I-255 in St. Louis.


    In May of 2008, MoDOT installed a Variable Speed Limit (VSL) system along the I270/I255 corridor in St. Louis. This project evaluated the VSL system and its potential impacts and benefits to the transportation users. The technical system ...

  16. Appendices : evaluation of variable speed limits on I-270/I-255 in St. Louis.


    In May of 2008, MoDOT installed a Variable Speed Limit (VSL) system along the I-270/I-255 corridor in : St. Louis. This project evaluated the VSL system and its potential impacts and benefits to the : transportation users. The technical system ...

  17. Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan


    This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequen...

  18. A disturbance decoupling nonlinear control law for variable speed wind turbines

    Thomsen, Sven Creutz; Poulsen, Niels Kjølstad


    This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

  19. Variability in the Speed of the Brewer-Dobson Circulation as Observed by Aura/MLS

    Flury, Thomas; Wu, Dong L.; Read, W. G.


    We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer-Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, approx.18.8 km and 56 hPa, approx 19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (approx 16.6 km) level by correlating the H2O time series at the Equator with the ones at 40 N and 40 S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15m/s at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10 %. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2mm/s.

  20. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    He, Wei


    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  1. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang


    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  2. Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    Caresana, Flavio; Bartolini, Carlo Maria [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche, Ancona (AN) 60100 (Italy); Brandoni, Caterina [Universita Telematica e-Campus, Ingegneria Energetica, Via Isimbardi 10, Novedrate (CO) 22060 (Italy); Feliciotti, Petro [Universita Politecnica delle Marche, Dipartimento di Ingegneria Informatica, Gestionale e dell' Automazione, Via Brecce Bianche, Ancona (AN) 60100 (Italy)


    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO{sub 2} reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW{sub e} natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit. (author)

  3. Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    Caresana, Flavio; Brandoni, Caterina; Feliciotti, Petro; Bartolini, Carlo Maria


    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO 2 reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW e natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit.

  4. Control of variable speed wind turbines with doubly-fed induction generators

    Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.


    The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)

  5. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)


    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)

  6. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L


    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  7. Experimental research of variable rotation speed ICE-based electric power station

    Dar’enkov Andrey


    Full Text Available Developing variable rotation speed ICE-based stand-alone electric power stations which can supply distant regions and autonomous objects with electricity are of scientific interest due to the insufficient study. The relevance of developing such electric power stations is determined by their usage is to provide a significant fuel saving as well as increase ICE motor service life. The article describes the electric station of autonomous objects with improved fuel economy. The article describes multivariate characteristic. Multivariate characteristic shows the optimal frequency of rotation of the internal combustion engine. At this rotational speed there is the greatest fuel economy.

  8. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    Deng, Fujin; Chen, Zhe


    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...

  9. Frequency support capability of variable speed wind turbine based on electromagnetic coupler

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun


    In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support...... capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies-droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid...

  10. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    Sullivan, T. J.; Parker, D. E.


    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  11. Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on Freeway

    Ming-hui Ma


    Full Text Available To enhance the efficiency of the existing freeway system and therefore to mitigate traffic congestion and related problems on the freeway mainline lane-drop bottleneck region, the advanced strategy for bottleneck control is essential. This paper proposes a method that integrates variable speed limits and ramp metering for freeway bottleneck region control to relieve the chaos in bottleneck region. To this end, based on the analyses of spatial-temporal patterns of traffic flow, a macroscopic traffic flow model is extended to describe the traffic flow operating characteristic by considering the impacts of variable speed limits in mainstream bottleneck region. In addition, to achieve the goal of balancing the priority of the vehicles on mainline and on-ramp, increasing capacity, and reducing travel delay on bottleneck region, an improved control model, as well as an advanced control strategy that integrates variable speed limits and ramp metering, is developed. The proposed method is tested in simulation for a real freeway infrastructure feed and calibrates real traffic variables. The results demonstrate that the proposed method can substantially improve the traffic flow efficiency of mainline and on-ramp and enhance the quality of traffic flow at the investigated freeway mainline bottleneck.

  12. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Mifeng Ren


    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  13. Structural Plasticity Denoises Responses and Improves Learning Speed

    Robin Spiess


    Full Text Available Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e. the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasticity (STDP and what advantages their combination offers.Here we present a fairly large-scale functional model that uses leaky integrate-and-fire neurons, STDP, homeostasis, recurrent connections, and structural plasticity to learn the input encoding, the relation between inputs, and to infer missing inputs. Using this model, we compare the error and the amount of noise in the network's responses with and without structural plasticity and the influence of structural plasticity on the learning speed of the network.Using structural plasticity during learning shows good results for learning the representation of input values, i.e. structural plasticity strongly reduces the noise of the response by preventing spikes with a high error.For inferring missing inputs we see similar results, with responses having less noise if the network was trained using structural plasticity.Additionally, using structural plasticity with pruning significantly decreased the time to learn weights suitable for inference.Presumably, this is due to the clearer signal containing less spikes that misrepresent the desired value. Therefore, this work shows that structural plasticity is not only able to improve upon the performance using STDP without structural plasticity but also speeds up learning.Additionally, it addresses the practical problem of limited resources for connectivity that is not only apparent in the mammalian neocortex but also in computer hardware or neuromorphic (brain-inspired hardware by efficiently pruning synapses without losing performance.

  14. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  15. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  16. DAC with LQR Control Design for Pitch Regulated Variable Speed Wind Turbine

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen


    Disturbance Accommodation Control (DAC) is used to model and simulate a system with known disturbance waveform. This paper presents a control scheme to mitigate the effect of disturbances by using collective pitch control for the aboverated wind speed (Region III) for a variable speed wind turbine....... We have used Linear Quadratic Regulator (LQR) to obtain full state feedback gain, disturbance feedback gain is calculated independently and then estimator gain is achieved by poleplacement technique in the DAC augmented plant model. The reduced order model (two-mass model) of wind turbine is used...... and 5MW National Renewable Energy Laboratory (NREL) wind turbine is used in this research. We have shown comparison of results relating to pitch angle, drive train torsion and generator speed obtained by a PID controller and DAC. Simulations are performed in MATLAB/Simulink. The results are compared...

  17. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Ulas Eminoglu


    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  18. Typing Speed as a Confounding Variable and the Measurement of Quality in Divergent Thinking

    Forthmann, Boris; Holling, Heinz; Çelik, Pinar; Storme, Martin; Lubart, Todd


    The need to control for writing or typing speed when assessing divergent-thinking performance has been recognized since the early '90s. An even longer tradition in divergent-thinking research has the issue of scoring the responses for quality. This research addressed both issues within structural equation modeling. Three dimensions of…

  19. Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

    M. Alizadeh Moghadam


    Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.

  20. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Yingning Qiu


    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  1. Centile estimation for a proportion response variable.

    Hossain, Abu; Rigby, Robert; Stasinopoulos, Mikis; Enea, Marco


    This paper introduces two general models for computing centiles when the response variable Y can take values between 0 and 1, inclusive of 0 or 1. The models developed are more flexible alternatives to the beta inflated distribution. The first proposed model employs a flexible four parameter logit skew Student t (logitSST) distribution to model the response variable Y on the unit interval (0, 1), excluding 0 and 1. This model is then extended to the inflated logitSST distribution for Y on the unit interval, including 1. The second model developed in this paper is a generalised Tobit model for Y on the unit interval, including 1. Applying these two models to (1-Y) rather than Y enables modelling of Y on the unit interval including 0 rather than 1. An application of the new models to real data shows that they can provide superior fits. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    Deng, Fujin; Chen, Zhe


    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted....... A simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation....

  3. Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives

    Cheremushkina, M. S.; Baburin, S. V.


    The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.

  4. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    Deng, Fujin; Chen, Zhe


    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  5. A new hydraulic regulation method on district heating system with distributed variable-speed pumps

    Wang, Hai; Wang, Haiying; Zhu, Tong


    Highlights: • A hydraulic regulation method was presented for district heating with distributed variable speed pumps. • Information and automation technologies were utilized to support the proposed method. • A new hydraulic model was developed for distributed variable speed pumps. • A new optimization model was developed based on genetic algorithm. • Two scenarios of a multi-source looped system was illustrated to validate the method. - Abstract: Compared with the hydraulic configuration based on the conventional central circulating pump, a district heating system with distributed variable-speed-pumps configuration can often save 30–50% power consumption on circulating pumps with frequency inverters. However, the hydraulic regulations on distributed variable-speed-pumps configuration could be more complicated than ever while all distributed pumps need to be adjusted to their designated flow rates. Especially in a multi-source looped structure heating network where the distributed pumps have strongly coupled and severe non-linear hydraulic connections with each other, it would be rather difficult to maintain the hydraulic balance during the regulations. In this paper, with the help of the advanced automation and information technologies, a new hydraulic regulation method was proposed to achieve on-site hydraulic balance for the district heating systems with distributed variable-speed-pumps configuration. The proposed method was comprised of a new hydraulic model, which was developed to adapt the distributed variable-speed-pumps configuration, and a calibration model with genetic algorithm. By carrying out the proposed method step by step, the flow rates of all distributed pumps can be progressively adjusted to their designated values. A hypothetic district heating system with 2 heat sources and 10 substations was taken as a case study to illustrate the feasibility of the proposed method. Two scenarios were investigated respectively. In Scenario I, the

  6. Perfection of badminton players’ speed-power fitness with the help of training means’ variable modules

    I.V. Karatnyk


    Full Text Available Purpose: to determine effectiveness of badminton players’ speed power fitness program’s perfection at stage of specialized basic training with different variants of training means modules’ combination. Material: in experiment badminton players of 15-17 years’ age (from 1st sports grade to master of sports participated. The sportsmen were divided into three experimental groups (10 persons in each. The trainings were being conducted during 24 weeks by different variants of program. Results: we created different complexes of exercises, combined in three modules (every of each lasted eight week micro-cycles. Every module has more expressed meaningful parts (1 – speed, 2 – power, 3 – jumping. All modules were combined in program of badminton players’ speed power fitness perfection. For every experimental group we worked out distinguishing variant of modules’ combination in program (first variant – 1-2-3 modules; second – 2-3-1; third – 3-1-2. General duration of program was 24 week micro-cycles. Conclusions: we recommended some variants of variable modules’ combination for badminton players’ speed-power fitness perfection. With it, we can regard total influence on the following: speed-power endurance, work with support on own body, quick movements of different body links.

  7. Variable-speed wind power system with improved energy capture via multilevel conversion

    Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay


    A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.

  8. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...


    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  9. Development of The Structural and Functional Design of the Laboratory Bench for Experimental Research Diesel Generator Sets on Variable Speed

    Obuhov Sergei


    Full Text Available A diesel generator set working at variable speed to save fuel is studied. A description is provided of a laboratory bench for conducting experimental studies of a variable speed diesel generator set. Its component parts are described, and its technical characteristics are given.

  10. Low-Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    Deng, Fujin; Chen, Zhe


    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...... control scheme for the wind turbine that keeps it connected to the grid during grid faults is designed and simulated. Its design has special focus on the regulation of the DC-link voltage. Simulation results show the proposed control scheme is an effective measure to improve LVRT capability of variable...

  11. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A


    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  12. Clinical Impact of Speed Variability to Identify Ultramarathon Runners at Risk for Acute Kidney Injury.

    Sen-Kuang Hou

    Full Text Available Ultramarathon is a high endurance exercise associated with a wide range of exercise-related problems, such as acute kidney injury (AKI. Early recognition of individuals at risk of AKI during ultramarathon event is critical for implementing preventative strategies.To investigate the impact of speed variability to identify the exercise-related acute kidney injury anticipatively in ultramarathon event.This is a prospective, observational study using data from a 100 km ultramarathon in Taipei, Taiwan. The distance of entire ultramarathon race was divided into 10 splits. The mean and variability of speed, which was determined by the coefficient of variation (CV in each 10 km-split (25 laps of 400 m oval track were calculated for enrolled runners. Baseline characteristics and biochemical data were collected completely 1 week before, immediately post-race, and one day after race. The main outcome was the development of AKI, defined as Stage II or III according to the Acute Kidney Injury Network (AKIN criteria. Multivariate analysis was performed to determine the independent association between variables and AKI development.26 ultramarathon runners were analyzed in the study. The overall incidence of AKI (in all Stages was 84.6% (22 in 26 runners. Among these 22 runners, 18 runners were determined as Stage I, 4 runners (15.4% were determined as Stage II, and none was in Stage III. The covariates of BMI (25.22 ± 2.02 vs. 22.55 ± 1.96, p = 0.02, uric acid (6.88 ± 1.47 vs. 5.62 ± 0.86, p = 0.024, and CV of speed in specific 10-km splits (from secondary 10 km-split (10th - 20th km-split to 60th - 70th km-split were significantly different between runners with or without AKI (Stage II in univariate analysis and showed discrimination ability in ROC curve. In the following multivariate analysis, only CV of speed in 40th - 50th km-split continued to show a significant association to the development of AKI (Stage II (p = 0.032.The development of exercise

  13. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian


    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  14. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults.

    Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe


    The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail:

  15. Variable Speed Limits: Strategies to Improve Safety and Traffic Parameters for a Bottleneck

    M. Z. Hasanpour


    Full Text Available The primary purpose of the speed limit system is to enforce reasonable and safe speed. To reduce secondary problems such as accidents and queuing, Variable Speed Limits (VSL has been suggested. In this paper VSL is used to better safety and traffic parameters. Traffic parameters including speed, queue length and stopping time have been pondering. For VLS, an optimization decision tree algorithm with the function of microscopic simulation was used. The results in case of sub saturated, saturated and supersaturated at a bottleneck are examined and compared with the Allaby logic tree. The results show that the proposed decision tree shows an improved performance in terms of safety and comfort along the highway. The VSL pilot project is part of the Road Safety Improvement Program included in Iran’s road safety action plan that is in the research process in the BHRC Research Institute, Road and Housing & Urban Development Research that is planned for next 10-year Transportation safety view Plan.

  16. Modeling the Power Variability of Core Speed Scaling on Homogeneous Multicore Systems

    Zhihui Du


    Full Text Available We describe a family of power models that can capture the nonuniform power effects of speed scaling among homogeneous cores on multicore processors. These models depart from traditional ones, which assume that individual cores contribute to power consumption as independent entities. In our approach, we remove this independence assumption and employ statistical variables of core speed (average speed and the dispersion of the core speeds to capture the comprehensive heterogeneous impact of subtle interactions among the underlying hardware. We systematically explore the model family, deriving basic and refined models that give progressively better fits, and analyze them in detail. The proposed methodology provides an easy way to build power models to reflect the realistic workings of current multicore processors more accurately. Moreover, unlike the existing lower-level power models that require knowledge of microarchitectural details of the CPU cores and the last level cache to capture core interdependency, ours are easier to use and scalable to emerging and future multicore architectures with more cores. These attributes make the models particularly useful to system users or algorithm designers who need a quick way to estimate power consumption. We evaluate the family of models on contemporary x86 multicore processors using the SPEC2006 benchmarks. Our best model yields an average predicted error as low as 5%.

  17. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions

    Wang, Yanxue; Yang, Lin; Xiang, Jiawei; Yang, Jianwei; He, Shuilong


    Rolling element bearings are one of the main elements in rotating machines, whose failure may lead to a fatal breakdown and significant economic losses. Conventional vibration-based diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speeds. This constraint limits the bearing diagnosis to the industrial application significantly. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions is proposed in this work, based on computed order tracking (COT) and variational mode decomposition (VMD)-based time frequency representation (VTFR). COT is utilized to resample the non-stationary vibration signal in the angular domain, while VMD is used to decompose the resampled signal into a number of band-limited intrinsic mode functions (BLIMFs). A VTFR is then constructed based on the estimated instantaneous frequency and instantaneous amplitude of each BLIMF. Moreover, the Gini index and time-frequency kurtosis are both proposed to quantitatively measure the sparsity and concentration measurement of time-frequency representation, respectively. The effectiveness of the VTFR for extracting nonlinear components has been verified by a bat signal. Results of this numerical simulation also show the sparsity and concentration of the VTFR are better than those of short-time Fourier transform, continuous wavelet transform, Hilbert-Huang transform and Wigner-Ville distribution techniques. Several experimental results have further demonstrated that the proposed method can well detect bearing faults under variable speed conditions.

  18. Variable Delay Element For Jitter Control In High Speed Data Links

    Livolsi, Robert R.


    A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.

  19. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    Suchezky, Mark; Cruzen, G. Scott


    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  20. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    Tutelea, L N; Deaconu, S I; Popa, G N


    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA]. (paper)

  1. Variable speed wind turbine control by discrete-time sliding mode approach.

    Torchani, Borhen; Sellami, Anis; Garcia, Germain


    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Control design for a pitch-regulated, variable speed wind turbine

    Hansen, M.H.; Hansen, A.; Larsen, T.J.; Oeye, S.; Soerensen, P.; Fuglsang, P.


    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domain analysis of these controllers are however different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: 1) Very similar step responses in rotor speed, pitch angle, and power are seen for simulations with steps in wind speed. 2) All controllers show a peak in power for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. 3) Responses of rotor speed, pitch angle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage of tuning the parameters of the frequency converter to obtain a more constant power output. The dynamic modelling of the power controller is an important result for the inclusion of generator dynamics in the aeroelastic modelling of wind turbines. A reduced dynamic model of the relation between generator torque and generator speed variations is presented; where the integral term of the inner PI-regulator of rotor current is removed be-cause the time constant is very small compared to the important aeroelastic frequencies. It is shown how the parameters of the transfer function for the remaining control system with the outer PI-regulator of power can be derived from the generator data sheet. The main results of the numerical optimisation of the control parameters in the pitch PI-regulator performed in Chapter 6 are the following: 1) Numerical optimization can be used to tune controller parameters, especially when the optimization is used as refinement of a qualified initial guess. 2) The design model used to calculate the initial value parameters, as described in Chapter 3

  3. Strategy for the Operation of Cooling Towers with variable Speed Fans

    Iñigo-Golfín, J


    Within the SPS Cooling Water Project at CERN aimed at the reduction of water consumption, this primary open cooling loop will be closed and all the primary cooling circuit components will be upgraded to the new required duty and brought to the necessary safety and operability standards. In particular the tower fans will be fitted with variable frequency drives to replace the existing two speed motors. This paper presents a study to optimize the operation of SPS cooling towers taking into account outdoor conditions (wet and dry bulb temperatures) and the entirety of the primary circuit in which they will operate.

  4. Modular Multilevel Converters Based Variable Speed Wind Turbines for Grid Faults

    Deng, Fujin; Liu, Dong; Wang, Yanbo


    in the dc-link of the power converter to improve system performance, but also ensure the grid-side current balancing to increase the generated power of the wind turbine under the unbalanced grid fault, in comparison with the conventional VSWT based on BTB three-level NPC converters. The simulation studies......The modular multilevel converter (MMC) becomes attractive in the medium- and high-power application with high modularity. In this paper, the MMC is proposed to be applied in the variable speed wind turbine (VSWT) based on the full-scale back-to-back (BTB) power converter, where the generator...

  5. Performance comparison of control schemes for variable-speed wind turbines

    Bottasso, C. L.; Croce, A.; Savini, B.


    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  6. Performance comparison of control schemes for variable-speed wind turbines

    Bottasso, C L; Croce, A; Savini, B


    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies

  7. Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks

    Mokryani, Geev; Siano, P.; Piccolo, Antonio


    In this paper, a fuzzy controller for improving the fault ride-through (FRT) capability of variable speed wind turbines (WTs) equipped with a doubly fed induction generator (DFIG) is presented. DFIGs can be used as reactive power sources to control the voltage at the point of common coupling (PCC......). The controller is designed to compensate for the voltage at the PCC by simultaneously regulating the reactive and active power generated by WTs. The performance of the controller is evaluated in different case studies considering a different number of wind farms in different locations. Simulations carried out...

  8. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Kim, Seon Duk; Bang, H. S.; Cho, W. K


    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  9. A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics

    Dongran Song


    Full Text Available Variable speed wind turbines (VSWTs usually adopt a maximum power point tracking (MPPT method to optimize energy capture performance. Nevertheless, obtained performance offered by different MPPT methods may be affected by the impact of wind turbine (WT’s inertia and wind speed characteristics and it needs to be clarified. In this paper, the tip speed ratio (TSR and optimal torque (OT methods are investigated in terms of their performance under different wind speed characteristics on a 1.5 MW wind turbine model. To this end, the TSR control method based on an effective wind speed estimator and the OT control method are firstly presented. Then, their performance is investigated and compared through simulation test results under different wind speeds using Bladed software. Comparison results show that the TSR control method can capture slightly more wind energy at the cost of high component loads than the other one under all wind conditions. Furthermore, it is found that both control methods present similar trends of power reduction that is relevant to mean wind speed and turbulence intensity. From the obtained results, we demonstrate that, to further improve MPPT capability of large VSWTs, other advanced control methods using wind speed prediction information need to be addressed.

  10. Impact of the vibrations on the environment caused by passages of trains at variable speed

    Kożuch Barbara


    Full Text Available The paper deals with negative environmental impact caused by the passages of different kinds of trains at variable speed. The study is based on the measurement results which took place in Poland in 2013 on the railway line no. 4. The effect of the traction unit – Pendolino (EMU 250 on the vibration climate was analysed. The impact of passages of new trains was compared to currently operated rolling stock. The speed of trains was varying between 40 and 250 km/h. Vibration measurements were conducted by stuff of an accredited Laboratory of Structural Mechanics at Cracow University of Technology (Accreditation No. AB 826. The influence of the indicated vibrations due to passages of the trains on the building in the neighbourhood of the line was investigated. The vibration assessment was done for horizontal components of vibrations according to Polish standard code. Assessment of environmental impact was presented by indicator of perceptibility of vibration through construction (WODB, which refers to the Scales of Dynamic Influences (SDI scales. The limits specified by standards in any of the passages have not been exceeded. The change of speed or rolling stock resulted in a change in the characteristic of the vibration spectrum.

  11. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)


    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  12. Response Variability in Commercial MOSFET SEE Qualification

    George, J. S.; Clymer, D. A.; Turflinger, T. L.; Mason, L. W.; Stone, S.


    Single-event effects (SEE) evaluation of five different part types of next generation, commercial trench MOSFETs indicates large part-to-part variation in determining a safe operating area (SOA) for drain-source voltage (V_D_S) following a test campaign that exposed >50 samples per part type to heavy ions. These results suggest a determination of a SOA using small sample sizes may fail to capture the full extent of the part-to-part variability. An example method is discussed for establishing a Safe Operating Area using a one-sided statistical tolerance limit based on the number of test samples. Finally, burn-in is shown to be a critical factor in reducing part-to-part variation in part response. Implications for radiation qualification requirements are also explored.

  13. Control of a Stand-Alone Variable Speed Wind Energy Supply System †

    Mohamed M. Hamada


    Full Text Available This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG. The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and DC-link voltage, is used to maintain the DC-link voltage at a constant value. It is also used to make the batteries bank stores the surplus of wind energy and supplies this energy to the load during a wind power shortage. The load side voltage source inverter uses a relatively complex vector control scheme to control the output load voltage in terms of amplitude and frequency. The control strategy works under wind speed variation as well as with variable load. Extensive simulation results have been performed using MATLAB/SIMULINK.

  14. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times.

    Molenaar, Dylan; Bolsinova, Maria


    In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  15. Control and Health Monitoring of Variable Speed Wind Power Generation Systems; Period of Performance: 10 July 1997 - 10 July 2000

    Song, Y. D.; Bikdash, M.; Schulz, M. J.


    This document reports accomplishments on variable speed control, furling analysis, and health monitoring of wind turbines. There are three parts, prepared by Song, Bikdash, and Schulz, respectively. The first part discusses variable-speed control of wind turbines, exploring a memory-based method for wind speed prediction and wind turbine control. The second part addresses the yaw dynamics of wind turbines, including modeling, analysis, and control. The third part of the report discusses new analytical techniques that were developed and tested to detect initial damage to prevent failures of wind turbine rotor blades.

  16. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Cun SHI


    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  17. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)


    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  18. Variable speed limit strategies analysis with link transmission model on urban expressway

    Li, Shubin; Cao, Danni


    The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.

  19. Modeling and control of PMSG-based variable-speed wind turbine

    Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)


    This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)

  20. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    BAROTE, L.


    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  1. Principles of a simulation model for a variable-speed pitch-regulated wind turbine

    Camblong, H.; Vidal, M.R.; Puiggali, J.R.


    This paper considers the basic principles for establishing a simulation- model of a variable speed, pitch regulated, wind turbine. This model is used to test various control algorithms designed with the aim of maximising energetic yield and robustness and minimising flicker emission and dynamic drive train loads. One of the most complex elements of such a system is the interaction between wind and turbine. First, a detailed and didactic analysis of this interaction is given. This is used to understand some complicated phenomena, and to help design a simpler and more efficient (in terms of processing time) mathematical model. Additional submodels are given for the mechanical coupling, the pitch system and the electrical power system, before the entire model is validated by comparison with filed measurements on a 180 kW turbine. The complete simulation model is flexible, efficient and allows easy evaluation of different control algorithms. (author)

  2. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  3. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen


    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  4. Variable speed DFIG wind energy system for power generation and harmonic current mitigation

    Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)


    This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)

  5. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)


    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  6. An empirical model for independent control of variable speed refrigeration system

    Li Hua; Jeong, Seok-Kwon; Yoon, Jung-In; You, Sam-Sang


    This paper deals with an empirical dynamic model for decoupling control of the variable speed refrigeration system (VSRS). To cope with inherent complexity and nonlinearity in system dynamics, the model parameters are first obtained based on experimental data. In the study, the dynamic characteristics of indoor temperature and superheat are assumed to be first-order model with time delay. While the compressor frequency and opening angle of electronic expansion valve are varying, the indoor temperature and the superheat exhibit interfering characteristics each other in the VSRS. Thus, each decoupling model has been proposed to eliminate such interference. Finally, the experiment and simulation results indicate that the proposed model offers more tractable means for describing the actual VSRS comparing to other models currently available


    Osley López González


    , considered as a whole, must be able of respond with anadequate precision and speed in response to the randomness and variability of the wind.The relationship between the wind speed, the blade pitch and the generator speed in order to produce themaximum power and also be able to limit the output power for large wind speeds is a very complicated oneand it is very difficult to find its mathematical function.In this paper, the authors, utilizing the MATLABSIMULINK toolboxes, propose representing this functional relation by means of an Artificial Neural Network(ANN. The parameters and characteristics of an existing wind turbine generator are utilized and it isdemonstrated that it is possible to use an ANN in the simulation and control of a variable speed, variablepitch wind turbine that capture the maximum power from the wind.

  8. Examining Impulse-Variability Theory and the Speed-Accuracy Trade-Off in Children's Overarm Throwing Performance.

    Molina, Sergio L; Stodden, David F


    This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.

  9. Response variability to glucose facilitation of cognitive enhancement.

    Owen, Lauren; Scholey, Andrew; Finnegan, Yvonne; Sünram-Lea, Sandra I


    Glucose facilitation of cognitive function has been widely reported in previous studies (including our own). However, several studies have also failed to detect glucose facilitation. There is sparsity of research examining the factors that modify the effect of glucose on cognition. The aims of the present study were to (1) demonstrate the previously observed enhancement of cognition through glucose administration and (2) investigate some of the factors that may exert moderating roles on the behavioural response to glucose, including glucose regulation, body composition (BC) and hypothalamic–pituitary–adrenal axis response. A total of twenty-four participants took part in a double-blind, placebo-controlled, randomised, repeated-measures study, which examined the effect of 25 and 60 g glucose compared with placebo on cognitive function. At 1 week before the study commencement, all participants underwent an oral glucose tolerance test. Glucose facilitated performance on tasks of numeric and spatial working memory, verbal declarative memory and speed of recognition. Moderating variables were examined using several indices of glucoregulation and BC. Poorer glucoregulation predicted improved immediate word recall accuracy following the administration of 25 g glucose compared with placebo. Those with better glucoregulation showed performance decrements on word recall accuracy following the administration of 25 g glucose compared with placebo. These findings are in line with accumulating evidence that glucose load may preferentially enhance cognition in those with poorer glucoregulation. Furthermore, the finding that individuals with better glucoregulation may suffer impaired performance following a glucose load is novel and requires further substantiation.

  10. Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking

    Xiangjie Liu; Chengcheng Wang; Yaozhen Han


    This paper proposes a super-twisting second order sliding mode control scheme to maximize the wind energy capture of a doubly fed induction generator based variable speed wind turbine (VSWT) system, and minimize the reactive power simultaneously. Two second order sliding mode controllers are designed to achieve the control objectives, reduce mechanical stress and improve control accuracy. By regulating the generator rotor voltage, one controller makes the wind turbine rotor speed track the optimal speed, which can maximize power generation. The other maintains the rotor current at rated value to minimize the reactive power. A quadratic form Lyapunov function is adopted to determine the range of controller parameters and guarantee the finite time stability. Simulation results on a 1.5 MW doubly fed induction generator (DFIG)-based variable speed wind turbine demonstrate the validity of the proposed control strategy.

  11. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh


    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  12. Variability in response to albuminuria-lowering drugs

    Petrykiv, Sergei I; de Zeeuw, Dick; Persson, Frederik


    AIMS: Albuminuria-lowering drugs have shown different effect size in different individuals. Since urine albumin levels are known to vary considerably from day-to-day, we questioned whether the between-individual variability in albuminuria response after therapy initiation reflects a random...... variability or a true response variation to treatment. In addition, we questioned whether the response variability is drug dependent. METHODS: To determine whether the response to treatment is random or a true drug response, we correlated in six clinical trials the change in albuminuria during placebo...... or active treatment (on-treatment) with the change in albuminuria during wash-out (off-treatment). If these responses correlate during active treatment, it suggests that at least part of the response variability can be attributed to drug response variability. We tested this for enalapril, losartan...

  13. Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles

    Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.


    In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.

  14. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm

    Viet Tra


    Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.

  15. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    Galdi, V.; Piccolo, A.; Siano, P.


    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  16. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering


    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  17. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P


    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  18. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    Hernandez, Wilmar


    Among the complete family of sensors for automotive safety, consumer and industrial application, speed sensors stand out as one of the most important. Actually, speed sensors have the diversity to be used in a broad range of applications. In today's automotive industry, such sensors are used in the antilock braking system, the traction control system and the electronic stability program. Also, typical applications are cam and crank shaft position/speed and wheel and turbo shaft speed measurement. In addition, they are used to control a variety of functions, including fuel injection, ignition timing in engines, and so on. However, some types of speed sensors cannot respond to very low speeds for different reasons. What is more, the main reason why such sensors are not good at detecting very low speeds is that they are more susceptible to noise when the speed of the target is low. In short, they suffer from noise and generally only work at medium to high speeds. This is one of the drawbacks of the inductive (magnetic reluctance) speed sensors and is the case under study. Furthermore, there are other speed sensors like the differential Hall Effect sensors that are relatively immune to interference and noise, but they cannot detect static fields. This limits their operations to speeds which give a switching frequency greater than a minimum operating frequency. In short, this research is focused on improving the performance of a variable reluctance speed sensor placed in a car under performance tests by using a recursive least-squares (RLS) lattice algorithm. Such an algorithm is situated in an adaptive noise canceller and carries out an optimal estimation of the relevant signal coming from the sensor, which is buried in a broad-band noise background where we have little knowledge of the noise characteristics. The experimental results are satisfactory and show a significant improvement in the signal-to-noise ratio at the system output.

  19. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  20. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  1. Energy saving analyses on the reconstruction project in district heating system with distributed variable speed pumps

    Sheng, Xianjie; Lin, Duanmu


    Highlights: • The mathematical model of economic frictional factor based on DVFSP DHS is established. • Influence factors of economic frictional factor are analyzed. • Energy saving in a DVFSP district heating system is presented and analyzed. - Abstract: Optimization of the district heating (DH) piping network is of vital importance to the economics of the whole DH system. The application of distributed variable frequency speed pump (DVFSP) in the district heating network has been considered as a technology improvement that has a potential in saving energy compared to the conventional central circulating pump (CCCP) district heating system (DHS). Economic frictional factor is a common design parameter used in DH pipe network design. In this paper, the mathematical model of economic frictional factor based on DVFSP DHS is established, and influence factors are analyzed, providing a reference for engineering designs for the system. According to the analysis results, it is studied that the energy efficiency in the DH system with the DVFSP is compared with the one in the DH system with conventional central circulating pump (CCCP) using a case based on a district heating network in Dalian, China. The results of the study on the case show that the average electrical energy saved is 49.41% of the one saved by the DH system with conventional central circulating pump in the primary network.

  2. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    E.G. Shehata


    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  3. Voltage control of a variable speed wind turbine connected to an isolated load: Experimental study

    Masmoudi, Abdelkarim; Krichen, Lotfi; Ouali, Abderrazak


    Highlights: ► We develop an experimental test bench of a wind energy conversion system. ► A DC motor is emulating a variable speed wind turbine using a DS1104 card. ► The production unit is supplying a three-phase load. ► A voltage control is established in order to regulate the DC bus voltage and the line-to-line voltages. - Abstract: This study is interested in the development of an experimental test bench of an autonomous wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). After the description of the test bench, the elements constituting the WECS are presented. Then, a real time model implemented under a digital signal processor (DSP) system is established. The first objective of this work is to validate the functionality of the test bench leading to experiment some principles developed in theory. The second objective is to control the load connection voltages and the DC bus voltage. For the first control, two resonant controllers are used and for the second one, a dump load, connected to the DC bus, offers the possibility to maintain a balance between production and consumption in spite of wind fluctuations and load variations. The experimental results show the effectiveness of the test bench trying out in real time the behavior of a WECS supplying an isolated load.

  4. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off.

    Matteo Bertucco

    Full Text Available Fitts' Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts' Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability to typically developing children. The results show a strong effect of the cost of error on the Fitts' Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk.

  5. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with the exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.

  6. On the modelling and partial-load control of variable-speed wind turbines

    Novak, P [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering


    The focus of this thesis is on modelling and variable-speed control of wind turbines. A physical model structure including the fundamental drive-train mode is derived and validated by system-identification experiments on a full-scale wind turbine. The resulting, parametrized model has been used as a basis for an evaluation of controllers for partial-load operation, validated by non-linear simulations. This evaluation, including several controller concepts, verifies that a sophisticated controller becomes necessary, when stretching the limits in power-loss minimization. This control strategy also demands the sampling frequency to be pushed to a high level. As a consequence, the angular-position measurements become time correlated and, in the limit, periodic. It is shown in the thesis how the resulting, operating-point-dependent effects on the measurement errors influence the estimation quality, using a stationary Kalman filter as an example. A gain-scheduling estimation approach is shown to improve the performance. 39 refs, 63 figs, 2 tabs

  7. Comparative studies on control systems for a two-blade variable-speed wind turbine with a speed exclusion zone

    Yang, Jian; Song, Dongran; Dong, Mi; Chen, Sifan; Zou, Libing; Guerrero, Josep M.


    To avoid the coincidence between the tower nature frequency and rotational excitation frequency, a SEZ (speed exclusion zone) must be built for a two-blade wind turbine with a full rated converter. According to the literature, two methods of SEZ-crossing could be adopted. However, none of them have been studied in industrial applications, and their performance remains unclear. Moreover, strategies on power regulation operation are not covered. To fully investigate them, this paper develops two control systems for a two-blade WT (wind turbines) with a SEZ. Because control systems play vital roles in determining the performance of the WT, this paper focuses on comparative studies on their operation strategies and performance. In these strategies, optimal designs are introduced to improve existing SEZ algorithms. Moreover, to perform power regulation outside the SEZ, two operation modes are divided in the proposed down power regulation solutions. The developed control systems’ performance is confirmed by simulations and field tests. Two control systems present similar capabilities of power production and SEZ-bridging. Nevertheless, at the cost of significantly increased tower loads, one captures 1% more energy than the other. Overall consideration must be made for the control system selection for a WT with a SEZ. - Highlights: • Two control systems are developed for a two-blade WT with a SEZ. • Three strategies, that is, power optimization, power limitation and power regulation, are discussed. • Optimal designs are adopted to enhance the WT's SEZ-bridging capability. • Simple but effective power regulation solutions are presented. • Simulation and field test results show that Control System 2 produces 1% more energy at the cost of increased tower loads.

  8. Frequency Inertia Response Control of SCESS-DFIG under Fluctuating Wind Speeds Based on Extended State Observers

    Dongyang Sun


    Full Text Available Insufficient frequency regulation capability and system inertia reduction are common problems encountered in a power grid with high wind power penetration, mainly due to the reason that the rotor energy in doubly fed induction generators (DFIGs is isolated by the grid side converters (GSCs, and also due to the randomness and intermittence of wind power which are not as stable as traditional thermal power sources. In this paper, the frequency inertia response control of a DFIG system under variable wind speeds was investigated. First, a DFIG system topology with rotor-side supercapacitor energy storage system (SCESS-DFIG was introduced. Then a control strategy for frequency inertia response of SCESS-DFIG power grid under fluctuating wind speed was designed, with two extended state observers (ESOs which estimate the mechanical power captured by the DFIG and the required inertia response power at the grid frequency drops, respectively. Based on one inconstant wind speed model and the SCESS-DFIG system model adopting the control strategy established, one power grid system consisting of three SCESS-DFIGs with different wind speed trends and a synchronous generator was simulated. The simulation results verified the effectiveness of the SCESS-DFIG system structure and the control strategy proposed.

  9. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    H. Bassi


    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  10. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Bo Qu


    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  11. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    Fleming, P.; Wright, A. D.; Finersh, L. J.


    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  12. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)


    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  13. [Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].

    Latash, M; Gottleib, G


    Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.

  14. Variability Extraction and Synthesis via Multi-Resolution Analysis using Distribution Transformer High-Speed Power Data

    Chamana, Manohar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validation is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.

  15. Error response test system and method using test mask variable

    Gender, Thomas K. (Inventor)


    An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.

  16. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  17. An improved synchronous reference frame phase-locked loop for stand-alone variable speed constant frequency power generation systems

    Liu, Yi; Xu, Wei; Ke, Longzhang


    The phase-locked loop (PLL) based on conventional synchronous reference frame, i.e. dqPLL, is usually employed in grid-connected variable speed constant frequency (VSCF) power generation systems (PGSs). However, the voltage amplitude drop of stand-alone PGSs is often greater than that of the grid...

  18. The effect of speed-accuracy strategy on response interference control in Parkinson's disease.

    Wylie, S A; van den Wildenberg, W P M; Ridderinkhof, K R; Bashore, T R; Powell, V D; Manning, C A; Wooten, G F


    Studies that used conflict paradigms such as the Eriksen Flanker task show that many individuals with Parkinson's disease (PD) have pronounced difficulty resolving the conflict that arises from the simultaneous activation of mutually exclusive responses. This finding fits well with contemporary views that postulate a key role for the basal ganglia in action selection. The present experiment aims to specify the cognitive processes that underlie action selection deficits among PD patients in the context of variations in speed-accuracy strategy. PD patients (n=28) and healthy controls (n=17) performed an arrow version of the flanker task under task instructions that either emphasized speed or accuracy of responses. Reaction time (RT) and accuracy rates decreased with speed compared to accuracy instructions, although to a lesser extent for the PD group. Differences in flanker interference effects among PD and healthy controls depended on speed-accuracy strategy. Compared to the healthy controls, PD patients showed larger flanker interference effects under speed stress. RT distribution analyses suggested that PD patients have greater difficulty suppressing incorrect response activation when pressing for speed. These initial findings point to an important interaction between strategic and computational aspects of interference control in accounting for cognitive impairments of PD. The results are also compatible with recent brain imaging studies that demonstrate basal ganglia activity to co-vary with speed-accuracy adjustments.

  19. Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio

    Zhenzhou Zhao


    Full Text Available This paper presents a new variable pitch (VP approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT, by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR corresponding to the peak power coefficient of the fixed pitch (FP-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA, resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated.

  20. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  1. Full-shipload tramp ship routing and scheduling with variable speeds

    Wen, M.; Røpke, Stefan; Petersen, Hanne Løhmann


    This paper investigates the simultaneous optimization problem of routing and sailing speed in the context of full-shipload tramp shipping. In this problem, a set of cargoes can be transported from their load to discharge ports by a fleet of heterogeneous ships of different speed ranges and load......-dependent fuel consumption. The objective is to determine which orders to serve and to find the optimal route for each ship and the optimal sailing speed on each leg of the route so that the total profit is maximized. The problem originated from a real-life challenge faced by a Danish tramp shipping company....... It is shown that speed optimization can improve the total profit by 16% on average and the fuel price has a significant effect on the average sailing speed and total profit....

  2. On higher ground: how well can dynamic body acceleration determine speed in variable terrain?

    Owen R Bidder

    Full Text Available INTRODUCTION: Animal travel speed is an ecologically significant parameter, with implications for the study of energetics and animal behaviour. It is also necessary for the calculation of animal paths by dead-reckoning. Dead-reckoning uses heading and speed to calculate an animal's path through its environment on a fine scale. It is often used in aquatic environments, where transmission telemetry is difficult. However, its adoption for tracking terrestrial animals is limited by our ability to measure speed accurately on a fine scale. Recently, tri-axial accelerometers have shown promise for estimating speed, but their accuracy appears affected by changes in substrate and surface gradients. The purpose of the present study was to evaluate four metrics of acceleration; Overall dynamic body acceleration (ODBA, vectorial dynamic body acceleration (VDBA, acceleration peak frequency and acceleration peak amplitude, as proxies for speed over hard, soft and inclined surfaces, using humans as a model species. RESULTS: A general linear model (GLM showed a significant difference in the relationships between the metrics and speed depending on substrate or surface gradient. When the data from all surface types were considered together, VeDBA had the highest coefficient of determination. CONCLUSIONS: All of the metrics showed some variation in their relationship with speed according to the surface type. This indicates that changes in the substrate or surface gradient during locomotion by animals would produce errors in speed estimates, and also in dead-reckoned tracks if they were calculated from speeds based entirely on a priori calibrations. However, we describe a method by which the relationship between acceleration metrics and speed can be corrected ad hoc, until tracks accord with periodic ground truthed positions, obtained via a secondary means (e.g. VHF or GPS telemetry. In this way, dead-reckoning provides a means to obtain fine scale movement data

  3. Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27

    Andrés Honrubia-Escribano


    Full Text Available Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.

  4. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients.

    Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S


    Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.

  5. Mode Transition Variable Geometry for High Speed Inlets for Hypersonic Aircraft, Phase I

    National Aeronautics and Space Administration — Hypersonic propulsion research has been a focus of the NASA aeronautics program for years. Previous high-speed cruise and space access programs have examined the...

  6. Use of an expert system for the choice of variable speed drives; Application des techniques d`intelligence artificielle pour le choix des systemes d`entrainement a vitesse variable

    Chetate, B.; Khaldi, T.; Boudjennah, B.; Kara, C. [Institut National des Hydrocarbures et de la Chimie de Boumerdes (Algeria). Laboratoire des Economies d`Energie Electrique


    The electrical motors variable speed is a factor of energy saving. The interest of variable speed is justified by the fact that the investment is quickly redeemable. In this study, the authors present an expert system for the rational choice of variable speed drives (IES/VSD). This system allows to take into account the varieties of electrical motors, electronics converters and complex control systems. (authors) 12 refs.

  7. An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems

    Ana Fernández-Guillamón


    Full Text Available This paper presents a new frequency controller for variable speed wind turbines connected to the grid under power imbalance conditions. It is based on the fast power reserve emulation technique, having two different operation modes: overproduction and recovery mode. In the first mode, the active power provided by wind turbines is set over the mechanical power, reducing their rotational speed. This overproduction power is estimated according to the frequency excursion. In the second mode, the active power is established under the mechanical power to recover the initial rotational speed through a smooth trajectory. The power system considered for simulation purposes includes thermal, hydro-power and wind-power plants. The controller proposed has been evaluated under different mix-generation scenarios implemented in Matlab/Simulink. Extensive results and comparison to previous proposals are also included in the paper.

  8. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.


    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  9. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos


    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  10. Variable-Speed Generation Subsystem Using the Doubly-Fed Generator; Period of Performance February 9, 1994 - April 30, 1999

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A. (Electronic Power Conditioning Incorporated)


    Over the past decade, fixed-speed, utility-scale wind turbines have technically advanced to a point where they can economically complete against nuclear and fossil-fuel-based power plants in geographical areas with a sufficient wind resource. The objective of this subcontract was to compare various electrical topologies allowing variable-speed turbine operation, identify the most suitable for a 275-kW (or larger) utility-scale wind turbine, and then design, build, lab test, and field test this variable-speed generation subsystem based on the previously identified optimum approach. Preliminary tests of the controls for a doubly fed variable-speed generation system rated at 750 kW were performed on a wind turbine. A 275-kW VSGS was thoroughly tested in the laboratory and on a wind turbine. Using field-oriented control, excellent dynamic behavior of the drive train was demonstrated, acoustic tests revealed an 11 dB reduction in turbine noise in low-wind, low-RPM operation compared to fixed-speed operation. The overall efficiency of the electrical system suffered from inadequate efficiency of the power converter at low power. Consequently, a different converter topology has been proposed that will satisfy both efficiency and power quality requirements for future use. This report provides information on all aspects of the project, including events that were unanticipated at the outset. A great deal of information is available in the references, comprised of NREL reports, journal articles, and conference papers on specific project results.

  11. Exploring the stochastic and deterministic aspects of cyclic emission variability on a high speed spark-ignition engine

    Karvountzis-Kontakiotis, A.; Dimaratos, A.; Ntziachristos, L.; Samaras, Z.


    This study contributes to the understanding of cycle-to-cycle emissions variability (CEV) in premixed spark-ignition combustion engines. A number of experimental investigations of cycle-to-cycle combustion variability (CCV) exist in published literature; however only a handful of studies deal with CEV. This study experimentally investigates the impact of CCV on CEV of NO and CO, utilizing experimental results from a high-speed spark-ignition engine. Both CEV and CCV are shown to comprise a deterministic and a stochastic component. Results show that at maximum break torque (MBT) operation, the indicated mean effective pressure (IMEP) maximizes and its coefficient of variation (COV_I_M_E_P) minimizes, leading to minimum variation of NO. NO variability and hence mean NO levels can be reduced by more than 50% and 30%, respectively, at advanced ignition timing, by controlling the deterministic CCV using cycle resolved combustion control. The deterministic component of CEV increases at lean combustion (lambda = 1.12) and this overall increases NO variability. CEV was also found to decrease with engine load. At steady speed, increasing throttle position from 20% to 80%, decreased COV_I_M_E_P, COV_N_O and COV_C_O by 59%, 46%, and 6% respectively. Highly resolved engine control, by means of cycle-to-cycle combustion control, appears as key to limit the deterministic feature of cyclic variability and by that to overall reduce emission levels. - Highlights: • Engine emissions variability comprise both stochastic and deterministic components. • Lean and diluted combustion conditions increase emissions variability. • Advanced ignition timing enhances the deterministic component of variability. • Load increase decreases the deterministic component of variability. • The deterministic component can be reduced by highly resolved combustion control.

  12. Analysis for SEER of variable speed room air conditioner in China. Paper no. IGEC-1-104

    Yitai, M.; Shengchun, L.; Lirong, M.


    In this paper, the calculation method for seasonal energy efficiency ratio (SEER) given in Standard JRA4046-1999 is analyzed and further modified. Based on temperature zone map of U.S., Japan and China and detailed weather data of eight Chinese cities in last 30 years, regional seasonal energy efficiency ratio (RSEER) and energy saving percentage of variable speed room air conditioner are analyzed and compared with various geographical regions in China. It is concluded that RSEER presents the associated effect of season, climate and geography, and therefore should be taken as an evaluation standard for room air conditioner, especially variable speed room air conditioner. Experimental measurements are conducted in the analysis to investigate the effect of energy efficiency ratio (EER) on the improvement of energy saving percentage and SEER. (author)

  13. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon


    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  14. Shock Wave Speed and Transient Response of PE Pipe with Steel-Mesh Reinforcement

    Wuyi Wan


    Full Text Available A steel mesh can improve the tensile strength and stability of a polyethylene (PE pipe in a water supply pipeline system. However, it can also cause more severe water hammer hazard due to increasing wave speed. In order to analyze the influence of the steel mesh on the shock wave speed and transient response processes, an improved wave speed formula is proposed by incorporating the equivalent elastic modulus. A field measurement validates the wave speed formula. Moreover, the transient wave propagation and extreme pressures are simulated and compared by the method of characteristics (MOC for reinforced PE pipes with various steel-mesh densities. Results show that a steel mesh can significantly increase the shock wave speed in a PE pipe and thus can cause severe peak pressure and hydraulic surges in a water supply pipeline system. The proposed wave speed formula can more reasonably evaluate the wave speed and improve the transient simulation of steel-mesh-reinforced PE pipes.

  15. Intelligent Multiobjective Slip and Speed Ratio Control of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

    Zhengchao Xie


    Full Text Available Van Doorne’s continuously variable transmission (CVT is the most popular CVT design for automotive transmission, but it is only applicable to low-power passenger cars because of its low torque capacity. To overcome this limitation of traditional single-belt CVT, a novel dual-belt Van Doorne’s CVT (DBVCVT system, which is applicable to heavy-duty vehicles, has been previously proposed by the authors. This paper, based on the published analytical model and test rig of DBVCVT, further proposes an intelligent multiobjective fuzzy controller for slip and speed ratio control of DBVCVT. The controller aims to safely control the clamping forces of both the primary and the secondary pulleys in order to improve the transmission efficiency, achieve the accurate speed ratio, and avoid the belt slip under different engine loads and vehicle speeds. The slip, speed ratio, and transmission efficiency dynamics of DBVCVT are firstly analyzed and modeled in this paper. With the aid of a flexible objective function, the analytical model, and fuzzy logic, a Pareto rule base for fuzzy controller is developed for multiobjective DBVCVT control. Experimental results show that the proposed controller for slip and speed ratio regulation of DBVCVT is effective and performs well under different user-defined weights.

  16. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E


    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Modeling and Control of a DC-grid Hybrid Power System with Battery and Variable Speed Diesel Generators

    Syverud, Tron Hansen


    Hybrid electric power systems (HPS) have successfully been integrated in the road-traffic industry due to enhanced efficiency and environmental benefits. Recently this concept has been implemented in the marine sector. In this master thesis, the construction of a DC hybrid power system for a marine vessel is outlined in detail. The HPS is developed in Matlbat/Simulink and comprises two set of diesel generators with variable speed, six-pulse diode bridges, a battery bank, bidire...

  18. Realization of PLC to the Variable Frequency Speed Regulation System of Mine Local Ventilator based on RS-485 Communication

    Ma, Kai; Li, Jian; Yun, Yichong


    The article first introduces the merits of serial communication in the PLC to the variable frequency speed regulation system of mine local ventilator, and then sets up a hardware application development platform of PLC and inverter based on RS-485 communication technology, next presents communication initialization of the PLC and Inverter. Finally according to the control requirements, PLC send run operation & monitoring instruction to Inverter, realizes the serial communication control between the PLC and Inverter.

  19. Variable speed drives for pumps used in intensive pond culture systems

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  20. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Idris A. Kayode


    Full Text Available A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application Programming Interface (API which acts as the canvas for creating a graphical user interface (GUI for automation of its assembly. A parametric analysis of the homogenizer, at varying operational speeds, enables the estimation of the critical speed of the mixing shaft diameter and the deflection under numerous mixing conditions and impeller configurations. The numerical simulation of the moisture-rich food waste (approximated as a Newtonian carrot–orange soup is performed with ANSYS CFX v.15.0. The velocity and temperature field distribution of the homogenizer for various impeller rotational speeds are analyzed. It is anticipated that the developed model will help in the selection of a suitable impeller for efficient mixing of food waste in the homogenizer.

  1. Variable-speed-of-light cosmology and second law of thermodynamics

    Youm, Donam


    We examine whether cosmologies with a varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with a varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained

  2. Variable-speed-of-light cosmology and second law of thermodynamics

    Youm, Donam


    We examine whether the cosmologies with varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained. (author)

  3. Multi-wheat-model ensemble responses to interannual climatic variability

    Ruane, A C; Hudson, N I; Asseng, S


    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  4. Promoting Response Variability and Stimulus Generalization in Martial Arts Training

    Harding, Jay W.; Wacker, David P.; Berg, Wendy K.; Rick, Gary; Lee, John F.


    The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack.…

  5. Measuring automatic retrieval: a comparison of implicit memory, process dissociation, and speeded response procedures.

    Horton, Keith D; Wilson, Daryl E; Vonk, Jennifer; Kirby, Sarah L; Nielsen, Tina


    Using the stem completion task, we compared estimates of automatic retrieval from an implicit memory task, the process dissociation procedure, and the speeded response procedure. Two standard manipulations were employed. In Experiment 1, a depth of processing effect was found on automatic retrieval using the speeded response procedure although this effect was substantially reduced in Experiment 2 when lexical processing was required of all words. In Experiment 3, the speeded response procedure showed an advantage of full versus divided attention at study on automatic retrieval. An implicit condition showed parallel effects in each study, suggesting that implicit stem completion may normally provide a good estimate of automatic retrieval. Also, we replicated earlier findings from the process dissociation procedure, but estimates of automatic retrieval from this procedure were consistently lower than those from the speeded response procedure, except when conscious retrieval was relatively low. We discuss several factors that may contribute to the conflicting outcomes, including the evidence for theoretical assumptions and criterial task differences between implicit and explicit tests.

  6. Learning multiple variable-speed sequences in striatum via cortical tutoring.

    Murray, James M; Escola, G Sean


    Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.

  7. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Idris A. Kayode; Emmanuel O. B. Ogedengbe; Marc A. Rosen


    A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application P...

  8. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine

    Abdeddaim, Sabrina; Betka, Achour; Drid, Said; Becherif, Mohamed


    Highlights: • Set-up of an experimental test emulating a wind turbine, driving a grid-connected conventional DFIG. • An optimal operation below rated speed is achieved by means of an appropriate maximum power-point tracking algorithm. • Design and implementation of an adaptive model reference controller (MRAC) of the active and reactive power regulation. - Abstract: This paper presents the design and the implementation of a model reference adaptive control of the active and reactive power regulation of a grid connected wind turbine based on a doubly fed induction generator. This regulation is achieved below the synchronous speed, by means of a maximum power-point tracking algorithm. The experiment was conducted on a 1 kW didactic wound rotor induction machine in association with a wind turbine emulator. This implementation is realized using a dSPACE 1104 single-board control and acquisition interface. The obtained results show a permanent track of the available maximum wind power, under a chosen wind speed profile. Furthermore the proposed controller exhibits a smooth regulation of the stator active and reactive power amounts exchanged between the machine and the grid

  9. Barn Owl Productivity Response to Variability of Vole Populations.

    Petr Pavluvčík

    Full Text Available We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity and vole numbers in both non-detrended and detrended data. At the districts' level, we explored whether the degree of synchrony (measured by the correlation coefficient and the strength of the productivity response increase (measured by the regression coefficient in areas with higher vole population variability measured by the s-index. We found that the owls' annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls' reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor's exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations.

  10. Advantages of variable-speed operation of hydraulic turbo-engines; Vorteile durch den drehzahlvariablen Betrieb von hydraulischen Stroemungsmaschinen

    Harbort, T. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen


    The performance of current hydraulic turbo-engines in the variable speed sector is monitored and judged. The study covers radial and axial engines as well as Pelton turbines. Variable-speed operation of hydraulic turbo-engines can be realized by means of different combinations of electrical rotating machines and frequency converters. The operating range of the frequency converter plays an important role in the optimization of performance and is taken into account. The smoothness of run of reaction turbines and their cavitation performance can be enhanced by speed regulation. But above all, efficiency is more or less substantially enhanced during partial load or in the case of greatly varying heights of drop. The latter holds true also of Pelton turbines. (orig.) [Deutsch] Das Betriebsverhalten der gaengigen hydraulischen Stroemungsmaschinen wird in Hinblick auf den drehzahlvariablen Betrieb erfasst und beurteilt. Die Untersuchung erfolgt fuer Radialmaschinen, Axialmaschinen und Peltonturbinen. Der drehzahlvariable Betrieb hydraulischer Stroemungsmaschinen kann mit verschiedenen Kombinationen von elektrischen Maschinen und Frequenzumrichtern realisiert werden. Der Arbeitsbereich des Frequenzumrichters spielt eine wichtige Rolle fuer die Optimierung des Betriebsverhaltens und wird beruecksichtigt. Bei Ueberdruckturbinen kann man durch Drehzahlregelung eine groessere Laufruhe sowie ein guenstigeres Kavitationsverhalten erreichen. Vor allem aber sind im Teillastbereich oder bei stark schwankenden Fallhoehen mehr oder weniger grosse Wirkungsgradgewinne erzielbar. Das letztere gilt auch fuer Peltonturbinen. (orig.)

  11. Response of PMHS to high- and low-speed oblique and lateral pneumatic ram impacts.

    Rhule, Heather; Suntay, Brian; Herriott, Rodney; Amenson, Tara; Stricklin, Jim; Bolte, John H


    In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.

  12. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique


    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  13. Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator

    Mohamed Zribi


    Full Text Available This paper deals with the control of a variable-speed wind energy conversion (WEC system using a squirrel cage induction generator (SCIG connected to the grid through a back-to-back three phase (AC-DC-AC power converter. The sliding mode control technique is used to control the WEC system. The objective of the controllers is to force the states of the system to track their desired states. One controller is used to regulate the generator speed and the flux so that maximum power is extracted from the wind. Another controller is used to control the grid side converter, which controls the DC bus voltage and the active and reactive powers injected into the grid. The performance of the controlled wind energy conversion system is verified through MATLAB simulations, which show that the controlled system performs well.

  14. The response of a high-speed train wheel to a harmonic wheel-rail force

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin


    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  15. Enhanced Response Speed of ZnO Nanowire Photodetector by Coating with Photoresist

    Xing Yang


    Full Text Available Spin-coating photoresist film on ZnO nanowire (NW was introduced into the fabrication procedure to improve photoresponse and recovery speed of a ZnO NW ultraviolet photoelectric detector. A ZnO NW was first assembled on prefabricated electrodes by dielectrophoresis. Then, photoresist was spin-coated on the nanowire. Finally, a metal layer was electrodeposited on the nanowire-electrode contacts. The response properties and I-V characteristics of ZnO NW photodetector were investigated by measuring the electrical current under different conditions. Measurement results demonstrated that the detector has an enhanced photoresponse and recovery speed after coating the nanowire with photoresist. The photoresponse and recovery characteristics of detectors with and without spin-coating were compared to demonstrate the effects of photoresist and the enhancement of response and recovery speed of the photodetector is ascribed to the reduced surface absorbed oxygen molecules and binding effect on the residual oxygen molecules after photoresist spin-coating. The results demonstrated that surface coating may be an effective and simple way to improve the response speed of the photoelectric device.

  16. Effect of trotting speed on kinematic variables measured by use of extremity-mounted inertial measurement units in nonlame horses performing controlled treadmill exercise.

    Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E


    OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.

  17. Dynamic sensorimotor planning during long-term sequence learning: the role of variability, response chunking and planning errors.

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter


    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning.

  18. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    A. Venäläinen


    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  19. Individual canine Airway Response Variability to a Deep Inspiration

    Robert H. Brown


    Full Text Available In healthy individuals, a DI can reverse (bronchodilation or prevent (bronchoprotection induced airway constriction. For individuals with asthma or COPD, these effects may be attenuated or absent. Previous work showed that the size and duration of a DI affected the subsequent response of the airways. Also, increased airway tone lead to increased airway size variability. The present study examined how a DI affected the temporal variability in individual airway baseline size and after methacholine challenge in dogs using High-Resolution Computed Tomography. Dogs were anesthetized and ventilated, and on 4 separate days, HRCT scans were acquired before and after a DI at baseline and during a continuous intravenous infusion of methacholine (Mch at 3 dose rates (17, 67, and 200 μg/mm. The Coefficient of Variation was used as an index of temporal variability in airway size. We found that at baseline and the lowest dose of Mch, variability decreased immediately and 5 minutes after the DI ( P < 0.0001. In contrast, with higher doses of Mch, the DI caused a variable response. At a rate of 67 μg/min of Mch, the temporal variability increased after 5 minutes, while at a rate of 200 μg/min of Mch, the temporal variability increased immediately after the DI. Increased airway temporal variability has been shown to be associated with asthma. Although the mechanisms underlying this temporal variability are poorly understood, the beneficial effects of a DI to decrease airway temporal variability was eliminated when airway tone was increased. If this effect is absent in asthmatics, this may suggest a possible mechanism for the loss of bronchoprotective and bronchodilatory effects after a DI in asthma.

  20. Grid Compatibility of Variable Speed Wind Turbines with Directly Coupled Synchronous Generator and Hydro-Dynamically Controlled Gearbox

    Mueller, H.; Poeller, M. [DIgSILENT GmbH, 72810 Gomaringen (Germany); Basteck, A.; Tilscher, M.; Pfister, J. [Voith Turbo GmbH and Co. KG, 74564 Crailsheim (Germany)


    This paper analyzes grid integration aspects of a new type of variable-speed wind turbine, the directly coupled synchronous generator with hydro-dynamically controlled gearbox. In contrast to existing wind generators using synchronous generators, the generator of this concept is directly connected to the AC grid, without the application of any power electronics converter. Variable speed operation of the turbine is mechanically achieved by a gear box with continuously controllable variable gear box ratio. For this purpose, a detailed dynamic model of a 2 MW wind turbine with a Voith WinDrive has been implemented using the modelling environment of the simulation software DIgSILENT PowerFactory. For investigating grid compatibility aspects of this new wind generator concept, a model of a 50 MW wind farm, with typical layout, based on 25 wind turbines of the 2 MW-class has been analyzed. This paper focuses on the compatibility of the new concept with existing connection standards, such as the E.ON grid code. Of special interest are typical stability phenomena of synchronous generators, such as transient and oscillatory stability as well as power quality issues like voltage flicker. The results of stability studies are presented and possible advantages of the new concept with special focus on offshore applications are discussed.

  1. A comparison of item response models for accuracy and speed of item responses with applications to adaptive testing.

    van Rijn, Peter W; Ali, Usama S


    We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures. © 2017 The British Psychological Society.

  2. Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump

    Ouchbel, T.; Zouggar, S.; Elhafyani, M.L.; Seddik, M.; Oukili, M.; Aziz, A.; Kadda, F.Z.


    Highlights: • The pumping system studied contain a WT, a SEIG, an IM and a CP. • The system must ensure the water pumping in optimum conditions despite the wind speed. • A steady state study and a practical testing are performed to resolve the control law. • A MPPT is proposed on the basis of static converter SVC. - Abstract: This article focuses on the study of a pumping system compound of a wind turbine, a self-excited induction generator (SEIG), an induction motor (IM), and a centrifugal pump (CP), which aims to ensure the water pumping in optimum conditions regardless the wind speed. As a first step, a study in the steady and dynamic state to determine the control law is examined. As a second step, and so as to achieve a maximum energy flow we have proposed a Maximum Power Point Tracking (MPPT) algorithm based on a static converter SVC. As a final step, experimental and simulation results are discussed to show the reliability of the system proposed

  3. The effect of eating speed at breakfast on appetite hormone responses and daily food consumption.

    Shah, Meena; Crisp, Kelli; Adams-Huet, Beverley; Dart, Lyn; Bouza, Brooke; Franklin, Brian; Phillips, Melody


    The effect of eating speed at a meal on appetite gut hormone responses and future food consumption is not clear. This study examined the effect of eating speed at breakfast on postprandial gut hormone responses, subjective appetite, and daily food consumption. Twenty-five participants [68% men; age, 25.9 (8.1) years; body mass index, 25.0 (3.2) kg/m] were recruited. Each participant consumed the same breakfast at a slow (30 minutes) and fast (10 minutes) speed, on 2 separate days, in a randomized crossover design. Blood samples were collected in the fasting state and 3 hours postprandially during each eating condition. Appetite was assessed over the same period using visual analog scales. Blood concentrations of orexigenic hormone, ghrelin, and anorexigenic hormones, glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), were determined. Daily food intake was measured, by food recall, after the slow and fast breakfast. Mixed-model repeated-measures analysis showed no eating condition or eating condition by time interaction effect on ghrelin, GLP-1, PYY, hunger, or fullness. Significant eating speed by time interaction effect on desire to eat was found (P=0.007). Desire to eat was lower at 60 minutes (P=0.007) after breakfast began during the slow versus fast eating condition. Eating speed at breakfast did not affect daily energy and macronutrient intake. Eating speed at breakfast did not affect postprandial ghrelin, GLP-1, PYY, hunger, and fullness values or daily energy and macronutrient intake. Desire to eat was lower at 60 minutes in the slow versus fast eating condition, but this result could not be explained by the changes in meal-related hormones measured in the study.

  4. Investigation into the Effects of the Variable Displacement Mechanism on Swash Plate Oscillation in High-Speed Piston Pumps

    Xu Fang


    Full Text Available High-speed, pressure-compensated variable displacement piston pumps are widely used in aircraft hydraulic systems for their high power density. The swash plate is controlled by the pressure-compensated valve, which uses pressure feedback so that the instantaneous output flow of the pump is exactly enough to maintain a presetting pressure. The oscillation of the swash plate is one of the major excitation sources in the high-speed piston pump, which may cause lower efficiency, shorter service life, and even serious damage. This paper presents an improved model to investigate the influence of the variable displacement mechanism on the swash plate oscillation and introduces some feasible ways to reduce oscillation of the swash plate. Most of the variable structural parameters of the variable displacement mechanism are taken into consideration, and their influences on swash plate oscillation are discussed in detail. The influence of the load pipe on the oscillation of the swash plate is considered in the improved model. A test rig is built and similarities between the experiments and simulated results prove that the simulation model can effectively predict the variable displacement mechanism state. The simulation results show that increasing the volume of the outlet chamber, the spring stiffness of the control valve, the action area of the actuator piston, and offset distance of the actuator piston can significantly reduce the oscillation amplitude of the swash plate. Furthermore, reducing the diameter of the control valve spool and the dead volume of the actuator piston chamber can also have a positive effect on oscillation amplitude reduction.

  5. 变速变桨风力机组控制策略研究%Research on the Control Strategy for Variable Speed and Variable Pitch Wind Turbine

    陈铁军; 汪兆财


    In order to increase the utilization efficiency of wind energy of wind turbine power generation system, and improve the quality of output electric energy, with the chaotic system theory as the core, the control structure of chaotic automation used for variable speed and variable pitch wind turbine is established. In addition, combining with fuzzy control theory, the algorithm of controller is given. The simulation of the control structure and control algorithm shows that comparing with conventional control method, the variable speed and variable pitch wind turbine with chaotic automation control structure and under control algorithm reaches predicted target, the practical control effect is excellent.%为提高风力机发电系统的风能利用效率、改善输出电能质量,针对变速变桨风力发电机组的控制问题,以混杂系统理论为核心,建立了应用于变速变桨风力机组的混杂自动机控制结构.同时,结合模糊控制理论,给出控制器的算法.通过对该控制结构和控制算法的仿真表明,与常规的控制方法相比,采用混杂自动机控制结构和控制算法控制变速变桨风力机组,既提高了风能的利用效率,又很好地改善了风力机输出电能质量,实际控制效果良好.

  6. Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

    Acharya Parash


    Full Text Available This paper presents the modeling and design of a 3 kW Permanent Magnet Synchronous Generator (PMSG used for a variable speed wind turbine. Initially, the PMSG is modeled in the d-q reference frame. Different optimized parameters of the generator are extracted from the design and used in simulation of the PMSG. The generator output power is matched with the power of the turbine such that the generator is not either over-sized or under-sized.

  7. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão


    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  8. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    Geraldo Neves De A. Maranhão


    Full Text Available In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD for use in Photovoltaic Pumping Systems (PVPS is proposed. The fuzzy logic system (FLS used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC voltage level in the VSD with a good performance.

  9. A study of flux control for high-efficiency speed control of variable flux permanent magnet motor

    Young Hyun Kim


    Full Text Available In this study, we evaluate the performance of permanent magnets (PMs. The efficiency of attraction in the high speed region was studied using the variable flux memory motor (VFMM. It is presented in order to analyze the magnetic characteristics of PMs, using the second quadrant plan data with re- and de-magnetization. In addition, this study focuses on the evaluation of operational characteristics relative to the magnetizing directions according to the d-axis currents, by using one of the finite element solutions. The feasibility of application for the VFMM has been experimentally demonstrated.

  10. A study of flux control for high-efficiency speed control of variable flux permanent magnet motor

    Kim, Young Hyun; Lee, Seong Soo; Lee, Jung Ho


    In this study, we evaluate the performance of permanent magnets (PMs). The efficiency of attraction in the high speed region was studied using the variable flux memory motor (VFMM). It is presented in order to analyze the magnetic characteristics of PMs, using the second quadrant plan data with re- and de-magnetization. In addition, this study focuses on the evaluation of operational characteristics relative to the magnetizing directions according to the d-axis currents, by using one of the finite element solutions. The feasibility of application for the VFMM has been experimentally demonstrated.

  11. Mahalanobis distance and variable selection to optimize dose response

    Moore, D.H. II; Bennett, D.E.; Wyrobek, A.J.; Kranzler, D.


    A battery of statistical techniques are combined to improve detection of low-level dose response. First, Mahalanobis distances are used to classify objects as normal or abnormal. Then the proportion classified abnormal is regressed on dose. Finally, a subset of regressor variables is selected which maximizes the slope of the dose response line. Use of the techniques is illustrated by application to mouse sperm damaged by low doses of x-rays

  12. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Fleming, David P.; Poplawski, J. V.


    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  13. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Liu Huijuan


    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  14. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe


    and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  15. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    Tan, Jin; Hu, Weihao; Wang, Xiaoru


    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  16. Heart Rate Variability: Effect of Exercise Intensity on Postexercise Response

    James, David V. B.; Munson, Steven C.; Maldonado-Martin, Sara; De Ste Croix, Mark B. A.


    The purpose of the present study was to investigate the influence of two exercise intensities (moderate and severe) on heart rate variability (HRV) response in 16 runners 1 hr prior to (-1 hr) and at +1 hr, +24 hr, +48 hr, and +72 hr following each exercise session. Time domain indexes and a high frequency component showed a significant decrease…

  17. Understanding Farmers' Response to Climate Variability in Nigeria ...

    In this study, farmers 'response to climate variability was examined. Primary and secondary data were used. A multi-stage sampling procedure was adopted in the collection of the primary data using structured questionnaires. Four vegetation zones out of seven where farming is mainly carried out were selected for the study.

  18. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System

    Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)


    A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)

  19. The effect of session order on the physiological, neuromuscular, and endocrine responses to maximal speed and weight training sessions over a 24-h period.

    Johnston, Michael; Johnston, Julia; Cook, Christian J; Costley, Lisa; Kilgallon, Mark; Kilduff, Liam P


    Athletes are often required to undertake multiple training sessions on the same day with these sessions needing to be sequenced correctly to allow the athlete to maximize the responses of each session. We examined the acute effect of strength and speed training sequence on neuromuscular, endocrine, and physiological responses over 24h. 15 academy rugby union players completed this randomized crossover study. Players performed a weight training session followed 2h later by a speed training session (weights speed) and on a separate day reversed the order (speed weights). Countermovement jumps, perceived muscle soreness, and blood samples were collected immediately prior, immediately post, and 24h post-sessions one and two respectively. Jumps were analyzed for power, jump height, rate of force development, and velocity. Blood was analyzed for testosterone, cortisol, lactate and creatine kinase. There were no differences between countermovement jump variables at any of the post-training time points (p>0.05). Likewise, creatine kinase, testosterone, cortisol, and muscle soreness were unaffected by session order (p>0.05). However, 10m sprint time was significantly faster (mean±standard deviation; speed weights 1.80±0.11s versus weights speed 1.76±0.08s; p>0.05) when speed was sequenced second. Lactate levels were significantly higher immediately post-speed sessions versus weight training sessions at both time points (ptraining does not affect the neuromuscular, endocrine, and physiological recovery over 24h. However, speed may be enhanced when performed as the second session. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Response-rate differences in variable-interval and variable-ratio schedules: An old problem revisited

    Cole, Mark R.


    In Experiment 1, a variable-ratio 10 schedule became, successively, a variable-interval schedule with only the minimum interreinforcement intervals yoked to the variable ratio, or a variable-interval schedule with both interreinforcement intervals and reinforced interresponse times yoked to the variable ratio. Response rates in the variable-interval schedule with both interreinforcement interval and reinforced interresponse time yoking fell between the higher rates maintained by the variable-...

  1. Variable-speed belt conveyor systems improve economy in operation; Drehzahlgeregelte Bandanlagen verbessern die betriebswirtschaftlichen Kennzahlen

    Keller, C.; Neuffer, I.; Weber, D. [Siemens AG, Erlangen (Germany). Bereich Anlagenbau und Technische Dienstleistungen (ATD)


    Previous large conveyor system solutions were a compromise between mechanical design and electrical drive technology, usually based on slipring motors for cost reasons. Today`s power electronics systems now make it possible to use medium-voltage frequency converters in large conveyor systems. This new technology opens up design solutions with torque control that yield distinctly better behaviour under load fluctuation conditions, thereby reducing wear and tear. Experience gained from completed projects has shown that a higher-level load-dependent conveyor speed control can achieve energy savings of up to 20%, since material flows tend to be stochastic rather than constant. Maximum speed is required for short periods only and can therefore be obtained by means of field weakening, a higher gear ratio and short-time overshooting of the rated motor current. This permits the use of motors with smaller frame sizes. Furthermore, in view of the controlled torque and shorter belt runs, it is conceivable that built-in safety margins could be reduced. The solution presented here shows how a distinct improvement in cost efficiency can be attained. (orig.) [Deutsch] Bisherige Loesungen fuer grosse Bandanlagen sind ein Kompromiss zwischen mechanischer Konstruktion und elektrischer Antriebstechnik, bei der aus Kostengruenden meist Schleifringlaeufermotoren eingesetzt werden. Aufgrund der Moeglichkeiten, die die Leistungselektronik heute bietet, ist ein Einsatz von Mittelspannungsumrichtern auch auf diesem Gebiet realisierbar. Damit sind Loesungen moeglich, die besonders durch ein gefuehrtes Moment ein deutlich verbessertes Verhalten bei Momenten- oder Lastaenderungen herbeifuehren und damit eine materialschonende Betriebsweise ermoeglichen. Ausserdem hat sich bei ausgefuehrten Anlagen gezeigt, dass sich durch eine uebergeordnete foerderleistungsabhaengige Bandgeschwindigkeitsregelung auch Energie bis zu 20% einsparen laesst, da der Materialfluss nicht stetig, sondern eher

  2. Variable reflectivity signal mirrors and signal response measurements

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E


    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  3. Variable reflectivity signal mirrors and signal response measurements

    Vine, G D; McClelland, D E


    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  4. Investigations dealing with variable-speed drives of belt conveyor systems; Untersuchungen an drehzahlstellbaren Antrieben von Gurtbandfoerderanlagen

    Heuvel, B. van den [RWE Power AG, Technikzentrum Tagebaue/Hauptwerkstatt, Versuchsabteilung, Frechen (Germany)


    Safe and faultless operation of belt conveyor systems is a crucial factor in maintaining the availability of interlinked conveying systems employed in mining operations; the use of components with a high efficiency or low energy consumption and energy-conserving plant operation modes allow economic efficiency to be enhanced. With the power increase of single drives to 2500 kW the static design is gaining significance and - with the introduction of variable-speed conveyor drives - particular importance is also to be attached to the proper dynamic design and adjustment of the drive units. Comprehensive measurement and computational studies made of different conveyor drive units in the 900 to 2500 kW power range revealed that excitations of torsional natural frequencies caused by the drives' tooth contact frequencies were the reason for the damage that had occurred; remedial measures were developed the efficacy of which was demonstrated in practice. Moreover, investigations aimed at precautionary damage prevention are described which were performed with newly designed gears prior to the conversion of proven conveyor drives to variable-speed drive units. When designing new gears in the future, we recommend to also investigate them with regard to their dynamic behaviour in the drive train during the design phase by performing appropriate torsional vibration analyses. (orig.)

  5. Design optimization under uncertainty and speed variability for a piezoelectric energy harvester powering a tire pressure monitoring sensor

    Toghi Eshghi, Amin; Lee, Soobum; Kazem Sadoughi, Mohammad; Hu, Chao; Kim, Young-Cheol; Seo, Jong-Ho


    Energy harvesting (EH) technologies to power small sized electronic devices are attracting great attention. Wasted energy in a vehicle’s rotating tire has a great potential to enable self-powered tire pressure monitoring sensors (TPMS). Piezoelectric type energy harvesters can be used to collect vibrational energy and power such systems. Due to the presence of harsh acceleration in a rotating tire, a design tradeoff needs to be studied to prolong the harvester’s fatigue life as well as to ensure sufficient power generation. However, the design by traditional deterministic design optimization (DDO) does not show reliable performance due to the lack of consideration of various uncertainty factors (e.g., manufacturing tolerances, material properties, and loading conditions). In this study, we address a new EH design formulation that considers the uncertainty in car speed, dimensional tolerances and material properties, and solve this design problem using reliability-based design optimization (RBDO). The RBDO problem is formulated to maximize compactness and minimize weight of a TPMS harvester while satisfying power and durability requirements. A transient analysis has been done to measure the time varying response of EH such as power generation, dynamic strain, and stress. A conservative design formulation is proposed to consider the expected power from varied speed and stress at higher speed. When compared to the DDO, the RBDO results show that the reliability of EH is increased significantly by scarifying the objective function. Finally, experimental test has been conducted to demonstrate the merits of RBDO design over DDO.

  6. Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros

    Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.


    Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.

  7. High-Speed Photorefractive Response Capability in Triphenylamine Polymer-Based Composites

    Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto


    We present here the poly(4-diphenylamino)styrene (PDAS)-based photorefractive composites with a high-speed response time. PDAS was synthesized as a photoconductive polymer and photorefractive polymeric composite (PPC) films by using triphenylamine (TPA) (or ethylcarbazole, ECZ), 4-homopiperidino-2-fluorobenzylidene malononitrile (FDCST), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were investigated. The photorefractive quantities of the PDAS-based PPCs were determined by a degenerate four-wave mixing (DFWM) technique. Additionally, the holographic images were recorded through an appropriate PDAS-based PPC. Those holographic images clearly reconstruct the original motion with high-speed quality. The present approach provides a promising candidate for the future application of dynamic holographic displays.

  8. Analysis of a variable speed air conditioner considering the R-290/POE ISO 22 mixture effect

    Ribeiro, Guilherme B.; Barbosa, Jader R.


    Highlights: • A numerical model that considers the oil-refrigerant mixture effect is proposed. • In order to compare the model, an air conditioner calorimeter was constructed. • The system was evaluated under oil circulation ratios between 1 and 7%. • The presence of oil resulted in a significant SEER deterioration (around 69%). - Abstract: Air-conditioning applications using propane (R-290) have several environmental and thermodynamic advantages over more commonly used refrigerants, such as R-410A and R-22. This paper presents the development of a mathematical model for variable capacity air conditioning systems that use R-290/POE ISO 22 as refrigerant/lubricant. The thermodynamic performance of the refrigeration system is evaluated in terms of the SEER (Seasonal Energy Efficiency Ratio). The thermodynamic properties of the refrigerant/lubricant mixture were obtained from a departure-function approach using the Peng-Robinson equation of state. The effect of the oil on the condenser and evaporator heat transfer coefficients and pressure drops was also taken into account. Sub-models were developed for each component of the air conditioning system, including the connecting lines and the scroll compressor. Furthermore, an air conditioner experimental calorimeter was constructed and tested in order to validate the proposed model.

  9. Simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines

    Suzuki, H; Hasegawa, Y, E-mail: [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)


    We propose simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines. The present formulation is derived by introducing a series expansion for the torque coefficient at the constant tip-speed ratio. By focusing on the first- and second-order differential coefficients of the torque coefficient, we simplify the original differential equation. The governing equation based only on the first-order differential coefficient is found to be linear, whereas the second-order differential coefficient introduces nonlinearity. We compare the numerical solutions of the three governing equations for rotational speed in response to sinusoidal and normal-random variations of inflow velocity. The linear equation gives accurate solutions of amplitude and phase lag. Nonlinearity occurs in the mean value of rotational speed variation. We also simulate the rotational speed in response to a step input of inflow velocity using the conditions of two previous studies, and note that the form of this rotational speed response is a system of first-order time lag. We formulate the gain and time constant for this rotational speed response. The magnitude of the gain is approximately three when the wind turbine is operated at optimal tip-speed ratio. We discuss the physical meaning of the derived time constant. (paper)

  10. Bet-hedging response to environmental variability, an intraspecific comparison.

    Nevoux, Marie; Forcada, Jaume; Barbraud, Christophe; Croxall, John; Weimerskirchi, Henri


    A major challenge in ecology is to understand the impact of increased environmental variability on populations and ecosystems. To maximize their fitness in a variable environment, life history theory states that individuals should favor a bet-hedging strategy, involving a reduction of annual breeding performance and an increase in adult survival so that reproduction can be attempted over more years. As a result, evolution toward longer life span is expected to reduce the deleterious effects of extra variability on population growth, and consequently on the trait contributing the most to it (e.g., adult survival in long-lived species). To investigate this, we compared the life histories of two Black-browed Albatross (Thalassarche melanophrys) populations breeding at South Georgia (Atlantic Ocean) and Kerguelen (Indian Ocean), the former in an environment nearly three times more variable climatically (e.g., in sea surface temperature) than the latter. As predicted, individuals from South Georgia (in the more variable environment) showed significantly higher annual adult survival (0.959, SE = 0.003) but lower annual reproductive success (0.285 chick per pair, SE = 0.039) than birds from Kerguelen (survival = 0.925, SE = 0.004; breeding success = 0.694, SE = 0.027). In both populations, climatic conditions affected the breeding success and the survival of inexperienced breeders, whereas the survival of experienced breeders was unaffected. The strength of the climatic impact on survival of inexperienced breeders was very similar between the two populations, but the effect on breeding success was positively related to environmental variability. These results provide rare and compelling evidence to support bet-hedging underlying changes in life history traits as an adaptive response to environmental variability.

  11. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour


    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  12. Experimental enhancement of fuzzy fractional order PI+I controller of grid connected variable speed wind energy conversion system

    Beddar, Antar; Bouzekri, Hacene; Babes, Badreddine; Afghoul, Hamza


    Highlights: • Fuzzy fractional order PI+I for wind energy conversion system is developed. • Investigation of the control methods performances under wind and load variations. • PSO algorithm with frequency method are used for parameters tuning. • Experimental results are presented. - Abstract: In this paper, fuzzy fractional order PI+I (FFOPI+I) controller for grid connected Variable Speed Wind Energy Conversion System (VS-WECS) is proposed. The FFOPI+I controller is applied to control a Permanent Magnet Synchronous Generator (PMSG) connected to the grid and nonlinear load through a back-to-back AC-DC-AC PWM converter. The control strategy of the Machine Side Converter (MSC) aims, at first, to extract a maximum power under fluctuating wind speed. Then, the Grid Side Converter (GSC) is controlled to improve the power quality and ensure sinusoidal current in the grid side. The FFOPI+I controller implements a Fuzzy Logic Controller (FLC) in parallel with Fractional Order PI (FOPI) and conventional PI controllers by having a commune proportional gain. The FLC changes the integral gains at runtime. The initial parameters of the FFOPI+I controller were calculated using a frequency method to create a search space then the PSO algorithm is used to select the optimal parameters. To evaluate the performance of the proposed controller in steady and transient states, an experimental test bench has been built in laboratory using dSPACE1104 card. The experimental results demonstrate the effectiveness and feasibility of the FFOPI+I over FOPI and conventional PI controllers by realizing maximum power extraction and improving the grid-side power factor for a wide range of wind speed.

  13. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.


    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  14. Cutting-in control of the variable speed constant frequency wind power generator based on internal model controller

    Guo Jindong; Xu Honghua; Zhao Dongli [Inst. of Electrical Engineering, CAS, BJ (China)


    The no-impact-current cutting-in-network control is the key of variable speed constant frequency (VSCF) wind power control system. Based on the stator flux linkage oriented control theory of doubly fed induction generator (DFIG), the field-oriented vector control technique and the internal model controller (IMC) are transplanted into the voltage control of DFIG and a novel cutting-in control strategy is obtained. The strategy does not need the exact inductor generator model, and has perfect performance without overshoot. The structure of the controller is simple, and the only parameter to be adjusted is directly related to system performance, so the strategy is easy to realize. Finally the strategy is studied by simulation using Matlab, the results of the simulation show that the control strategy can effectively control the stator voltage. (orig.)

  15. Limiting critical speed response on the SSME Alternate High Pressure Fuel Turbopump (ATD HPFTP) with bearing deadband

    Goggin, David G.; Darden, J. M.


    Yammamoto (1954) described the influence of bearing deadband on the critical speed response of a rotor-bearing system. Practical application of these concepts to limit critical speed response of turbopump rotors is described. Nonlinear rotordynamic analyses are used to define the effect of bearing deadband and rotor unbalance on the Space Shuttle Main Engine Alternate High Pressure Fuel Turbopump. Analysis results are used with hot fire test data to verify the presence of a lightly damped critical speed within the operating speed range. With the proper control of rotor unbalance and bearing deadband, the response of this critical speed is reduced to acceptable levels without major design modifications or additional sources of damping.

  16. Human Responses to Climate Variability: The Case of South Africa

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.


    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  17. The Response of Ice Sheets to Climate Variability

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.


    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  18. Reducing 4DCBCT imaging time and dose: the first implementation of variable gantry speed 4DCBCT on a linear accelerator.

    O'Brien, Ricky T; Stankovic, Uros; Sonke, Jan-Jakob; Keall, Paul J


    Four dimensional cone beam computed tomography (4DCBCT) uses a constant gantry speed and imaging frequency that are independent of the patient's breathing rate. Using a technique called respiratory motion guided 4DCBCT (RMG-4DCBCT), we have previously demonstrated that by varying the gantry speed and imaging frequency, in response to changes in the patient's real-time respiratory signal, the imaging dose can be reduced by 50-70%. RMG-4DCBCT optimally computes a patient specific gantry trajectory to eliminate streaking artefacts and projection clustering that is inherent in 4DCBCT imaging. The gantry trajectory is continuously updated as projection data is acquired and the patient's breathing changes. The aim of this study was to realise RMG-4DCBCT for the first time on a linear accelerator. To change the gantry speed in real-time a potentiometer under microcontroller control was used to adjust the current supplied to an Elekta Synergy's gantry motor. A real-time feedback loop was developed on the microcontroller to modulate the gantry speed and projection acquisition in response to the real-time respiratory signal so that either 40, RMG-4DCBCT 40 , or 60, RMG-4DCBCT 60 , uniformly spaced projections were acquired in 10 phase bins. Images of the CIRS dynamic Thorax phantom were acquired with sinusoidal breathing periods ranging from 2 s to 8 s together with two breathing traces from lung cancer patients. Image quality was assessed using the contrast to noise ratio (CNR) and edge response width (ERW). For the average patient, with a 3.8 s breathing period, the imaging time and image dose were reduced by 37% and 70% respectively. Across all respiratory rates, RMG-4DCBCT 40 had a CNR in the range of 6.5 to 7.5, and RMG-4DCBCT 60 had a CNR between 8.7 and 9.7, indicating that RMG-4DCBCT allows consistent and controllable CNR. In comparison, the CNR for conventional 4DCBCT drops from 20.4 to 6.2 as the breathing rate increases from 2 s to 8 s. With RMG-4DCBCT

  19. Stated response to increased enforcement density and penalty size for speeding and driving unbelted.

    Hössinger, Reinhard; Berger, Wolfgang J


    To what extent can traffic offences be reduced through stronger enforcement, higher penalties, and the provision of information to road users? This question was addressed with respect to the offences of "speeding" and "driving unbelted." Data were collected by a telephone survey of admitted speeders, followed by 438 face-to-face stated response interviews. Based on the data collected, separate statistical models were developed for the two offences. The models predict the behavioral effect of increasing enforcement density and/or penalty size as well as the additional effect of providing information to car drivers. All three factors are predicted to be effective in reducing speeding. According to the model, one additional enforcement event per year will cause a driver to reduce his current frequency of speeding by 5%. A penalty increase of 10 Euros is predicted to have the same effect. An announcement of stronger enforcement or higher fines is predicted to have an additional effect on behavior, independent of the actual magnitudes of increase in enforcement or fines. With respect to the use of a seat belt, however, neither an increase in enforcement density nor its announcement is predicted to have a significant effect on driver behavior. An increase in the penalty size is predicted to raise the stated wearing rate, which is already 90% in Austria. It seems that both the fear of punishment and the motivation for driving unbelted are limited, so that there is only a weak tradeoff between the two. This may apply to most traffic offences, with the exception of speeding, which accounts for over 80% of tickets alone, whereas all other offences account for less than 3% each. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Estimation of road profile variability from measured vehicle responses

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.


    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  1. Divergent phenological response to hydroclimate variability in forested mountain watersheds.

    Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P


    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns

  2. Taking the pulse of mountains: Ecosystem responses to climatic variability

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.


    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  3. Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology

    Enweremadu, C. C.; Rutto, H. L.


    This paper presents an optimization study in the production of biodiesel production from Marula oil. The study was carried out using a central composite design of experiments under response surface methodology. A mathematical model was developed to correlate the transesterification process variables to biodiesel yield. The transesterification reaction variables were methanol to oil ratio, x /sub 1/ (10-50 wt percentage), reaction time, x /sub 2/ (30-90 min), reaction temperature, x /sub 3/ (30-90 Degree C) stirring speed, x /sub 4/ (100-400 rpm) and amount of catalyst, x /sub 5/ (0.5-1.5 g). The optimum conditions for the production of the biodiesel were found to be methanol to oil ratio (29.43 wt percentage), reaction time (59.17 minutes), reaction temperature (58.80 Degree C), stirring speed (325 rpm) and amount of catalyst (1.02 g). The optimum yield of biodiesel that can be produced was 95 percentage. The results revealed that the crucial fuel properties of the biodiesel produced at the optimum conditions met the ASTM biodiesel specifications. (author)

  4. Impact of Shaft Stiffness on Inertial Response of Fixed Speed Wind Turbines


    Future power' system faces several challenges, one of them is the high penetration level of intermittent wind power generation, providing small or even no inertial response and being not contributing to the frequency stability. The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented. Four different drive-train models based on the multi-body system are developed. The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness. The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models, but no significant differences are found in the number-mass models. Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance. The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective. The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change, it is positive for the frequency stability.

  5. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Newman Anne B


    Full Text Available Abstract Background Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. Methods Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate and fall history stratifying by gait speed (1.0 m/s and controlling for age and gender. Results Step length, stance time, and step time variability did not differ with respect to fall history (p > .33. Individuals with extreme step width variability (either low or high step width variability were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281, after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]. The association between step width variability and fall history was not

  6. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    Erdman, W.; Behnke, M.


    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  7. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    Takahiro eSoshi


    Full Text Available Post-error slowing is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms. Neural correlates of post-error processing were examined using event-related potentials (ERPs. Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS. Behavioral results demonstrated that the commission error for No-go trials was 15%, but post-error slowing did not take place immediately. Delayed post-error slowing was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to post-error slowing. Stimulus-locked N2 was negatively correlated with post-error slowing and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater post-error slowing and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and post-error slowing did not occur quickly. Furthermore, post-error slowing and its neural correlate (N2 were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke

  8. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki


    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  9. Effects of central nervous system drugs on driving: speed variability versus standard deviation of lateral position as outcome measure of the on-the-road driving test.

    Verster, Joris C; Roth, Thomas


    The on-the-road driving test in normal traffic is used to examine the impact of drugs on driving performance. This paper compares the sensitivity of standard deviation of lateral position (SDLP) and SD speed in detecting driving impairment. A literature search was conducted to identify studies applying the on-the-road driving test, examining the effects of anxiolytics, antidepressants, antihistamines, and hypnotics. The proportion of comparisons (treatment versus placebo) where a significant impairment was detected with SDLP and SD speed was compared. About 40% of 53 relevant papers did not report data on SD speed and/or SDLP. After placebo administration, the correlation between SDLP and SD speed was significant but did not explain much variance (r = 0.253, p = 0.0001). A significant correlation was found between ΔSDLP and ΔSD speed (treatment-placebo), explaining 48% of variance. When using SDLP as outcome measure, 67 significant treatment-placebo comparisons were found. Only 17 (25.4%) were significant when SD speed was used as outcome measure. Alternatively, for five treatment-placebo comparisons, a significant difference was found for SD speed but not for SDLP. Standard deviation of lateral position is a more sensitive outcome measure to detect driving impairment than speed variability.

  10. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    Zedler, S. E.


    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  11. Speed response of brushless DC motor using fuzzy PID controller under varying load condition

    Akash Varshney


    Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.

  12. Patterns of intraspecific variability in the response to caloric restriction

    Gribble, Kristin E.; Kaido, Oksana; Jarvis, George; Mark Welch, David B.


    Caloric restriction (CR) is cited as the most robust means of increasing lifespan across a range of taxa, yet there is a high degree of variability in the response to CR, both within and between species. To examine the intraspecific evolutionary conservation of lifespan extension by CR, we tested the effects of chronic caloric restriction (CCR) at multiple food levels and of intermittent fasting (IF) in twelve isolates from the Brachionus plicatilis species complex of monogonont rotifers. While CCR generally increased or did not change lifespan and total fecundity, IF caused increased, unchanged, or decreased lifespan, depending upon the isolate, and decreased total fecundity in all but one isolate. Lifespan under ad libitum (AL) feeding varied among isolates and predicted the lifespan response to CR: longer-lived isolates under AL were less likely to have a significant increase in lifespan under CCR and were more likely to have a significantly shortened lifespan under IF. Lifespan under AL conditions and the response to CR were not correlated with hydroperiodicity of native habitat or with time in culture. Lack of trade-off between lifespan and fecundity under CCR, and differences in lifespan and fecundity under CCR and IF, even when average food intake was similar, suggest that longevity changes are not always directly determined by energy intake and that CCR and IF regimens extend lifespan through diverse genetic mechanisms. PMID:24384399

  13. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A. [Electronic Power Conditioning, Inc., Corvallis, OR (United States)


    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  14. Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines

    Mohamed Abdelrahem


    Full Text Available Currently, the electric power production by wind energy conversion systems (WECSs has increased significantly. Consequently, wind turbine (WT generators are requested to fulfill the grid code (GC requirements stated by network operators. In case of grid faults/voltage dips, a mismatch between the generated active power from the wind generator and the active power delivered to the grid is produced. The conventional approach is using a braking chopper (BC in the DC-link to dissipate this active power. This paper proposes a fault-ride through (FRT strategy for variable-speed WECSs based on permanent magnet synchronous generators (PMSGs. The proposed strategy exploits the rotor inertia of the WECS (inertia of the WT and PMSG to store the surplus active power during the grid faults/voltage dips. Thus, no additional hardware components are requested. Furthermore, a direct model predictive control (DMPC scheme for the PMSG is proposed in order to enhance the dynamic behavior of the WECS. The behavior of the proposed FRT strategy is verified and compared with the conventional BC approach for all the operation conditions by simulation results. Finally, the simulation results confirm the feasibility of the proposed FRT strategy.

  15. Impacts of environmental variability on desiccation rate, plastic responses and population dynamics of Glossina pallidipes.

    Kleynhans, E; Clusella-Trullas, S; Terblanche, J S


    Physiological responses to transient conditions may result in costly responses with little fitness benefits, and therefore, a trade-off must exist between the speed of response and the duration of exposure to new conditions. Here, using the puparia of an important insect disease vector, Glossina pallidipes, we examine this potential trade-off using a novel combination of an experimental approach and a population dynamics model. Specifically, we explore and dissect the interactions between plastic physiological responses, treatment-duration and -intensity using an experimental approach. We then integrate these experimental results from organismal water-balance data and their plastic responses into a population dynamics model to examine the potential relative fitness effects of simulated transient weather conditions on population growth rates. The results show evidence for the predicted trade-off for plasticity of water loss rate (WLR) and the duration of new environmental conditions. When altered environmental conditions lasted for longer durations, physiological responses could match the new environmental conditions, and this resulted in a lower WLR and lower rates of population decline. At shorter time-scales however, a mismatch between acclimation duration and physiological responses was reflected by reduced overall population growth rates. This may indicate a potential fitness cost due to insufficient time for physiological adjustments to take place. The outcomes of this work therefore suggest plastic water balance responses have both costs and benefits, and these depend on the time-scale and magnitude of variation in environmental conditions. These results are significant for understanding the evolution of plastic physiological responses and changes in population abundance in the context of environmental variability. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  16. Contact parameter identification for vibrational response variability prediction

    Creixell Mediante, Ester; Brunskog, Jonas; Jensen, Jakob Søndergaard


    industry, where the vibrational behavior of the structures within the hearing frequency range is critical for the performance of the devices. A procedure to localize the most probable contact areas and determine the most sensitive contact points with respect to variations in the modes of vibration......Variability in the dynamic response of assembled structures can arise due to variations in the contact conditions between the parts that conform them. Contact conditions are difficult to model accurately due to randomness in physical properties such as contact surface, load distribution...... or geometric details. Those properties can vary for a given structure due to the assembly and disassembly process, and also across nominally equal items that are produced in series. This work focuses on modeling the contact between small light-weight plastic pieces such as those used in the hearing aid...

  17. Dynamic response analysis of single-span guideway caused by high speed maglev train

    Jin Shi

    Full Text Available High speed maglev is one of the most important reformations in the ground transportation systems because of its no physical contact nature. This paper intends to study the dynamic response of the single-span guideway induced by moving maglev train. The dynamic model of the maglev train-guideway system is established. In this model, a maglev train consists of three vehicles and each vehicle is regarded as a multibody system with 34 degrees-of-freedom. The guideway is modeled as a simply supported beam. Considering the motion-dependent nature of electromagnetic forces in the maglev system, an iterative approach is presented to compute the dynamic response of a maglev train-guideway system. The histories of the train traversing the guideways are simulated and the dynamic responses of the guideway and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis. The resonant conditions of single-span guideway are analyzed. The results show that all the dynamic indexes of train-guideway system are far less than permissive values of railway and maglev system, the vertical resonant of guideways caused by periodical excitations of the train will not happen.

  18. Response variability in Attention-Deficit/Hyperactivity Disorder: a neuronal and glial energetics hypothesis.

    Russell, Vivienne A; Oades, Robert D; Tannock, Rosemary; Killeen, Peter R; Auerbach, Judith G; Johansen, Espen B; Sagvolden, Terje


    Current concepts of Attention-Deficit/Hyperactivity Disorder (ADHD) emphasize the role of higher-order cognitive functions and reinforcement processes attributed to structural and biochemical anomalies in cortical and limbic neural networks innervated by the monoamines, dopamine, noradrenaline and serotonin. However, these explanations do not account for the ubiquitous findings in ADHD of intra-individual performance variability, particularly on tasks that require continual responses to rapid, externally-paced stimuli. Nor do they consider attention as a temporal process dependent upon a continuous energy supply for efficient and consistent function. A consideration of this feature of intra-individual response variability, which is not unique to ADHD but is also found in other disorders, leads to a new perspective on the causes and potential remedies of specific aspects of ADHD. We propose that in ADHD, astrocyte function is insufficient, particularly in terms of its formation and supply of lactate. This insufficiency has implications both for performance and development: H1) In rapidly firing neurons there is deficient ATP production, slow restoration of ionic gradients across neuronal membranes and delayed neuronal firing; H2) In oligodendrocytes insufficient lactate supply impairs fatty acid synthesis and myelination of axons during development. These effects occur over vastly different time scales: those due to deficient ATP (H1) occur over milliseconds, whereas those due to deficient myelination (H2) occur over months and years. Collectively the neural outcomes of impaired astrocytic release of lactate manifest behaviourally as inefficient and inconsistent performance (variable response times across the lifespan, especially during activities that require sustained speeded responses and complex information processing). Multi-level and multi-method approaches are required. These include: 1) Use of dynamic strategies to evaluate cognitive performance under

  19. A sequential sampling account of response bias and speed-accuracy tradeoffs in a conflict detection task.

    Vuckovic, Anita; Kwantes, Peter J; Humphreys, Michael; Neal, Andrew


    Signal Detection Theory (SDT; Green & Swets, 1966) is a popular tool for understanding decision making. However, it does not account for the time taken to make a decision, nor why response bias might change over time. Sequential sampling models provide a way of accounting for speed-accuracy trade-offs and response bias shifts. In this study, we test the validity of a sequential sampling model of conflict detection in a simulated air traffic control task by assessing whether two of its key parameters respond to experimental manipulations in a theoretically consistent way. Through experimental instructions, we manipulated participants' response bias and the relative speed or accuracy of their responses. The sequential sampling model was able to replicate the trends in the conflict responses as well as response time across all conditions. Consistent with our predictions, manipulating response bias was associated primarily with changes in the model's Criterion parameter, whereas manipulating speed-accuracy instructions was associated with changes in the Threshold parameter. The success of the model in replicating the human data suggests we can use the parameters of the model to gain an insight into the underlying response bias and speed-accuracy preferences common to dynamic decision-making tasks. © 2013 American Psychological Association

  20. Transient Simulation Study of Slip-Frequency Vector Control for Variable Speed Doubly-Fed Brushless Motor with Magnetic Barrier Rotor

    Jingxiong ZHANG


    Full Text Available In this paper, a transient simulation model of a variable speed doubly fed brushless motor (DFBM using back-to-back converter is described. Based on analysis of rotor flux oriented vector control theory of doubly fed induction motor, the control of the currents in DFBM that produce the magnetic flux and the torque is achieved by a digital controller, the speed is regulated by a PI controller which is tuned by a genetic algorithm. According to the state equation of DFBM and the control schemes, the system simulation module is established in MATLAB/ SIMULINK. An extensive simulation study is performed to examine the control characteristics of the machine-side converter under different operation conditions in variable-speed DFBM driver system.

  1. When is affect variability bad for health? The association between affect variability and immune response to the influenza vaccination.

    Jenkins, Brooke N; Hunter, John F; Cross, Marie P; Acevedo, Amanda M; Pressman, Sarah D


    This study addresses methodological and theoretical questions about the association between affect and physical health. Specifically, we examine the role of affect variability and its interaction with mean levels of affect to predict antibody (Ab) levels in response to an influenza vaccination. Participants (N=83) received the vaccination and completed daily diary measures of affect four times a day for 13days. At one and four months post-vaccination, blood was collected from the participants to assess Ab levels. Findings indicate that affect variability and its interaction with mean levels of affect predict an individual's immune response. Those high in mean positive affect (PA) who had more PA variability were more likely to have a lower Ab response in comparison to those who had high mean PA and less PA variability. Although it did not interact with mean negative affect (NA), NA variability on its own was associated with Ab response, whereby those with less NA variability mounted a more robust immune response. Affect variability is related to immune response to an influenza vaccination and, in some cases, interacts with mean levels of affect. These oscillations in affective experiences are critical to consider in order to unpack the intricacies of how affect influences health. These findings suggest that future researchers should consider the important role of affect variability on physical health-relevant outcomes as well as examine the moderating effect of mean affect levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten


    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Ghazaleh Esmaeelzade


    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  4. Avian community responses to variability in river hydrology.

    Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P


    River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.

  5. Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts.

    Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J


    We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.

  6. Pavement Response to Variable Tyre Pressure of Heavy Vehicles

    Arshad Ahmad Kamil


    Full Text Available In recent years, the effect of overinflated tyre pressure and increased heavy vehicles’ axle load on flexible pavements has become a subject of great concern because of the higher stress levels induced and damage caused to road pavements. This paper aims to evaluate the effect of variable tyre inflation pressures (using actual tyre contact/footprint area to determine the responses of flexible pavement. A full scale experiment was conducted on a heavy vehicle with 1:1:2 axle configuration, 10 R 20 tyre size and attached trailer with constant axle load. Measurements were made for actual tyre-pavement contact area. KENPAVE linear elastic program was then used to analyse the effects of the measured actual tyre-pavement contact area and the results was compared using conventional circular tyre contact area. A comparative analysis was then made between the actual contact area and the conventional circular tyre contact area. It was found that high tyre inflation pressure produce smaller contact area, giving more detrimental effect on the flexible pavement. It was also found that the temperature of tyres when the heavy vehicles are operational give less significant impact on tyre inflation pressure for the Malaysian climate.

  7. Estimation of effective wind speed

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.


    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  8. Perbandingan Passive LC Filter Dan Passve Single Tuned Filter Untuk Mereduksi Harmonisa Variable Speed Drive Dengan Beban Motor Induksi Tiga Fasa



    Most of the tools that used as speed control of three phase induction motors rotation is 1 phase Variable Speed Drive (VSD), where VSD is a harmonic generator. Therefore the harmonics that arise in the VSD can be reduced by using passive LC filters fasif namely passive single tuned filter that meet the standards IEC61000-3-2 Class A.The results obtained through passive LC filter could reduce the total distortion of harmonic current (THDi) from 102.9% to 23.78% while passive sin...

  9. On the Response of a Micro Wind Turbine to Wind-Speed Change

    烏谷, 隆; 渡辺, 公彦; 大屋, 裕二


    To improve the efficiency of a wind turbine, it is more effective to use high-speed wind. A method collecting wind to get high-speed wind was experimentally studied. It was found that the brimmed diffuser was a good device to get high-speed wind. The brimmed diffuser accelerated approaching wind, and wind speed near its inlet became about 1.7 times. Using this brimmed diffuser, we have made a new micro wind turbine and been carrying out field experiment. In order realize the properties of the...

  10. Variable Speed (DFIG) Wind Turbines: Rapid Frequency Response to Power System Disturbances

    Chandrashekhara, Divya K; Hansen, Anca Daniela; Sørensen, Poul Ejnar


    This paper examines the effect of integrating large number of wind turbines particularly the double fed induction generator (DFIG) on the virtual inertia of the Danish power system network. The virtual inertia refers to the kinetic energy stored in the rotating masses which can be released...... initially to counter act the frequency change during a power system disturbance. Simulation studies have been carried out on a generic reduced model of a transmission power grid of the Danish TSO to assess the impact of loss of generation on system frequency. Further, simulation study has been...

  11. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California

    Urmy, Samuel S.; Horne, John K.


    A 38 kHz upward-facing echosounder was deployed on the seafloor at a depth of 875 m in Monterey Bay, CA, USA (36° 42.748‧N, 122° 11.214‧W) from 27 February 2009 to 18 August 2010. This 18-month record of acoustic backscatter was compared to oceanographic time series from a nearby data buoy to investigate the responses of animals in sound-scattering layers to oceanic variability at seasonal and sub-seasonal time scales. Pelagic animals, as measured by acoustic backscatter, moved higher in the water column and decreased in abundance during spring upwelling, attributed to avoidance of a shoaling oxycline and advection offshore. Seasonal changes were most evident in a non-migrating scattering layer near 500 m depth that disappeared in spring and reappeared in summer, building to a seasonal maximum in fall. At sub-seasonal time scales, similar responses were observed after individual upwelling events, though they were much weaker than the seasonal relationship. Correlations of acoustic backscatter with oceanographic variability also differed with depth. Backscatter in the upper water column decreased immediately following upwelling, then increased approximately 20 days later. Similar correlations existed deeper in the water column, but at increasing lags, suggesting that near-surface productivity propagated down the water column at 10-15 m d-1, consistent with sinking speeds of marine snow measured in Monterey Bay. Sub-seasonal variability in backscatter was best correlated with sea-surface height, suggesting that passive physical transport was most important at these time scales.

  12. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    Wilmar Hernandez


    Full Text Available Among the complete family of sensors for automotive safety, consumer andindustrial application, speed sensors stand out as one of the most important. Actually, speedsensors have the diversity to be used in a broad range of applications. In today’s automotiveindustry, such sensors are used in the antilock braking system, the traction control systemand the electronic stability program. Also, typical applications are cam and crank shaftposition/speed and wheel and turbo shaft speed measurement. In addition, they are used tocontrol a variety of functions, including fuel injection, ignition timing in engines, and so on.However, some types of speed sensors cannot respond to very low speeds for differentreasons. What is more, the main reason why such sensors are not good at detecting very lowspeeds is that they are more susceptible to noise when the speed of the target is low. In short,they suffer from noise and generally only work at medium to high speeds. This is one of thedrawbacks of the inductive (magnetic reluctance speed sensors and is the case under study.Furthermore, there are other speed sensors like the differential Hall Effect sensors that arerelatively immune to interference and noise, but they cannot detect static fields. This limitstheir operations to speeds which give a switching frequency greater than a minimumoperating frequency. In short, this research is focused on improving the performance of avariable reluctance speed sensor placed in a car under performance tests by using arecursive least-squares (RLS lattice algorithm. Such an algorithm is situated in an adaptivenoise canceller and carries out an optimal estimation of the relevant signal coming from thesensor, which is buried in a broad-band noise background where we have little knowledgeof the noise characteristics. The experimental results are satisfactory and show a significantimprovement in the signal-to-noise ratio at the system output.

  13. Time response analysis in suspension system design of a high-speed car

    Pagwiwoko, Cosmas Pandit


    A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.

  14. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.


    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  15. Soil gas radon response to environmental and soil physics variables

    Thomas, D.M.; Chen, C.; Holford, D.


    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  16. Effect of feed moisture, extrusion temperature and screw speed on properties of soy white flakes based aquafeed: a response surface analysis.

    Singh, Sushil K; Muthukumarappan, Kasiviswanathan


    Soy white flakes (SWF) is an intermediate product during soy bean processing. It is an untoasted inexpensive product and contains around 51% of crude protein. It can be a potential source of protein to replace fish meal for developing aquafeed. The extrusion process is versatile and is used for the development of aquafeed. Our objective was to study the effects of inclusion of SWF (up to 50%) and other extrusion processing parameters such as barrel temperature and screw speed on the properties of aquafeed extrudates using a single-screw extruder. Extrudate properties, including pellet durability index, bulk density, water absorption and solubility indices and mass flow rate, were significantly (P < 0.05) affected by the process variables. SWF was the most significant variable with quadratic effects on most of the properties. Increasing temperature and screw speed resulted in increase in durability and mass flow rate of extrudates. Response surface regression models were established to correlate the properties of extrudates to the process variables. SWF was used as an alternative protein source of fish meal. Our study shows that aquafeed with high durability, lower bulk density and lower water absorption and higher solubility indices can be obtained by adding SWF up to 40%. © 2015 Society of Chemical Industry.

  17. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.

    Gauthier, Cindy; Grangeon, Murielle; Ananos, Ludivine; Brosseau, Rachel; Gagnon, Dany H


    Cardiorespiratory fitness assessment and training among manual wheelchair (MW) users are predominantly done with an arm-crank ergometer. However, arm-crank ergometer biomechanics differ substantially from MW propulsion biomechanics. This study aimed to quantify cardiorespiratory responses resulting from speed and slope increments during MW propulsion on a motorized treadmill and to calculate a predictive equation based on speed and slope for estimating peak oxygen uptake (VO 2peak ) in MW users. In total, 17 long-term MW users completed 12 MW propulsion periods (PP), each lasting 2min, on a motorized treadmill, in a random order. Each PP was separated by a 2-min rest. PPs were characterized by a combination of 3 speeds (0.6, 0.8 and 1.0m/s) and 4 slopes (0°, 2.7°, 3.6° and 4.8°). Six key cardiorespiratory outcome measures (VO 2 , heart rate, respiratory rate, minute ventilation and tidal volume) were recorded by using a gas-exchange analysis system. Rate of perceived exertion (RPE) was measured by using the modified 10-point Borg scale after each PP. For the 14 participants who completed the test, cardiorespiratory responses increased in response to speed and/or slope increments, except those recorded between the 3.6 o and 4.8 o slope, for which most outcome measures were comparable. The RPE was positively associated with cardiorespiratory response (r s ≥0.85). A VO 2 predictive equation (R 2 =99.7%) based on speed and slope for each PP was computed. This equation informed the development of a future testing protocol to linearly increase VO 2 via 1-min stages during treadmill MW propulsion. Increasing speed and slope while propelling a MW on a motorized treadmill increases cardiorespiratory response along with RPE. RPE can be used to easily and accurately monitor cardiorespiratory responses during MW exercise. The VO 2 can be predicted to some extent by speed and slope during MW propulsion. A testing protocol is proposed to assess cardiorespiratory fitness

  18. Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system

    Anitha Karthikeyan


    Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability

  19. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Patel, Pratik; Shukla, Vinit; Shah, Nitin; Sarkar, Biswanath


    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  20. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.


    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  1. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm


    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  2. Measures for speed management.


    Measures for speed management are essential for limiting the negative effects of driving too fast and at inappropriate speeds. To begin with, safe and credible speed limits need to be determined. Dynamic and variable speed limits that take into account the current circumstances, such as weather

  3. Northern goshawk broadcast surveys: Hawk response variables and survey cost

    Suzanne M. Joy; Richard T. Reynolds; Douglas G. Leslie


    We examined responses of Northern Goshawks (Accipter gentilis) to taped broadcast calls of conspecifics in tree-harvest areas and around alternate goshawk nests on Kaibab National Forest, Arizona, in 1991 and 1992. Forest areas totaling 476 km2 were systematically surveyed for goshawks. Ninety responses by adult and juvenile goshawks were elicited...

  4. Latest trends in variable speed drive systems. ; Application to elevators. Kahensoku drive system no saishin doko. ; Elevator eno oyo

    Inaba, H. (Hitachi, Ltd., Tokyo (Japan))


    The history of the elevator development may be summarized as a challenge to heights of buildings, pursuit of energy saving, and realizing comfort. Transfer of its drive system to the inverter drive system has been nearly completed keeping the pace with advance of electronic technologies. This paper describes control systems of elevators, effects of introducing inverters, and future trends. The inverter system used widely now for standard elevators with a speed lower than 105 m/min consists of a converter to rectify the utility power, a regenerative power consuming circuit to suppress overvoltage in the DC stage, and an inverter to supply power to induction motors. Those elevators exceeding a 120 m/min speed use power regenerating inverter system, with its converter controlled using micro computers according to loads and speeds of motors. The inverter system is particularly marked for having realized energy saving, lower power consumption, lower environmental pollution (from harmonics), comfort and maintainability at high levels. 13 refs., 9 figs.

  5. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology


    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  6. A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades

    Zhiqiang Yang


    Full Text Available Due to the dynamic process of maximum power point tracking (MPPT caused by turbulence and large rotor inertia, variable-speed wind turbines (VSWTs cannot maintain the optimal tip speed ratio (TSR from cut-in wind speed up to the rated speed. Therefore, in order to increase the total captured wind energy, the existing aerodynamic design for VSWT blades, which only focuses on performance improvement at a single TSR, needs to be improved to a multi-point design. In this paper, based on a closed-loop system of VSWTs, including turbulent wind, rotor, drive train and MPPT controller, the distribution of operational TSR and its description based on inflow wind energy are investigated. Moreover, a multi-point method considering the MPPT dynamic process for the aerodynamic optimization of VSWT blades is proposed. In the proposed method, the distribution of operational TSR is obtained through a dynamic simulation of the closed-loop system under a specific turbulent wind, and accordingly the multiple design TSRs and the corresponding weighting coefficients in the objective function are determined. Finally, using the blade of a National Renewable Energy Laboratory (NREL 1.5 MW wind turbine as the baseline, the proposed method is compared with the conventional single-point optimization method using the commercial software Bladed. Simulation results verify the effectiveness of the proposed method.

  7. Variable prognostic value of blood pressure response to exercise.

    Kato, Yuko; Suzuki, Shinya; Uejima, Tokuhisa; Semba, Hiroaki; Yamashita, Takeshi


    The aim of this study was to evaluate the impact of patient background including exercise capacity on the relationship between the blood pressure (BP) response to exercise and prognosis in patients visiting a cardiovascular hospital. A total of 2134 patients who were referred to our hospital underwent symptom-limited maximal cardiopulmonary exercise testing, and were followed through medical records and mail. The BP response to exercise was defined as the difference between peak and rest systolic BP. The end point was set as cardiovascular events including cardiovascular death, acute coronary syndrome, hospitalization for heart failure, and cerebral infarction. During a median follow-up period of 3 years, 179 (8%) patients reached the end point (2.5%/year). Multivariate analysis showed that BP response was independently and negatively associated with the occurrence of the end point. This prognostic significance of BP response was consistent regardless of left ventricular ejection fraction, renal function, presence of heart failure symptoms, the presence of organic heart disease, and hypertension. However, peak VO 2 showed a significant interaction with the effects of BP response on the end point, suggesting that the prognostic value of BP response was limited in patients with preserved exercise capacity. The role of BP response to exercise as the predictor depends on exercise capacity of each patient. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.; Morzel, J.


    with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using

  9. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation

    Tu, Y.; Peng, F.; Sui, X.; Men, Y.; White, P.B.; van Hest, J.C.M.; Wilson, D.A.


    Self-propelled catalytic micro- and nanomotors have been the subject of intense study over the past few years, but it remains a continuing challenge to build in an effective speed-regulation mechanism. Movement of these motors is generally fully dependent on the concentration of accessible fuel,

  10. On control strategies for power optimization and regulation of variable speed wind turbines; Sur les strategies de commande pour l'optimisation et la regulation de puissance des eoliennes a vitesse variable

    Boukhezzar, B


    The research work is dealing with variable speed wind turbines modelling and control design, in order to achieve the objectives of maximizing the extracted energy from the wind, below the rated power area in the one hand and in the other hand regulating the electric power production, above the rated power area, while reducing mechanical transient loads. For this purpose, we have studied various control strategies from linear to nonlinear based. some of the controllers that we have developed, herein appear for the first time in the relevant domain, the remaining others are an adaptation of well know controllers to the adopted wind turbine models. as matter of fact, we have derived two wind turbine models as well as a wind speed estimator. Indeed, the estimator allows obtaining the effective wind speed which cannot be measured, since the wind profile around the rotor is variable in time and space. As results, it has been shown that single input control by means of pitch angle or generator control cannot succeed to simultaneously drive the electric power output regulation and the rotor speed reference tracking. So then, our idea is to combine nonlinear dynamic state feedback torque control and pitch linear based control which turns out to be the best strategy. In addition, the validation of the controllers performance, using a high turbulence wind speed profile, has been performed through wind turbine simulators provided by nrel (national renewable energy laboratory, golden, co), has confirmed the theoretical results and has led to quite satisfactory conclusions in terms of energy capture optimization, power regulation and disturbances strong rejection as well. (author)

  11. Pressure management of water distribution systems via the remote real-time control of variable speed pumps

    Page, Philip R


    Full Text Available describes controllers which set the pump speed α, a physical property of the pump. The “proportional control” method (denoted PC), in analogy to the method for PCVs [2, 3, 12, 13], adjusts αi+1 = αi − kpi (Hi −Hsp) (3) where kpi is a dimension-full parameter... constant) Kpi in Eq. 6. An analogous procedure was followed for a PCV [13]. The proposed controller is called the “parameter-dependent P-controller with known constant pump flow” (DCF). The LCF and DCF controllers require Q to be known, either through a...

  12. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Yüksel Oğuz


    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  13. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin


    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  14. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H


    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability

  15. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho


    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  16. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.


    Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.

  17. Variability salt stress response analysis of Tunisian natural ...

    We evaluated the responses to salt stress of 106 Medicago truncatula lines from 11 Tunisian natural populations collected from areas that varied in soil composition, salinity and water availability. Five references lines were also included in this study. Plants were cultivated in two treatments (0 and 50 mM of NaCl) during a ...

  18. The Effects of Heart Rate Versus Speed-Based High-Intensity Interval Training on Heart Rate Variability in Young Females

    Maryam Rabbani


    Full Text Available Introduction: The aim of this study was to compare the effects of high-intensity interval training (HIT prescription by heart rate (HR-based and running speed (speed-based methods on natural logarithm of the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (Ln rMSSD as a measure of heart rate variability (HRV in young female student athletes. Methods: Seventeen female student athletes participated in this study and were divided into HR-based (n=9, age: 16.7 years and speed-based (n=8, age: 16.9 years HIT groups. 30-15 Intermittent Fitness Test was used for the speed-based group to detect the reference maximum speed (VIFT for prescribing the HIT intensity accordingly. Age predicted maximal HR was used for the HR-based group as the reference value. All subjects performed similar training protocol for 5 weeks, except the method of individualizing HIT sessions (2 weekly sessions of HIT=3 sets of 3 minutes work interspersed with 3 minutes passive recovery with the 15-15 seconds format during each working set; either according to 90%-95% of maximal HR or VIFT. Results: HR- and speed-based HIT groups showed the most likely large improvements in Ln rMSSD of +7.9%, 90% confidence limits [CL] (5.9; 10.0; standardized change: +1.75 (1.32; 2.19 and +5.5%, (2.8; 8.3; +1.41 (0.72; 2.09, respectively. In between group analyses, HR-based HIT produced likely a small greater improvement in Ln rMSSD than speed-based HIT (+1.9%, [-5.0; 4.4]; +0.50 [-0.14; 1.14], chances for greater/similar/lower values of 79/17/4. Conclusion: It is concluded that both HIT prescription strategies were effective in Ln rMSSD elevation, but using maximal HR as a reference may elicit higher parasympathetic dominance with small effect in young female student athletes.

  19. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering


    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  20. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  1. Analysis of the Response Speed of Musculature of the Knee in Professional Male and Female Volleyball Players

    Rodríguez-Ruiz, D.; Diez-Vega, I.; Rodríguez-Matoso, D.; Fernandez-del-Valle, M.; Sagastume, R.; Molina, J. J.


    The aim of this study was to evaluate the normalized response speed (Vrn) of the knee musculature (flexor and extensor) in high competitive level volleyball players using tensiomyography (TMG) and to analyze the muscular response of the vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), and biceps femoris (BF) in accordance with the specific position they play in their teams. One hundred and sixty-six players (83 women and 83 men) were evaluated. They belonged to eight teams in the Spanish women's superleague and eight in the Spanish men's superleague. The use of Vrn allows avoiding possible sample imbalances due to anatomical and functional differences and demands. We found differences between Vrn in each of the muscles responsible for extension (VM, RF, and VL) and flexion (BF) regardless of the sex. Normalized response speed differences seem to be larger in setters, liberos and outside players compared to middle blockers and larger in males when compared to females. These results of Vrn might respond to the differences in the physical and technical demands of each specific position, showing an improved balance response of the knee extensor and flexor musculature in male professional volleyball players. PMID:25003109

  2. Analysis of the Response Speed of Musculature of the Knee in Professional Male and Female Volleyball Players

    D. Rodríguez-Ruiz


    Full Text Available The aim of this study was to evaluate the normalized response speed (Vrn of the knee musculature (flexor and extensor in high competitive level volleyball players using tensiomyography (TMG and to analyze the muscular response of the vastus medialis (VM, rectus femoris (RF, vastus lateralis (VL, and biceps femoris (BF in accordance with the specific position they play in their teams. One hundred and sixty-six players (83 women and 83 men were evaluated. They belonged to eight teams in the Spanish women’s superleague and eight in the Spanish men’s superleague. The use of Vrn allows avoiding possible sample imbalances due to anatomical and functional differences and demands. We found differences between Vrn in each of the muscles responsible for extension (VM, RF, and VL and flexion (BF regardless of the sex. Normalized response speed differences seem to be larger in setters, liberos and outside players compared to middle blockers and larger in males when compared to females. These results of Vrn might respond to the differences in the physical and technical demands of each specific position, showing an improved balance response of the knee extensor and flexor musculature in male professional volleyball players.

  3. Decreased heart rate variability responses during early postoperative mobilization

    Jans, Øivind; Brinth, Louise; Kehlet, Henrik


    in relation to postural change. METHODS: A standardized mobilization protocol before, 6 and 24 h after surgery was performed in 23 patients scheduled for elective THA. Beat-to-beat arterial blood pressure was measured by photoplethysmography and HRV was derived from pulse wave interbeat intervals and analysed......BACKGROUND: Intact orthostatic blood pressure regulation is essential for early mobilization after surgery. However, postoperative orthostatic hypotension and intolerance (OI) may delay early ambulation. The mechanisms of postoperative OI include impaired vasopressor responses relating...... and postural responses in arterial pressures decreased compared to preoperative conditions. During standing HF variation increased by 16.7 (95 % CI 8.0-25.0) normalized units (nu) at 6 h and 10.7 (2.0-19.4) nu at 24 h compared to the preoperative evaluation. At 24 h the LF/HF ratio decreased from 1.8 (1...

  4. Study and performances analysis of fuel cell assisted vector control variable speed drive system used for electric vehicles

    Pachauri, Rupendra Kumar; Chauhan, Yogesh K.


    This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.

  5. Comparison of Sliding Mode Control and Fuzzy Logic control applied to Variable Speed Wind Energy Conversion Systems

    Souhila Rached Zine


    Full Text Available wind energy features prominently as a supplementary energy booster. It does not pollute and is inexhaustible. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In This case, the MPPT control becomes important. To realize this control, strategy conventional Proportional and Integral (PI controller is usually used. However, this strategy cannot achieve better performance. This paper proposes other control methods of a turbine which optimizes its production such as fuzzy logic, sliding mode control. These methods improve the quality and energy efficiency. The proposed Sliding Mode Control (SMC strategy and the fuzzy controllers have presented attractive features such as robustness to parametric uncertainties of the turbine, simplicity of its design and good performances. The simulation result under Matlab\\Simulink has validated the performance of the proposed MPPT strategies.

  6. DAC to Mitigate the Effect of Periodic Disturbances on Drive Train using Collective Pitch for Variable Speed Wind Turbine

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen


    scheme to mitigate the effect of 3p flicker on drive train. 5MW wind turbine of the National Renewable Laboratories (NREL) is used as research object and results are simulated in MATLAB/Simulink. We designed the controller based on linearized model of the wind turbine generated for above rated wind speed...... and then tested its performance on the nonlinear model of wind turbine. We have shown a comparison of the results for proportional-integral(PI) and proposed DAC controller tested on nonlinear model of wind turbine. Result shows that our proposed controller shows better mitigation of flicker generated due to 3p......DAC is a linear control technique used to mitigate the effect of disturbance on the plant. It is a superposition of full state feedback and disturbance feedback. This paper presents a control technique based on Disturbance Accommodation Control (DAC) to reduce fatigue on drive train generated...

  7. Modeling and control of a Continuously Variable Transmission in a constant speed power take-off application

    Aladagli, Irmak; Hofman, Theo; Steinbuch, Maarten; Vroemen, Bas


    Traditional control design techniques like manual tuning are widely employed within the Continuously Variable Transmission (CVT) industry. However, manual tuning comprises of trial and error and is therefore time consuming. Moreover, the results are likely far from optimal in the sense of some

  8. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela


    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  9. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    El-Sayed A. El-Badawy


    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect


    Maria del Rosario González-Rodriguez


    Full Text Available Consumer perception of corporate social responsibility (CSR can be directly influenced by individual value structures. This research aims to provide new knowledge regarding the relationship between basic human values and the public’s perception of CSR. It focuses on the values of higher education students and their views regarding a particular corporate social initiative. The study reveals that social, educational, and economic circumstances influence human values. Those values in turn influence why different students perceive CSR differently. These findings are relevant to companies as they provide a more detailed understanding of why certain consumer groups perceive certain CSR initiatives the way that they do. They also suggest that universities should increase their awareness of the importance of integrating human values and CSR in the curricula of future business managers and social leaders.

  11. Synthesis of Room Impulse Responses for Variable Source Characteristics

    M. Kunkemoeller


    Full Text Available Every acoustic source, e.g. a speaker, a musical instrument or a loudspeaker, generally has a frequency dependent characteristic radiation pattern, which is preeminent at higher frequencies. Room acoustic measurements nowadays only account for omnidirectional source characteristics. This motivates a measurement method that is capable of obtaining room impulse responses for these specific radiation patterns by using a superposition approach of several measurements with technically well-defined sound sources. We propose a method based on measurements with a 12-channel independentlydriven dodecahedron loudspeaker array rotated by an automatically controlled turntable.Radiation patterns can be efficiently described with the use of spherical harmonics representation. We propose a method that uses this representation for the spherical loudspeaker array used for the measurements and the target radiation pattern to be used for the synthesis.We show validating results for a deterministic test sound source inside in a small lecture hall.

  12. Response of South American Ecosystems to Precipitation Variability

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.


    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  13. Response of the Amazon rainforest to late Pleistocene climate variability

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno


    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  14. Power Extraction Control of Variable Speed Wind Turbine Systems Based on Direct Drive Synchronous Generator in All Operating Regimes

    Youssef Errami


    Full Text Available Due to the increased penetration of wind energy into the electrical power systems in recent years, the turbine controls are actively occupied in the research. This paper presents a nonlinear backstepping strategy to control the generators and the grid sides of a Wind Farm System (WFS based Direct Drive Synchronous Generator (DDSG. The control objectives such as Tracking the Maximum Power (TMP from the WFS, pitch control, regulation of dc-link voltage, and reactive and active power generation at varying wind velocity are included. To validate the proposed control strategy, simulation results for 6-MW-DDSG based Wind Farm System are carried out by MATLAB-Simulink. Performance comparison and evaluation with Vector Oriented Control (VOC are provided under a wide range of functioning conditions, three-phase voltage dips, and the probable occurrence of uncertainties. The proposed control strategy offers remarkable characteristics such as excellent dynamic and steady state performance under varying wind speed and robustness to parametric variations in the WFS and under severe faults of grid voltage.

  15. Plant response to nutrient availability across variable bedrock geologies

    Castle, S.C.; Neff, J.C.


    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  16. Variability in fluvial geomorphic response to anthropogenic disturbance

    Verstraeten, Gert; Broothaerts, Nils; Van Loo, Maarten; Notebaert, Bastiaan; D'Haen, Koen; Dusar, Bert; De Brue, Hanne


    Humans have greatly impacted the processes and intensities of erosion, sediment transport and storage since the introduction of agriculture. In many regions around the world, accelerated floodplain sedimentation can be related to increases in human pressure on the environment. However, the relation between the intensity of anthropogenic disturbance and the magnitude of change in fluvial sediment dynamics is not straightforward and often non-linear. Here, we review a number of case studies from contrasting environmental settings in the European loess belt, the Eastern Mediterranean mountain ranges and the eastern USA. Detailed field-based sediment archive studies and sediment budgets covering time periods ranging from 200 to over 5000 year, as well as the use of pollen and sediment provenance techniques, show that no overarching concept of changes in floodplain sedimentation following anthropogenic disturbance can be established. Slope-channel (dis)connectivity controls the existence of thresholds or tipping points that need to be crossed before significant changes in downstream sediment dynamics are recorded following human impact. This coupling can be related to characteristics of human pressure such as its duration, intensity and spatial patterns, but also to the geomorphic and tectonic setting. Furthermore, internal feedback mechanisms, such as those between erosion and soil thickness, further complicate the story. All these factors controlling the propagation of sediment from eroding hillslopes to river channels vary between regions. Hence, only unique patterns of fluvial geomorphic response can be identified. As a result, unravelling the human impact from current-day sediment archives and predicting the impact of future human disturbances on fluvial sediment dynamics remain a major challenge. This has important implications for interpreting contemporary sediment yields as well as downstream sediment records in large floodplains, deltas and the marine

  17. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles

    Chowdhuri, Arijit; Gupta, Vinay; Sreenivas, K.; Kumar, Rajeev; Mozumdar, Subho; Patanjali, P. K.


    CuO nanoparticles on sputtered SnO 2 thin-film surface exhibit a fast response speed (14 s) and recovery time (61 s) for trace level (20 ppm) H 2 S gas detection. The sensitivity of the sensor (S∼2.06x10 3 ) is noted to be high at a low operating temperature of 130 deg. C. CuO nanoparticles on SnO 2 allow effective removal of excess adsorbed oxygen from the uncovered SnO 2 surface due to spillover of hydrogen dissociated from the H 2 S-CuO interaction

  18. Amplitude variability over trials in hemodynamic responses in adolescents with ADHD

    Sørensen, L; Eichele, T; van Wageningen, H


    variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... predicted that adolescents with ADHD would have higher HR variability in the DMN compared with controls, and this in turn would be related to behavioral IIV. We also explored the influence of social anxiety on HR variability in ADHD as means to test whether higher arousal associated with high trait anxiety...... would affect the neural abnormalities. We assessed single-trial variability of HRs, estimated from fMRI event-related responses elicited during an auditory oddball paradigm in adolescents with ADHD and healthy controls (11-18 years old; N = 46). Adolescents with ADHD had higher HR variability compared...

  19. Using dual response surfaces to reduce variability in launch vehicle design: A case study

    Yeniay, Ozgur; Unal, Resit; Lepsch, Roger A.


    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Uncertainties from one engineering discipline may propagate to another through linking parameters and the final system output may have an accumulation of risk. This may lead to significant deviations from expected performance. An estimate of variability or design risk therefore becomes essential for a robust design. This study utilizes the dual response surface approach to quantify variability in critical performance characteristics during conceptual design phase of a launch vehicle. Using design of experiments methods and disciplinary design analysis codes, dual response surfaces are constructed for the mean and standard deviation to quantify variability in vehicle weight and sizing analysis. Next, an optimum solution is sought to minimize variability subject to a constraint on mean weight. In this application, the dual response surface approach lead to quantifying and minimizing variability without much increase in design effort

  20. Nicotine patches improve mood and response speed in a lexical decision task.

    Gentry, M V; Hammersley, J J; Hale, C R; Nuwer, P K; Meliska, C J


    The effects of smoking a cigarette or wearing a transdermal nicotine patch on mood and lexical decision-making were tested in eight smokers. Each participant was tested after 4 hours of smoking abstinence, under 4 conditions: placebo (very low nicotine) cigarette, nicotine cigarette, placebo patch, and nicotine patch. Relative to placebo, wearing the nicotine patch reduced Profile of Mood States (POMS) Total Mood Disturbance and Fatigue/Inertia scores, while increasing the speed of some types of lexical decisions. Smoking a nicotine cigarette did not affect reaction times, but unexpectedly decreased the accuracy of Word/ Nonword lexical decisions. Thus, transdermal nicotine may improve mood and facilitate longterm memory search and/or attentional processes in nicotine-deprived smokers.

  1. Capturing the dynamics of response variability in the brain in ADHD

    Janna van Belle


    Full Text Available ADHD is characterized by increased intra-individual variability in response times during the performance of cognitive tasks. However, little is known about developmental changes in intra-individual variability, and how these changes relate to cognitive performance. Twenty subjects with ADHD aged 7–24 years and 20 age-matched, typically developing controls participated in an fMRI-scan while they performed a go-no-go task. We fit an ex-Gaussian distribution on the response distribution to objectively separate extremely slow responses, related to lapses of attention, from variability on fast responses. We assessed developmental changes in these intra-individual variability measures, and investigated their relation to no-go performance. Results show that the ex-Gaussian measures were better predictors of no-go performance than traditional measures of reaction time. Furthermore, we found between-group differences in the change in ex-Gaussian parameters with age, and their relation to task performance: subjects with ADHD showed age-related decreases in their variability on fast responses (sigma, but not in lapses of attention (tau, whereas control subjects showed a decrease in both measures of variability. For control subjects, but not subjects with ADHD, this age-related reduction in variability was predictive of task performance. This group difference was reflected in neural activation: for typically developing subjects, the age-related decrease in intra-individual variability on fast responses (sigma predicted activity in the dorsal anterior cingulate gyrus (dACG, whereas for subjects with ADHD, activity in this region was related to improved no-go performance with age, but not to intra-individual variability. These data show that using more sophisticated measures of intra-individual variability allows the capturing of the dynamics of task performance and associated neural changes not permitted by more traditional measures.

  2. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia


    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  3. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.


    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  4. The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.

    Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C


    Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.

  5. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini


    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  6. Speed-accuracy trade-offs in computing spatial impulse responses for simulating medical ultrasound imaging

    Jensen, Jørgen Arendt


    sampling frequency is unnecessary in the final signals, since the transducers used in medical ultrasound are band limited. Approaches to reduce the sampling frequency are, thus, needed to make efficient simulation programs. Field II uses time integration of the spatial impulse responses using a continuous......Medical ultrasound imaging can be simulated realistically using linear acoustics. One of the most powerful approaches is to employ spatial impulse responses. Hereby both emitted fields and pulse-echo responses from point scatterers can be determined. Also any kind of dynamic focusing...

  7. Response-related potentials during semantic priming: the effect of a speeded button response task on ERPs.

    Marijn van Vliet

    Full Text Available This study examines the influence of a button response task on the event-related potential (ERP in a semantic priming experiment. Of particular interest is the N400 component. In many semantic priming studies, subjects are asked to respond to a stimulus as fast and accurately as possible by pressing a button. Response time (RT is recorded in parallel with an electroencephalogram (EEG for ERP analysis. In this case, the response occurs in the time window used for ERP analysis and response-related components may overlap with stimulus-locked ones such as the N400. This has led to a recommendation against such a design, although the issue has not been explored in depth. Since studies keep being published that disregard this issue, a more detailed examination of influence of response-related potentials on the ERP is needed. Two experiments were performed in which subjects pressed one of two buttons with their dominant hand in response to word-pairs with varying association strength (AS, indicating a personal judgement of association between the two words. In the first experiment, subjects were instructed to respond as fast and accurately as possible. In the second experiment, subjects delayed their button response to enforce a one second interval between the onset of the target word and the button response. Results show that in the first experiment a P3 component and motor-related potentials (MRPs overlap with the N400 component, which can cause a misinterpretation of the latter. In order to study the N400 component, the button response should be delayed to avoid contamination of the ERP with response-related components.

  8. Using climate response functions in analyzing electricity production variables. A case study from Norway.

    Tøfte, Lena S.; Martino, Sara; Mo, Birger


    representation of hydropower is included and total hydro power production for each area is calculated, and the production is distributed among all available plants within each area. During simulation, the demand is affected by prices and temperatures. 6 different infrastructure scenarios of wind and power line development are analyzed. The analyses are done by running EMPS calibrated for today's situation for 11*11*8 different combinations of altered weather variables (temperature, precipitation and wind) describing different climate change scenarios, finding the climate response function for every EMPS-variable according the electricity production, such as prices and income, energy balances (supply, consumption and trade), overflow losses, probability of curtailment etc .

  9. Tracer responses and control of vessels with variable flow and volume

    Niemi, A.J.


    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  10. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin


    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195

  11. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme.

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin


    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

  12. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B


    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  13. On forecasting ionospheric total electron content responses to high-speed solar wind streams

    Meng Xing


    Full Text Available Conditions in the ionosphere have become increasingly important to forecast, since more and more spaceborne and ground-based technological systems rely on ionospheric weather. Here we explore the feasibility of ionospheric forecasts with the current generation of physics-based models. In particular, we focus on total electron content (TEC predictions using the Global Ionosphere-Thermosphere Model (GITM. Simulations are configured in a forecast mode and performed for four typical high-speed-stream events during 2007–2012. The simulated TECs are quantified through a metric, which divides the globe into a number of local regions and robustly differentiates between quiet and disturbed periods. Proposed forecast products are hourly global maps color-coded by the TEC disturbance level of each local region. To assess the forecasts, we compare the simulated TEC disturbances with global TEC maps derived from Global Positioning System (GPS satellite observations. The forecast performance is found to be merely acceptable, with a large number of regions where the observed variations are not captured by the simulations. Examples of model-data agreements and disagreements are investigated in detail, aiming to understand the model behavior and improve future forecasts. For one event, we identify two adjacent regions with similar TEC observations but significant differences in how local chemistry versus plasma transport contribute to electron density changes in the simulation. Suggestions for further analysis are described.

  14. A PLL-based resampling technique for vibration analysis in variable-speed wind turbines with PMSG: A bearing fault case

    Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.


    Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.

  15. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros

    Zhongyi Chu


    Full Text Available To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO.

  16. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan


    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller...... is an effective means for flicker mitigation of variable-speed wind turbines with full-scale back-to-back power converters during continuous operation....

  17. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    Körner Ursula


    Full Text Available Abstract Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed integration processes.

  18. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

    Cronin, Neil J; Ishikawa, Masaki; Grey, Michael J


    responses. Twelve healthy subjects walked on a treadmill with the left leg attached to an actuator capable of rapidly dorsiflexing the ankle joint. Ultrasound was used to measure fascicle lengths in SOL during walking, and surface electromyography (EMG) was used to record muscle activation. Dorsiflexion...

  19. High-Speed imaging of the plasma response to resonant magnetic perturbations in HBT-EP

    Angelini, Sarah M; Levesque, Jeffrey P; Mauel, Michael E; Navratil, Gerald A


    A Phantom v7.3 fast digital camera was used to study visible light fluctuations in the High Beta Tokamak–Extended Pulse (HBT–EP). This video data is the first to be used to analyze and understand the behavior of long wavelength kink perturbations in a wall-stabilized tokamak. The light was mostly comprised of Dα 656 nm light. Profiles of the plasma light at the midplane were hollow with a radial scale length of approximately 4 cm at the plasma edge. The fast camera was also used to measure the plasma’s response to applied helical magnetic perturbations. The programmed toroidal phase angle of the resonant magnetic perturbation (RMP) was directly inferred from the resulting images of the plasma response. The plasma response and the intensity of the RMP were compared under different conditions. The resulting amplitude correlations are consistent with previous measurements of the static response using an array of magnetic sensors. (paper)

  20. The effect of speed-accuracy strategy on response interference control in Parkinson's disease

    Wylie, S.A.; van den Wildenberg, W.P.M.; Ridderinkhof, K.R.; Bashore, T.R.; Powell, V.D.; Manning, C.A.; Wooten, G.F.


    Studies that used conflict paradigms such as the Eriksen Flanker task show that many individuals with Parkinson's disease (PD) have pronounced difficulty resolving the conflict that arises from the simultaneous activation of mutually exclusive responses. This finding fits well with contemporary

  1. Study on Short-term Variability of Ship Responses in Waves

    Nielsen, Ulrik Dam; Iseki, Toshio


    Short-term variability of ship responses is investigated by cross-spectrum analysis. In a steady state condition, it is well known that a certain length of sampled data is required for stable results of the spectral analysis. However, the phase lag between responses, in terms of the phase angle o...

  2. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann


    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  3. Numerical Simulation Of Shock Response To Wall Changes In High Speed Intakes

    Fincham, J.; Taylor, N. V.


    Hypersonic flight presents a number of challenges to the designer, one of which is the intake behaviour. Minimising drag requires careful positioning of the intake shock structure, while accurate understanding of the dynamic behaviour is required to allow minimisation of margins. In this paper, a two shock external compression intake derived from the Reaction Engines Limited SABRE engine is examined using inviscid axisymmetric CFD analysis to determine the response of the normal shockwave to axial motion of the intake centrebody. An approximately linear relationship between centrebody position and both the normal shock position and additive drag in steady flow is demonstrated. Initial results from an unsteady analysis are also given, which show complex behaviours may be triggered by rapid motion of the centrebody in response to control input.

  4. A study of the variability in the febrile responses of rabbits to endogenous pyrogen.

    Stitt, J T


    The range of body temperature increases elicited by a standard dose of endogenous pyrogen (0.5 ml/kg iv) was examined in a population of 26 male New Zealand White rabbits. Although the mean maximum increase in rectal temperature was 0.88 +/- 0.06 degree C (SE), individual responses varied from 0.4 degree to 1.5 degree C. Three representative animals that responded to the standard dose of pyrogen with small, intermediate, and large febrile responses were selected and challenged with the same dose of pyrogen on eight separate occasions, and the variability of these responses was examined. There was little variability within the characteristic responses of any particular animal to the repeated challenges. The variability of the febrile responses elicited by both intravenous and intracerebroventricular administration of the same pyrogen was examined and compared using another group of 11 rabbits. The variability in response to the intravenous route was similar to that found in the larger population, whereas the variation in response to the intracerebroventricular route was smaller, and all 11 animals had fevers that were greater than 1 degrees C. It is concluded that the variability of the febrile responses of rabbits to intravenous pyrogen was due to differences between individual sensitivities of animals to the intravenously administered pyrogen. This difference in sensitivity may be due to a difference in the amount of pyrogen that reaches the putative receptor sites, or to a difference in the density or effectiveness of receptor sites in translating the pyrogenic stimulus into a fever response.

  5. 风速波动下变速机组风电场的单机等值建模方法%Single machine equivalent modeling method of wind farms with variable speed wind turbines under wind speed fluctuations

    苏勋文; 秦浩宇; 杨荣峰; 岳红轩


    由于风电机组的输出功率滞后于风速波动,等值风计算不能反映实际工况,采用DIg-SILENT/Powerfactory搭建变速机组风电场详细模型和单机等值模型,研究风速波动下双馈机组和直驱永磁机组风电场模型的并网点输出特性.研究表明:对于双馈机组风电场,与详细模型相比,单机等值模型会出现一定误差;对于直驱永磁机组风电场,使用等值风的优于使用平均风的等值模型.利用单机表征法建立的风电场等值模型与详细模型的动态响应基本一致.该研究验证了单机等值方法的有效性和适用性.%This paper seeks to explore an efficient and simple wind farm equivalent modeling meth-od. The exploration involves the following process:providing the calculation method of the equivalent pa-rameters and equivalent wind in the single machine equivalent model; developing a detailed model of wind farm and a single machine equivalent model using the simulation software DIgSILENT/Powerfactory;investigating dynamic response at point of interconnection of wind farm with doubly fed induction genera-tor wind turbines and directly driven permanent magnet wind turbines under wind speed fluctuation. The results demonstrate that, in the case of wind farm with doubly fed induction generator wind turbines, where wind turbine operates at the output power lagging behind the wind speed fluctuation, equivalent wind calculation fails to reflect the actual operating conditions; there occurs a certain error in the single machine equivalent model compared;equivalent wind is better than the average wind for wind farm with directly driven permanent magnet wind turbines;and the dynamic response is basically same between the equivalent model of wind farm based on the single machine representation method and the detailed model of wind farm. The research verifies the validity and applicability of the single machine equivalent method.

  6. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan


    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  7. A latent class distance association model for cross-classified data with a categorical response variable.

    Vera, José Fernando; de Rooij, Mark; Heiser, Willem J


    In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.

  8. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  9. Inter- and intrapatient variability of facial nerve response areas in the floor of the fourth ventricle.

    Bertalanffy, Helmut; Tissira, Nadir; Krayenbühl, Niklaus; Bozinov, Oliver; Sarnthein, Johannes


    Surgical exposure of intrinsic brainstem lesions through the floor of the 4th ventricle requires precise identification of facial nerve (CN VII) fibers to avoid damage. To assess the shape, size, and variability of the area where the facial nerve can be stimulated electrophysiologically on the surface of the rhomboid fossa. Over a period of 18 months, 20 patients were operated on for various brainstem and/or cerebellar lesions. Facial nerve fibers were stimulated to yield compound muscle action potentials (CMAP) in the target muscles. Using the sites of CMAP yield, a detailed functional map of the rhomboid fossa was constructed for each patient. Lesions resected included 14 gliomas, 5 cavernomas, and 1 epidermoid cyst. Of 40 response areas mapped, 19 reached the median sulcus. The distance from the obex to the caudal border of the response area ranged from 8 to 27 mm (median, 17 mm). The rostrocaudal length of the response area ranged from 2 to 15 mm (median, 5 mm). Facial nerve response areas showed large variability in size and position, even in patients with significant distance between the facial colliculus and underlying pathological lesion. Lesions located close to the facial colliculus markedly distorted the response area. This is the first documentation of variability in the CN VII response area in the rhomboid fossa. Knowledge of this remarkable variability may facilitate the assessment of safe entry zones to the brainstem and may contribute to improved outcome following neurosurgical interventions within this sensitive area of the brain.

  10. Ionospheric response to a recurrent magnetic storm during an event of High Speed Stream in October 2016.

    Nicoli Candido, C. M.; Resende, L.; Becker-Guedes, F.; Batista, I. S.


    In this work we investigate the response of the low latitude ionosphere to recurrent geomagnetic activity caused by events of High speed streams (HSSs)/Corotating Interaction Regions (CIRs) during the low descending phase of solar activity in the solar cycle 24. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams and slow streams ejected by long duration coronal holes in Sun. This interaction leads to an increase in the mean interplanetary magnetic field (IMF) which causes moderate and recurrent geomagnetic activity when interacts with the Earth's magnetosphere. The ionosphere can be affected by these phenomena by several ways, such as an increase (or decrease) of the plasma ionization, intensification of plasma instabilities during post-sunset/post-midnight hours and subsequent development of plasma irregularities/spread-F, as well as occurrence of plasma scintillation. Therefore, we investigate the low latitude ionospheric response during moderate geomagnetic storm associated to an event of High Speed Stream occurred during decreasing phase of solar activity in 2016. An additional ionization increasing is observed in Es layer during the main peak of the geomagnetic storm. We investigate two possible different mechanisms that caused these extras ionization: the role of prompt penetration of interplanetary electric field, IEFEy at equatorial region, and the energetic electrons precipitation on the E and F layers variations. Finally, we used data from Digisondes installed at equatorial region, São Luís, and at conjugate points in Brazilian latitudes, Boa Vista and Cachoeira Paulista. We analyzed the ionospheric parameters such as the critical frequency of F layer, foF2, the F layer peak height, hmF2, the F layer bottomside, h'F, the blanketing frequency of sporadic layer, fbEs, the virtual height of Es layer h'Es and the top frequency of the Es layer ftEs during this event.

  11. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.


    Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

  12. Motor Integrated Variable Speed Drives

    Singh, Yash Veer

    rectifier at the front end is presented in this thesis and requirements of a buffer stage in the form of ESI is explained in detail. An equivalent circuit and linear model are developed to give the transfer function and control of the ESI based three-phase rectifier. In this thesis a power converter...... with ESI is designed and tested with standard induction motor to verify functionality of a working drive. One modified version of the ESI based converter has also been looked into to reduce losses of converter, but because of difficulties in reducing the bus-bar inductance in that design, further...

  13. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.


    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  14. Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria

    Said Slimani


    Full Text Available Aim of the study: The study analyzes the long-term response of Atlas cedar, Cedrus atlantica (Manneti, to climate variability. Area of study: Atlas cedar forest of Guetiane (Batna, Algeria.Material and methods: The dendrochronological approach was adopted. An Atlas cedar tree-ring chronology was established from twenty trees. The response of the species to climate variability was assessed through the pointer years (PYs, the common climate signal among the individual chronologies, expressed by the first component (PC1, the mean sensitivity (msx, and response function and correlations analysis involving the tree-ring index and climate data (monthly mean temperature and total precipitation.Results: The highest growth variability was registered from the second half of the 20th century. The lower than the mean PYs, the PC1, and the msx increased markedly during the studied period. Dramatic increases in the PC1 and msx were detected at the end of the 1970s, reflecting a shift towards drier conditions enhancing an increasing trend towards more synchronous response of trees to climate conditions. The response function and correlations analysis showed that tree growth was mainly influenced by precipitation variability.Research highlights: Our findings provide baseline knowledge concerning the ecological response of Atlas cedar to climate variability in in its southern distribution limit, where a high level of tree mortality has been observed during recent decades, coinciding with the driest period Algeria has ever experienced. This information is vital to support ongoing ecosystem management efforts in the region. Keywords: Atlas cedar; annual growth variability; dieback; dendrochronology. 

  15. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face

  16. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Abdallah I. A.


    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  17. The physiological basis for regeneration response to variable retention harvest treatments in three pine species

    Matthew D. Powers; Kurt S. Pregitzer; Brian J. Palik; Christopher R. Webster


    Variable retention harvesting (VRH) is promoted for enhancing biodiversity and ecosystem processes in managed forests, but regeneration responses to the complex stand structures that result from VRH are poorly understood. We analyzed foliar stable carbon isotope ratios (δ13C), oxygen isotope ratios (δ18O...

  18. Resistance to Change and Preference for Variable versus Fixed Response Sequences

    Arantes, Joana; Berg, Mark E.; Le, Dien; Grace, Randolph C.


    In Experiment 1, 4 pigeons were trained on a multiple chain schedule in which the initial link was a variable-interval (VI) 20-s schedule signalled by a red or green center key, and terminal links required four responses made to the left (L) and/or right (R) keys. In the REPEAT component, signalled by red keylights, only LRLR terminal-link…

  19. A longitudinal study in youth of heart rate variability at rest and in response to stress

    Li, Zhibin; Snieder, Harold; Su, Shaoyong; Ding, Xiuhua; Thayer, Julian F.; Treiber, Frank A.; Wang, Xiaoling

    Background: Few longitudinal studies have examined ethnic and sex differences, predictors and tracking stabilities of heart rate variability (HRV) at rest and in response to stress in youths and young adults. Methods: Two evaluations were performed approximately 1.5 years apart on 399 youths and

  20. Bayesian modeling of measurement error in predictor variables using item response theory

    Fox, Gerardus J.A.; Glas, Cornelis A.W.


    This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved

  1. Does Response Variability Predict Distractibility among Adults with Attention-Deficit/Hyperactivity Disorder?

    Adams, Zachary W.; Roberts, Walter M.; Milich, Richard; Fillmore, Mark T.


    Increased intraindividual variability in response time (RTSD) has been observed reliably in attention-deficit/hyperactivity disorder (ADHD) and has often been used as a measure of inattention. RTSD is assumed to reflect attentional lapses and distractibility, though evidence for the validity of this connection is lacking. We assessed whether RTSD…

  2. Study on Short-term Variability of Ship Responses in Waves

    Iseki, Toshio; Nielsen, Ulrik Dam


    Short-term variability of ship responses is investigated from the view point of cross-spectrum analysis. In a steady state condition, it is well known that a certain length of sampled data are required for stable spectral analysis. However, the phase angle of the cross-spectra has not been discus...

  3. Exploiting temporal variability to understand tree recruitment response to climate change

    Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers


    Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...

  4. Dynamic Variables Fail to Predict Fluid Responsiveness in an Animal Model With Pericardial Effusion.

    Broch, Ole; Renner, Jochen; Meybohm, Patrick; Albrecht, Martin; Höcker, Jan; Haneya, Assad; Steinfath, Markus; Bein, Berthold; Gruenewald, Matthias


    The reliability of dynamic and volumetric variables of fluid responsiveness in the presence of pericardial effusion is still elusive. The aim of the present study was to investigate their predictive power in a porcine model with hemodynamic relevant pericardial effusion. A single-center animal investigation. Twelve German domestic pigs. Pigs were studied before and during pericardial effusion. Instrumentation included a pulmonary artery catheter and a transpulmonary thermodilution catheter in the femoral artery. Hemodynamic variables like cardiac output (COPAC) and stroke volume (SVPAC) derived from pulmonary artery catheter, global end-diastolic volume (GEDV), stroke volume variation (SVV), and pulse-pressure variation (PPV) were obtained. At baseline, SVV, PPV, GEDV, COPAC, and SVPAC reliably predicted fluid responsiveness (area under the curve 0.81 [p = 0.02], 0.82 [p = 0.02], 0.74 [p = 0.07], 0.74 [p = 0.07], 0.82 [p = 0.02]). After establishment of pericardial effusion the predictive power of dynamic variables was impaired and only COPAC and SVPAC and GEDV allowed significant prediction of fluid responsiveness (area under the curve 0.77 [p = 0.04], 0.76 [p = 0.05], 0.83 [p = 0.01]) with clinically relevant changes in threshold values. In this porcine model, hemodynamic relevant pericardial effusion abolished the ability of dynamic variables to predict fluid responsiveness. COPAC, SVPAC, and GEDV enabled prediction, but their threshold values were significantly changed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A


    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  6. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.


    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  7. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    Conolly, Rory B.; Gaylor, David W.; Lutz, Werner K.


    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health

  8. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Florian Schmitz


    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  9. Inter-individual variability of stone marten behavioral responses to a highway.

    Fernando Ascensão

    Full Text Available Efforts to reduce the negative impacts of roads on wildlife may be hindered if individuals within the population vary widely in their responses to roads and mitigation strategies ignore this variability. This knowledge is particularly important for medium-sized carnivores as they are vulnerable to road mortality, while also known to use available road passages (e.g., drainage culverts for safely crossing highways. Our goal in this study was to assess whether this apparently contradictory pattern of high road-kill numbers associated with a regular use of road passages is attributable to the variation in behavioral responses toward the highway between individuals. We investigated the responses of seven radio-tracked stone martens (Martes foina to a highway by measuring their utilization distribution, response turning angles and highway crossing patterns. We compared the observed responses to simulated movement parameterized by the observed space use and movement characteristics of each individual, but naïve to the presence of the highway. Our results suggested that martens demonstrate a diversity of responses to the highway, including attraction, indifference, or avoidance. Martens also varied in their highway crossing patterns, with some crossing repeatedly at the same location (often coincident with highway passages. We suspect that the response variability derives from the individual's familiarity of the landscape, including their awareness of highway passage locations. Because of these variable yet potentially attributable responses, we support the use of exclusionary fencing to guide transient (e.g., dispersers individuals to existing passages to reduce the road-kill risk.

  10. Young drivers' responses to anti-speeding advertisements: Comparison of self-report and objective measures of persuasive processing and outcomes.

    Kaye, Sherrie-Anne; Lewis, Ioni; Algie, Jennifer; White, Melanie J


    Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle Global Positioning System [GPS] devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of 2 anti-speeding advertisements by incorporating both self-report and objective measures of speeding behavior. In addition, this study aimed to compare the findings derived from these different measurement approaches. Young drivers (N = 20, M age = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. While viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout GPS device was then installed in participants' vehicles for 1 week to measure on-road speed-related driving behavior. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behavior. There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behavior and the objective driving data (as assessed via the GPS devices). This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.

  11. Eyewitness Accounts on Climate Variability and the Responses: Perspectives from Farmers

    Jiban Mani Poudel


    Full Text Available People with different socio-cultural arrangements havedifferent experiences and responses to climatic variability. The place specific experiences and responses at community level still remain a little explored issue in the discourse of climate change research. This paper deals with local experiences of climatic variability which have been monitoring by locals in their lifetime, on the one hand, and, on the other, explore their responses or coping mechanisms which they have been practicing to mitigate with climatic risks. Moreover, farmers’ experiences were documented in term of observed climatic variability in their lifetime focusing on qualitative data. I have used eyewitness accounts and hearsays to document their experiences of climatic variability. Moreover, farmers have developed various coping mechanisms such as indigenous knowledge, utilize kinship based social network, environment friendly cropping practices, and use of alternative sources of water (water-tanker, well-water for irrigation, arrange rain-making ritual to cope with climatic uncertainty in their lifetime.DOI: Journal of Sociology and Anthropology Vol. 5, 2011: 171-90

  12. Influence of stimulant medication and response speed on lateralization of movement-related potentials in attention-deficit/hyperactivity disorder.

    Stephan Bender

    Full Text Available BACKGROUND: Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD. However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. METHODS: We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. RESULTS: We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP in patients with ADHD. Fast reactions (indicating increased visuo-motor attention led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes. CONCLUSIONS: A reduced focal (lateralized motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre- motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology.

  13. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook


    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  14. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé


    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  15. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick


    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  16. Changes of interannual NAO variability in response to greenhouse gases forcing

    Dong, Buwen; Sutton, Rowan T.; Woollings, Tim [University of Reading, National Centre for Atmospheric Science, Department of Meteorology, Reading (United Kingdom)


    Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO{sub 2}, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO{sub 2}. Results indicate that SST and CO{sub 2} change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO{sub 2} change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO{sub 2} and those in observations in the mid-1970s implies that the

  17. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano


    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  18. Responses of Montane Forest to Climate Variability in the Central Himalayas of Nepal

    Janardan Mainali


    Full Text Available Climate changes are having dramatic ecological impacts in mid- to high-latitude mountain ranges where growth conditions are limited by climatic variables such as duration of growing season, moisture, and ambient temperature. We document patterns of forest vegetative response for 5 major alpine forest communities to current climate variability in the central Himalayas of Nepal to provide a baseline for assessment of future changes, as well as offer some insight into the trajectory of these changes over time. We used mean monthly surface air temperature and rainfall and the monthly averaged normalized difference vegetation index (NDVI to compare relative vegetation productivity among forest types and in relation to both climatic variables. Because changes in temperature and precipitation are directly manifested as changes in phenology, we examined current vegetative responses to climate variability in an effort to determine which climate variable is most critical for different alpine forest types. Our results show that correlations differ according to vegetation type and confirm that both precipitation and temperature affect monthly NDVI values, though more significant correlations were found with temperature data. The temperature response was more consistent because at the maximum increased temperatures, there was still an ongoing increase in vegetative vigor. This indicates that temperature is still the major limiting factor for plant growth at higher-elevation sites. This part of the Himalayas has abundant moisture, and some forest types are already saturated in terms of growth in relation to precipitation. Clear increases in productivity are documented on the upper treeline ecotones, and these systems are likely to continue to have increasing growth rates.

  19. ltm: An R Package for Latent Variable Modeling and Item Response Analysis

    Dimitris Rizopoulos


    Full Text Available The R package ltm has been developed for the analysis of multivariate dichotomous and polytomous data using latent variable models, under the Item Response Theory approach. For dichotomous data the Rasch, the Two-Parameter Logistic, and Birnbaum's Three-Parameter models have been implemented, whereas for polytomous data Semejima's Graded Response model is available. Parameter estimates are obtained under marginal maximum likelihood using the Gauss-Hermite quadrature rule. The capabilities and features of the package are illustrated using two real data examples.

  20. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions.

    Ammann, Claudia; Lindquist, Martin A; Celnik, Pablo A

    It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). To study inter- and intra-individual variability of atDCS effects at two different intensities on primary motor cortex (M1) excitability. Twelve subjects participated in a crossover study testing 7-min atDCS over M1 in three separate conditions (2 mA, 1 mA, sham) each repeated three times separated by 48 h. Motor evoked potentials were recorded before and after stimulation (up to 30min). Time of testing was maintained consistent within participants. To estimate the reliability of tDCS effects across sessions, we calculated the Intra-class Correlation Coefficient (ICC). AtDCS at 2 mA, but not 1 mA, significantly increased cortical excitability at the group level in all sessions. The overall ICC revealed fair to high reliability of tDCS effects for multiple sessions. Given that the distribution of responses showed important variability in the sham condition, we established a Sham Variability-Based Threshold to classify responses and to track individual changes across sessions. Using this threshold an intra-individual consistent response pattern was then observed only for the 2 mA condition. 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.


    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  2. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    Hui, Chang; Zheng, Xiao-Tong


    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  3. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.


    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  4. Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats

    Killeen Peter R


    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is characterized by a pattern of inattention, hyperactivity, and impulsivity that is cross-situational, persistent, and produces social and academic impairment. Research has shown that reinforcement processes are altered in ADHD. The dynamic developmental theory has suggested that a steepened delay-of-reinforcement gradient and deficient extinction of behavior produce behavioral symptoms of ADHD and increased behavioral variability. Method The present study investigated behavioral variability and elimination of non-target responses during acquisition in an animal model of ADHD, the spontaneously hypertensive rat (SHR, using Wistar Kyoto (WKY rats as controls. The study also aimed at providing a novel approach to measuring delay-of-reinforcement gradients in the SHR and the WKY strains. The animals were tested in a modified operant chamber presenting 20 response alternatives. Nose pokes in a target hole produced water according to fixed interval (FI schedules of reinforcement, while nose pokes in the remaining 19 holes either had no consequences or produced a sound or a short flickering of the houselight. The stimulus-producing holes were included to test whether light and sound act as sensory reinforcers in SHR. Data from the first six sessions testing FI 1 s were used for calculation of the initial distribution of responses. Additionally, Euclidean distance (measured from the center of each hole to the center of the target hole and entropy (a measure of variability were also calculated. Delay-of-reinforcement gradients were calculated across sessions by dividing the fixed interval into epochs and determining how much reinforcement of responses in one epoch contributed to responding in the next interval. Results Over the initial six sessions, behavior became clustered around the target hole. There was greater initial variability in SHR behavior, and slower elimination of

  5. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    Arjen Tilstra


    Full Text Available Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1 for 31 days, followed by artificially induced heat stress (∼33.4 °C. We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

  6. Variable postpartum responsiveness among humans and other primates with "cooperative breeding": A comparative and evolutionary perspective.

    Hrdy, Sarah B


    This article is part of a Special Issue "Parental Care".Until recently, evolutionists reconstructing mother-infant bonding among human ancestors relied on nonhuman primate models characterized by exclusively maternal care, overlooking the highly variable responsiveness exhibited by mothers in species with obligate reliance on allomaternal care and provisioning. It is now increasingly recognized that apes as large-brained, slow maturing, and nutritionally dependent for so long as early humans were, could not have evolved unless "alloparents" (group members other than genetic parents), in addition to parents, had helped mothers to care for and provision offspring, a rearing system known as "cooperative breeding." Here I review situation-dependent maternal responses ranging from highly possessive to permissive, temporarily distancing, rejecting, or infanticidal, documented for a small subset of cooperatively breeding primates. As in many mammals, primate maternal responsiveness is influenced by physical condition, endocrinological priming, prior experience and local environments (especially related to security). But mothers among primates who evolved as cooperative breeders also appear unusually sensitive to cues of social support. In addition to more "sapient" or rational decision-making, humankind's deep history of cooperative breeding must be considered when trying to understand the extremely variable responsiveness of human mothers. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system.

    Li, Ye; Wang, Hao; Wang, Wei; Liu, Shanwen; Xiang, Yun


    Adaptive cruise control (ACC) has been investigated recently to explore ways to increase traffic capacity, stabilize traffic flow, and improve traffic safety. However, researchers seldom have studied the integration of ACC and roadside control methods such as the variable speed limit (VSL) to improve safety. The primary objective of this study was to develop an infrastructure-to-vehicle (I2V) integrated system that incorporated both ACC and VSL to reduce rear-end collision risks on freeways. The intelligent driver model was firstly modified to simulate ACC behavior and then the VSL strategy used in this article was introduced. Next, the I2V system was proposed to integrate the 2 advanced techniques, ACC and VSL. Four scenarios of no control, VSL only, ACC only, and the I2V system were tested in simulation experiments. Time exposed time to collision (TET) and time integrated time to collision (TIT), 2 surrogate safety measures derived from time to collision (TTC), were used to evaluate safety issues associated with rear-end collisions. The total travel times of each scenario were also compared. The simulation results indicated that both the VSL-only and ACC-only methods had a positive impact on reducing the TET and TIT values (reduced by 53.0 and 58.6% and 59.0 and 65.3%, respectively). The I2V system combined the advantages of both ACC and VSL to achieve the most safety benefits (reduced by 71.5 and 77.3%, respectively). Sensitivity analysis of the TTC threshold also showed that the I2V system obtained the largest safety benefits with all of the TTC threshold values. The impact of different market penetration rates of ACC vehicles in I2V system indicated that safety benefits increase with an increase in ACC proportions. Compared to VSL-only and ACC-only scenarios, this integrated I2V system is more effective in reducing rear-end collision risks. The findings of this study provide useful information for traffic agencies to implement novel techniques to improve

  8. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.


    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  9. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.


    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  10. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials.

    Saville, Christopher W N; Feige, Bernd; Kluckert, Christian; Bender, Stephan; Biscaldi, Monica; Berger, Andrea; Fleischhaker, Christian; Henighausen, Klaus; Klein, Christoph


    Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon. © 2014 Association for Child and Adolescent Mental Health.

  11. Dose Response Association between Physical Activity and Biological, Demographic, and Perceptions of Health Variables

    Paul D. Loprinzi


    Full Text Available Background: Few population-based studies have examined the association between physical activity (PA and cardiovascular disease risk factors, demographic variables, and perceptions of health status, and we do not have a clear understanding of the dose-response relationship among these variables. Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey was used to examine the dose-response relationship between objectively measured PA and metabolic syndrome (and its individual cardiovascular disease risk factors, demographic variables, and perceptions of health. After exclusions, 5,538 participants 18 years or older were included in the present study, with 2,538 participants providing fasting glucose and 2,527 providing fasting triglyceride data. PA was categorized into deciles. Results: Overall, the health benefits showed a general pattern of increase with each increasing levels of PA. Of the ten PA classifications examined, participants in the highest moderate-to-vigorous physical activity (MVPA category (at least 71 min/day had the lowest odds of developing metabolic syndrome. Conclusion: At a minimum, sedentary adults should strive to meet current PA guidelines (i.e., 150 min/week of MVPA, with additional positive benefits associated with engaging in three times this level of PA.

  12. Speed Variance and Its Influence on Accidents.

    Garber, Nicholas J.; Gadirau, Ravi

    A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…

  13. Working memory influences processing speed and reading fluency in ADHD.

    Jacobson, Lisa A; Ryan, Matthew; Martin, Rebecca B; Ewen, Joshua; Mostofsky, Stewart H; Denckla, Martha B; Mahone, E Mark


    Processing-speed deficits affect reading efficiency, even among individuals who recognize and decode words accurately. Children with ADHD who decode words accurately can still have inefficient reading fluency, leading to a bottleneck in other cognitive processes. This "slowing" in ADHD is associated with deficits in fundamental components of executive function underlying processing speed, including response selection. The purpose of the present study was to deconstruct processing speed in order to determine which components of executive control best explain the "processing" speed deficits related to reading fluency in ADHD. Participants (41 ADHD, 21 controls), ages 9-14 years, screened for language disorders, word reading deficits, and psychiatric disorders, were administered measures of copying speed, processing speed, reading fluency, working memory, reaction time, inhibition, and auditory attention span. Compared to controls, children with ADHD showed reduced oral and silent reading fluency and reduced processing speed-driven primarily by deficits on WISC-IV Coding. In contrast, groups did not differ on copying speed. After controlling for copying speed, sex, severity of ADHD-related symptomatology, and GAI, slowed "processing" speed (i.e., Coding) was significantly associated with verbal span and measures of working memory but not with measures of response control/inhibition, lexical retrieval speed, reaction time, or intrasubject variability. Further, "processing" speed (i.e., Coding, residualized for copying speed) and working memory were significant predictors of oral reading fluency. Abnormalities in working memory and response selection (which are frontally mediated and enter into the output side of processing speed) may play an important role in deficits in reading fluency in ADHD, potentially more than posteriorally mediated problems with orienting of attention or perceiving the stimulus.

  14. Improving significantly the failure strain and work hardening response of LPSO-strengthened Mg-Y-Zn-Al alloy via hot extrusion speed control

    Tan, Xinghe; Chee, Winston; Chan, Jimmy; Kwok, Richard; Gupta, Manoj


    The effect of hot extrusion speed on the microstructure and mechanical properties of MgY1.06Zn0.76Al0.42 (at%) alloy strengthened by the novel long-period stacking ordered (LPSO) phase was systematically investigated. Increase in the speed of extrusion accelerated dynamic recrystallization of α-Mg via particle-stimulated nucleation and grain growth in the alloy. The intensive recrystallization and grain growth events weakened the conventional basal texture and Hall-Petch strengthening in the alloy which led to significant improvement in its failure strain from 4.9% to 19.6%. The critical strengthening contribution from LPSO phase known for attributing high strength to the alloy was observed to be greatly undermined by the parallel competition from texture weakening and the adverse Hall-Petch effect when the alloy was extruded at higher speed. Absence of work hardening interestingly observed in the alloy extruded at lower speed was discussed in terms of its ultra-fine grained microstructure which promoted the condition of steady-state defect density in the alloy; where dislocation annihilation balances out the generation of new dislocations during plastic deformation. One approach to improve work hardening response of the alloy to prevent unstable deformation and abrupt failure in service is to increase the grain diameter in the alloy by judiciously increasing the extrusion speed.

  15. The sequence of cortical activity inferred by response latency variability in the human ventral pathway of face processing.

    Lin, Jo-Fu Lotus; Silva-Pereyra, Juan; Chou, Chih-Che; Lin, Fa-Hsuan


    Variability in neuronal response latency has been typically considered caused by random noise. Previous studies of single cells and large neuronal populations have shown that the temporal variability tends to increase along the visual pathway. Inspired by these previous studies, we hypothesized that functional areas at later stages in the visual pathway of face processing would have larger variability in the response latency. To test this hypothesis, we used magnetoencephalographic data collected when subjects were presented with images of human faces. Faces are known to elicit a sequence of activity from the primary visual cortex to the fusiform gyrus. Our results revealed that the fusiform gyrus showed larger variability in the response latency compared to the calcarine fissure. Dynamic and spectral analyses of the latency variability indicated that the response latency in the fusiform gyrus was more variable than in the calcarine fissure between 70 ms and 200 ms after the stimulus onset and between 4 Hz and 40 Hz, respectively. The sequential processing of face information from the calcarine sulcus to the fusiform sulcus was more reliably detected based on sizes of the response variability than instants of the maximal response peaks. With two areas in the ventral visual pathway, we show that the variability in response latency across brain areas can be used to infer the sequence of cortical activity.

  16. Low voltage RF MEMS variable capacitor with linear C-V response

    Elshurafa, Amro M.


    An RF MEMS variable capacitor, fabricated in the PolyMUMPS process and tuned electrostatically, possessing a linear capacitance-voltage response is reported. The measured quality factor of the device was 17 at 1GHz, while the tuning range was 1.2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom fixed plate, the vertical capacitance increases whereas the horizontal capacitance decreases simultaneously such that the sum of the two capacitances yields a linear capacitance-voltage relation. © 2012 The Institution of Engineering and Technology.

  17. Complex response of white pines to past environmental variability increases understanding of future vulnerability.

    Virginia Iglesias

    Full Text Available Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.

  18. Effects of autogenic training on stress response and heart rate variability in nursing students.

    Lim, Seung-Joo; Kim, Chunmi


    This study was undertaken to confirm the effects of autogenic training (AT) on stress response and heart rate variability in nursing school students experiencing stress related to clinical training. The study was carried out from September 2012 to April 2013 in a quasi-experimental nonequivalent control group using a pretest-posttest design. The participants were 40 nursing students in their third year at either of two nursing colleges. All consented to participate. Nineteen nursing students at one college were assigned to the experimental group and underwent the 8-week AT program, and the other 21 were assigned to the control group and did not undergo any training. Stress response was assessed by questionnaire and HRV was measured three times, that is, before the program, at the end of the program, and 6 months after the end of the AT program. A significant time/group interaction was found for stress response (F = 4.68, p = .012), a subjective indicator. However, no significant interaction was found for the objective indicators of heart rate variability, normalized low frequency (F = 2.59, p = .090), normalized high frequency (F = 2.59, p = .090), or low frequency to high frequency ratio (F = 1.38, p = .257). The results suggest that AT provides an acceptable approach to stress reduction in nursing students. Copyright © 2014. Published by Elsevier B.V.

  19. A Hydrological Response Analysis Considering Climatic Variability: Case Study of Hunza Catchment

    A. N. Laghari


    Full Text Available The hydrological response of mountainous catchments particularly dependent on melting runoff is very vulnerable to climatic variability. This study is an attempt to assess hydrological response towards climatic variability of the Hunza catchment located in the mountainous chain of greater Hindu Kush-Himalaya (HKH region. The hydrological response is analyzed through changes in snowmelt, ice melt and total runoff simulated through the application of the hydrological modeling system PREVAH under hypothetically developed climate change scenarios. The developed scenarios are based on changes in precipitation (Prp and temperature (Tmp and their combination. Under all the warmer scenarios, the increase in temperature systematically decreases the mean annual snow melt and increases significantly glacier melt volume. Temperature changes from 1°C to 4°C produce a large increase in spring and summer runoff, while no major variation was observed in the winter and autumn runoff. The maximum seasonal changes recorded under the Tmp+4°C, Prp+10% scenario.

  20. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.

    Kingsolver, Joel G; Buckley, Lauren B


    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. The Effect of Heart Rate on the Heart Rate Variability Response to Autonomic Interventions

    George E Billman


    Full Text Available Heart rate variability (HRV, the beat-to-beat variation in either heart rate (HR or heart period (R-R interval, has become a popular clinical and investigational tool to quantify cardiac autonomic regulation. However, it is not widely appreciated that, due to the inverse curvilinear relationship between HR and R-R interval, HR per se can profoundly influence HRV. It is, therefore, critical to correct HRV for the prevailing HR particularly, as HR changes in response to autonomic neural activation or inhibition. The present study evaluated the effects of HR on the HRV response to autonomic interventions that either increased (submaximal exercise, n = 25 or baroreceptor reflex activation, n = 20 or reduced (pharmacological blockade: β-adrenergic receptor, muscarinic receptor antagonists alone and in combination, n = 25, or bilateral cervical vagotomy, n = 9 autonomic neural activity in a canine model. Both total (RR interval standard deviation, RRSD and the high frequency variability (HF, 0.2 to 1.04 Hz were determined before and in response to an autonomic intervention. All interventions that reduced or abolished cardiac parasympathetic regulation provoked large reductions in HRV even after HR correction [division by mean RRsec or (mean RRsec2 for RRSD and HF, respectively] while interventions that reduced HR yielded mixed results. β-adrenergic receptor blockade reduced HRV (RRSD but not HF while both RRSD and HF increased in response to increases in arterial blood (baroreceptor reflex activation even after HR correction. These data suggest that the physiological basis for HRV is revealed after correction for prevailing HR and, further, that cardiac parasympathetic activity is responsible for a major portion of the HRV in the dog.

  2. High speed atom source

    Hoshino, Hitoshi.


    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  3. Precipitation response to the current ENSO variability in a warming world

    Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.


    The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This

  4. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.


    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  5. Contribution of positron emission tomography for the study of response variability to opioid drugs

    Auvity, Sylvain


    There is a high variability between patients in the initial analgesic response to opioid drugs. The chronic use of opioids leads to tolerance and may induce dependence or addiction. Current Positron Emission Tomography (PET) imaging methods, focusing on the impact of opioids on neuronal and synaptic functions, have failed to elucidate the parameters that control this variability of therapeutic response. A wealth of preclinical studies has addressed the possibility for neuro-immune or neuro-pharmacokinetic parameters to control the response to opioid drugs. Dedicated tools are thus required to investigate their impact on the pharmacology of opioid drugs in vivo and test their implication for variability in therapeutic response. The aim of this PhD project was to develop or to evaluate original methods to study the neuro-immune and neuro-pharmacokinetic components of the variability of response to opioid drugs. Opioid drugs were shown to interact with the innate immune System in the central nervous System (CNS) and to modulate the activity of glial cells. Glial cell activity is often hypothesized to modulate the analgesic efficacy of opioids and account for the development of tolerance and dependence. PET imaging using TSPO (Translocator protein 18 kDa) radioligands such as "1"8F-DPA-714 is the most advanced approach to non-invasively study glial cell activation. In nonhuman primates, we showed that acute morphine exposure increased the brain distribution of "1"8F-DPA-714, suggesting glial cell activation. The extent of the increase was linked to the baseline brain distribution of "1"8F-DPA-714, suggesting the presence of priming parameters in controlling the neuro-immune response to morphine exposure. In healthy rats, we showed that morphine-induced tolerance and withdrawal did not detectably increase the brain distribution of "1"8F-DPA-714 as well as the expression of other bio-markers of glial/micro-glial activation. Dedicated methods were then proposed to

  6. Variable dead time counters. 1 - theoretical responses and the effects of neutron multiplication

    Lees, E.W.; Hooton, B.W.


    A theoretical expression is derived for calculating the response of any variable dead time counter (VDC) used in the passive assay of plutonium by neutron counting of the natural spontaneous fission activity. The effects of neutron multiplication in the sample arising from interactions of the original spontaneous fission neutrons is shown to modify the linear relationship between VDC signal and Pu mass. Numerical examples are shown for the Euratom VDC and a systematic investigation of the various factors affecting neutron multiplication is reported. Limited comparisons between the calculations and experimental data indicate provisional validity of the calculations. (author)

  7. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    Rocke, David [Univ. of California, Davis, CA (United States)


    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  8. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    Rocke, David


    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  9. Pastoral mobility as a response to climate variability in African drylands

    Adriansen, Hanne Kirstine


    The article outlines aspects of ‘the new paradigm’ for dryland ecosystems and pastoral production systems. Rationality of pastoralism was claimed by parts of the research community for decades, but especially among policy and development planners pastoralism was perceived as an irrational and des...... in West Africa. In an example from Ferlo, Senegal, different types of pastoral mobility are discussed with special focus on the importance of scale. It is concluded that pastoral mobility is a rational response to climate variability and unpredictability in African drylands....

  10. Resolución del Response Time Variability Problem mediante tabu search

    Corominas Subias, Albert; García Villoria, Alberto; Pastor Moreno, Rafael


    El Response Time Variability Problem (RTVP) es un problema combinatorio de scheduling publicado recientemente en la literatura. Dicho problema de optimización combinatoria es muy fácil de formular pero muy difícil de resolver de forma exacta (es NP-hard). El RTVP se presenta cuando productos, clientes o tareas se han de secuenciar minimizando la variabilidad entre los instantes de tiempo en los que reciben los recursos que ellos necesitan. Este problema tiene una gran cantidad de aplicaciones...

  11. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Warren, E. L.


    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  12. Natural and Human-Induced Variability in Barrier-Island Response to Sea Level Rise

    Miselis, Jennifer L.; Lorenzo-Trueba, Jorge


    Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.

  13. Application of Peleg's equation to describe creep responses of potatoes under constant and variable storage conditions.

    Solomon, W K; Jindal, V K


    The application of Peleg's equation to characterize creep behavior of potatoes during storage was investigated. Potatoes were stored at 25, 15, 5C, and variable (fluctuating) temperature for 16 or 26 weeks. The Peleg equation adequately described the creep response of potatoes during storage at all storage conditions (R 2  = .97to .99). Peleg constant k 1 exhibited a significant (p creep responses during storage or processing will be potentially helpful to better understand the phenomenon. The model parameters from such model could be used to relate rheological properties of raw and cooked potatoes. Moreover, the model parameters could be used to establish relationship between instrumental and sensory attributes which will help in the prediction of sensory attributes from instrumental data. © 2016 Wiley Periodicals, Inc.

  14. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf


    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  15. Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems

    Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen


    As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.

  16. Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study

    Msadek, Rym [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Princeton University, GFDL/NOAA, AOS Program, Princeton, NJ (United States); Frankignoul, Claude [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Li, Laurent Z.X. [Universite Pierre et Marie Curie-Paris 6, LMD/IPSL, Paris Cedex 05 (France)


    , significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere. (orig.)

  17. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A


    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of

  18. Development and Validation of Culture-Specific Variable Response Inconsistency and True Response Inconsistency Scales for Use with the Korean MMPI-2

    Ketterer, Holly L.; Han, Kyunghee; Hur, Jaehong; Moon, Kyungjoo


    In response to the concern that Minnesota Multiphasic Personality Inventory-2 (MMPI-2; J. N. Butcher, W. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989; J. N. Butcher et al., 2001) Variable Response Inconsistency (VRIN) and True Response Inconsistency (TRIN) score invalidity criteria recommended for use with American samples results…

  19. Analysis of the response of a photovoltaic module subjected to pulsating light of variable duty cycle

    Zuñiga-Reyes, Marco A.; Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Lopez-Villarea, S. A.


    The present work analyzes the time domain response of polycrystalline and amorphous silicon modules subjected to a pulsed light signal, applied under conditions of darkness and controlled temperature. The applied light has a wavelength of 625 nm, a constant power of 5 Watts, a constant frequency of 10 kHz and a variable duty cycle. The response of the modules was analyzed in both direct current (DC) and alternating current (AC). The results of the research showed differences between the waveform and the amplitude of the output voltage of each of the manufacturing technologies of the modules. To validate the obtained results, the simulation of the response of a solar cell using its equivalent circuit in CA was performed. From the experimental and simulation tests it is observed that the relation between the duty cycle and the response of the modules of different technologies can be used for the monitoring and detection of faults or for the determination of the components of the AC equivalent circuit from the solar cells. (author)

  20. Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation

    Gastineau, Guillaume; Frankignoul, Claude [LOCEAN/IPSL, Universite Pierre et Marie Curie, 4 place Jussieu, BP100, Paris Cedex 05 (France)


    The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5 hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region. (orig.)