WorldWideScience

Sample records for respiratory sound signals

  1. Chaotic dynamics of respiratory sounds

    Ahlstrom, C.; Johansson, A.; Hult, P.; Ask, P.

    2006-01-01

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D 2 ) and the Kaplan-Yorke dimension (D KY ) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data

  2. Chaotic dynamics of respiratory sounds

    Ahlstrom, C. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden) and Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)]. E-mail: christer@imt.liu.se; Johansson, A. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Hult, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden); Ask, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)

    2006-09-15

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D {sub 2}) and the Kaplan-Yorke dimension (D {sub KY}) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data.

  3. Vocal Noise Cancellation From Respiratory Sounds

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  4. Computerised respiratory sounds can differentiate smokers and non-smokers.

    Oliveira, Ana; Sen, Ipek; Kahya, Yasemin P; Afreixo, Vera; Marques, Alda

    2017-06-01

    Cigarette smoking is often associated with the development of several respiratory diseases however, if diagnosed early, the changes in the lung tissue caused by smoking may be reversible. Computerised respiratory sounds have shown to be sensitive to detect changes within the lung tissue before any other measure, however it is unknown if it is able to detect changes in the lungs of healthy smokers. This study investigated the differences between computerised respiratory sounds of healthy smokers and non-smokers. Healthy smokers and non-smokers were recruited from a university campus. Respiratory sounds were recorded simultaneously at 6 chest locations (right and left anterior, lateral and posterior) using air-coupled electret microphones. Airflow (1.0-1.5 l/s) was recorded with a pneumotachograph. Breathing phases were detected using airflow signals and respiratory sounds with validated algorithms. Forty-four participants were enrolled: 18 smokers (mean age 26.2, SD = 7 years; mean FEV 1 % predicted 104.7, SD = 9) and 26 non-smokers (mean age 25.9, SD = 3.7 years; mean FEV 1 % predicted 96.8, SD = 20.2). Smokers presented significantly higher frequency at maximum sound intensity during inspiration [(M = 117, SD = 16.2 Hz vs. M = 106.4, SD = 21.6 Hz; t(43) = -2.62, p = 0.0081, d z  = 0.55)], lower expiratory sound intensities (maximum intensity: [(M = 48.2, SD = 3.8 dB vs. M = 50.9, SD = 3.2 dB; t(43) = 2.68, p = 0.001, d z  = -0.78)]; mean intensity: [(M = 31.2, SD = 3.6 dB vs. M = 33.7,SD = 3 dB; t(43) = 2.42, p = 0.001, d z  = 0.75)] and higher number of inspiratory crackles (median [interquartile range] 2.2 [1.7-3.7] vs. 1.5 [1.2-2.2], p = 0.081, U = 110, r = -0.41) than non-smokers. Significant differences between computerised respiratory sounds of smokers and non-smokers have been found. Changes in respiratory sounds are often the earliest sign of disease. Thus, computerised respiratory sounds

  5. Artificial intelligence techniques used in respiratory sound analysis--a systematic review.

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-02-01

    Artificial intelligence (AI) has recently been established as an alternative method to many conventional methods. The implementation of AI techniques for respiratory sound analysis can assist medical professionals in the diagnosis of lung pathologies. This article highlights the importance of AI techniques in the implementation of computer-based respiratory sound analysis. Articles on computer-based respiratory sound analysis using AI techniques were identified by searches conducted on various electronic resources, such as the IEEE, Springer, Elsevier, PubMed, and ACM digital library databases. Brief descriptions of the types of respiratory sounds and their respective characteristics are provided. We then analyzed each of the previous studies to determine the specific respiratory sounds/pathology analyzed, the number of subjects, the signal processing method used, the AI techniques used, and the performance of the AI technique used in the analysis of respiratory sounds. A detailed description of each of these studies is provided. In conclusion, this article provides recommendations for further advancements in respiratory sound analysis.

  6. An alternative respiratory sounds classification system utilizing artificial neural networks

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  7. Sound [signal] noise

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  8. Automatic adventitious respiratory sound analysis: A systematic review.

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  9. Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD.

    Jácome, Cristina; Marques, Alda

    2017-02-01

    Computerized respiratory sounds are a simple and noninvasive measure to assess lung function. Nevertheless, their potential to detect changes after pulmonary rehabilitation (PR) is unknown and needs clarification if respiratory acoustics are to be used in clinical practice. Thus, this study investigated the short- and mid-term effects of PR on computerized respiratory sounds in subjects with COPD. Forty-one subjects with COPD completed a 12-week PR program and a 3-month follow-up. Secondary outcome measures included dyspnea, self-reported sputum, FEV 1 , exercise tolerance, self-reported physical activity, health-related quality of life, and peripheral muscle strength. Computerized respiratory sounds, the primary outcomes, were recorded at right/left posterior chest using 2 stethoscopes. Air flow was recorded with a pneumotachograph. Normal respiratory sounds, crackles, and wheezes were analyzed with validated algorithms. There was a significant effect over time in all secondary outcomes, with the exception of FEV 1 and of the impact domain of the St George Respiratory Questionnaire. Inspiratory and expiratory median frequencies of normal respiratory sounds in the 100-300 Hz band were significantly lower immediately (-2.3 Hz [95% CI -4 to -0.7] and -1.9 Hz [95% CI -3.3 to -0.5]) and at 3 months (-2.1 Hz [95% CI -3.6 to -0.7] and -2 Hz [95% CI -3.6 to -0.5]) post-PR. The mean number of expiratory crackles (-0.8, 95% CI -1.3 to -0.3) and inspiratory wheeze occupation rate (median 5.9 vs 0) were significantly lower immediately post-PR. Computerized respiratory sounds were sensitive to short- and mid-term effects of PR in subjects with COPD. These findings are encouraging for the clinical use of respiratory acoustics. Future research is needed to strengthen these findings and explore the potential of computerized respiratory sounds to assess the effectiveness of other clinical interventions in COPD. Copyright © 2017 by Daedalus Enterprises.

  10. Automatic adventitious respiratory sound analysis: A systematic review.

    Renard Xaviero Adhi Pramono

    Full Text Available Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD, and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established.To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works.A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016 and IEEExplore (1984-2016 databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification.Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated.Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved.A total of 77 reports from the literature were included in this review. 55 (71.43% of the studies focused on wheeze, 40 (51.95% on crackle, 9 (11.69% on stridor, 9

  11. Analysis of Respiratory Sounds: State of the Art

    Sandra Reichert

    2008-01-01

    Full Text Available Objective This paper describes state of the art, scientific publications and ongoing research related to the methods of analysis of respiratory sounds. Methods and material Review of the current medical and technological literature using Pubmed and personal experience. Results The study includes a description of the various techniques that are being used to collect auscultation sounds, a physical description of known pathologic sounds for which automatic detection tools were developed. Modern tools are based on artificial intelligence and on technics such as artificial neural networks, fuzzy systems, and genetic algorithms… Conclusion The next step will consist in finding new markers so as to increase the efficiency of decision aid algorithms and tools.

  12. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  13. Sound stabilizes locomotor-respiratory coupling and reduces energy cost.

    Charles P Hoffmann

    Full Text Available A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences.

  14. Analysis of acoustic sound signal for ONB measurement

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  15. 33 CFR 67.20-10 - Sound signal.

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sound signal. 67.20-10 Section 67... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Class âAâ Requirements § 67.20-10 Sound signal. (a) The owner of a Class “A” structure shall: (1) Install a sound signal that has a rated range...

  16. Respiratory Information Extraction from Electrocardiogram Signals

    Amin, Gamal El Din Fathy

    2010-12-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs. In this thesis, several methods for the extraction of respiratory process information from the ECG signal are presented. These methods allow an estimation of the lung volume and the lung pressure from the ECG signal. The potential benefit of this is to eliminate the corresponding sensors used to measure the respiration activity. A reduction of the number of sensors connected to patients will increase patients’ comfort and reduce the costs associated with healthcare. As a further result, the efficiency of diagnosing respirational disorders will increase since the respiration activity can be monitored with a common, widely available method. The developed methods can also improve the detection of respirational disorders that occur while patients are sleeping. Such disorders are commonly diagnosed in sleeping laboratories where the patients are connected to a number of different sensors. Any reduction of these sensors will result in a more natural sleeping environment for the patients and hence a higher sensitivity of the diagnosis.

  17. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  18. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population.

    Bokov, Plamen; Mahut, Bruno; Flaud, Patrice; Delclaux, Christophe

    2016-03-01

    Respiratory diseases in children are a common reason for physician visits. A diagnostic difficulty arises when parents hear wheezing that is no longer present during the medical consultation. Thus, an outpatient objective tool for recognition of wheezing is of clinical value. We developed a wheezing recognition algorithm from recorded respiratory sounds with a Smartphone placed near the mouth. A total of 186 recordings were obtained in a pediatric emergency department, mostly in toddlers (mean age 20 months). After exclusion of recordings with artefacts and those with a single clinical operator auscultation, 95 recordings with the agreement of two operators on auscultation diagnosis (27 with wheezing and 68 without) were subjected to a two phase algorithm (signal analysis and pattern classifier using machine learning algorithms) to classify records. The best performance (71.4% sensitivity and 88.9% specificity) was observed with a Support Vector Machine-based algorithm. We further tested the algorithm over a set of 39 recordings having a single operator and found a fair agreement (kappa=0.28, CI95% [0.12, 0.45]) between the algorithm and the operator. The main advantage of such an algorithm is its use in contact-free sound recording, thus valuable in the pediatric population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 4D MR imaging using robust internal respiratory signal

    Hui, CheukKai; Wen, Zhifei; Beddar, Sam; Stemkens, Bjorn; Tijssen, R H N; Van den Berg, C A T; Hwang, Ken-Pin

    2016-01-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D. (paper)

  20. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States)

    2016-06-15

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  1. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S; Tang, X

    2016-01-01

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  2. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  3. 33 CFR 81.20 - Lights and sound signal appliances.

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... appliances. Each vessel under the 72 COLREGS, except the vessels of the Navy, is exempt from the requirements...

  4. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  5. Comparison of respiratory-induced variations in photoplethysmographic signals

    Li, Jin; Jin, Jie; Chen, Xiang; Sun, Weixin; Guo, Ping

    2010-01-01

    Photoplethysmography (PPG) is an optical method for detecting blood volume changes in tissue. Respiratory-induced intensity, frequency and amplitude variations are contained in the PPG signal; thus, an understanding of the relationships between all of these variations and respiration is essential to advancing respiration monitoring based on PPG. This study investigated correlations between respiratory-induced variations extracted from PPG and simultaneous respiratory signals. PPG signals were recorded from 28 healthy subjects under eight different conditions. Six respiratory-induced variations, i.e. the period of the systole, diastole and pulse, the amplitude of the systole and diastole, and the intensity variation, were determined from the PPG signal. The results indicate that, compared with the period of the pulse, the period of the systole and diastole correlates weakly with respiration; the amplitude of the diastole has a stronger correlation with respiration than the amplitude of the systole. For men, when the respiratory rate is less than 10 breaths min −1 , the period of the pulse has the strongest correlation with respiration, whereas up to or above 15 breaths min −1 , the intensity variation becomes strongest in the sitting posture, while the amplitude of the diastole is strongest in the supine posture. For women, compared with the other variations, the period of the pulse has nearly the strongest correlation with respiration, independent of respiratory rate or posture

  6. A homology sound-based algorithm for speech signal interference

    Jiang, Yi-jiao; Chen, Hou-jin; Li, Ju-peng; Zhang, Zhan-song

    2015-12-01

    Aiming at secure analog speech communication, a homology sound-based algorithm for speech signal interference is proposed in this paper. We first split speech signal into phonetic fragments by a short-term energy method and establish an interference noise cache library with the phonetic fragments. Then we implement the homology sound interference by mixing the randomly selected interferential fragments and the original speech in real time. The computer simulation results indicated that the interference produced by this algorithm has advantages of real time, randomness, and high correlation with the original signal, comparing with the traditional noise interference methods such as white noise interference. After further studies, the proposed algorithm may be readily used in secure speech communication.

  7. Orientation Estimation and Signal Reconstruction of a Directional Sound Source

    Guarato, Francesco

    , one for each call emission, were compared to those calculated through a pre-existing technique based on interpolation of sound-pressure levels at microphone locations. The application of the method to the bat calls could provide knowledge on bat behaviour that may be useful for a bat-inspired sensor......Previous works in the literature about one tone or broadband sound sources mainly deal with algorithms and methods developed in order to localize the source and, occasionally, estimate the source bearing angle (with respect to a global reference frame). The problem setting assumes, in these cases......, omnidirectional receivers collecting the acoustic signal from the source: analysis of arrival times in the recordings together with microphone positions and source directivity cues allows to get information about source position and bearing. Moreover, sound sources have been included into sensor systems together...

  8. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea.

    Yadollahi, Azadeh; Montazeri, Aman; Azarbarzin, Ali; Moussavi, Zahra

    2013-03-01

    Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow-sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow-sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow-sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.

  9. Respiratory Information Extraction from Electrocardiogram Signals

    Amin, Gamal El Din Fathy

    2010-01-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological

  10. Sound card based digital correlation detection of weak photoelectrical signals

    Tang Guanghui; Wang Jiangcheng

    2005-01-01

    A simple and low-cost digital correlation method is proposed to investigate weak photoelectrical signals, using a high-speed photodiode as detector, which is directly connected to a programmably triggered sound card analogue-to-digital converter and a personal computer. Two testing experiments, autocorrelation detection of weak flickering signals from a computer monitor under background of noisy outdoor stray light and cross-correlation measurement of the surface velocity of a motional tape, are performed, showing that the results are reliable and the method is easy to implement

  11. Correlation analysis of respiratory signals by using parallel coordinate plots.

    Saatci, Esra

    2018-01-01

    The understanding of the bonds and the relationships between the respiratory signals, i.e. the airflow, the mouth pressure, the relative temperature and the relative humidity during breathing may provide the improvement on the measurement methods of respiratory mechanics and sensor designs or the exploration of the several possible applications in the analysis of respiratory disorders. Therefore, the main objective of this study was to propose a new combination of methods in order to determine the relationship between respiratory signals as a multidimensional data. In order to reveal the coupling between the processes two very different methods were used: the well-known statistical correlation analysis (i.e. Pearson's correlation and cross-correlation coefficient) and parallel coordinate plots (PCPs). Curve bundling with the number intersections for the correlation analysis, Least Mean Square Time Delay Estimator (LMS-TDE) for the point delay detection and visual metrics for the recognition of the visual structures were proposed and utilized in PCP. The number of intersections was increased when the correlation coefficient changed from high positive to high negative correlation between the respiratory signals, especially if whole breath was processed. LMS-TDE coefficients plotted in PCP indicated well-matched point delay results to the findings in the correlation analysis. Visual inspection of PCB by visual metrics showed range, dispersions, entropy comparisons and linear and sinusoidal-like relationships between the respiratory signals. It is demonstrated that the basic correlation analysis together with the parallel coordinate plots perceptually motivates the visual metrics in the display and thus can be considered as an aid to the user analysis by providing meaningful views of the data. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High frequency analysis of cough sounds in pediatric patients with respiratory diseases.

    Kosasih, K; Abeyratne, U R; Swarnkar, V

    2012-01-01

    Cough is a common symptom in a range of respiratory diseases and is considered a natural defense mechanism of the body. Despite its critical importance in the diagnosis of illness, there are no golden methods to objectively assess cough. In a typical consultation session, a physician may briefly listen to the cough sounds using a stethoscope placed against the chest. The physician may also listen to spontaneous cough sounds via naked ears, as they naturally propagate through air. Cough sounds carry vital information on the state of the respiratory system but the field of cough analysis in clinical medicine is in its infancy. All existing cough analysis approaches are severely handicapped by the limitations of the human hearing range and simplified analysis techniques. In this paper, we address these problems, and explore the use of frequencies covering a range well beyond the human perception (up to 90 kHz) and use wavelet analysis to extract diagnostically important information from coughs. Our data set comes from a pediatric respiratory ward in Indonesia, from subjects diagnosed with asthma, pneumonia and rhinopharyngitis. We analyzed over 90 cough samples from 4 patients and explored if high frequencies carried useful information in separating these disease groups. Multiple regression analysis resulted in coefficients of determination (R(2)) of 77-82% at high frequencies (15 kHz-90 kHz) indicating that they carry useful information. When the high frequencies were combined with frequencies below 15kHz, the R(2) performance increased to 85-90%.

  13. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD.

    Fernandez-Granero, Miguel Angel; Sanchez-Morillo, Daniel; Leon-Jimenez, Antonio

    2015-10-23

    Chronic obstructive pulmonary disease (COPD) is one of the commonest causes of death in the world and poses a substantial burden on healthcare systems and patients' quality of life. The largest component of the related healthcare costs is attributable to admissions due to acute exacerbation (AECOPD). The evidence that might support the effectiveness of the telemonitoring interventions in COPD is limited partially due to the lack of useful predictors for the early detection of AECOPD. Electronic stethoscopes and computerised analyses of respiratory sounds (CARS) techniques provide an opportunity for substantial improvement in the management of respiratory diseases. This exploratory study aimed to evaluate the feasibility of using: (a) a respiratory sensor embedded in a self-tailored housing for ageing users; (b) a telehealth framework; (c) CARS and (d) machine learning techniques for the remote early detection of the AECOPD. In a 6-month pilot study, 16 patients with COPD were equipped with a home base-station and a sensor to daily record their respiratory sounds. Principal component analysis (PCA) and a support vector machine (SVM) classifier was designed to predict AECOPD. 75.8% exacerbations were early detected with an average of 5 ± 1.9 days in advance at medical attention. The proposed method could provide support to patients, physicians and healthcare systems.

  14. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD

    Miguel Angel Fernandez-Granero

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is one of the commonest causes of death in the world and poses a substantial burden on healthcare systems and patients’ quality of life. The largest component of the related healthcare costs is attributable to admissions due to acute exacerbation (AECOPD. The evidence that might support the effectiveness of the telemonitoring interventions in COPD is limited partially due to the lack of useful predictors for the early detection of AECOPD. Electronic stethoscopes and computerised analyses of respiratory sounds (CARS techniques provide an opportunity for substantial improvement in the management of respiratory diseases. This exploratory study aimed to evaluate the feasibility of using: (a a respiratory sensor embedded in a self-tailored housing for ageing users; (b a telehealth framework; (c CARS and (d machine learning techniques for the remote early detection of the AECOPD. In a 6-month pilot study, 16 patients with COPD were equipped with a home base-station and a sensor to daily record their respiratory sounds. Principal component analysis (PCA and a support vector machine (SVM classifier was designed to predict AECOPD. 75.8% exacerbations were early detected with an average of 5 ± 1.9 days in advance at medical attention. The proposed method could provide support to patients, physicians and healthcare systems.

  15. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD.

    Jácome, Cristina; Oliveira, Ana; Marques, Alda

    2017-09-01

    Diagnosis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is often challenging as it relies on patients' clinical presentation. Computerized respiratory sounds (CRS), namely crackles and wheezes, may have the potential to contribute for the objective diagnosis/monitoring of an AECOPD. This study explored if CRS differ during stable and exacerbation periods in patients with COPD. 13 patients with stable COPD and 14 with AECOPD were enrolled. CRS were recorded simultaneously at trachea, anterior, lateral and posterior chest locations using seven stethoscopes. Airflow (0.4-0.6l/s) was recorded with a pneumotachograph. Breathing phases were detected using airflow signals; crackles and wheezes with validated algorithms. At trachea, anterior and lateral chest, no significant differences were found between the two groups in the number of inspiratory/expiratory crackles or inspiratory wheeze occupation rate. At posterior chest, the number of crackles (median 2.97-3.17 vs. 0.83-1.2, P < 0.001) and wheeze occupation rate (median 3.28%-3.8% vs. 1.12%-1.77%, P = 0.014-0.016) during both inspiration and expiration were significantly higher in patients with AECOPD than in stable patients. During expiration, wheeze occupation rate was also significantly higher in patients with AECOPD at trachea (median 3.12% vs. 0.79%, P < 0.001) and anterior chest (median 3.55% vs. 1.28%, P < 0.001). Crackles and wheezes are more frequent in patients with AECOPD than in stable patients, particularly at posterior chest. These findings suggest that these CRS can contribute to the objective diagnosis/monitoring of AECOPD, which is especially valuable considering that they can be obtained by integrating computerized techniques with pulmonary auscultation, a noninvasive method that is a component of patients' physical examination. © 2015 John Wiley & Sons Ltd.

  16. Towards estimation of respiratory muscle effort with respiratory inductance plethysmography signals and complementary ensemble empirical mode decomposition.

    Chen, Ya-Chen; Hsiao, Tzu-Chien

    2018-07-01

    Respiratory inductance plethysmography (RIP) sensor is an inexpensive, non-invasive, easy-to-use transducer for collecting respiratory movement data. Studies have reported that the RIP signal's amplitude and frequency can be used to discriminate respiratory diseases. However, with the conventional approach of RIP data analysis, respiratory muscle effort cannot be estimated. In this paper, the estimation of the respiratory muscle effort through RIP signal was proposed. A complementary ensemble empirical mode decomposition method was used, to extract hidden signals from the RIP signals based on the frequency bands of the activities of different respiratory muscles. To validate the proposed method, an experiment to collect subjects' RIP signal under thoracic breathing (TB) and abdominal breathing (AB) was conducted. The experimental results for both the TB and AB indicate that the proposed method can be used to loosely estimate the activities of thoracic muscles, abdominal muscles, and diaphragm. Graphical abstract ᅟ.

  17. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    V. Kan

    2018-02-01

    Full Text Available We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1 the isotropic Kolmogorov turbulence and (2 the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  18. Validity and reliability of acoustic analysis of respiratory sounds in infants

    Elphick, H; Lancaster, G; Solis, A; Majumdar, A; Gupta, R; Smyth, R

    2004-01-01

    Objective: To investigate the validity and reliability of computerised acoustic analysis in the detection of abnormal respiratory noises in infants. Methods: Blinded, prospective comparison of acoustic analysis with stethoscope examination. Validity and reliability of acoustic analysis were assessed by calculating the degree of observer agreement using the κ statistic with 95% confidence intervals (CI). Results: 102 infants under 18 months were recruited. Convergent validity for agreement between stethoscope examination and acoustic analysis was poor for wheeze (κ = 0.07 (95% CI, –0.13 to 0.26)) and rattles (κ = 0.11 (–0.05 to 0.27)) and fair for crackles (κ = 0.36 (0.18 to 0.54)). Both the stethoscope and acoustic analysis distinguished well between sounds (discriminant validity). Agreement between observers for the presence of wheeze was poor for both stethoscope examination and acoustic analysis. Agreement for rattles was moderate for the stethoscope but poor for acoustic analysis. Agreement for crackles was moderate using both techniques. Within-observer reliability for all sounds using acoustic analysis was moderate to good. Conclusions: The stethoscope is unreliable for assessing respiratory sounds in infants. This has important implications for its use as a diagnostic tool for lung disorders in infants, and confirms that it cannot be used as a gold standard. Because of the unreliability of the stethoscope, the validity of acoustic analysis could not be demonstrated, although it could discriminate between sounds well and showed good within-observer reliability. For acoustic analysis, targeted training and the development of computerised pattern recognition systems may improve reliability so that it can be used in clinical practice. PMID:15499065

  19. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  20. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  1. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  2. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.

  3. Optical Reading and Playing of Sound Signals from Vinyl Records

    Hensman, Arnold; Casey, Kevin

    2007-01-01

    While advanced digital music systems such as compact disk players and MP3 have become the standard in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue version from the original source. However, while some perceive this media as reproduc...

  4. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  5. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  6. Correlation of Respiratory Signals and Electrocardiogram Signals via Empirical Mode Decomposition

    El Fiky, Ahmed Osama

    2011-05-24

    Recently Electrocardiogram (ECG) signals are being broadly used as an essential diagnosing tool in different clinical applications as they carry a reliable representation not only for cardiac activities, but also for other associated biological processes, like respiration. However, the process of recording and collecting them has usually suffered from the presence of some undesired noises, which in turn affects the reliability of such representations.Therefore, de-noising ECG signals became a hot research field for signal processing experts to ensure better and clear representation of the different cardiac activities. Given the nonlinear and non-stationary properties of ECGs, it is not a simple task to cancel the undesired noise terms without affecting the biological physics of them. In this study, we are interested in correlating the ECG signals with respiratory parameters, specifically the lung volume and lung pressure. We have focused on the concept of de-noising ECG signals by means of signal decomposition using an algorithm called the Empirical Mode Decomposition (EMD) where the original ECG signals are being decomposed into a set of intrinsic mode functions (IMF). Then, we have provided criteria based on which some of these IMFs have been adapted to reconstruct de-noised ECG version. Finally, we have utilized de-noised ECGs as well as IMFs for to study the correlation with lung volume and lung pressure. These correlation studies have showed some clear resemblance especially between the oscillations of ECGs and lung pressures.

  7. Sound

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  8. Automated signal quality assessment of mobile phone-recorded heart sound signals.

    Springer, David B; Brennan, Thomas; Ntusi, Ntobeko; Abdelrahman, Hassan Y; Zühlke, Liesl J; Mayosi, Bongani M; Tarassenko, Lionel; Clifford, Gari D

    Mobile phones, due to their audio processing capabilities, have the potential to facilitate the diagnosis of heart disease through automated auscultation. However, such a platform is likely to be used by non-experts, and hence, it is essential that such a device is able to automatically differentiate poor quality from diagnostically useful recordings since non-experts are more likely to make poor-quality recordings. This paper investigates the automated signal quality assessment of heart sound recordings performed using both mobile phone-based and commercial medical-grade electronic stethoscopes. The recordings, each 60 s long, were taken from 151 random adult individuals with varying diagnoses referred to a cardiac clinic and were professionally annotated by five experts. A mean voting procedure was used to compute a final quality label for each recording. Nine signal quality indices were defined and calculated for each recording. A logistic regression model for classifying binary quality was then trained and tested. The inter-rater agreement level for the stethoscope and mobile phone recordings was measured using Conger's kappa for multiclass sets and found to be 0.24 and 0.54, respectively. One-third of all the mobile phone-recorded phonocardiogram (PCG) signals were found to be of sufficient quality for analysis. The classifier was able to distinguish good- and poor-quality mobile phone recordings with 82.2% accuracy, and those made with the electronic stethoscope with an accuracy of 86.5%. We conclude that our classification approach provides a mechanism for substantially improving auscultation recordings by non-experts. This work is the first systematic evaluation of a PCG signal quality classification algorithm (using a separate test dataset) and assessment of the quality of PCG recordings captured by non-experts, using both a medical-grade digital stethoscope and a mobile phone.

  9. Fish protection at water intakes using a new signal development process and sound system

    Loeffelman, P.H.; Klinect, D.A.; Van Hassel, J.H.

    1991-01-01

    American Electric Power Company, Inc., is exploring the feasibility of using a patented signal development process and sound system to guide aquatic animals with underwater sound. Sounds from animals such as chinook salmon, steelhead trout, striped bass, freshwater drum, largemouth bass, and gizzard shad can be used to synthesize a new signal to stimulate the animal in the most sensitive portion of its hearing range. AEP's field tests during its research demonstrate that adult chinook salmon, steelhead trout and warmwater fish, and steelhead trout and chinook salmon smolts can be repelled with a properly-tuned system. The signal development process and sound system is designed to be transportable and use animals at the site to incorporate site-specific factors known to affect underwater sound, e.g., bottom shape and type, water current, and temperature. This paper reports that, because the overall goal of this research was to determine the feasibility of using sound to divert fish, it was essential that the approach use a signal development process which could be customized to animals and site conditions at any hydropower plant site

  10. Sounds of Modified Flight Feathers Reliably Signal Danger in a Pigeon.

    Murray, Trevor G; Zeil, Jochen; Magrath, Robert D

    2017-11-20

    In his book on sexual selection, Darwin [1] devoted equal space to non-vocal and vocal communication in birds. Since then, vocal communication has become a model for studies of neurobiology, learning, communication, evolution, and conservation [2, 3]. In contrast, non-vocal "instrumental music," as Darwin called it, has only recently become subject to sustained inquiry [4, 5]. In particular, outstanding work reveals how feathers, often highly modified, produce distinctive sounds [6-9], and suggests that these sounds have evolved at least 70 times, in many orders [10]. It remains to be shown, however, that such sounds are signals used in communication. Here we show that crested pigeons (Ochyphaps lophotes) signal alarm with specially modified wing feathers. We used video and feather-removal experiments to demonstrate that the highly modified 8 th primary wing feather (P8) produces a distinct note during each downstroke. The sound changes with wingbeat frequency, so that birds fleeing danger produce wing sounds with a higher tempo. Critically, a playback experiment revealed that only if P8 is present does the sound of escape flight signal danger. Our results therefore indicate, nearly 150 years after Darwin's book, that modified feathers can be used for non-vocal communication, and they reveal an intrinsically reliable alarm signal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cognitive Bias for Learning Speech Sounds From a Continuous Signal Space Seems Nonlinguistic

    Sabine van der Ham

    2015-10-01

    Full Text Available When learning language, humans have a tendency to produce more extreme distributions of speech sounds than those observed most frequently: In rapid, casual speech, vowel sounds are centralized, yet cross-linguistically, peripheral vowels occur almost universally. We investigate whether adults’ generalization behavior reveals selective pressure for communication when they learn skewed distributions of speech-like sounds from a continuous signal space. The domain-specific hypothesis predicts that the emergence of sound categories is driven by a cognitive bias to make these categories maximally distinct, resulting in more skewed distributions in participants’ reproductions. However, our participants showed more centered distributions, which goes against this hypothesis, indicating that there are no strong innate linguistic biases that affect learning these speech-like sounds. The centralization behavior can be explained by a lack of communicative pressure to maintain categories.

  12. A new signal development process and sound system for diverting fish from water intakes

    Klinet, D.A.; Loeffelman, P.H.; van Hassel, J.H.

    1992-01-01

    This paper reports that American Electric Power Service Corporation has explored the feasibility of using a patented signal development process and underwater sound system to divert fish away from water intake areas. The effect of water intakes on fish is being closely scrutinized as hydropower projects are re-licensed. The overall goal of this four-year research project was to develop an underwater guidance system which is biologically effective, reliable and cost-effective compared to other proposed methods of diversion, such as physical screens. Because different fish species have various listening ranges, it was essential to the success of this experiment that the sound system have a great amount of flexibility. Assuming a fish's sounds are heard by the same kind of fish, it was necessary to develop a procedure and acquire instrumentation to properly analyze the sounds that the target fish species create to communicate and any artificial signals being generated for diversion

  13. Sound and sound sources

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  14. A review of intelligent systems for heart sound signal analysis.

    Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S

    2017-10-01

    Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.

  15. An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal.

    Motin, Mohammod Abdul; Karmakar, Chandan Kumar; Palaniswami, Marimuthu

    2016-08-01

    The pulse oximeter's photoplethysmographic (PPG) signals, measure the local variations of blood volume in tissues, reflecting the peripheral pulse modulated by cardiac activity, respiration and other physiological effects. Therefore, PPG can be used to extract the vital cardiorespiratory signals like heart rate (HR), respiratory rate (RR) and respiratory activity (RA) and this will reduce the number of sensors connected to the patient's body for recording vital signs. In this paper, we propose an algorithm based on ensemble empirical mode decomposition with principal component analysis (EEMD-PCA) as a novel approach to estimate HR, RR and RA simultaneously from PPG signal. To examine the performance of the proposed algorithm, we used 45 epochs of PPG, electrocardiogram (ECG) and respiratory signal extracted from the MIMIC database (Physionet ATM data bank). The ECG and capnograph based respiratory signal were used as the ground truth and several metrics such as magnitude squared coherence (MSC), correlation coefficients (CC) and root mean square (RMS) error were used to compare the performance of EEMD-PCA algorithm with most of the existing methods in the literature. Results of EEMD-PCA based extraction of HR, RR and RA from PPG signal showed that the median RMS error (quartiles) obtained for RR was 0 (0, 0.89) breaths/min, for HR was 0.62 (0.56, 0.66) beats/min and for RA the average value of MSC and CC was 0.95 and 0.89 respectively. These results illustrated that the proposed EEMD-PCA approach is more accurate in estimating HR, RR and RA than other existing methods.

  16. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-06-27

    Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database.

  17. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics.

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-08-07

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.

  18. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-01-01

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH 3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions. (paper)

  19. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target

  20. Sound algorithms

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  1. Tissue artifact removal from respiratory signals based on empirical mode decomposition.

    Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-05-01

    On-line measurement of respiration plays an important role in monitoring human physical activities. Such measurement commonly employs sensing belts secured around the rib cage and abdomen of the test object. Affected by the movement of body tissues, respiratory signals typically have a low signal-to-noise ratio. Removing tissue artifacts therefore is critical to ensuring effective respiration analysis. This paper presents a signal decomposition technique for tissue artifact removal from respiratory signals, based on the empirical mode decomposition (EMD). An algorithm based on the mutual information and power criteria was devised to automatically select appropriate intrinsic mode functions for tissue artifact removal and respiratory signal reconstruction. Performance of the EMD-algorithm was evaluated through simulations and real-life experiments (N = 105). Comparison with low-pass filtering that has been conventionally applied confirmed the effectiveness of the technique in tissue artifacts removal.

  2. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots.

    Rodrigo-Moreno, Ana; Bazihizina, Nadia; Azzarello, Elisa; Masi, Elisa; Tran, Daniel; Bouteau, François; Baluska, Frantisek; Mancuso, Stefano

    2017-11-01

    Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within  minutes) an increase in cytosolic Ca 2+ , possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K + efflux. Taken together these results suggest that changes in ion fluxes (Ca 2+ and K + ) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal

    Vedam, S S; Keall, P J; Kini, V R; Mostafavi, H; Shukla, H P; Mohan, R

    2003-01-01

    Four-dimensional (4D) methods strive to achieve highly conformal radiotherapy, particularly for lung and breast tumours, in the presence of respiratory-induced motion of tumours and normal tissues. Four-dimensional radiotherapy accounts for respiratory motion during imaging, planning and radiation delivery, and requires a 4D CT image in which the internal anatomy motion as a function of the respiratory cycle can be quantified. The aims of our research were (a) to develop a method to acquire 4D CT images from a spiral CT scan using an external respiratory signal and (b) to examine the potential utility of 4D CT imaging. A commercially available respiratory motion monitoring system provided an 'external' tracking signal of the patient's breathing. Simultaneous recording of a TTL 'X-Ray ON' signal from the CT scanner indicated the start time of CT image acquisition, thus facilitating time stamping of all subsequent images. An over-sampled spiral CT scan was acquired using a pitch of 0.5 and scanner rotation time of 1.5 s. Each image from such a scan was sorted into an image bin that corresponded with the phase of the respiratory cycle in which the image was acquired. The complete set of such image bins accumulated over a respiratory cycle constitutes a 4D CT dataset. Four-dimensional CT datasets of a mechanical oscillator phantom and a patient undergoing lung radiotherapy were acquired. Motion artefacts were significantly reduced in the images in the 4D CT dataset compared to the three-dimensional (3D) images, for which respiratory motion was not accounted. Accounting for respiratory motion using 4D CT imaging is feasible and yields images with less distortion than 3D images. 4D images also contain respiratory motion information not available in a 3D CT image

  4. Respiratory

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  5. Classification of Normal Subjects and Pulmonary Function Disease Patients using Tracheal Respiratory Sound Detection System

    Im, Jae Joong; Yi, Young Ju; Jeon, Young Ju [Chonbuk National University (Korea)

    2000-04-01

    A new auscultation system for the detection of breath sound from trachea was developed in house. Small size microphone(panasonic pin microphone) was encapsuled in a housing for resonant effect, and hardware for the sound detection was fabricated. Pulmonary function test results were compared with the parameters extracted from frequency spectrum of breath sound obtained from the developed system. Results showed that the peak frequency and relative ratio of integral values between low(80-400Hz) and high(400-800Hz) frequency ranges revealed the significant differences. Developed system could be used for distinguishing normal subject and the patients who have pulmonary disease. (author). 13 refs., 9 figs.

  6. Extraction of the respiratory signal from small-animal CT projections for a retrospective gating method

    ChavarrIas, C; Vaquero, J J; Sisniega, A; RodrIguez-Ruano, A; Soto-Montenegro, M L; GarcIa-Barreno, P; Desco, M

    2008-01-01

    We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%

  7. Extraction of the respiratory signal from small-animal CT projections for a retrospective gating method

    ChavarrIas, C; Vaquero, J J; Sisniega, A; RodrIguez-Ruano, A; Soto-Montenegro, M L; GarcIa-Barreno, P; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Anexo PsiquiatrIa, 1 Planta. C/Ibiza, 43. Madrid 28007 (Spain)

    2008-09-07

    We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%.

  8. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  9. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M

    2006-01-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions

  10. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M [Signal and Imaging Processing and Tele-Medicine Technology Research Group, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2006-04-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  11. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

    Akira Ikuta

    2014-01-01

    Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

  12. Modelling of polysomnographic respiratory measurements for artefact detection and signal restoration

    Rathnayake, S I; Abeyratne, U R; Hukins, C; Duce, B

    2008-01-01

    Polysomnography (PSG), which incorporates measures of sleep with measures of EEG arousal, air flow, respiratory movement and oxygenation, is universally regarded as the reference standard in diagnosing sleep-related respiratory diseases such as obstructive sleep apnoea syndrome. Over 15 channels of physiological signals are measured from a subject undergoing a typical overnight PSG session. The signals often suffer from data losses, interferences and artefacts. In a typical sleep scoring session, artefact-corrupted signal segments are visually detected and removed from further consideration. This is a highly time-consuming process, and subjective judgement is required for the job. During typical sleep scoring sessions, the target is the detection of segments of diagnostic interest, and signal restoration is not utilized for distorted segments. In this paper, we propose a novel framework for artefact detection and signal restoration based on the redundancy among respiratory flow signals. We focus on the air flow (thermistor sensors) and nasal pressure signals which are clinically significant in detecting respiratory disturbances. The method treats the respiratory system and other organs that provide respiratory-related inputs/outputs to it (e.g., cardiovascular, brain) as a possibly nonlinear coupled-dynamical system, and uses the celebrated Takens embedding theorem as the theoretical basis for signal prediction. Nonlinear prediction across time (self-prediction) and signals (cross-prediction) provides us with a mechanism to detect artefacts as unexplained deviations. In addition to detection, the proposed method carries the potential to correct certain classes of artefacts and restore the signal. In this study, we categorize commonly occurring artefacts and distortions in air flow and nasal pressure measurements into several groups and explore the efficacy of the proposed technique in detecting/recovering them. The results we obtained from a database of clinical

  13. Elimination of the Respiratory Effect on the Thoracic Impedance Signal with Whole-body Impedance Cardiography

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Viščor, Ivo; Lipoldová, J.; Plachý, M.

    2010-01-01

    Roč. 37, - (2010), s. 1051-1054 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801 Institutional research plan: CEZ:AV0Z20650511 Keywords : respiratory effect * thoracic impedance signal * impedance cardiography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2010/pdf/1051.pdf

  14. Robust real-time extraction of respiratory signals from PET list-mode data

    Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-06-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard

  15. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals

    Rong-Chao Peng

    2015-09-01

    Full Text Available Cardiovascular disease, like hypertension, is one of the top killers of human life and early detection of cardiovascular disease is of great importance. However, traditional medical devices are often bulky and expensive, and unsuitable for home healthcare. In this paper, we proposed an easy and inexpensive technique to estimate continuous blood pressure from the heart sound signals acquired by the microphone of a smartphone. A cold-pressor experiment was performed in 32 healthy subjects, with a smartphone to acquire heart sound signals and with a commercial device to measure continuous blood pressure. The Fourier spectrum of the second heart sound and the blood pressure were regressed using a support vector machine, and the accuracy of the regression was evaluated using 10-fold cross-validation. Statistical analysis showed that the mean correlation coefficients between the predicted values from the regression model and the measured values from the commercial device were 0.707, 0.712, and 0.748 for systolic, diastolic, and mean blood pressure, respectively, and that the mean errors were less than 5 mmHg, with standard deviations less than 8 mmHg. These results suggest that this technique is of potential use for cuffless and continuous blood pressure monitoring and it has promising application in home healthcare services.

  16. Analysis of respiratory mechanomyographic signals by means of the empirical mode decomposition

    Torres, A; Jane, R; Fiz, J A; Laciar, E; Galdiz, J B; Gea, J; Morera, J

    2007-01-01

    The study of the mechanomyographic (MMG) signals of respiratory muscles is a promising technique in order to evaluate the respiratory muscles effort. A critical point in MMG studies is the selection of the cut-off frequency in order to separate the low frequency (LF) component (basically due to gross movement of the muscle or of the body) and the high frequency (HF) component (related with the vibration of the muscle fibres during contraction). In this study, we propose to use the Empirical Mode Decomposition method in order to analyze the Intrinsic Mode Functions of MMG signals of the diaphragm muscle, acquired by means of a capacitive accelerometer applied on the costal wall. The method was tested on an animal model, with two incremental respiratory protocols performed by two non anesthetized mongrel dogs. The proposed EMD based method seems to be a useful tool to eliminate the low frequency component of MMG signals. The obtained correlation coefficients between respiratory and MMG parameters were higher than the ones obtained with a Wavelet multiresolution decomposition method utilized in a previous work

  17. Robust real-time extraction of respiratory signals from PET list-mode data.

    Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-05-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU

  18. MRI of ventilated neonates and infants: respiratory pressure as trigger signal

    Lotz, J.; Reiffen, H.P.

    2004-01-01

    Introduction: motivated by the difficulties often encountered in the setup of respiratory trigger in MR imaging of mechanical ventilated pediatric patients, a simplified approach in terms of time and reliability was sought. Method: with the help of a male-to-male Luer-Lock adapter in combination with a 3-way adapter the tube of the respiratory compensation bellow was fixed to the output channel for capnography of the airway filter. Ten patients (age 4 months to 6 years) were tested with spin echo imaging and either respiration compensation (T1-weighted imaging) or respiratory triggered (T2-weighted imaging). Results: a clear trigger signal was achieved in all cases. No negative influence on the quality or security of the mechanical ventilation of the patients was observed. Summary: the proposed adapter is safe, efficient and fast to install in patients undergoing MR imaging in general anaesthesia. (orig.) [de

  19. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  20. Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging

    Long, Xi; Fonseca, Pedro; Aarts, Ronald M; Yang, Jie; Weysen, Tim; Haakma, Reinder; Foussier, Jérôme

    2014-01-01

    Polysomnography (PSG) has been extensively studied for sleep staging, where sleep stages are usually classified as wake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep (including light and deep sleep). Respiratory information has been proven to correlate with autonomic nervous activity that is related to sleep stages. For example, it is known that the breathing rate and amplitude during NREM sleep, in particular during deep sleep, are steadier and more regular compared to periods of wakefulness that can be influenced by body movements, conscious control, or other external factors. However, the respiratory morphology has not been well investigated across sleep stages. We thus explore the dissimilarity of respiratory effort with respect to its signal waveform or morphology. The dissimilarity measure is computed between two respiratory effort signal segments with the same number of consecutive breaths using a uniform scaling distance. To capture the property of signal morphological dissimilarity, we propose a novel window-based feature in a framework of sleep staging. Experiments were conducted with a data set of 48 healthy subjects using a linear discriminant classifier and a ten-fold cross validation. It is revealed that this feature can help discriminate between sleep stages, but with an exception of separating wake and REM sleep. When combining the new feature with 26 existing respiratory features, we achieved a Cohen’s Kappa coefficient of 0.48 for 3-stage classification (wake, REM sleep and NREM sleep) and of 0.41 for 4-stage classification (wake, REM sleep, light sleep and deep sleep), which outperform the results obtained without using this new feature. (paper)

  1. Design, development and test of the gearbox condition monitoring system using sound signal processing

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  2. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.

    Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars

    2018-05-21

    Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all

  3. A Respiratory Marker Derived From Left Vagus Nerve Signals Recorded With Implantable Cuff Electrodes.

    Sevcencu, Cristian; Nielsen, Thomas N; Kjaergaard, Benedict; Struijk, Johannes J

    2018-04-01

    Left vagus nerve (LVN) stimulation (LVNS) has been tested for lowering the blood pressure (BP) in patients with resistant hypertension (RH). Whereas, closed-loop LVNS (CL-LVNS) driven by a BP marker may be superior to open-loop LVNS, there are situations (e.g., exercising) when hypertension is normal. Therefore, an ideal anti-RH CL-LVNS system requires a variable to avoid stimulation in such conditions, for example, a respiratory marker ideally extracted from the LVN. As the LVN conducts respiratory signals, this study aimed to investigate if such signals can be recorded using implantable means and if a marker to monitor respiration could be derived from such recordings. The experiments were performed in 14 anesthetized pigs. Five pigs were subjected to changes of the respiratory frequency and nine to changes of the respiratory volume. The LVN electroneurogram (VENG) was recorded using two cuff electrodes and the respiratory cycles (RC) using a pressure transducer. To separate the afferent and efferent VENGs, vagotomy was performed between the cuffs in the first group of pigs. The VENG was squared to derive respiration-related neural profiles (RnPs) and their correlation with the RCs was investigated in regard to timing and magnitude parameters derived from the two waveforms. The RnPs were morphologically similar with the RCs and the average RnPs represented accurate copies of the average RCs. Consequently, the lung inflation/deflation RC and RnP components had the same duration, the respiratory frequency changes affected in the same way both waveforms and the RnP amplitude increased linearly with the lung inflation in all tested pigs (R 2 values between 0.85 and 0.99). The RnPs comprise information regarding the timing and magnitude of the respiratory parameters. As those LVN profiles were derived using implantable means, this study indicates that the RnPs could serve as respiratory markers in implantable systems. © 2017 International Neuromodulation Society.

  4. Heart Sound Localization and Reduction in Tracheal Sounds by Gabor Time-Frequency Masking

    SAATCI, Esra; Akan, Aydın

    2018-01-01

    Background and aim: Respiratorysounds, i.e. tracheal and lung sounds, have been of great interest due to theirdiagnostic values as well as the potential of their use in the estimation ofthe respiratory dynamics (mainly airflow). Thus the aim of the study is topresent a new method to filter the heart sound interference from the trachealsounds. Materials and methods: Trachealsounds and airflow signals were collected by using an accelerometer from 10 healthysubjects. Tracheal sounds were then pr...

  5. Statistical Study on Respiratory Stability Through RPM Signal Analysis according to Patient Position Under Radiation Therapy and Device

    Park, Myung Hwan; Seo, Jeong Min; Choi, Byeong Gi; Shin, Eun Hyeok; Song, Gi Won

    2011-01-01

    This study statistically analyzed the difference of the stability of maintaining a respiratory period shown according to position and use of a device to search the tendency and usefulness of a device. The study obtained respiratory signals which maintained a respiratory period for 20 minutes each supine and prone position for 11 subjects. The study obtained respiratory signals in a state of using a belly board for 7 patients in a bad condition of a respiratory period in a prone position to analyze a change in respiration and the stability before and after the use of a device. The supine part showed 54.5%, better than the prone part of 36.4% in a case that the stability for maintaining a respiratory period was in a good condition as a fixed respiratory period was well maintained according to the position. 6 patients (85%) showed a maintenance pattern of a respiratory period significantly different before the use and 4 patients showed a significantly good change in the stability for maintaining a respiratory period as a result that belly boards were used for 7 patients that the maintenance of a respiratory period was not in a good condition on a prone position. It seemed that this study could contribute to the maintenance of respiratory period and of respiratory stability as the optimal position for maintenance of respiration and the use of a device such as a belly board were decided through statistic analysis of respiratory signals and its application even if patient position and use of device were decided by the beam arrangement a treatment part of a patient, location of a target, and an expected plan.

  6. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    Michalski, D; Huq, M; Bednarz, G; Lalonde, R; Yang, Y; Heron, D [University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2014-06-01

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same is for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for

  7. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    Michalski, D; Huq, M; Bednarz, G; Lalonde, R; Yang, Y; Heron, D

    2014-01-01

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same is for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for

  8. Correlation of Respiratory Signals and Electrocardiogram Signals via Empirical Mode Decomposition

    El Fiky, Ahmed Osama

    2011-01-01

    research field for signal processing experts to ensure better and clear representation of the different cardiac activities. Given the nonlinear and non-stationary properties of ECGs, it is not a simple task to cancel the undesired noise terms without

  9. Assessing signal-driven mechanism in neonates: brain responses to temporally and spectrally different sounds

    Yasuyo eMinagawa-Kawai

    2011-06-01

    Full Text Available Past studies have found that in adults that acoustic properties of sound signals (such as fast vs. slow temporal features differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language.

  10. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    In the present study, a novel multichannel loudspeaker-based virtual auditory environment (VAE) is introduced. The VAE aims at providing a versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room...... reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution...... the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  11. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.

    Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen

    2016-01-01

    Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p  <  0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical

  12. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  13. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer

    Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A; Giovangrandi, Laurent

    2012-01-01

    Seismocardiography (SCG) is a non-invasive measurement of the vibrations of the chest caused by the heartbeat. SCG signals can be measured using a miniature accelerometer attached to the chest, and are thus well-suited for unobtrusive and long-term patient monitoring. Additionally, SCG contains information relating to both cardiovascular and respiratory systems. In this work, algorithms were developed for extracting three respiration-dependent features of the SCG signal: intensity modulation, timing interval changes within each heartbeat, and timing interval changes between successive heartbeats. Simultaneously with a reference respiration belt, SCG signals were measured from 20 healthy subjects and a respiration rate was estimated using each of the three SCG features and the reference signal. The agreement between each of the three accelerometer-derived respiration rate measurements was computed with respect to the respiration rate derived from the reference respiration belt. The respiration rate obtained from the intensity modulation in the SCG signal was found to be in closest agreement with the respiration rate obtained from the reference respiration belt: the bias was found to be 0.06 breaths per minute with a 95% confidence interval of −0.99 to 1.11 breaths per minute. The limits of agreement between the respiration rates estimated using SCG (intensity modulation) and the reference were within the clinically relevant ranges given in existing literature, demonstrating that SCG could be used for both cardiovascular and respiratory monitoring. Furthermore, phases of each of the three SCG parameters were investigated at four instances of a respiration cycle—start inspiration, peak inspiration, start expiration, and peak expiration—and during breath hold (apnea). The phases of the three SCG parameters observed during the respiration cycle were congruent with existing literature and physiologically expected trends. (paper)

  14. The sensing of respiratory gases in fish: Mechanisms and signalling pathways.

    Perry, S F; Tzaneva, V

    2016-04-01

    Chemoreception in fish is critical for sensing changes in the chemical composition of the external and internal environments and is often the first step in a cascade of events leading to cardiorespiratory and metabolic adjustments. Of paramount importance is the ability to sense changes in the levels of the three respiratory gases, oxygen (O2), carbon dioxide (CO2) and ammonia (NH3). In this review, we discuss the role of piscine neuroepithelial cells (NEC), putative peripheral chemoreceptors, as tri-modal sensors of O2, CO2 and NH3. Where possible, we elaborate on the signalling pathways linking NEC stimulation to afferent responses, the potential role of neurotransmitters in activating downstream neuronal pathways and the impact of altered levels of the respiratory gases on NEC structure and function. Although serotonin, the major neurotransmitter contained within NECs, is presumed to be the principal agent eliciting the reflex responses to altered levels of the respiratory gases, there is accumulating evidence for the involvement of "gasomitters", a class of gaseous neurotransmitters which includes nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S). Recent data suggest that CO inhibits and H2S stimulates NEC activity whereas NO can either be inhibitory or stimulatory depending on developmental age. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals.

    Robles-Rubio, Carlos Alejandro; Bertolizio, Gianluca; Brown, Karen A; Kearney, Robert E

    2015-01-01

    Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea (POA). POA events are rare, and so the study of POA requires the analysis of long cardiorespiratory records. Manual scoring is the preferred method of analysis for these data, but it is limited by low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules do not provide a comprehensive description of the respiratory patterns. This work describes a set of manual scoring tools that address these limitations. These tools include: (i) a set of definitions and scoring rules for 6 mutually exclusive, unique patterns that fully characterize infant respiratory inductive plethysmography (RIP) signals; (ii) RIPScore, a graphical, manual scoring software to apply these rules to infant data; (iii) a library of data segments representing each of the 6 patterns; (iv) a fully automated, interactive formal training protocol to standardize the analysis and establish intra- and inter-scorer repeatability; and (v) a quality control method to monitor scorer ongoing performance over time. To evaluate these tools, three scorers from varied backgrounds were recruited and trained to reach a performance level similar to that of an expert. These scorers used RIPScore to analyze data from infants at risk of POA in two separate, independent instances. Scorers performed with high accuracy and consistency, analyzed data efficiently, had very good intra- and inter-scorer repeatability, and exhibited only minor confusion between patterns. These results indicate that our tools represent an excellent method for the analysis of respiratory patterns in long data records. Although the tools were developed for the study of POA, their use extends to any study of respiratory patterns using RIP (e.g., sleep apnea, extubation readiness). Moreover, by establishing and monitoring scorer repeatability, our tools enable the analysis of large data sets by multiple scorers, which is essential for

  16. Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals.

    Carlos Alejandro Robles-Rubio

    Full Text Available Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea (POA. POA events are rare, and so the study of POA requires the analysis of long cardiorespiratory records. Manual scoring is the preferred method of analysis for these data, but it is limited by low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules do not provide a comprehensive description of the respiratory patterns. This work describes a set of manual scoring tools that address these limitations. These tools include: (i a set of definitions and scoring rules for 6 mutually exclusive, unique patterns that fully characterize infant respiratory inductive plethysmography (RIP signals; (ii RIPScore, a graphical, manual scoring software to apply these rules to infant data; (iii a library of data segments representing each of the 6 patterns; (iv a fully automated, interactive formal training protocol to standardize the analysis and establish intra- and inter-scorer repeatability; and (v a quality control method to monitor scorer ongoing performance over time. To evaluate these tools, three scorers from varied backgrounds were recruited and trained to reach a performance level similar to that of an expert. These scorers used RIPScore to analyze data from infants at risk of POA in two separate, independent instances. Scorers performed with high accuracy and consistency, analyzed data efficiently, had very good intra- and inter-scorer repeatability, and exhibited only minor confusion between patterns. These results indicate that our tools represent an excellent method for the analysis of respiratory patterns in long data records. Although the tools were developed for the study of POA, their use extends to any study of respiratory patterns using RIP (e.g., sleep apnea, extubation readiness. Moreover, by establishing and monitoring scorer repeatability, our tools enable the analysis of large data sets by multiple scorers, which is essential

  17. Analysis of respiratory and muscle activity by means of cross information function between ventilatory and myographic signals.

    Alonso, J F; Mañanas, M A; Hoyer, D; Topor, Z L; Bruce, E N

    2004-01-01

    Analysis of respiratory muscle activity is a promising technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Evaluation of interactions between muscles is very useful in order to determine the muscular pattern during an exercise. These interactions have already been assessed by means of different linear techniques like cross-spectrum, magnitude squared coherence or cross-correlation. The aim of this work is to evaluate interactions between respiratory and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF), and finding out what information can be extracted from it. Some parameters are defined and calculated from CMIF between ventilatory and myographic signals of three respiratory muscles. Finally, differences in certain parameters were obtained between OSAS patients and healthy subjects indicating different respiratory muscle couplings.

  18. Contralateral routing of signals disrupts monaural level and spectral cues to sound localisation on the horizontal plane.

    Pedley, Adam J; Kitterick, Pádraig T

    2017-09-01

    Contra-lateral routing of signals (CROS) devices re-route sound between the deaf and hearing ears of unilaterally-deaf individuals. This rerouting would be expected to disrupt access to monaural level cues that can support monaural localisation in the horizontal plane. However, such a detrimental effect has not been confirmed by clinical studies of CROS use. The present study aimed to exercise strict experimental control over the availability of monaural cues to localisation in the horizontal plane and the fitting of the CROS device to assess whether signal routing can impair the ability to locate sources of sound and, if so, whether CROS selectively disrupts monaural level or spectral cues to horizontal location, or both. Unilateral deafness and CROS device use were simulated in twelve normal hearing participants. Monaural recordings of broadband white noise presented from three spatial locations (-60°, 0°, and +60°) were made in the ear canal of a model listener using a probe microphone with and without a CROS device. The recordings were presented to participants via an insert earphone placed in their right ear. The recordings were processed to disrupt either monaural level or spectral cues to horizontal sound location by roving presentation level or the energy across adjacent frequency bands, respectively. Localisation ability was assessed using a three-alternative forced-choice spatial discrimination task. Participants localised above chance levels in all conditions. Spatial discrimination accuracy was poorer when participants only had access to monaural spectral cues compared to when monaural level cues were available. CROS use impaired localisation significantly regardless of whether level or spectral cues were available. For both cues, signal re-routing had a detrimental effect on the ability to localise sounds originating from the side of the deaf ear (-60°). CROS use also impaired the ability to use level cues to localise sounds originating from

  19. [Mechanism of the constant representation of the position of a sound signal source by the cricket cercal system neurons].

    Rozhkova, G I; Polishcuk, N A

    1976-01-01

    Previously it has been shown that some abdominal giant neurones of the cricket have constant preffered directions of sound stimulation in relation not to the cerci (the organs bearing sound receptors) but to the insect body (fig. 1) [1]. Now it is found that the independence of directional sensitivity of giant neurones on the cerci position disappears after cutting all structures connecting the cerci to the body (except cercal nerves) (fig 2). Therefore the constancy of directional sensitivity of the giant nerones is provided by proprioceptive signals about cerci position.

  20. The effect of frequency-specific sound signals on the germination of maize seeds.

    Vicient, Carlos M

    2017-07-25

    The effects of sound treatments on the germination of maize seeds were determined. White noise and bass sounds (300 Hz) had a positive effect on the germination rate. Only 3 h treatment produced an increase of about 8%, and 5 h increased germination in about 10%. Fast-green staining shows that at least part of the effects of sound are due to a physical alteration in the integrity of the pericarp, increasing the porosity of the pericarp and facilitating oxygen availability and water and oxygen uptake. Accordingly, by removing the pericarp from the seeds the positive effect of the sound on the germination disappeared.

  1. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    Ernst, Floris; Schweikard, Achim

    2008-01-01

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  2. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    Ernst, Floris; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-06-15

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  3. Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review.

    Uddin, M B; Chow, C M; Su, S W

    2018-03-26

    Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.

  4. Time domain acoustic contrast control implementation of sound zones for low-frequency input signals

    Schellekens, Daan H. M.; Møller, Martin Bo; Olsen, Martin

    2016-01-01

    Sound zones are two or more regions within a listening space where listeners are provided with personal audio. Acoustic contrast control (ACC) is a sound zoning method that maximizes the average squared sound pressure in one zone constrained to constant pressure in other zones. State......-of-the-art time domain broadband acoustic contrast control (BACC) methods are designed for anechoic environments. These methods are not able to realize a flat frequency response in a limited frequency range within a reverberant environment. Sound field control in a limited frequency range is a requirement...... to accommodate the effective working range of the loudspeakers. In this paper, a new BACC method is proposed which results in an implementation realizing a flat frequency response in the target zone. This method is applied in a bandlimited low-frequency scenario where the loudspeaker layout surrounds two...

  5. Vibrotactile Identification of Signal-Processed Sounds from Environmental Events Presented by a Portable Vibrator: A Laboratory Study

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: To evaluate different signal-processing algorithms for tactile identification of environmental sounds in a monitoring aid for the deafblind. Two men and three women, sensorineurally deaf or profoundly hearing impaired with experience of vibratory experiments, age 22-36 years. Methods: A closed set of 45 representative environmental sounds were processed using two transposing (TRHA, TR1/3 and three modulating algorithms (AM, AMFM, AMMC and presented as tactile stimuli using a portable vibrator in three experiments. The algorithms TRHA, TR1/3, AMFM and AMMC had two alternatives (with and without adaption to vibratory thresholds. In Exp. 1, the sounds were preprocessed and directly fed to the vibrator. In Exp. 2 and 3, the sounds were presented in an acoustic test room, without or with background noise (SNR=+5 dB, and processed in real time. Results: In Exp. 1, Algorithm AMFM and AMFM(A consistently had the lowest identification scores, and were thus excluded in Exp. 2 and 3. TRHA, AM, AMMC, and AMMC(A showed comparable identification scores (30%-42% and the addition of noise did not deteriorate the performance. Discussion: Algorithm TRHA, AM, AMMC, and AMMC(A showed good performance in all three experiments and were robust in noise they can therefore be used in further testing in real environments.

  6. A viscoelastic model of the correlation between respiratory lung tumour motion and an external abdominal signal

    Cavan, A.E.; Wilson, P.L.; Meyer, J.; Berbeco, R.I.

    2010-01-01

    Full text: Accuracy of radiotherapy treatment of lung cancer is limited by respiratory induced tumour motion. Compensation for this motion is required to increase treatment efficacy. The lung tumour motion is related to motion of an external abdominal marker, but a reliable model of this correlation is essential. Three viscoelastic systems were developed, in order to determine the best model and analyse its effectiveness on clinical data. Three 1D viscoelastic systems (a spring and dash pot in parallel, series and a combination) were developed and compared using a simulated breathing pattern. The most effective model was applied to 60 clinical data sets (consisting of co-ordinates of tumour and abdominal motion) from multiple treatment fractions of ten patients. The model was optimised for each data set, and efficacy determined by calculating the root mean square (RMS) error between the mo elled position and the actual tumour motion. Upon application to clinical data the parallel configuration achieved an average RMS error of 0.95 mm (superior-inferior direction). The model had patient specific parameters, and displayed good consistency over extended treatment periods. The model ha dled amplitude, frequency and baseline variations of the input signal, and phase shifts between tumour and abdominal motions. This study has shown that a viscoelastic model can be used to cor relate internal lung tumour motion with an external abdominal signal. The ability to handle breathing pattern in'egularities is comparable or better than previous models. Extending the model to a full 3D, pr dictive system could allow clinical implementation for radiotherapy.

  7. Identification of Mobile Phone and Analysis of Original Version of Videos through a Delay Time Analysis of Sound Signals from Mobile Phone Videos.

    Hwang, Min Gu; Har, Dong Hwan

    2017-11-01

    This study designs a method of identifying the camera model used to take videos that are distributed through mobile phones and determines the original version of the mobile phone video for use as legal evidence. For this analysis, an experiment was conducted to find the unique characteristics of each mobile phone. The videos recorded by mobile phones were analyzed to establish the delay time of sound signals, and the differences between the delay times of sound signals for different mobile phones were traced by classifying their characteristics. Furthermore, the sound input signals for mobile phone videos used as legal evidence were analyzed to ascertain whether they have the unique characteristics of the original version. The objective of this study was to find a method for validating the use of mobile phone videos as legal evidence using mobile phones through differences in the delay times of sound input signals. © 2017 American Academy of Forensic Sciences.

  8. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    Sun, W; Jiang, M; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, a Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results

  9. Equivalent threshold sound pressure levels for acoustic test signals of short duration

    Poulsen, Torben; Daugaard, Carsten

    1998-01-01

    . The measurements were performed with two types of headphones, Telephonics TDH-39 and Sennheiser HDA-200. The sound pressure levels were measured in an IEC 318 ear simulator with Type 1 adapter (a flat plate) and a conical ring. The audiometric methods used in the experiments were the ascending method (ISO 8253...

  10. MO-F-CAMPUS-J-03: Sorting 2D Dynamic MR Images Using Internal Respiratory Signal for 4D MRI

    Wen, Z; Hui, C; Beddar, S; Stemkens, B; Tijssen, R; Berg, C van den

    2015-01-01

    Purpose: To develop a novel algorithm to extract internal respiratory signal (IRS) for sorting dynamic magnetic resonance (MR) images in order to achieve four-dimensional (4D) MR imaging. Methods: Dynamic MR images were obtained with the balanced steady state free precession by acquiring each two-dimensional sagittal slice repeatedly for more than one breathing cycle. To generate a robust IRS, we used 5 different representative internal respiratory surrogates in both the image space (body area) and the Fourier space (the first two low-frequency phase components in the anterior-posterior direction, and the first two low-frequency phase components in the superior-inferior direction). A clustering algorithm was then used to search for a group of similar individual internal signals, which was then used to formulate the final IRS. A phantom study and a volunteer study were performed to demonstrate the effectiveness of this algorithm. The IRS was compared to the signal from the respiratory bellows. Results: The IRS computed by our algorithm matched well with the bellows signal in both the phantom and the volunteer studies. On average, the normalized cross correlation between the IRS and the bellows signal was 0.97 in the phantom study and 0.87 in the volunteer study, respectively. The average difference between the end inspiration times in the IRS and bellows signal was 0.18 s in the phantom study and 0.14 s in the volunteer study, respectively. 4D images sorted based on the IRS showed minimal mismatched artifacts, and the motion of the anatomy was coherent with the respiratory phases. Conclusion: A novel algorithm was developed to generate IRS from dynamic MR images to achieve 4D MR imaging. The performance of the IRS was comparable to that of the bellows signal. It can be easily implemented into the clinic and potentially could replace the use of external respiratory surrogates. This research was partially funded by the the Center for Radiation Oncology Research from

  11. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  12. Different Types of Sounds and Their Relationship With the Electrocardiographic Signals and the Cardiovascular System – Review

    Ennio H. Idrobo-Ávila

    2018-05-01

    Full Text Available Background: For some time now, the effects of sound, noise, and music on the human body have been studied. However, despite research done through time, it is still not completely clear what influence, interaction, and effects sounds have on human body. That is why it is necessary to conduct new research on this topic. Thus, in this paper, a systematic review is undertaken in order to integrate research related to several types of sound, both pleasant and unpleasant, specifically noise and music. In addition, it includes as much research as possible to give stakeholders a more general vision about relevant elements regarding methodologies, study subjects, stimulus, analysis, and experimental designs in general. This study has been conducted in order to make a genuine contribution to this area and to perhaps to raise the quality of future research about sound and its effects over ECG signals.Methods: This review was carried out by independent researchers, through three search equations, in four different databases, including: engineering, medicine, and psychology. Inclusion and exclusion criteria were applied and studies published between 1999 and 2017 were considered. The selected documents were read and analyzed independently by each group of researchers and subsequently conclusions were established between all of them.Results: Despite the differences between the outcomes of selected studies, some common factors were found among them. Thus, in noise studies where both BP and HR increased or tended to increase, it was noted that HRV (HF and LF/HF changes with both sound and noise stimuli, whereas GSR changes with sound and musical stimuli. Furthermore, LF also showed changes with exposure to noise.Conclusion: In many cases, samples displayed a limitation in experimental design, and in diverse studies, there was a lack of a control group. There was a lot of variability in the presented stimuli providing a wide overview of the effects they could

  13. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  14. Sound Zones

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  15. Intelligent Approach for Analysis of Respiratory Signals and Oxygen Saturation in the Sleep Apnea/Hypopnea Syndrome

    Moret-Bonillo, Vicente; Alvarez-Estévez, Diego; Fernández-Leal, Angel; Hernández-Pereira, Elena

    2014-01-01

    This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints. PMID:25035712

  16. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  17. Berberine Protects against NEFA-Induced Impairment of Mitochondrial Respiratory Chain Function and Insulin Signaling in Bovine Hepatocytes

    Zhen Shi

    2018-06-01

    Full Text Available Fatty liver is a major lipid metabolic disease in perinatal dairy cows and is characterized by high blood levels of non-esterified fatty acid (NEFA and insulin resistance. Berberine (BBR has been reported to improve insulin sensitivity in mice with hepatic steatosis. Mitochondrial dysfunction is considered a causal factor that induces insulin resistance. This study investigates the underlying mechanism and the beneficial effects of BBR on mitochondrial and insulin signaling in bovine hepatocytes. Revised quantitative insulin sensitivity check index (RQUICKI of cows with fatty liver was significantly lower than that of healthy cows. Importantly, the Akt and GSK3β phosphorylation levels, protein levels of PGC-1α and four of the five representative subunits of oxidative phosphorylation (OXPHOS were significantly decreased in cows with fatty liver using Western Blot analysis. In bovine hepatocytes, 1.2 mmol/L NEFA reduced insulin signaling and mitochondrial respiratory chain function, and 10 and 20 umol/L BBR restored these changes. Furthermore, activation of PGC-1α played the same beneficial effects of BBR on hepatocytes treated with NEFA. BBR treatment improves NEFA-impaired mitochondrial respiratory chain function and insulin signaling by increasing PGC-1α expression in hepatocytes, which provides a potential new strategy for the prevention and treatment of fatty liver in dairy cows.

  18. Signal Processing Implementation and Comparison of Automotive Spatial Sound Rendering Strategies

    Bai MingsianR

    2009-01-01

    Full Text Available Design and implementation strategies of spatial sound rendering are investigated in this paper for automotive scenarios. Six design methods are implemented for various rendering modes with different number of passengers. Specifically, the downmixing algorithms aimed at balancing the front and back reproductions are developed for the 5.1-channel input. Other five algorithms based on inverse filtering are implemented in two approaches. The first approach utilizes binaural (Head-Related Transfer Functions HRTFs measured in the car interior, whereas the second approach named the point-receiver model targets a point receiver positioned at the center of the passenger's head. The proposed processing algorithms were compared via objective and subjective experiments under various listening conditions. Test data were processed by the multivariate analysis of variance (MANOVA method and the least significant difference (Fisher's LSD method as a post hoc test to justify the statistical significance of the experimental data. The results indicate that inverse filtering algorithms are preferred for the single passenger mode. For the multipassenger mode, however, downmixing algorithms generally outperformed the other processing techniques.

  19. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values.

    Leonardo Sarlabous

    Full Text Available The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn, that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference.

  20. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    Junwen Zheng

    2015-01-01

    Full Text Available Respiratory syncytial virus (RSV infection upregulates genes of the suppressor of cytokine signaling (SOCS family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS protein expression plasmids (pNS1, pNS2, and pNS1/2 and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN- α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.

  1. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  2. Broadcast sound technology

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  3. Propagation of sound

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  4. On the Perception of Speech Sounds as Biologically Significant Signals1,2

    Pisoni, David B.

    2012-01-01

    This paper reviews some of the major evidence and arguments currently available to support the view that human speech perception may require the use of specialized neural mechanisms for perceptual analysis. Experiments using synthetically produced speech signals with adults are briefly summarized and extensions of these results to infants and other organisms are reviewed with an emphasis towards detailing those aspects of speech perception that may require some need for specialized species-specific processors. Finally, some comments on the role of early experience in perceptual development are provided as an attempt to identify promising areas of new research in speech perception. PMID:399200

  5. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  6. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines.

    Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong

    2018-03-13

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.

  7. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines

    Xiaofeng Yi

    2018-03-01

    Full Text Available Magnetic resonance sounding (MRS is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects.

  8. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes. (paper)

  9. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  10. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  11. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus.

    Santin, J M; Hartzler, L K

    2013-02-01

    The locus coeruleus (LC) in the brainstem senses alterations in CO(2)/pH and influences ventilatory adjustments that restore blood gas values to starting levels in bullfrogs (Lithobates catesbeianus). We hypothesized that neurons of the bullfrog LC are sensitive to changes in CO(2)/pH and that chemosensitive responses are intrinsic to individual neurons. In addition, we hypothesized putative respiratory control neurons of the bullfrog LC would be stimulated by hypercapnic acidosis within physiological ranges of P(CO(2))/pH. 84% of LC neurons depolarized and increased firing rates during exposure to hypercapnic acidosis (HA). A pH dose response curve shows LC neurons from bullfrogs increase firing rates during physiologically relevant CO(2)/pH changes. With chemical synapses blocked, half of chemosensitive neurons lost sensitivity to HA; however, gap junction blockade did not alter chemosensitive responses. Intrinsically chemosensitive neurons increased input resistance during HA. These data demonstrate that majority of neurons within the bullfrog LC elicit robust firing responses during physiological ΔCO(2)/pH, likely enabling adjustment of acid-base balance through breathing. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  13. The influence of signal parameters on the sound source localization ability of a harbor porpoise (Phocoena phocoena)

    Kastelein, R.A.; Haan, D.de; Verboom, W.C.

    2007-01-01

    It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m -diam

  14. Meaning From Environmental Sounds: Types of Signal-Referent Relations and Their Effect on Recognizing Auditory Icons

    Keller, Peter; Stevens, Catherine

    2004-01-01

    This article addresses the learnability of auditory icons, that is, environmental sounds that refer either directly or indirectly to meaningful events. Direct relations use the sound made by the target event whereas indirect relations substitute a surrogate for the target. Across 3 experiments, different indirect relations (ecological, in which…

  15. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.

    Becker, K W; Scheffer, C; Blanckenberg, M M; Diacon, A H

    2013-01-01

    Tuberculosis is a common and potentially deadly infectious disease, usually affecting the respiratory system and causing the sound properties of symptomatic infected lungs to differ from non-infected lungs. Auscultation is often ruled out as a reliable diagnostic technique for TB due to the random distribution of the infection and the varying severity of damage to the lungs. However, advancements in signal processing techniques for respiratory sounds can improve the potential of auscultation far beyond the capabilities of the conventional mechanical stethoscope. Though computer-based signal analysis of respiratory sounds has produced a significant body of research, there have not been any recent investigations into the computer-aided analysis of lung sounds associated with pulmonary Tuberculosis (TB), despite the severity of the disease in many countries. In this paper, respiratory sounds were recorded from 14 locations around the posterior and anterior chest walls of healthy volunteers and patients infected with pulmonary TB. The most significant signal features in both the time and frequency domains associated with the presence of TB, were identified by using the statistical overlap factor (SOF). These features were then employed to train a neural network to automatically classify the auscultation recordings into their respective healthy or TB-origin categories. The neural network yielded a diagnostic accuracy of 73%, but it is believed that automated filtering of the noise in the clinics, more training samples and perhaps other signal processing methods can improve the results of future studies. This work demonstrates the potential of computer-aided auscultation as an aid for the diagnosis and treatment of TB.

  16. Vibrotactile Detection, Identification and Directional Perception of signal-Processed Sounds from Environmental Events: A Pilot Field Evaluation in Five Cases

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: Conducting field tests of a vibrotactile aid for deaf/deafblind persons for detection, identification and directional perception of environmental sounds. Methods: Five deaf (3F/2M, 22–36 years individuals tested the aid separately in a home environment (kitchen and in a traffic environment. Their eyes were blindfolded and they wore a headband and holding a vibrator for sound identification. In the headband, three microphones were mounted and two vibrators for signalling direction of the sound source. The sounds originated from events typical for the home environment and traffic. The subjects were inexperienced (events unknown and experienced (events known. They identified the events in a home and traffic environment, but perceived sound source direction only in traffic. Results: The detection scores were higher than 98% both in the home and in the traffic environment. In the home environment, identification scores varied between 25%-58% when the subjects were inexperienced and between 33%-83% when they were experienced. In traffic, identification scores varied between 20%-40% when the subjects were inexperienced and between 22%-56% when they were experienced. The directional perception scores varied between 30%-60% when inexperienced and between 61%-83% when experienced. Discussion: The vibratory aid consistently improved all participants’ detection, identification and directional perception ability.

  17. Two models of the sound-signal frequency dependence on the animal body size as exemplified by the ground squirrels of Eurasia (mammalia, rodentia).

    Nikol'skii, A A

    2017-11-01

    Dependence of the sound-signal frequency on the animal body length was studied in 14 ground squirrel species (genus Spermophilus) of Eurasia. Regression analysis of the total sample yielded a low determination coefficient (R 2 = 26%), because the total sample proved to be heterogeneous in terms of signal frequency within the dimension classes of animals. When the total sample was divided into two groups according to signal frequency, two statistically significant models (regression equations) were obtained in which signal frequency depended on the body size at high determination coefficients (R 2 = 73 and 94% versus 26% for the total sample). Thus, the problem of correlation between animal body size and the frequency of their vocal signals does not have a unique solution.

  18. Developing a reference of normal lung sounds in healthy Peruvian children.

    Ellington, Laura E; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H; Tielsch, James M; Chavez, Miguel A; Marin-Concha, Julio; Figueroa, Dante; West, James; Checkley, William

    2014-10-01

    Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81%) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47% were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments.

  19. Developing a Reference of Normal Lung Sounds in Healthy Peruvian Children

    Ellington, Laura E.; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H.; Tielsch, James M.; Chavez, Miguel A.; Marin-Concha, Julio; Figueroa, Dante; West, James

    2018-01-01

    Purpose Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. Methods 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81 %) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Results Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47 % were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Conclusions Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments. PMID:24943262

  20. Abnormal sound detection device

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  1. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An inv...

  2. Waveform analysis of sound

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  3. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  4. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  5. Studies on sound signal scattering from varying seabed sediments of the western continental shelf of India: Cochin to Mangalore

    Chakraborty, B.; Pathak, D.

    A study on the interaction effect of the acoustic signal with three different sediment type seabottoms off the shelf area between Cochin and Mangalore of the west coast of India is performed. Analyses by means of Probability Density Function (PDF...

  6. Respiratory acidosis

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  7. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  8. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    Shieh, Chun-Chien [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Kuncic, Zdenka [Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2014-04-15

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  9. Foley Sounds vs Real Sounds

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  10. Statistical Signal Processing by Using the Higher-Order Correlation between Sound and Vibration and Its Application to Fault Detection of Rotational Machine

    Hisako Masuike

    2008-01-01

    Full Text Available In this study, a stochastic diagnosis method based on the changing information of not only a linear correlation but also a higher-order nonlinear correlation is proposed in a form suitable for online signal processing in time domain by using a personal computer, especially in order to find minutely the mutual relationship between sound and vibration emitted from rotational machines. More specifically, a conditional probability hierarchically reflecting various types of correlation information is theoretically derived by introducing an expression on the multidimensional probability distribution in orthogonal expansion series form. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.

  11. Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song

    Dabelsteen, T.; Larsen, O N; Pedersen, Simon Boel

    1993-01-01

    measures were calculated from changes of the amplitude functions (i.e., envelopes) of the degraded songs using a new technique which allowed a compensation for the contribution of the background noise to the amplitude values. Representative songs were broadcast in a deciduous forest without leaves......The habitat-induced degradation of the full song of the blackbird (Turdus merula) was quantified by measuring excess attenuation, reduction of the signal-to-noise ratio, and blur ratio, the latter measure representing the degree of blurring of amplitude and frequency patterns over time. All three...

  12. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Auscultation of the respiratory system

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  14. Auscultation of the respiratory system

    Malay Sarkar

    2015-01-01

    Full Text Available Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion.

  15. Analyzing non-respiratory movements of the chest: methods and devices

    Pariaszewska, Katarzyna; Młyńczak, Marcel; Cybulski, Gerard

    2015-09-01

    Respiration is the main reason of the chest movements. However, there are also non-respiratory ones, resulting from e.g. snoring, wheezing, stridor, throat clearing or coughing. They may exist sporadically, however should be examined in case when their incidences increase. Detecting non-respiratory movements is very important, because many of them are symptoms of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) or lung cancer. Assessment of the presence of non-respiratory movements could be important element of effective diagnosis. It is also necessary to provide quantitative and objective results for intra-subject studies. Most of these events generate vibroacoustic signals that contain components of sound and vibrations. This work provides the review of the solutions and devices for monitoring of the non-respiratory movements, primarily considering the accuracy of the chest movements' detection and distinguishing.

  16. Imagining Sound

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  17. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds

    Chin-Hsing Chen

    2015-06-01

    Full Text Available A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician’s subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications.

  18. Sound response of superheated drop bubble detectors to neutrons

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  19. Measuring the 'complexity'of sound

    Sounds in the natural environment form an important class of biologically relevant nonstationary signals. We propose a dynamic spectral measure to characterize the spectral dynamics of such non-stationary sound signals and classify them based on rate of change of spectral dynamics. We categorize sounds with slowly ...

  20. Second sound tracking system

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  1. Respiratory alkalosis

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  2. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling.

    Wang, Xida; Lai, Rongde; Su, Xiangfen; Chen, Guibin; Liang, Zijing

    2018-01-01

    Pulmonary fibrosis is responsible for the both short-term and long-term outcomes in patients with acute respiratory distress syndrome (ARDS). There is still no effective cure to improve prognosis. The purpose of this study was to investigate whether edaravone, a free radical scavenger, have anti-fibrosis effects in the rat model of ARDS associated early pulmonary fibrosis by lipopolysaccharide (LPS) administration. Rats were subjected to intravenous injection of LPS, and edaravone was given intraperitoneally after LPS administration daily for 7 consecutive days. LPS treatment rapidly increased lung histopathology abnormalities, coefficient of lung, hydroxyproline and collagen I levels, stimulated myofibroblast differentiation and induced expression of TGF-β1 and activation of TGF-β1/Smad3 signaling as early as day 7 after LPS injection. Moreover, LPS intoxication significantly increased the contents of malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas it dramatically decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities from day 1 after LPS treatment. On the contrary, edaravone treatment ameliorated LPS-induced myofibroblast differentiation and pulmonary fibrosis, simultaneously, and attenuated LPS-stimulated oxidative stress and activation of TGF-β1/Smad3 signaling. Collectively, edaravone may attenuate ARDS associated early pulmonary fibrosis through amelioration of oxidative stress and TGF-β1/Smad3 signaling pathway. Edaravone may be a promising drug candidate for the treatment of ARDS-related pulmonary fibrosis in early period. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine-grained quartz sand and on a Mars soil simulant (brand names WF34 and MSS-D, respectively) allow quantifying the changes of the deceleration data due to interaction with the soil. The elastic moduli of the soils that were inverted from the accelerometer data agree well with data obtained by ultrasonic time-of-flight measurements, provided an effective contact area is used. To this end, the lander structure was viewed in a simplified way as a mass-spring-damper system coupled to the soil by a contact spring, whose stiffness is determined by elastic moduli of the soil and the contact radius. Analytical expressions allow a rapid inversion of the deceleration data to obtain elastic data. It is expected that the same procedure can be applied to the signal measured when landing on comet 67P.

  4. Unsound Sound

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  5. Sound Absorbers

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  6. Towards the standardisation of lung sound nomenclature

    Pasterkamp, Hans; Brand, Paul L. P.; Everard, Mark; Garcia-Marcos, Luis; Melbye, Hasse; Priftis, Kostas N.

    Auscultation of the lung remains an essential part of physical examination even though its limitations, particularly with regard to communicating subjective findings, are well recognised. The European Respiratory Society (ERS) Task Force on Respiratory Sounds was established to build a reference

  7. Sound generator

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  8. Sound generator

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  9. Sound generator

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  10. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    Nasehi Tehrani, J; Wang, J; McEwan, A

    2016-01-01

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  11. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); McEwan, A [The University of Sydney, Sydney, New South Wales (Australia)

    2016-06-15

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  12. Visualization of Broadband Sound Sources

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  13. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan and Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Nantan, Kyoto 622-0041 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo 650-0047, Japan and Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan)

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  14. Sound intensity

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  15. Sound Intensity

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  16. Respiratory Failure

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  17. Respiratory system

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  18. On Better Estimating and Normalizing the Relationship between Clinical Parameters: Comparing Respiratory Modulations in the Photoplethysmogram and Blood Pressure Signal (DPOP versus PPV

    Paul S. Addison

    2015-01-01

    Full Text Available DPOP (ΔPOP or Delta-POP is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method. We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements.

  19. On better estimating and normalizing the relationship between clinical parameters: comparing respiratory modulations in the photoplethysmogram and blood pressure signal (DPOP versus PPV).

    Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D

    2015-01-01

    DPOP (ΔPOP or Delta-POP) is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method). We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N) is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements.

  20. Application of Clustering Techniques for Lung Sounds to Improve Interpretability and Detection of Crackles

    Germán D. Sosa

    2015-01-01

    Full Text Available Due to the subjectivity involved currently in pulmonary auscultation process and its diagnostic to evaluate the condition of respiratory airways, this work pretends to evaluate the performance of clustering algorithms such as k-means and DBSCAN to perform a computational analysis of lung sounds aiming to visualize a representation of such sounds that highlights the presence of crackles and the energy associated with them. In order to achieve that goal, Wavelet analysis techniques were used in contrast to traditional frequency analysis given the similarity between the typical waveform for a crackle and the wavelet sym4. Once the lung sound signal with isolated crackles is obtained, the clustering process groups crackles in regions of high density and provides visualization that might be useful for the diagnostic made by an expert. Evaluation suggests that k-means groups crackle more effective than DBSCAN in terms of generated clusters.

  1. Fluid Sounds

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  2. Acoustics based assessment of respiratory diseases using GMM classification.

    Mayorga, P; Druzgalski, C; Morelos, R L; Gonzalez, O H; Vidales, J

    2010-01-01

    The focus of this paper is to present a method utilizing lung sounds for a quantitative assessment of patient health as it relates to respiratory disorders. In order to accomplish this, applicable traditional techniques within the speech processing domain were utilized to evaluate lung sounds obtained with a digital stethoscope. Traditional methods utilized in the evaluation of asthma involve auscultation and spirometry, but utilization of more sensitive electronic stethoscopes, which are currently available, and application of quantitative signal analysis methods offer opportunities of improved diagnosis. In particular we propose an acoustic evaluation methodology based on the Gaussian Mixed Models (GMM) which should assist in broader analysis, identification, and diagnosis of asthma based on the frequency domain analysis of wheezing and crackles.

  3. Sound Settlements

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  4. Nuclear sound

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  5. Pitch Based Sound Classification

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  6. Sound Settlements

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  7. Second Sound

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  8. Research and Implementation of Heart Sound Denoising

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  9. PREFACE: Aerodynamic sound Aerodynamic sound

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  10. Sound Visualisation

    Dolenc, Peter

    2013-01-01

    This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...

  11. Respiratory mechanics

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  12. Visualization of Broadband Sound Sources

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  13. Constraints on decay of environmental sound memory in adult rats.

    Sakai, Masashi

    2006-11-27

    When adult rats are pretreated with a 48-h-long 'repetitive nonreinforced sound exposure', performance in two-sound discriminative operant conditioning transiently improves. We have already proven that this 'sound exposure-enhanced discrimination' is dependent upon enhancement of the perceptual capacity of the auditory cortex. This study investigated principles governing decay of sound exposure-enhanced discrimination decay. Sound exposure-enhanced discrimination disappeared within approximately 72 h if animals were deprived of environmental sounds after sound exposure, and that shortened to less than approximately 60 h if they were exposed to environmental sounds in the animal room. Sound-deprivation itself exerted no clear effects. These findings suggest that the memory of a passively exposed behaviorally irrelevant sound signal does not merely pass along the intrinsic lifetime but also gets deteriorated by other incoming signals.

  14. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  15. 一种接口兼容的非接触式呼吸信号检测系统的设计与研究%Design and Research of an Interface Compatible Non-contacting Respiratory Signal Detection System

    宋奎; 齐家俊; 林涛; 张逸

    2011-01-01

    Respiration-induced displacements of organs greatly affect the safety and efficiency of high intensity focused ultrasound (HIFU) tumor therapy system. The key to solve this problem is accurate, real-time detection of respiratory signals. The present study gives a new design of an interface compatible non-contacting respiratory signal detection system using the method of irradiating the laser beam onto certain region of the surface of human body that is intensely influenced by the breathing movements (mostly the breast or the dorsum) at a certain angle, and meanwhile using a camera to aquire information from the location of the laser projection. Then we can draw a curve of the location of laser projection versus time base, that is the respiration curve. This respiratory signal detection method is non-contacting, interface compatible and easy to be integrated into the treatment system.%呼吸运动引发的体内脏器移位极大影响高强度聚焦超声(HIFU)肿瘤治疗系统的安全性和治疗效率.解决这一问题的关键是实时、准确的呼吸信号检测.以一定角度,用激光束在人体表受呼吸运动影响较大的部位(一般是胸部或背部)投射激光点,用摄像机采集激光点位置信息.描绘激光点位置与采集时刻的关系曲线,即呼吸曲线.该呼吸信号检测方法为非接触式,同时具有接口兼容性好的优点,便于集成到治疗系统中.

  16. Mycobacterium abscessus glycopeptidolipid prevents respiratory epithelial TLR2 signaling as measured by HβD2 gene expression and IL-8 release.

    Lisa B Davidson

    Full Text Available Mycobacterium abscessus has emerged as an important cause of lung infection, particularly in patients with bronchiectasis. Innate immune responses must be highly effective at preventing infection with M. abscessus because it is a ubiquitous environmental saprophyte and normal hosts are not commonly infected. M. abscessus exists as either a glycopeptidolipid (GPL expressing variant (smooth phenotype in which GPL masks underlying bioactive cell wall lipids, or as a variant lacking GPL which is immunostimulatory and invasive in macrophage infection models. Respiratory epithelium has been increasingly recognized as playing an important role in the innate immune response to pulmonary pathogens. Respiratory epithelial cells express toll-like receptors (TLRs which mediate the innate immune response to pulmonary pathogens. Both interleukin-8 (IL-8 and human β-defensin 2 (HβD2 are expressed by respiratory epithelial cells in response to toll-like receptor 2 (TLR2 receptor stimulation. In this study, we demonstrate that respiratory epithelial cells respond to M. abscessus variants lacking GPL with expression of IL-8 and HβD2. Furthermore, we demonstrate that this interaction is mediated through TLR2. Conversely, M. abscessus expressing GPL does not stimulate expression of IL-8 or HβD2 by respiratory epithelial cells which is consistent with "masking" of underlying bioactive cell wall lipids by GPL. Because GPL-expressing smooth variants are the predominant phenotype existing in the environment, this provides an explanation whereby initial M. abscessus colonization of abnormal lung airways escapes detection by the innate immune system.

  17. Sound knowledge

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  18. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    Eric J Ward

    Full Text Available The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii and some wild Pacific salmon populations (Oncorhynchus spp. in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1 density dependence, (2 the EVOS event, (3 changing environmental conditions, (4 interspecific competition on juvenile fish, and (5 predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the

  19. Sparse representation of Gravitational Sound

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  20. Digital servo control of random sound fields

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  1. Sound Search Engine Concept

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  2. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Parsaei H.

    2017-03-01

    Full Text Available Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan.

  3. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Parsaei, H.; Vakily, A.; Shafiei, A.M.

    2017-01-01

    Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580

  4. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    Hurwitz, M; Williams, C; Dhou, S; Lewis, J; Mishra, P

    2015-01-01

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion of the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206

  5. Respiratory effort from the photoplethysmogram.

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Quantifying sound quality in loudspeaker reproduction

    Beerends, John G.; van Nieuwenhuizen, Kevin; van den Broek, E.L.

    2016-01-01

    We present PREQUEL: Perceptual Reproduction Quality Evaluation for Loudspeakers. Instead of quantifying the loudspeaker system itself, PREQUEL quantifies the overall loudspeakers' perceived sound quality by assessing their acoustic output using a set of music signals. This approach introduces a

  7. NASA Space Sounds API

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  8. Neuroanatomic organization of sound memory in humans.

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  9. Physiological and psychological assessment of sound

    Yanagihashi, R.; Ohira, Masayoshi; Kimura, Teiji; Fujiwara, Takayuki

    The psycho-physiological effects of several sound stimulations were investigated to evaluate the relationship between a psychological parameter, such as subjective perception, and a physiological parameter, such as the heart rate variability (HRV). Eight female students aged 21-22 years old were tested. Electrocardiogram (ECG) and the movement of the chest-wall for estimating respiratory rate were recorded during three different sound stimulations; (1) music provided by a synthesizer (condition A); (2) birds twitters (condition B); and (3) mechanical sounds (condition C). The percentage power of the low-frequency (LF; 0.05<=0.15 Hz) and high-frequency (HF; 0.15<=0.40 Hz) components in the HRV (LF%, HF%) were assessed by a frequency analysis of time-series data for 5 min obtained from R-R intervals in the ECG. Quantitative assessment of subjective perception was also described by a visual analog scale (VAS). The HF% and VAS value for comfort in C were significantly lower than in either A and/or B. The respiratory rate and VAS value for awakening in C were significantly higher than in A and/or B. There was a significant correlation between the HF% and the value of the VAS, and between the respiratory rate and the value of the VAS. These results indicate that mechanical sounds similar to C inhibit the para-sympathetic nervous system and promote a feeling that is unpleasant but alert, also suggesting that the HRV reflects subjective perception.

  10. Respiratory Home Health Care

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  11. Review of sound card photogates

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  12. The Sound of Science

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  13. Sounds Exaggerate Visual Shape

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  14. Making Sound Connections

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  15. Little Sounds

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  16. Acoustic analysis of trill sounds.

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  17. Moth hearing and sound communication

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by compar......Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced...... by comparable hearing physiology with best sensitivity in the bat echolocation range, 20–60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only...... the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by “sensory exploitation”. Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low...

  18. A note on measurement of sound pressure with intensity probes

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  19. Detecting regional lung properties using audio transfer functions of the respiratory system.

    Mulligan, K; Adler, A; Goubran, R

    2009-01-01

    In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.

  20. Physiological phenotyping of dementias using emotional sounds.

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-06-01

    Emotional behavioral disturbances are hallmarks of many dementias but their pathophysiology is poorly understood. Here we addressed this issue using the paradigm of emotionally salient sounds. Pupil responses and affective valence ratings for nonverbal sounds of varying emotional salience were assessed in patients with behavioral variant frontotemporal dementia (bvFTD) (n = 14), semantic dementia (SD) (n = 10), progressive nonfluent aphasia (PNFA) (n = 12), and AD (n = 10) versus healthy age-matched individuals (n = 26). Referenced to healthy individuals, overall autonomic reactivity to sound was normal in Alzheimer's disease (AD) but reduced in other syndromes. Patients with bvFTD, SD, and AD showed altered coupling between pupillary and affective behavioral responses to emotionally salient sounds. Emotional sounds are a useful model system for analyzing how dementias affect the processing of salient environmental signals, with implications for defining pathophysiological mechanisms and novel biomarker development.

  1. Sound wave transmission (image)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  2. Making fictions sound real

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  3. Principles of underwater sound

    Urick, Robert J

    1983-01-01

    ... the immediately useful help they need for sonar problem solving. Its coverage is broad-ranging from the basic concepts of sound in the sea to making performance predictions in such applications as depth sounding, fish finding, and submarine detection...

  4. Binaural Processing of Multiple Sound Sources

    2016-08-18

    AFRL-AFOSR-VA-TR-2016-0298 Binaural Processing of Multiple Sound Sources William Yost ARIZONA STATE UNIVERSITY 660 S MILL AVE STE 312 TEMPE, AZ 85281...18-08-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Jul 2012 to 14 Jul 2016 4. TITLE AND SUBTITLE Binaural Processing of...three topics cited above are entirely within the scope of the AFOSR grant. 15. SUBJECT TERMS Binaural hearing, Sound Localization, Interaural signal

  5. An Antropologist of Sound

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  6. Modelling Hyperboloid Sound Scattering

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  7. Robust segmentation and retrieval of environmental sounds

    Wichern, Gordon

    The proliferation of mobile computing has provided much of the world with the ability to record any sound of interest, or possibly every sound heard in a lifetime. The technology to continuously record the auditory world has applications in surveillance, biological monitoring of non-human animal sounds, and urban planning. Unfortunately, the ability to record anything has led to an audio data deluge, where there are more recordings than time to listen. Thus, access to these archives depends on efficient techniques for segmentation (determining where sound events begin and end), indexing (storing sufficient information with each event to distinguish it from other events), and retrieval (searching for and finding desired events). While many such techniques have been developed for speech and music sounds, the environmental and natural sounds that compose the majority of our aural world are often overlooked. The process of analyzing audio signals typically begins with the process of acoustic feature extraction where a frame of raw audio (e.g., 50 milliseconds) is converted into a feature vector summarizing the audio content. In this dissertation, a dynamic Bayesian network (DBN) is used to monitor changes in acoustic features in order to determine the segmentation of continuously recorded audio signals. Experiments demonstrate effective segmentation performance on test sets of environmental sounds recorded in both indoor and outdoor environments. Once segmented, every sound event is indexed with a probabilistic model, summarizing the evolution of acoustic features over the course of the event. Indexed sound events are then retrieved from the database using different query modalities. Two important query types are sound queries (query-by-example) and semantic queries (query-by-text). By treating each sound event and semantic concept in the database as a node in an undirected graph, a hybrid (content/semantic) network structure is developed. This hybrid network can

  8. Lungs and Respiratory System

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  9. Neonatal respiratory distress syndrome

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  10. Toward Inverse Control of Physics-Based Sound Synthesis

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  11. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  12. Sounding rockets explore the ionosphere

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  13. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases...

  14. Sound a very short introduction

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  15. Sound Insulation between Dwellings

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  16. Middle East Respiratory Syndrome

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  17. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. The velocity of sound

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  19. Michael Jackson's Sound Stages

    Morten Michelsen

    2012-01-01

    In order to discuss analytically spatial aspects of recorded sound William Moylan’s concept of ‘sound stage’ is developed within a musicological framework as part of a sound paradigm which includes timbre, texture and sound stage. Two Michael Jackson songs (‘The Lady in My Life’ from 1982 and ‘Scream’ from 1995) are used to: a) demonstrate the value of such a conceptualisation, and b) demonstrate that the model has its limits, as record producers in the 1990s began ignoring the conventions of...

  20. What is Sound?

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  1. Light and Sound

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  2. Respiratory monitoring with an acceleration sensor

    Ono, Tomohiro; Takegawa, Hideki; Ageishi, Tatsuya; Takashina, Masaaki; Numasaki, Hodaka; Matsumoto, Masao; Teshima, Teruki

    2011-01-01

    Respiratory gating radiotherapy is used to irradiate a local area and to reduce normal tissue toxicity. There are certain methods for the detection of tumor motions, for example, using internal markers or an external respiration signal. However, because some of these respiratory monitoring systems require special or expensive equipment, respiratory monitoring can usually be performed only in limited facilities. In this study, the feasibility of using an acceleration sensor for respiratory monitoring was evaluated. The respiratory motion was represented by means of a platform and measured five times with the iPod touch (registered) at 3, 4 and 5 s periods of five breathing cycles. For these three periods of the reference waveform, the absolute means ± standard deviation (SD) of displacement were 0.45 ± 0.34 mm, 0.33 ± 0.24 mm and 0.31 ± 0.23 mm, respectively. On the other hand, the corresponding absolute means ± SD for the periods were 0.04 ± 0.09 s, 0.04 ± 0.02 s and 0.06 ± 0.04 s. The accuracy of respiratory monitoring using the acceleration sensor was satisfactory in terms of the absolute means ± SD. Using the iPod touch (registered) for respiratory monitoring does not need special equipment and makes respiratory monitoring easier. For these reasons, this system is a viable alternative to other respiratory monitoring systems.

  3. Retrospective data-driven respiratory gating for PET/CT

    Schleyer, Paul J; O'Doherty, Michael J; Barrington, Sally F; Marsden, Paul K

    2009-01-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  4. Early Sound Symbolism for Vowel Sounds

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  5. Measuring the speed of sound in air using smartphone applications

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  6. Neuromimetic Sound Representation for Percept Detection and Manipulation

    Chi Taishih

    2005-01-01

    Full Text Available The acoustic wave received at the ears is processed by the human auditory system to separate different sounds along the intensity, pitch, and timbre dimensions. Conventional Fourier-based signal processing, while endowed with fast algorithms, is unable to easily represent a signal along these attributes. In this paper, we discuss the creation of maximally separable sounds in auditory user interfaces and use a recently proposed cortical sound representation, which performs a biomimetic decomposition of an acoustic signal, to represent and manipulate sound for this purpose. We briefly overview algorithms for obtaining, manipulating, and inverting a cortical representation of a sound and describe algorithms for manipulating signal pitch and timbre separately. The algorithms are also used to create sound of an instrument between a "guitar" and a "trumpet." Excellent sound quality can be achieved if processing time is not a concern, and intelligible signals can be reconstructed in reasonable processing time (about ten seconds of computational time for a one-second signal sampled at . Work on bringing the algorithms into the real-time processing domain is ongoing.

  7. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  8. The influence of ski helmets on sound perception and sound localisation on the ski slope

    Lana Ružić

    2015-04-01

    Full Text Available Objectives: The aim of the study was to investigate whether a ski helmet interferes with the sound localization and the time of sound perception in the frontal plane. Material and Methods: Twenty-three participants (age 30.7±10.2 were tested on the slope in 2 conditions, with and without wearing the ski helmet, by 6 different spatially distributed sound stimuli per each condition. Each of the subjects had to react when hearing the sound as soon as possible and to signalize the correct side of the sound arrival. Results: The results showed a significant difference in the ability to localize the specific ski sounds; 72.5±15.6% of correct answers without a helmet vs. 61.3±16.2% with a helmet (p < 0.01. However, the performance on this test did not depend on whether they were used to wearing a helmet (p = 0.89. In identifying the timing, at which the sound was firstly perceived, the results were also in favor of the subjects not wearing a helmet. The subjects reported hearing the ski sound clues at 73.4±5.56 m without a helmet vs. 60.29±6.34 m with a helmet (p < 0.001. In that case the results did depend on previously used helmets (p < 0.05, meaning that that regular usage of helmets might help to diminish the attenuation of the sound identification that occurs because of the helmets. Conclusions: Ski helmets might limit the ability of a skier to localize the direction of the sounds of danger and might interfere with the moment, in which the sound is firstly heard.

  9. InfoSound

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  10. Breaking the Sound Barrier

    Brown, Tom; Boehringer, Kim

    2007-01-01

    Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…

  11. Sound propagation in cities

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  12. OMNIDIRECTIONAL SOUND SOURCE

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  13. Hamiltonian Algorithm Sound Synthesis

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  14. Poetry Pages. Sound Effects.

    Fina, Allan de

    1992-01-01

    Explains how elementary teachers can help students understand onomatopoeia, suggesting that they define onomatopoeia, share examples of it, read poems and have students discuss onomatopoeic words, act out common household sounds, write about sound effects, and create choral readings of onomatopoeic poems. Two appropriate poems are included. (SM)

  15. Exploring Noise: Sound Pollution.

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  16. Adaptive RD Optimized Hybrid Sound Coding

    Schijndel, N.H. van; Bensa, J.; Christensen, M.G.; Colomes, C.; Edler, B.; Heusdens, R.; Jensen, J.; Jensen, S.H.; Kleijn, W.B.; Kot, V.; Kövesi, B.; Lindblom, J.; Massaloux, D.; Niamut, O.A.; Nordén, F.; Plasberg, J.H.; Vafin, R.; Virette, D.; Wübbolt, O.

    2008-01-01

    Traditionally, sound codecs have been developed with a particular application in mind, their performance being optimized for specific types of input signals, such as speech or audio (music), and application constraints, such as low bit rate, high quality, or low delay. There is, however, an

  17. A Coincidental Sound Track for "Time Flies"

    Cardany, Audrey Berger

    2014-01-01

    Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…

  18. Applying cybernetic technology to diagnose human pulmonary sounds.

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  19. Portable system for auscultation and lung sound analysis.

    Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li

    2014-01-01

    A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.

  20. Sound classification of dwellings

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  1. On the blind recovery of cardiac and respiratory sounds

    Shah, Ghafoor; Koch, Peter; Papadias, Constantinos B.

    2015-01-01

    or semi-supervised fashion depending upon the applications. A modified NMF technique is proposed which enforces the spectral structure of the target sources in mixture factorization, resulting in good separation of target sources even in the presence of nonstationary noise. Moreover, data is processed...

  2. The sound manifesto

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  3. Effects of sounds of locomotion on speech perception

    Matz Larsson

    2015-01-01

    Full Text Available Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear. The present study investigated the potential of sound created by walking to mask perception of speech and compared the masking produced by walking in step with that produced by unsynchronized walking. The masking sound (footsteps on gravel and the target sound (speech were presented through the same speaker to 15 normal-hearing subjects. The original recorded walking sound was modified to mimic the sound of two individuals walking in pace or walking out of synchrony. The participants were instructed to adjust the sound level of the target sound until they could just comprehend the speech signal ("just follow conversation" or JFC level when presented simultaneously with synchronized or unsynchronized walking sound at 40 dBA, 50 dBA, 60 dBA, or 70 dBA. Synchronized walking sounds produced slightly less masking of speech than did unsynchronized sound. The median JFC threshold in the synchronized condition was 38.5 dBA, while the corresponding value for the unsynchronized condition was 41.2 dBA. Combined results at all sound pressure levels showed an improvement in the signal-to-noise ratio (SNR for synchronized footsteps; the median difference was 2.7 dB and the mean difference was 1.2 dB [P < 0.001, repeated-measures analysis of variance (RM-ANOVA]. The difference was significant for masker levels of 50 dBA and 60 dBA, but not for 40 dBA or 70 dBA. This study provides evidence that synchronized walking may reduce the masking potential of footsteps.

  4. Stereotypic Laryngeal and Respiratory Motor Patterns Generate Different Call Types in Rat Ultrasound Vocalization

    RIEDE, TOBIAS

    2014-01-01

    Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862

  5. The respiratory microbiome and respiratory infections

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  6. Bidirectional Cardio-Respiratory Interactions in Heart Failure

    Nikola N. Radovanović

    2018-03-01

    Full Text Available We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin, with sinus rhythm and ventricular extrasystoles (HF-VES, and with permanent atrial fibrillation (HF-AF. We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF there is no coherence between signals (p < 0.01, while in HF-Sin it is reduced (p < 0.05, compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the

  7. Ultrasound sounding in air by fast-moving receiver

    Sukhanov, D.; Erzakova, N.

    2018-05-01

    A method of ultrasound imaging in the air for a fast receiver. The case, when the speed of movement of the receiver can not be neglected with respect to the speed of sound. In this case, the Doppler effect is significant, making it difficult for matched filtering of the backscattered signal. The proposed method does not use a continuous repetitive noise-sounding signal. generalized approach applies spatial matched filtering in the time domain to recover the ultrasonic tomographic images.

  8. Respiratory Syncytial Virus

    ... with facebook share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Credit: CDC This is the ... the United States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In ...

  9. Respiratory syncytial virus (RSV)

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  10. Respiratory Issues in OI

    Respiratory Issues in Osteogenesis Imperfecta \\ Introduction The respiratory system’s job is to bring oxygen into the body and remove carbon dioxide, the waste product of breathing. Because oxygen is the fuel ...

  11. Acute respiratory distress syndrome

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  12. Upper respiratory tract (image)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  13. Avian respiratory system disorders

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  14. Digitizing a sound archive

    Cone, Louise

    2017-01-01

    Danish and international artists. His methodology left us with a large collection of unique and inspirational time-based media sound artworks that have, until very recently, been inaccessible. Existing on an array of different media formats, such as open reel tapes, 8-track and 4 track cassettes, VHS......In 1990 an artist by the name of William Louis Sørensen was hired by the National Gallery of Denmark to collect important works of art – made from sound. His job was to acquire sound art, but also recordings that captured rare artistic occurrences, music, performances and happenings from both...

  15. Respiratory correlated cone beam CT

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  16. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential

    Lokajíček, Tomáš; Kuchařová, A.; Petružálek, Matěj; Šachlová, Š.; Svitek, Tomáš; Přikryl, R.

    2016-01-01

    Roč. 71, September (2016), s. 40-50 ISSN 0041-624X R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : alkali-silica reaction * accelerated test * thermal heating * mortar bar * ultrasonic sounding Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.327, year: 2016

  17. Sounds of Web Advertising

    Jessen, Iben Bredahl; Graakjær, Nicolai Jørgensgaard

    2010-01-01

    Sound seems to be a neglected issue in the study of web ads. Web advertising is predominantly regarded as visual phenomena–commercial messages, as for instance banner ads that we watch, read, and eventually click on–but only rarely as something that we listen to. The present chapter presents...... an overview of the auditory dimensions in web advertising: Which kinds of sounds do we hear in web ads? What are the conditions and functions of sound in web ads? Moreover, the chapter proposes a theoretical framework in order to analyse the communicative functions of sound in web advertising. The main...... argument is that an understanding of the auditory dimensions in web advertising must include a reflection on the hypertextual settings of the web ad as well as a perspective on how users engage with web content....

  18. Sound Art Situations

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  19. Sound as Popular Culture

    The wide-ranging texts in this book take as their premise the idea that sound is a subject through which popular culture can be analyzed in an innovative way. From an infant’s gurgles over a baby monitor to the roar of the crowd in a stadium to the sub-bass frequencies produced by sound systems...... in the disco era, sound—not necessarily aestheticized as music—is inextricably part of the many domains of popular culture. Expanding the view taken by many scholars of cultural studies, the contributors consider cultural practices concerning sound not merely as semiotic or signifying processes but as material......, physical, perceptual, and sensory processes that integrate a multitude of cultural traditions and forms of knowledge. The chapters discuss conceptual issues as well as terminologies and research methods; analyze historical and contemporary case studies of listening in various sound cultures; and consider...

  20. It sounds good!

    CERN Bulletin

    2010-01-01

    Both the atmosphere and we ourselves are hit by hundreds of particles every second and yet nobody has ever heard a sound coming from these processes. Like cosmic rays, particles interacting inside the detectors at the LHC do not make any noise…unless you've decided to use the ‘sonification’ technique, in which case you might even hear the Higgs boson sound like music. Screenshot of the first page of the "LHC sound" site. A group of particle physicists, composers, software developers and artists recently got involved in the ‘LHC sound’ project to make the particles at the LHC produce music. Yes…music! The ‘sonification’ technique converts data into sound. “In this way, if you implement the right software you can get really nice music out of the particle tracks”, says Lily Asquith, a member of the ATLAS collaboration and one of the initiators of the project. The ‘LHC...

  1. Sound Visualization and Holography

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  2. What Is Respiratory Distress Syndrome?

    ... Home / Respiratory Distress Syndrome Respiratory Distress Syndrome Also known as What Is Respiratory ... This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of ...

  3. Severe acute respiratory syndrome (SARS)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  4. Respiratory analysis system and method

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  5. Hear where we are sound, ecology, and sense of place

    Stocker, Michael

    2013-01-01

    Throughout history, hearing and sound perception have been typically framed in the context of how sound conveys information and how that information influences the listener. Hear Where We Are inverts this premise and examines how humans and other hearing animals use sound to establish acoustical relationships with their surroundings. This simple inversion reveals a panoply of possibilities by which we can re-evaluate how hearing animals use, produce, and perceive sound. Nuance in vocalizations become signals of enticement or boundary setting; silence becomes a field ripe in auditory possibilities; predator/prey relationships are infused with acoustic deception, and sounds that have been considered territorial cues become the fabric of cooperative acoustical communities. This inversion also expands the context of sound perception into a larger perspective that centers on biological adaptation within acoustic habitats. Here, the rapid synchronized flight patterns of flocking birds and the tight maneuvering of s...

  6. Sound source measurement by using a passive sound insulation and a statistical approach

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: METSAT A1 Signal Processor (P/N: 1331670-2, S/N: F04)

    Lund, D.

    1998-01-01

    This report presents a description of the tests performed, and the test data, for the A1 METSAT Signal Processor Assembly PN: 1331679-2, S/N F04. The assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive Test and Integration Procedure." The objective is to demonstrate functionality of the signal processor prior to instrument integration.

  8. Swallowing sound detection using hidden markov modeling of recurrence plot features

    Aboofazeli, Mohammad; Moussavi, Zahra

    2009-01-01

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  9. Swallowing sound detection using hidden markov modeling of recurrence plot features

    Aboofazeli, Mohammad [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: umaboofa@cc.umanitoba.ca; Moussavi, Zahra [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: mousavi@ee.umanitoba.ca

    2009-01-30

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  10. The Textile Form of Sound

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  11. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  12. Accuracy of pulmonary auscultation to detect abnormal respiratory mechanics: a cross-sectional diagnostic study.

    Xavier, Glaciele Nascimento; Duarte, Antonio Carlos Magalhães; Melo-Silva, César Augusto; dos Santos, Carlos Eduardo Ventura Gaio; Amado, Veronica Moreira

    2014-12-01

    Pulmonary auscultation is a method used in clinical practice for the evaluation and detection of abnormalities relating to the respiratory system. This method has limitations, as it depends on the experience and hearing acuity of the examiner to determine adventitious sounds. In this context, it's important to analyze whether there is a correlation between auscultation of lung sounds and the behavior of the respiratory mechanical properties of the respiratory system in patients with immediate postoperative cardiac surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bidirectional Cardio-Respiratory Interactions in Heart Failure.

    Radovanović, Nikola N; Pavlović, Siniša U; Milašinović, Goran; Kirćanski, Bratislav; Platiša, Mirjana M

    2018-01-01

    We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals ( p respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.

  14. A system for heart sounds classification.

    Grzegorz Redlarski

    Full Text Available The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.

  15. Sound & The Society

    Schulze, Holger

    2014-01-01

    How are those sounds you hear right now socially constructed and evaluated, how are they architecturally conceptualized and how dependant on urban planning, industrial developments and political decisions are they really? How is your ability to hear intertwined with social interactions and their ...... and their professional design? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Nina Backmann, Jochen Bonz, Stefan Krebs, Esther Schelander & Holger Schulze......How are those sounds you hear right now socially constructed and evaluated, how are they architecturally conceptualized and how dependant on urban planning, industrial developments and political decisions are they really? How is your ability to hear intertwined with social interactions...

  16. Urban Sound Interfaces

    Breinbjerg, Morten

    2012-01-01

    This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live. In this pa......This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live....... In this paper, three sound works are discussed in relation to the iPod, which is considered as a more private way to explore urban environments, and as a way to control the individual perception of urban spaces....

  17. Predicting outdoor sound

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  18. Wheeze sound analysis using computer-based techniques: a systematic review.

    Ghulam Nabi, Fizza; Sundaraj, Kenneth; Chee Kiang, Lam; Palaniappan, Rajkumar; Sundaraj, Sebastian

    2017-10-31

    Wheezes are high pitched continuous respiratory acoustic sounds which are produced as a result of airway obstruction. Computer-based analyses of wheeze signals have been extensively used for parametric analysis, spectral analysis, identification of airway obstruction, feature extraction and diseases or pathology classification. While this area is currently an active field of research, the available literature has not yet been reviewed. This systematic review identified articles describing wheeze analyses using computer-based techniques on the SCOPUS, IEEE Xplore, ACM, PubMed and Springer and Elsevier electronic databases. After a set of selection criteria was applied, 41 articles were selected for detailed analysis. The findings reveal that 1) computerized wheeze analysis can be used for the identification of disease severity level or pathology, 2) further research is required to achieve acceptable rates of identification on the degree of airway obstruction with normal breathing, 3) analysis using combinations of features and on subgroups of the respiratory cycle has provided a pathway to classify various diseases or pathology that stem from airway obstruction.

  19. Sound & The Senses

    Schulze, Holger

    2012-01-01

    How are those sounds you hear right now technically generated and post-produced, how are they aesthetically conceptualized and how culturally dependant are they really? How is your ability to hear intertwined with all the other senses and their cultural, biographical and technological constructio...... over time? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Jonathan Sterne, AGF a.k.a Antye Greie, Jens Gerrit Papenburg & Holger Schulze....

  20. Handbook for sound engineers

    Ballou, Glen

    2013-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers. All audio topics are explored: if you work on anything related to audio you should not be without this book! The 4th edition of this trusted reference has been updated to reflect changes in the industry since the publication of the 3rd edition in 2002 -- including new technologies like software-based recording systems such as Pro Tools and Sound Forge; digital recording using MP3, wave files and others; mobile audio devices such as iPods and MP3 players. Over 40 topic

  1. Sound for digital video

    Holman, Tomlinson

    2013-01-01

    Achieve professional quality sound on a limited budget! Harness all new, Hollywood style audio techniques to bring your independent film and video productions to the next level.In Sound for Digital Video, Second Edition industry experts Tomlinson Holman and Arthur Baum give you the tools and knowledge to apply recent advances in audio capture, video recording, editing workflow, and mixing to your own film or video with stunning results. This fresh edition is chockfull of techniques, tricks, and workflow secrets that you can apply to your own projects from preproduction

  2. Beacons of Sound

    Knakkergaard, Martin

    2018-01-01

    The chapter discusses expectations and imaginations vis-à-vis the concert hall of the twenty-first century. It outlines some of the central historical implications of western culture’s haven for sounding music. Based on the author’s study of the Icelandic concert-house Harpa, the chapter considers...... how these implications, together with the prime mover’s visions, have been transformed as private investors and politicians took over. The chapter furthermore investigates the objectives regarding musical sound and the far-reaching demands concerning acoustics that modern concert halls are required...

  3. Neuroplasticity beyond sounds

    Reybrouck, Mark; Brattico, Elvira

    2015-01-01

    Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions...... and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active "agent" coping in highly individual ways with the sounds. The findings concerning the neural...

  4. Eliciting Sound Memories.

    Harris, Anna

    2015-11-01

    Sensory experiences are often considered triggers of memory, most famously a little French cake dipped in lime blossom tea. Sense memory can also be evoked in public history research through techniques of elicitation. In this article I reflect on different social science methods for eliciting sound memories such as the use of sonic prompts, emplaced interviewing, and sound walks. I include examples from my research on medical listening. The article considers the relevance of this work for the conduct of oral histories, arguing that such methods "break the frame," allowing room for collaborative research connections and insights into the otherwise unarticulatable.

  5. SoleSound

    Zanotto, Damiano; Turchet, Luca; Boggs, Emily Marie

    2014-01-01

    This paper introduces the design of SoleSound, a wearable system designed to deliver ecological, audio-tactile, underfoot feedback. The device, which primarily targets clinical applications, uses an audio-tactile footstep synthesis engine informed by the readings of pressure and inertial sensors...... embedded in the footwear to integrate enhanced feedback modalities into the authors' previously developed instrumented footwear. The synthesis models currently implemented in the SoleSound simulate different ground surface interactions. Unlike similar devices, the system presented here is fully portable...

  6. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  7. Understanding Animal Detection of Precursor Earthquake Sounds.

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  8. Neurological Respiratory Failure

    Mohan Rudrappa

    2018-01-01

    Full Text Available West Nile virus infection in humans is mostly asymptomatic. Less than 1% of neuro-invasive cases show a fatality rate of around 10%. Acute flaccid paralysis of respiratory muscles leading to respiratory failure is the most common cause of death. Although the peripheral nervous system can be involved, isolated phrenic nerve palsy leading to respiratory failure is rare and described in only two cases in the English literature. We present another case of neurological respiratory failure due to West Nile virus-induced phrenic nerve palsy. Our case reiterates the rare, but lethal, consequences of West Nile virus infection, and the increase of its awareness among physicians.

  9. Sulfur mustard and respiratory diseases.

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  10. Heart sounds analysis using probability assessment

    Plešinger, Filip; Viščor, Ivo; Halámek, Josef; Jurčo, Juraj; Jurák, Pavel

    2017-01-01

    Roč. 38, č. 8 (2017), s. 1685-1700 ISSN 0967-3334 R&D Projects: GA ČR GAP102/12/2034; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : heart sounds * FFT * machine learning * signal averaging * probability assessment Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 2.058, year: 2016

  11. Sound generating flames of a gas turbine burner observed by laser-induced fluorescence

    Hubschmid, W; Inauen, A.; Bombach, R.; Kreutner, W.; Schenker, S.; Zajadatz, M. [Alstom (Switzerland); Motz, C. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland); Paschereit, C.O. [Alstom (Switzerland)

    2002-03-01

    We performed 2-D OH LIF measurements to investigate the sound emission of a gas turbine combustor. The measured LIF signal was averaged over pulses at constant phase of the dominant acoustic oscillation. A periodic variation in intensity and position of the signal is observed and it is related to the measured sound intensity. (author)

  12. Sound Symbolism in Basic Vocabulary

    Søren Wichmann

    2010-04-01

    Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.

  13. ABOUT SOUNDS IN VIDEO GAMES

    Denikin Anton A.

    2012-12-01

    Full Text Available The article considers the aesthetical and practical possibilities for sounds (sound design in video games and interactive applications. Outlines the key features of the game sound, such as simulation, representativeness, interactivity, immersion, randomization, and audio-visuality. The author defines the basic terminology in study of game audio, as well as identifies significant aesthetic differences between film sounds and sounds in video game projects. It is an attempt to determine the techniques of art analysis for the approaches in study of video games including aesthetics of their sounds. The article offers a range of research methods, considering the video game scoring as a contemporary creative practice.

  14. Exploring Sound with Insects

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  15. See This Sound

    Kristensen, Thomas Bjørnsten

    2009-01-01

    Anmeldelse af udstillingen See This Sound på Lentos Kunstmuseum Linz, Østrig, som markerer den foreløbige kulmination på et samarbejde mellem Lentos Kunstmuseum og Ludwig Boltzmann Institute Media.Art.Research. Udover den konkrete udstilling er samarbejdet tænkt som en ambitiøs, tværfaglig...

  16. Photoacoustic Sounds from Meteors.

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  17. Sound of Stockholm

    Groth, Sanne Krogh

    2013-01-01

    Med sine kun 4 år bag sig er Sound of Stockholm relativt ny i det internationale festival-landskab. Festivalen er efter sigende udsprunget af en større eller mindre frustration over, at den svenske eksperimentelle musikscenes forskellige foreninger og organisationer gik hinanden bedene, og...

  18. Making Sense of Sound

    Menon, Deepika; Lankford, Deanna

    2016-01-01

    From the earliest days of their lives, children are exposed to all kinds of sound, from soft, comforting voices to the frightening rumble of thunder. Consequently, children develop their own naïve explanations largely based upon their experiences with phenomena encountered every day. When new information does not support existing conceptions,…

  19. The Sounds of Metal

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  20. The Universe of Sound

    CERN. Geneva

    2013-01-01

    Sound Scultor, Bill Fontana, the second winner of the Prix Ars Electronica Collide@CERN residency award, and his science inspiration partner, CERN cosmologist Subodh Patil, present their work in art and science at the CERN Globe of Science and Innovation on 4 July 2013 at 19:00.

  1. Urban Sound Ecologies

    Groth, Sanne Krogh; Samson, Kristine

    2013-01-01

    . The article concludes that the ways in which recent sound installations work with urban ecologies vary. While two of the examples blend into the urban environment, the other transfers the concert format and its mode of listening to urban space. Last, and in accordance with recent soundscape research, we point...

  2. Sounds of Space

    Gurnett, D. A.

    2005-12-01

    Starting in the early 1960s, spacecraft-borne plasma wave instruments revealed that space is filled with an astonishing variety of radio and plasma wave sounds, which have come to be called "sounds of space." For over forty years these sounds have been collected and played to a wide variety of audiences, often as the result of press conferences or press releases involving various NASA projects for which the University of Iowa has provided plasma wave instruments. This activity has led to many interviews on local and national radio programs, and occasionally on programs haviang world-wide coverage, such as the BBC. As a result of this media coverage, we have been approached many times by composers requesting copies of our space sounds for use in their various projects, many of which involve electronic synthesis of music. One of these collaborations led to "Sun Rings," which is a musical event produced by the Kronos Quartet that has played to large audiences all over the world. With the availability of modern computer graphic techniques we have recently been attempting to integrate some of these sound of space into an educational audio/video web site that illustrates the scientific principles involved in the origin of space plasma waves. Typically I try to emphasize that a substantial gas pressure exists everywhere in space in the form of an ionized gas called a plasma, and that this plasma can lead to a wide variety of wave phenomenon. Examples of some of this audio/video material will be presented.

  3. Design and Calibration Tests of an Active Sound Intensity Probe

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  4. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  5. The Sound Quality of Cochlear Implants: Studies With Single-sided Deaf Patients.

    Dorman, Michael F; Natale, Sarah Cook; Butts, Austin M; Zeitler, Daniel M; Carlson, Matthew L

    2017-09-01

    The goal of the present study was to assess the sound quality of a cochlear implant for single-sided deaf (SSD) patients fit with a cochlear implant (CI). One of the fundamental, unanswered questions in CI research is "what does an implant sound like?" Conventional CI patients must use the memory of a clean signal, often decades old, to judge the sound quality of their CIs. In contrast, SSD-CI patients can rate the similarity of a clean signal presented to the CI ear and candidate, CI-like signals presented to the ear with normal hearing. For Experiment 1 four types of stimuli were created for presentation to the normal hearing ear: noise vocoded signals, sine vocoded signals, frequency shifted, sine vocoded signals and band-pass filtered, natural speech signals. Listeners rated the similarity of these signals to unmodified signals sent to the CI on a scale of 0 to 10 with 10 being a complete match to the CI signal. For Experiment 2 multitrack signal mixing was used to create natural speech signals that varied along multiple dimensions. In Experiment 1 for eight adult SSD-CI listeners, the best median similarity rating to the sound of the CI for noise vocoded signals was 1.9; for sine vocoded signals 2.9; for frequency upshifted signals, 1.9; and for band pass filtered signals, 5.5. In Experiment 2 for three young listeners, combinations of band pass filtering and spectral smearing lead to ratings of 10. The sound quality of noise and sine vocoders does not generally correspond to the sound quality of cochlear implants fit to SSD patients. Our preliminary conclusion is that natural speech signals that have been muffled to one degree or another by band pass filtering and/or spectral smearing provide a close, but incomplete, match to CI sound quality for some patients.

  6. A framework for automatic heart sound analysis without segmentation

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  7. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  8. Zero sound and quasiwave: separation in the magnetic field

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  9. Product sounds : Fundamentals and application

    Ozcan-Vieira, E.

    2008-01-01

    Products are ubiquitous, so are the sounds emitted by products. Product sounds influence our reasoning, emotional state, purchase decisions, preference, and expectations regarding the product and the product's performance. Thus, auditory experience elicited by product sounds may not be just about

  10. Sonic mediations: body, sound, technology

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  11. System for actively reducing sound

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  12. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  13. Wood for sound.

    Wegst, Ulrike G K

    2006-10-01

    The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.

  14. Sounds in context

    Weed, Ethan

    A sound is never just a sound. It is becoming increasingly clear that auditory processing is best thought of not as a one-way afferent stream, but rather as an ongoing interaction between interior processes and the environment. Even the earliest stages of auditory processing in the nervous system...... time-course of contextual influence on auditory processing in three different paradigms: a simple mismatch negativity paradigm with tones of differing pitch, a multi-feature mismatch negativity paradigm in which tones were embedded in a complex musical context, and a cross-modal paradigm, in which...... auditory processing of emotional speech was modulated by an accompanying visual context. I then discuss these results in terms of their implication for how we conceive of the auditory processing stream....

  15. Sound for Health

    CERN. Geneva

    2016-01-01

    From astronomy to biomedical sciences: music and sound as tools for scientific investigation Music and science are probably two of the most intrinsically linked disciplines in the spectrum of human knowledge. Science and technology have revolutionised the way artists work, interact, and create. The impact of innovative materials, new communication media, more powerful computers, and faster networks on the creative process is evident: we all can become artists in the digital era. What is less known, is that arts, and music in particular, are having a profound impact the way scientists operate, and think. From the early experiments by Kepler to the modern data sonification applications in medicine – sound and music are playing an increasingly crucial role in supporting science and driving innovation. In this talk. Dr. Domenico Vicinanza will be highlighting the complementarity and the natural synergy between music and science, with specific reference to biomedical sciences. Dr. Vicinanza will take t...

  16. Sound in Ergonomics

    Jebreil Seraji

    1999-03-01

    Full Text Available The word of “Ergonomics “is composed of two separate parts: “Ergo” and” Nomos” and means the Human Factors Engineering. Indeed, Ergonomics (or human factors is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance. It has applied different sciences such as Anatomy and physiology, anthropometry, engineering, psychology, biophysics and biochemistry from different ergonomics purposes. Sound when is referred as noise pollution can affect such balance in human life. The industrial noise caused by factories, traffic jam, media, and modern human activity can affect the health of the society.Here we are aimed at discussing sound from an ergonomic point of view.

  17. Second sound scattering in superfluid helium

    Rosgen, T.

    1985-01-01

    Focusing cavities are used to study the scattering of second sound in liquid helium II. The special geometries reduce wall interference effects and allow measurements in very small test volumes. In a first experiment, a double elliptical cavity is used to focus a second sound wave onto a small wire target. A thin film bolometer measures the side scattered wave component. The agreement with a theoretical estimate is reasonable, although some problems arise from the small measurement volume and associated alignment requirements. A second cavity is based on confocal parabolas, thus enabling the use of large planar sensors. A cylindrical heater produces again a focused second sound wave. Three sensors monitor the transmitted wave component as well as the side scatter in two different directions. The side looking sensors have very high sensitivities due to their large size and resistance. Specially developed cryogenic amplifers are used to match them to the signal cables. In one case, a second auxiliary heater is used to set up a strong counterflow in the focal region. The second sound wave then scatters from the induced fluid disturbances

  18. Airspace: Antarctic Sound Transmission

    Polli, Andrea

    2009-01-01

    This paper investigates how sound transmission can contribute to the public understanding of climate change within the context of the Poles. How have such transmission-based projects developed specifically in the Arctic and Antarctic, and how do these works create alternative pathways in order to help audiences better understand climate change? The author has created the media project Sonic Antarctica from a personal experience of the Antarctic. The work combines soundscape recordings and son...

  19. Noise detection during heart sound recording using periodicity signatures

    Kumar, D; Carvalho, P; Paiva, R P; Henriques, J; Antunes, M

    2011-01-01

    Heart sound is a valuable biosignal for diagnosis of a large set of cardiac diseases. Ambient and physiological noise interference is one of the most usual and highly probable incidents during heart sound acquisition. It tends to change the morphological characteristics of heart sound that may carry important information for heart disease diagnosis. In this paper, we propose a new method applicable in real time to detect ambient and internal body noises manifested in heart sound during acquisition. The algorithm is developed on the basis of the periodic nature of heart sounds and physiologically inspired criteria. A small segment of uncontaminated heart sound exhibiting periodicity in time as well as in the time-frequency domain is first detected and applied as a reference signal in discriminating noise from the sound. The proposed technique has been tested with a database of heart sounds collected from 71 subjects with several types of heart disease inducing several noises during recording. The achieved average sensitivity and specificity are 95.88% and 97.56%, respectively

  20. Sounds scary? Lack of habituation following the presentation of novel sounds.

    Tine A Biedenweg

    Full Text Available BACKGROUND: Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. METHODOLOGY: We investigated responses by western grey kangaroos (Macropus fulignosus towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides calls and artificial sounds (faux snake hiss and bull whip crack. We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. PRINCIPAL FINDINGS: Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%. Additionally, 24% of individuals took flight and moved out of area (50 m radius in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%. Increasing rate of presentation (12x/min ×2 min caused 71% of animals to move out of the area. CONCLUSIONS/SIGNIFICANCE: The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that 'more is not always better'. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.

  1. Metabolic and respiratory costs of increasing song amplitude in zebra finches.

    Sue Anne Zollinger

    Full Text Available Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure.

  2. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  3. Respiratory medicine of reptiles.

    Schumacher, Juergen

    2011-05-01

    Noninfectious and infectious causes have been implicated in the development of respiratory tract disease in reptiles. Treatment modalities in reptiles have to account for species differences in response to therapeutic agents as well as interpretation of diagnostic findings. Data on effective drugs and dosages for the treatment of respiratory diseases are often lacking in reptiles. Recently, advances have been made on the application of advanced imaging modalities, especially computed tomography for the diagnosis and treatment monitoring of reptiles. This article describes common infectious and noninfectious causes of respiratory disease in reptiles, including diagnostic and therapeutic regimen. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Facilitated auditory detection for speech sounds

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  5. Characteristic sounds facilitate visual search.

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  6. Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort.

    Alonso, Joan Francesc; Mañanas, Miguel A; Hoyer, Dirk; Topor, Zbigniew L; Bruce, Eugene N

    2007-09-01

    Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: (1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); (2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.

  7. Spike-timing-based computation in sound localization.

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  8. Active sound reduction system and method

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  9. Respiratory Syncytial Virus (RSV)

    2013-02-04

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.  Created: 2/4/2013 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases (DVD).   Date Released: 2/13/2013.

  10. Obesity and respiratory diseases

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ produ...

  11. Acute respiratory distress syndrome

    Confalonieri, Marco; Salton, Francesco; Fabiano, Francesco

    2017-01-01

    Since its first description, the acute respiratory distress syndrome (ARDS) has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foste...

  12. Respiratory Syncytial Virus Vaccines

    Dudas, Robert A.; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  13. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.

    Perez Carrillo, Alfonso; Bonada, Jordi; Patynen, Jukka; Valimaki, Vesa

    2011-08-01

    This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.

  14. Magnetospheric radio sounding

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  15. Handbook for sound engineers

    Ballou, Glen

    2015-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers, and is a must read for all who work in audio.With contributions from many of the top professionals in the field, including Glen Ballou on interpretation systems, intercoms, assistive listening, and fundamentals and units of measurement, David Miles Huber on MIDI, Bill Whitlock on audio transformers and preamplifiers, Steve Dove on consoles, DAWs, and computers, Pat Brown on fundamentals, gain structures, and test and measurement, Ray Rayburn on virtual systems, digital interfacing, and preamplifiers

  16. Facing Sound - Voicing Art

    Lønstrup, Ansa

    2013-01-01

    This article is based on examples of contemporary audiovisual art, with a special focus on the Tony Oursler exhibition Face to Face at Aarhus Art Museum ARoS in Denmark in March-July 2012. My investigation involves a combination of qualitative interviews with visitors, observations of the audience´s...... interactions with the exhibition and the artwork in the museum space and short analyses of individual works of art based on reception aesthetics and phenomenology and inspired by newer writings on sound, voice and listening....

  17. JINGLE: THE SOUNDING SYMBOL

    Bysko Maxim V.

    2013-12-01

    Full Text Available The article considers the role of jingles in the industrial era, from the occurrence of the regular radio broadcasting, sound films and television up of modern video games, audio and video podcasts, online broadcasts, and mobile communications. Jingles are researched from the point of view of the theory of symbols: the forward motion is detected in the process of development of jingles from the social symbols (radio callsigns to the individual signs-images (ringtones. The role of technical progress in the formation of jingles as important cultural audio elements of modern digital civilization.

  18. Second Sound for Heat Source Localization

    Vennekate, Hannes; Uhrmacher, Michael; Quadt, Arnulf; Grosse-Knetter, Joern

    2011-01-01

    Defects on the surface of superconducting cavities can limit their accelerating gradient by localized heating. This results in a phase transition to the normal conduction state | a quench. A new application, involving Oscillating Superleak Transducers (OST) to locate such quench inducing heat spots on the surface of the cavities, has been developed by D. Hartill et al. at Cornell University in 2008. The OSTs enable the detection of heat transfer via second sound in super uid helium. This thesis presents new results on the analysis of their signal. Its behavior has been studied for dierent circumstances at setups at the University of Gottingen and at CERN. New approaches for an automated signal processing have been developed. Furthermore, a rst test setup for a single-cell Superconducting Proton Linac (SPL) cavity has been prepared. Recommendations of a better signal retrieving for its operation are presented.

  19. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  20. Subjective Evaluation of Audiovisual Signals

    F. Fikejz

    2010-01-01

    Full Text Available This paper deals with subjective evaluation of audiovisual signals, with emphasis on the interaction between acoustic and visual quality. The subjective test is realized by a simple rating method. The audiovisual signal used in this test is a combination of images compressed by JPEG compression codec and sound samples compressed by MPEG-1 Layer III. Images and sounds have various contents. It simulates a real situation when the subject listens to compressed music and watches compressed pictures without the access to original, i.e. uncompressed signals.

  1. Surfactant Protein D in Respiratory and Non-Respiratory Diseases

    Sorensen, Grith L.

    2018-01-01

    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  2. Dementias show differential physiological responses to salient sounds.

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  3. Dementias show differential physiological responses to salient sounds

    Phillip David Fletcher

    2015-03-01

    Full Text Available Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (‘looming’ or less salient withdrawing sounds. Pupil dilatation responses and behavioural rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n=10; behavioural variant frontotemporal dementia, n=16, progressive non-fluent aphasia, n=12; amnestic Alzheimer’s disease, n=10 and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioural response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer’s disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  4. Dementias show differential physiological responses to salient sounds

    Fletcher, Phillip D.; Nicholas, Jennifer M.; Shakespeare, Timothy J.; Downey, Laura E.; Golden, Hannah L.; Agustus, Jennifer L.; Clark, Camilla N.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (“looming”) or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases. PMID:25859194

  5. Managing respiratory problems in athletes.

    Hull, James H; Ansley, Les; Robson-Ansley, Paula; Parsons, Jonathan P

    2012-08-01

    Respiratory problems are common in athletes of all abilities and can significantly impact upon their health and performance. In this article, we provide an overview of respiratory physiology in athletes. We also discuss the assessment and management of common clinical respiratory conditions as they pertain to athletes, including airways disease, respiratory tract infection and pneumothorax. We focus on providing a pragmatic approach and highlight important caveats for the physician treating respiratory conditions in this highly specific population.

  6. Phonocardiography Signal Processing

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  7. Sound Velocity in Soap Foams

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  8. Analysis of environmental sounds

    Lee, Keansub

    Environmental sound archives - casual recordings of people's daily life - are easily collected by MPS players or camcorders with low cost and high reliability, and shared in the web-sites. There are two kinds of user generated recordings we would like to be able to handle in this thesis: Continuous long-duration personal audio and Soundtracks of short consumer video clips. These environmental recordings contain a lot of useful information (semantic concepts) related with activity, location, occasion and content. As a consequence, the environment archives present many new opportunities for the automatic extraction of information that can be used in intelligent browsing systems. This thesis proposes systems for detecting these interesting concepts on a collection of these real-world recordings. The first system is to segment and label personal audio archives - continuous recordings of an individual's everyday experiences - into 'episodes' (relatively consistent acoustic situations lasting a few minutes or more) using the Bayesian Information Criterion and spectral clustering. The second system is for identifying regions of speech or music in the kinds of energetic and highly-variable noise present in this real-world sound. Motivated by psychoacoustic evidence that pitch is crucial in the perception and organization of sound, we develop a noise-robust pitch detection algorithm to locate speech or music-like regions. To avoid false alarms resulting from background noise with strong periodic components (such as air-conditioning), a new scheme is added in order to suppress these noises in the domain of autocorrelogram. In addition, the third system is to automatically detect a large set of interesting semantic concepts; which we chose for being both informative and useful to users, as well as being technically feasible. These 25 concepts are associated with people's activities, locations, occasions, objects, scenes and sounds, and are based on a large collection of

  9. Sounds like Team Spirit

    Hoffman, Edward

    2002-01-01

    I recently accompanied my son Dan to one of his guitar lessons. As I sat in a separate room, I focused on the music he was playing and the beautiful, robust sound that comes from a well-played guitar. Later that night, I woke up around 3 am. I tend to have my best thoughts at this hour. The trouble is I usually roll over and fall back asleep. This time I was still awake an hour later, so I got up and jotted some notes down in my study. I was thinking about the pure, honest sound of a well-played instrument. From there my mind wandered into the realm of high-performance teams and successful projects. (I know this sounds weird, but this is the sort of thing I think about at 3 am. Maybe you have your own weird thoughts around that time.) Consider a team in relation to music. It seems to me that a crack team can achieve a beautiful, perfect unity in the same way that a band of brilliant musicians can when they're in harmony with one another. With more than a little satisfaction I have to admit, I started to think about the great work performed for you by the Knowledge Sharing team, including this magazine you are reading. Over the past two years I personally have received some of my greatest pleasures as the APPL Director from the Knowledge Sharing activities - the Masters Forums, NASA Center visits, ASK Magazine. The Knowledge Sharing team expresses such passion for their work, just like great musicians convey their passion in the music they play. In the case of Knowledge Sharing, there are many factors that have made this so enjoyable (and hopefully worthwhile for NASA). Three ingredients come to mind -- ingredients that have produced a signature sound. First, through the crazy, passionate playing of Alex Laufer, Michelle Collins, Denise Lee, and Todd Post, I always know that something startling and original is going to come out of their activities. This team has consistently done things that are unique and innovative. For me, best of all is that they are always

  10. Measurement of sound velocity profiles in fluids for process monitoring

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  11. Primate auditory recognition memory performance varies with sound type.

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  12. Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings

    Ryunosuke Sato

    2018-06-01

    Full Text Available Information on bowel motility can be obtained via magnetic resonance imaging (MRIs and X-ray imaging. However, these approaches require expensive medical instruments and are unsuitable for frequent monitoring. Bowel sounds (BS can be conveniently obtained using electronic stethoscopes and have recently been employed for the evaluation of bowel motility. More recently, our group proposed a novel method to evaluate bowel motility on the basis of BS acquired using a noncontact microphone. However, the method required manually detecting BS in the sound recordings, and manual segmentation is inconvenient and time consuming. To address this issue, herein, we propose a new method to automatically evaluate bowel motility for noncontact sound recordings. Using simulations for the sound recordings obtained from 20 human participants, we showed that the proposed method achieves an accuracy of approximately 90% in automatic bowel sound detection when acoustic feature power-normalized cepstral coefficients are used as inputs to artificial neural networks. Furthermore, we showed that bowel motility can be evaluated based on the three acoustic features in the time domain extracted by our method: BS per minute, signal-to-noise ratio, and sound-to-sound interval. The proposed method has the potential to contribute towards the development of noncontact evaluation methods for bowel motility.

  13. Locating and classification of structure-borne sound occurrence using wavelet transformation

    Winterstein, Martin; Thurnreiter, Martina

    2011-01-01

    For the surveillance of nuclear facilities with respect to detached or loose parts within the pressure boundary structure-borne sound detector systems are used. The impact of loose parts on the wall causes energy transfer to the wall that is measured a so called singular sound event. The run-time differences of sound signals allow a rough locating of the loose part. The authors performed a finite element based simulation of structure-borne sound measurements using real geometries. New knowledge on sound wave propagation, signal analysis and processing, neuronal networks or hidden Markov models were considered. Using the wavelet transformation it is possible to improve the localization of structure-borne sound events.

  14. Sound therapies for tinnitus management.

    Jastreboff, Margaret M

    2007-01-01

    Many people with bothersome (suffering) tinnitus notice that their tinnitus changes in different acoustical surroundings, it is more intrusive in silence and less profound in the sound enriched environments. This observation led to the development of treatment methods for tinnitus utilizing sound. Many of these methods are still under investigation in respect to their specific protocol and effectiveness and only some have been objectively evaluated in clinical trials. This chapter will review therapies for tinnitus using sound stimulation.

  15. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  16. Towards parameter-free classification of sound effects in movies

    Chu, Selina; Narayanan, Shrikanth; Kuo, C.-C. J.

    2005-08-01

    The problem of identifying intense events via multimedia data mining in films is investigated in this work. Movies are mainly characterized by dialog, music, and sound effects. We begin our investigation with detecting interesting events through sound effects. Sound effects are neither speech nor music, but are closely associated with interesting events such as car chases and gun shots. In this work, we utilize low-level audio features including MFCC and energy to identify sound effects. It was shown in previous work that the Hidden Markov model (HMM) works well for speech/audio signals. However, this technique requires a careful choice in designing the model and choosing correct parameters. In this work, we introduce a framework that will avoid such necessity and works well with semi- and non-parametric learning algorithms.

  17. TH-E-17A-01: Internal Respiratory Surrogate for 4D CT Using Fourier Transform and Anatomical Features

    Hui, C; Suh, Y; Robertson, D; Pan, T; Das, P; Crane, C; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance of the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates.

  18. TH-E-17A-01: Internal Respiratory Surrogate for 4D CT Using Fourier Transform and Anatomical Features

    Hui, C; Suh, Y; Robertson, D; Pan, T; Das, P; Crane, C; Beddar, S

    2014-01-01

    Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance of the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates

  19. Musical Sound, Instruments, and Equipment

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  20. Sounding out the logo shot

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  1. Maximum likelihood approach to “informed” Sound Source Localization for Hearing Aid applications

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    Most state-of-the-art Sound Source Localization (SSL) algorithms have been proposed for applications which are "uninformed'' about the target sound content; however, utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid Systems (HASs) to access to an almost noise......-free sound signal of the target talker at the HAS via the wireless connection. Therefore, in this paper, we propose a maximum likelihood (ML) approach, which we call MLSSL, to estimate the Direction of Arrival (DoA) of the target signal given access to the target signal content. Compared with other "informed...

  2. Obesity and respiratory diseases

    Christopher Zammit

    2010-10-01

    Full Text Available Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.Keywords: obesity, lung function, obstructive sleep apnea, obesity hypoventilation syndrome, anesthesia

  3. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    Ye Peng-Cheng; Pan Guang

    2015-01-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. (paper)

  4. Verification and compensation of respiratory motion using an ultrasound imaging system

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-01-01

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  5. An experimental study on the sound and frequency of the Chinese ancient variable bell

    Chen Dongsheng; Hu Haining; Xing Lirong; Liu Yongsheng

    2009-01-01

    This paper describes an interesting sound phenomenon from a modern copy of the Chinese ancient variable bell which can emit distinctly different sounds at different temperatures. By means of audition-spectrum analyser software-and PC, the sound signals of the variable bell are collected and the fundamental spectra are shown on the PC. The configuration is simple and cheap, suitable for demonstration and laboratory exercises

  6. An experimental study on the sound and frequency of the Chinese ancient variable bell

    Chen Dongsheng; Hu Haining; Xing Lirong; Liu Yongsheng [Department of Maths and Physics, Shanghai University of Electric Power, 200090 Shanghai (China)], E-mail: cds781@hotmail.com

    2009-05-15

    This paper describes an interesting sound phenomenon from a modern copy of the Chinese ancient variable bell which can emit distinctly different sounds at different temperatures. By means of audition-spectrum analyser software-and PC, the sound signals of the variable bell are collected and the fundamental spectra are shown on the PC. The configuration is simple and cheap, suitable for demonstration and laboratory exercises.

  7. Sound Is Sound: Film Sound Techniques and Infrasound Data Array Processing

    Perttu, A. B.; Williams, R.; Taisne, B.; Tailpied, D.

    2017-12-01

    A multidisciplinary collaboration between earth scientists and a sound designer/composer was established to explore the possibilities of audification analysis of infrasound array data. Through the process of audification of the infrasound we began to experiment with techniques and processes borrowed from cinema to manipulate the noise content of the signal. The results of this posed the question: "Would the accuracy of infrasound data array processing be enhanced by employing these techniques?". So a new area of research was born from this collaboration and highlights the value of these interactions and the unintended paths that can occur from them. Using a reference event database, infrasound data were processed using these new techniques and the results were compared with existing techniques to asses if there was any improvement to detection capability for the array. With just under one thousand volcanoes, and a high probability of eruption, Southeast Asia offers a unique opportunity to develop and test techniques for regional monitoring of volcanoes with different technologies. While these volcanoes are monitored locally (e.g. seismometer, infrasound, geodetic and geochemistry networks) and remotely (e.g. satellite and infrasound), there are challenges and limitations to the current monitoring capability. Not only is there a high fraction of cloud cover in the region, making plume observation more difficult via satellite, there have been examples of local monitoring networks and telemetry being destroyed early in the eruptive sequence. The success of local infrasound studies to identify explosions at volcanoes, and calculate plume heights from these signals, has led to an interest in retrieving source parameters for the purpose of ash modeling with a regional network independent of cloud cover.

  8. Sounding the Alarm: An Introduction to Ecological Sound Art

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  9. Sound, music and gender in mobile games

    Machin, David; Van Leeuwen, T.

    2016-01-01

    resource, they can communicate very specific meanings and carry ideologies. In this paper, using multimodal critical discourse analysis, we analyse the sounds and music in two proto-games that are played on mobile devices: Genie Palace Divine and Dragon Island Race. While visually the two games are highly...... and impersonal and specific kinds of social relations which, we show, is highly gendered. It can also signal priorities, ideas and values, which in both cases, we show, relate to a world where there is simply no time to stop and think. © 2016, equinox publishing....

  10. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  11. Sound Environments Surrounding Preterm Infants Within an Occupied Closed Incubator.

    Shimizu, Aya; Matsuo, Hiroya

    2016-01-01

    Preterm infants often exhibit functional disorders due to the stressful environment in the neonatal intensive care unit (NICU). The sound pressure level (SPL) in the NICU is often much higher than the levels recommended by the American Academy of Pediatrics. Our study aims to describe the SPL and sound frequency levels surrounding preterm infants within closed incubators that utilize high frequency oscillation (HFO) or nasal directional positive airway pressure (nasal-DPAP) respiratory settings. This is a descriptive research study of eight preterm infants (corrected agenoise levels were observed and the results were compared to the recommendations made by neonatal experts. Increased noise levels, which have reported to affect neonates' ability to self-regulate, could increase the risk of developing attention deficit disorder, and may result in tachycardia, bradycardia, increased intracranial pressure, and hypoxia. The care provider should closely assess for adverse effects of higher sound levels generated by different modes of respiratory support and take measures to ensure that preterm infants are protected from exposure to noise exceeding the optimal safe levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Respiratory manifestations of hypothyroidism

    Sorensen, Jesper Roed; Winther, Kristian Hillert; Bonnema, Steen Joop

    2016-01-01

    BACKGROUND: Hypothyroidism has been associated with increased pulmonary morbidity and overall mortality. We conducted a systematic review to identify the prevalence and underlying mechanisms of respiratory problems among patients with thyroid insufficiency. METHODS: PubMed and EMBASE databases were...... searched for relevant literature from January 1950 through January 2015 with study eligibility criteria: English-language publications; Adult subclinical or overt hypothyroid patients; Intervention, observational or retrospective studies; and respiratory manifestations. We followed the PRISMA statement...... and used the Cochrane's risk of bias tool. RESULTS: A total of 1699 papers were screened by two independent authors for relevant titles. Of 109 relevant abstracts, 28 papers underwent full text analyses, of which 22 were included in the review. We identified possible mechanisms explaining respiratory...

  13. Respiratory care manpower issues.

    Mathews, Paul; Drumheller, Lois; Carlow, John J

    2006-03-01

    Although respiratory care is a relatively new profession, its practitioners are deeply involved in providing patient care in the critical care. In preparation for writing this article, we sought to explore the respiratory therapy manpower needs and activities designed to fulfill those needs in critical care practice. We began by delineating the historical development of respiratory care as a profession, the development of its education, and the professional credentialing system. We then conducted several literature reviews with few articles generated. We requested and received data from the American Association for Respiratory Care (AARC), The National Board for Respiratory Care (NBRC), and the Committee on Accreditation of Respiratory Care education (CoARC) relative to their membership, number of credentialed individuals, and educational program student and graduate data for 2000 through 2004. We then conducted two electronic surveys. Survey 1 was a six-item survey that examined the use of mandatory overtime in respiratory care departments. We used a convenience sample of 30 hospitals stratified by size (or=500 beds). Survey 2 was a five-item instrument distributed by blast E-mail to the Society of Critical Care Medicine's Respiratory Care Section members and members of the RC_World list serve. This survey elicited 51 usable and non-duplicative responses from geographically and size-varied institutions. We analyzed these data in several ways from distribution analysis to one-way analysis of variance procedure and appropriate post hoc analysis techniques. Where appropriate, a matched-pairs analysis was performed and these were compared across the variables intensive care unit (ICU) beds per actual number of respiratory care practitioners (RCPs) and ICU beds per preferred number of RCPs. The data gathered from the professional organizations indicated a relatively stable attrition rate (35.2%+/-1.7-3.1%), even in the face of varying enrollments (6,231 in 2004 vs. 4

  14. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  15. Sound, memory and interruption

    Pinder, David

    2016-01-01

    This chapter considers how art can interrupt the times and spaces of urban development so they might be imagined, experienced and understood differently. It focuses on the construction of the M11 Link Road through north-east London during the 1990s that demolished hundreds of homes and displaced...... around a thousand people. The highway was strongly resisted and it became the site of one of the country’s longest and largest anti-road struggles. The chapter addresses specifically Graeme Miller’s sound walk LINKED (2003), which for more than a decade has been broadcasting memories and stories...... of people who were violently displaced by the road as well as those who actively sought to halt it. Attention is given to the walk’s interruption of senses of the given and inevitable in two main ways. The first is in relation to the pace of the work and its deployment of slowness and arrest in a context...

  16. Recycling Sounds in Commercials

    Larsen, Charlotte Rørdam

    2012-01-01

    Commercials offer the opportunity for intergenerational memory and impinge on cultural memory. TV commercials for foodstuffs often make reference to past times as a way of authenticating products. This is frequently achieved using visual cues, but in this paper I would like to demonstrate how...... such references to the past and ‘the good old days’ can be achieved through sounds. In particular, I will look at commercials for Danish non-dairy spreads, especially for OMA margarine. These commercials are notable in that they contain a melody and a slogan – ‘Say the name: OMA margarine’ – that have basically...... remained the same for 70 years. Together these identifiers make OMA an interesting Danish case to study. With reference to Ann Rigney’s memorial practices or mechanisms, the study aims to demonstrate how the auditory aspects of Danish margarine commercials for frying tend to be limited in variety...

  17. The sounds of science

    Carlowicz, Michael

    As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.

  18. Sound of proteins

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  19. Blast noise classification with common sound level meter metrics.

    Cvengros, Robert M; Valente, Dan; Nykaza, Edward T; Vipperman, Jeffrey S

    2012-08-01

    A common set of signal features measurable by a basic sound level meter are analyzed, and the quality of information carried in subsets of these features are examined for their ability to discriminate military blast and non-blast sounds. The analysis is based on over 120 000 human classified signals compiled from seven different datasets. The study implements linear and Gaussian radial basis function (RBF) support vector machines (SVM) to classify blast sounds. Using the orthogonal centroid dimension reduction technique, intuition is developed about the distribution of blast and non-blast feature vectors in high dimensional space. Recursive feature elimination (SVM-RFE) is then used to eliminate features containing redundant information and rank features according to their ability to separate blasts from non-blasts. Finally, the accuracy of the linear and RBF SVM classifiers is listed for each of the experiments in the dataset, and the weights are given for the linear SVM classifier.

  20. Cortical processing of dynamic sound envelope transitions.

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  1. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  2. Combined electrocardiography- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imagining slabs in free-breathing children: Initial experience

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Allmendinger, Thomas [Siemens Healthcare, GmbH, Computed Tomography Division, Forchheim (Germany)

    2017-09-15

    Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. In total, 15 children (median age 19 months, range 6 months–8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children.

  3. Combined electrocardiography- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imagining slabs in free-breathing children: Initial experience

    Goo, Hyun Woo; Allmendinger, Thomas

    2017-01-01

    Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. In total, 15 children (median age 19 months, range 6 months–8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children

  4. Designing a Sound Reducing Wall

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  5. Thinking The City Through Sound

    Kreutzfeldt, Jacob

    2011-01-01

    n Acoutic Territories. Sound Culture and Everyday Life Brandon LaBelle sets out to charts an urban topology through sound. Working his way through six acoustic territories: underground, home, sidewalk, street, shopping mall and sky/radio LaBelle investigates tensions and potentials inherent in mo...

  6. The Textile Form of Sound

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  7. Basic semantics of product sounds

    Özcan Vieira, E.; Van Egmond, R.

    2012-01-01

    Product experience is a result of sensory and semantic experiences with product properties. In this paper, we focus on the semantic attributes of product sounds and explore the basic components for product sound related semantics using a semantic differential paradigmand factor analysis. With two

  8. Measuring the 'complexity' of sound

    cate that specialized regions of the brain analyse different types of sounds [1]. Music, ... The left panel of figure 1 shows examples of sound–pressure waveforms from the nat- ... which is shown in the right panels in the spectrographic representation using a 45 Hz .... Plot of SFM(t) vs. time for different environmental sounds.

  9. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented. These ...

  10. The Aesthetic Experience of Sound

    Breinbjerg, Morten

    2005-01-01

    to react on. In an ecological understanding of hearing our detection of audible information affords us ways of responding to our environment. In my paper I will address both these ways of using sound in relation to computer games. Since a game player is responsible for the unfolding of the game, his......The use of sound in (3D) computer games basically falls in two. Sound is used as an element in the design of the set and as a narrative. As set design sound stages the nature of the environment, it brings it to life. As a narrative it brings us information that we can choose to or perhaps need...... exploration of the virtual space laid out before him is pertinent. In this mood of exploration sound is important and heavily contributing to the aesthetic of the experience....

  11. Controlling sound with acoustic metamaterials

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  12. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  13. Adult respiratory distress syndrome

    Svendsen, J.; Jespersen, J.; Skjoedt, T.

    1986-01-01

    Our present-day knowledge concerning the clinico-chemical and radiological findings in adult respiratory distress syndrome are described. Three typical case histories have been selected to illustrate this condition; they were due to multiple trauma or sepsis. It is stressed that radiology is in a key position for making the diagnosis and for observing the course of the illness. (orig) [de

  14. European Respiratory Society statement

    Miravitlles, Marc; Dirksen, Asger; Ferrarotti, Ilaria

    2017-01-01

    lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has...

  15. Respiratory Syncytial Virus (RSV)

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.

  16. Respiratory problems in foals.

    Beech, J

    1985-04-01

    Despite major advances in our knowledge and ability to treat respiratory diseases in neonatal foals, neonatal respiratory medicine is still in its infancy. It is hoped that this article may serve as a guideline for diagnosis and treatment. Specific antibiotic regimens and emergency procedures are covered in other articles in this symposium. Because management factors play a critical role in the pathogenesis of respiratory disease, education of clients as to their importance would help both prophylactically and therapeutically. The necessity of very careful monitoring of neonates, which is critical to early detection of disease, should be stressed. As respiratory diseases can be fulminant and rapidly fatal, it is imperative not to delay diagnosis and therapy. Thorough examination and implementation of appropriate diagnostic techniques, as well as prompt early referral to a more sophisticated facility when indicated, would prevent many deaths. Although sophisticated support systems are vital for survival of some of these foals, good basic intensive nursing care combined with selection of appropriate drug therapy very early in the course of the disease is all that many foals require and can significantly improve survival rates.

  17. Respiratory Symptoms in Firefighters

    Greven, Frans E.; Rooyackers, Jos M.; Kerstjens, Huib A. M.; Heederik, Dick J.

    Background The aim of the present study was to determine the prevalence and risk factors associated with respiratory symptoms in common firefighters in the Netherlands. Methods A total of 1,330 firefighters from the municipal fire brigades of three provinces of the Netherlands were included in the

  18. Textbook of respiratory medicine

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis

  19. Sound production and pectoral spine locking in a Neotropical catfish (Iheringichthys labrosus, Pimelodidae

    Javier S. Tellechea

    Full Text Available Catfishes may have two sonic organs: pectoral spines for stridulation and swimbladder drumming muscles. The aim of this study was to characterize the sound production of the catfish Iheringichthys labrosus. The I. labrosus male and female emits two different types of sounds: stridulatory sounds (655.8 + 230 Hz consisting of a train of pulses, and drumming sounds (220 + 46 Hz, which are composed of single-pulse harmonic signals. Stridulatory sounds are emitted during abduction of the pectoral spine. At the base of the spine there is a dorsal process that bears a series of ridges on its latero-ventral surface, and by pressing the ridges against the groove (with an unspecialized rough surface during a fin sweep, the animal produce a series of short pulses. Drumming sound is produced by an extrinsic sonic muscle, originated on a flat tendon of the transverse process of the fourth vertebra and inserted on the rostral and ventral surface of the swimbladder. The sounds emitted by both mechanisms are emitted in distress situation. Distress was induced by manipulating fish in a laboratory tank while sounds were recorded. Our results indicate that the catfish initially emits a stridulatory sound, which is followed by a drumming sound. Simultaneous production of stridulatory and drumming sounds was also observed. The catfish drumming sounds were lower in dominant frequency than stridulatory sounds, and also exhibited a small degree of dominant frequency modulation. Another behaviour observed in this catfish was the pectoral spine locking. This reaction was always observed before the distress sound production. Like other authors outline, our results suggest that in the catfish I. labrosus stridulatory and drumming sounds may function primarily as a distress call.

  20. Segmentation of heart sound recordings by a duration-dependent hidden Markov model

    Schmidt, S E; Graff, C; Toft, E; Struijk, J J; Holst-Hansen, C

    2010-01-01

    Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8–99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6–99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds

  1. ARDS (Acute Respiratory Distress Syndrome)

    ... Also known as What Is ARDS, or acute respiratory distress syndrome, is a lung condition that leads ... treat ARDS. Other Names Acute lung injury Adult respiratory distress syndrome Increased-permeability pulmonary edema Noncardiac pulmonary ...

  2. Respiratory gating in cardiac PET

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  3. Middle East Respiratory Syndrome (MERS)

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... for Disease Control and Prevention website. Middle East Respiratory Syndrome (MERS): Frequently asked questions and answers. www. ...

  4. Acute respiratory infections at children

    Delyagin, V.

    2009-01-01

    The common signs of virus respiratory diseases, role of pathological inclination to infections, value of immunodeficiency are presented at lecture. Features of most often meeting respiratory virus infections are given.

  5. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time.

    Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and

  6. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants.

    Almadhoob, Abdulraoof; Ohlsson, Arne

    2015-01-30

    Infants in the neonatal intensive care unit (NICU) are subjected to stress, including sound of high intensity. The sound environment in the NICU is louder than most home or office environments and contains disturbing noises of short duration and at irregular intervals. There are competing auditory signals that frequently challenge preterm infants, staff and parents. The sound levels in NICUs often exceed the maximum acceptable level of 45 decibels (dB), recommended by the American Academy of Pediatrics. Hearing impairment is diagnosed in 2% to 10% of preterm infants versus 0.1% of the general paediatric population. Noise may cause apnoea, hypoxaemia, alternation in oxygen saturation, and increased oxygen consumption secondary to elevated heart and respiratory rates and may, therefore, decrease the amount of calories available for growth. Elevated levels of speech are needed to overcome the noisy environment in the NICU, thereby increasing the negative impacts on staff, newborns, and their families. High noise levels are associated with an increased rate of errors and accidents, leading to decreased performance among staff. The aim of interventions included in this review is to reduce sound levels to 45 dB or less. This can be achieved by lowering the sound levels in an entire unit, treating the infant in a section of a NICU, in a 'private' room, or in incubators in which the sound levels are controlled, or reducing the sound levels that reaches the individual infant by using earmuffs or earplugs. By lowering the sound levels that reach the neonate, the resulting stress on the cardiovascular, respiratory, neurological, and endocrine systems can be diminished, thereby promoting growth and reducing adverse neonatal outcomes. Primary objectiveTo determine the effects of sound reduction on growth and long-term neurodevelopmental outcomes of neonates. Secondary objectives1. To evaluate the effects of sound reduction on short-term medical outcomes (bronchopulmonary

  7. Hearing Loss Signals Need for Diagnosis

    ... Products For Consumers Home For Consumers Consumer Updates Hearing Loss Signals Need for Diagnosis Share Tweet Linkedin ... you’re talking loudly? Thinking about ordering a hearing aid or sound amplifier from a magazine or ...

  8. Fourth sound in relativistic superfluidity theory

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  9. EUVS Sounding Rocket Payload

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  10. From acoustic descriptors to evoked quality of car door sounds.

    Bezat, Marie-Céline; Kronland-Martinet, Richard; Roussarie, Vincent; Ystad, Sølvi

    2014-07-01

    This article describes the first part of a study aiming at adapting the mechanical car door construction to the drivers' expectancies in terms of perceived quality of cars deduced from car door sounds. A perceptual cartography of car door sounds is obtained from various listening tests aiming at revealing both ecological and analytical properties linked to evoked car quality. In the first test naive listeners performed absolute evaluations of five ecological properties (i.e., solidity, quality, weight, closure energy, and success of closure). Then experts in the area of automobile doors categorized the sounds according to organic constituents (lock, joints, door panel), in particular whether or not the lock mechanism could be perceived. Further, a sensory panel of naive listeners identified sensory descriptors such as classical descriptors or onomatopoeia that characterize the sounds, hereby providing an analytic description of the sounds. Finally, acoustic descriptors were calculated after decomposition of the signal into a lock and a closure component by the Empirical Mode Decomposition (EMD) method. A statistical relationship between the acoustic descriptors and the perceptual evaluations of the car door sounds could then be obtained through linear regression analysis.

  11. Sound Clocks and Sonic Relativity

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  12. Sound localization and occupational noise

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  13. Physically based sound synthesis and control of jumping sounds on an elastic trampoline

    Turchet, Luca; Pugliese, Roberto; Takala, Tapio

    2013-01-01

    This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine was contr......This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine...... was controlled in real-time by pro- cessing the signal captured by a contact microphone which was attached to the membrane of the trampoline in order to detect each jump. A user study was conducted to evaluate the quality of the in- teractive sonification. Results proved the success of the proposed algorithms...

  14. Search for fourth sound propagation in supersolid 4He

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  15. Binaural loudness for artificial-head measurements in directional sound fields

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  16. Fourth sound of holographic superfluids

    Yarom, Amos

    2009-01-01

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  17. Climate change and respiratory disease: European Respiratory Society position statement.

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  18. Sound intensity as a function of sound insulation partition

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  19. Classification of Complex Sounds.

    1992-10-31

    spectral weights may be useful in developing signal enhancement techniques based on psychological aspects of the listener (providing a complement to...Journals) Green, D.M., and Berg, B.G. (1991). Spectral weights and the profile bowl. Quarterly Journal of Experimental Psychology , 43A, 449-458. Dai, H...Macmillan and C.D. Creelman . Cambridge/NY: Cambridge Universi- ty Press, 1991.) J. Math. Psych., in press. Training Currently, there are two graduate

  20. An Integrated Approach to Motion and Sound

    Hahn, James K; Geigel, Joe; Lee, Jong W; Gritz, Larry; Takala, Tapio; Mishra, Suneil

    1995-01-01

    Until recently, sound has been given little attention in computer graphics and related domains of computer animation and virtual environments, although sounds which are properly synchronized to motion...

  1. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  2. Development of an Amplifier for Electronic Stethoscope System and Heart Sound Analysis

    Kim, D. J.; Kang, D. K. [Chongju University, Chongju (Korea)

    2001-05-01

    The conventional stethoscope can not store its stethoscopic sounds. Therefore a doctor diagnoses a patient with instantaneous stethoscopic sounds at that time, and he can not remember the state of the patient's stethoscopic sounds on the next. This prevent accurate and objective diagnosis. If the electronic stethoscope, which can store the stethoscopic sound, is developed, the auscultation will be greatly improved. This study describes an amplifier for electronic stethoscope system that can extract heart sounds of fetus as well as adult and allow us hear and record the sounds. Using the developed stethoscopic amplifier, clean heart sounds of fetus and adult can be heard in noisy environment, such as a consultation room of a university hospital, a laboratory of a university. Surprisingly, the heart sound of a 22-week fetus was heard through the developed electronic stethoscope. Pitch detection experiments using the detected heart sounds showed that the signal represents distinct periodicity. It can be expected that the developed electronic stethoscope can substitute for conventional stethoscopes and if proper analysis method for the stethoscopic signal is developed, a good electronic stethoscope system can be produced. (author). 17 refs., 6 figs.

  3. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  4. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  5. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  6. Visualization of the hot chocolate sound effect by spectrograms

    Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.

    2012-12-01

    We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.

  7. The science of sound recording

    Kadis, Jay

    2012-01-01

    The Science of Sound Recording will provide you with more than just an introduction to sound and recording, it will allow you to dive right into some of the technical areas that often appear overwhelming to anyone without an electrical engineering or physics background.  The Science of Sound Recording helps you build a basic foundation of scientific principles, explaining how recording really works. Packed with valuable must know information, illustrations and examples of 'worked through' equations this book introduces the theory behind sound recording practices in a logical and prac

  8. Efficient Geometric Sound Propagation Using Visibility Culling

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  9. Ocular Tropism of Respiratory Viruses

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  10. Nanotechnology in respiratory medicine.

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  11. Adult respiratory distress syndrome

    Murphy, C.H.; Colvin, R.S.

    1987-01-01

    Due to improved emergency resuscitation procedures, and with advancing medical technology in the field of critical care, an increasing number of patients survive the acute phase of shock and catastrophic trauma. Patients who previously died of massive sepsis, hypovolemic or hypotensive shock, multiple fractures, aspiration, toxic inhalation, and massive embolism are now surviving long enough to develop previously unsuspected and unrecognized secondary effects. With increasing frequency, clinicians are recognizing the clinical and radiographic manifestations of pathologic changes in the lungs occurring secondary to various types of massive insult. This paper gives a list of diseases that have been shown to precipitate or predispose to diffuse lung damage. Various terms have been used to describe the lung damage and respiratory failure secondary to these conditions. The term adult respiratory distress syndrome (ARDS) is applied to several cases of sudden respiratory failure in patients with previously healthy lungs following various types of trauma or shock. Numerous investigations and experiments have studied the pathologic changes in ARDS, and, while there is still no clear indication of why it develops, there is now some correlation of the sequential pathologic developments with the clinical and radiographic changes

  12. Active structural acoustic control for reduction of radiated sound from structure

    Hong, Jin Seok; Oh, Jae Eung

    2001-01-01

    Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved

  13. Objective Scaling of Sound Quality for Normal-Hearing and Hearing-Impaired Listeners

    Nielsen, Lars Bramsløw

    ) Subjective sound quality ratings of clean and distorted speech and music signals, by normal-hearing and hearing-impaired listeners, to provide reference data, 2) An auditory model of the ear, including the effects of hearing loss, based on existing psychoacoustic knowledge, coupled to 3) An artificial neural......A new method for the objective estimation of sound quality for both normal-hearing and hearing-impaired listeners has been presented: OSSQAR (Objective Scaling of Sound Quality and Reproduction). OSSQAR is based on three main parts, which have been carried out and documented separately: 1...... network, which was trained to predict the sound quality ratings. OSSQAR predicts the perceived sound quality on two independent perceptual rating scales: Clearness and Sharpness. These two scales were shown to be the most relevant for assessment of sound quality, and they were interpreted the same way...

  14. Effects of incongruent auditory and visual room-related cues on sound externalization

    Carvajal, Juan Camilo Gil; Santurette, Sébastien; Cubick, Jens

    Sounds presented via headphones are typically perceived inside the head. However, the illusion of a sound source located out in space away from the listener’s head can be generated with binaural headphone-based auralization systems by convolving anechoic sound signals with a binaural room impulse...... response (BRIR) measured with miniature microphones placed in the listener’s ear canals. Sound externalization of such virtual sounds can be very convincing and robust but there have been reports that the illusion might break down when the listening environment differs from the room in which the BRIRs were...... recorded [1,2,3]. This may be due to incongruent auditory cues between the recording and playback room during sound reproduction [2]. Alternatively, an expectation effect caused by the visual impression of the room may affect the position of the perceived auditory image [3]. Here, we systematically...

  15. Patient training in respiratory-gated radiotherapy

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.; Patil, Sumukh; Chen, Clayton; Mohan, Radhe

    2003-01-01

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chest or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy

  16. Inter-fraction variations in respiratory motion models

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  17. Statistics of natural binaural sounds.

    Wiktor Młynarski

    Full Text Available Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD and level (ILD disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA. Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  18. Statistics of natural binaural sounds.

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  19. Respiratory synchronization for lung tumors exploration by positon emission tomography

    Grotus, Nicolas

    2009-01-01

    Positron Emission Tomography (PET) is a medical imaging technique that requires several minutes of acquisition to get an image. PET images are thus severely affected by the respiratory motion of the patient, which introduces a blur in the images. Techniques consisting in gating the PET acquisition as a function of the patient respiration exist and reduce the respiratory blur in the PET images. However, these techniques increase the noise in the reconstructed images. The aim of this work was to propose a method for respiratory motion compensation that would not enhance the noise in the PET images, without increasing the acquisition duration nor estimating the deformation field associated with the respiratory motion. We proposed 2 original spatio-temporal (4D) reconstruction algorithms of gated PET images. These 2 methods take advantage of the temporal correlation between the images corresponding to the different breathing phases. The performances of these techniques were evaluated and compared to classic approaches using phantom data and simulated data. The results showed that the 4D reconstructions increase the signal-to-noise ratio compared to the classic reconstructions while maintaining the reduction of the respiratory blur. For a fixed acquisition duration, the 4D reconstructions can thus yield gated images that are almost free of respiratory blur and of the same quality in terms of noise level as the ones obtained without respiratory gating. The clinical feasibility of the proposed techniques was also demonstrated. (author) [fr

  20. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam [Dept. of Radiation Oncology, Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Song, Jae Hoon [Dept. of Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Kim, Young Jae [Dept. of Radiological Technology, Gwang Yang Health Collage, Gwangyang (Korea, Republic of)

    2013-03-15

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam{sub t}ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  1. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam; Song, Jae Hoon; Kim, Young Jae

    2013-01-01

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam t ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule

  2. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  3. A Neural Network Model for Prediction of Sound Quality

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....

  4. Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder

    Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao

    2018-04-01

    Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.

  5. Deformation of a sound field caused by a manikin

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  6. 27 CFR 9.151 - Puget Sound.

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area are...

  7. Exploring science with sound: sonification and the use of sonograms as data analysis tool

    CERN. Geneva; Williams, Genevieve

    2017-01-01

    Resonances, periodicity, patterns and spectra are well-known notions that play crucial roles in particle physics, and that have always been at the junction between sound/music analysis and scientific exploration. Detecting the shape of a particular energy spectrum, studying the stability of a particle beam in a synchrotron, and separating signals from a noisy background are just a few examples where the connection with sound can be very strong, all sharing the same concepts of oscillations, cycles and frequency. This seminar will focus on analysing data and their relations by translating measurements into audible signals and using the natural capability of the ear to distinguish, characterise and analyse waveform shapes, amplitudes and relations. This process is called data sonification, and one of the main tools to investigate the structure of the sound is the sonogram (sometimes also called a spectrogram). A sonogram is a visual representation of how the spectrum of a certain sound signal changes with time...

  8. Arctic Ocean Model Intercomparison Using Sound Speed

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  9. Sounds of a Star

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  10. Breath pacing system and method for pacing the respiratory activity of a subject

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  11. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  12. Sound field separation with sound pressure and particle velocity measurements

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  13. Sounds of silence: How to animate virtual worlds with sound

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  14. Mobile sound: media art in hybrid spaces

    Behrendt, Frauke

    2010-01-01

    The thesis explores the relationships between sound and mobility through an examination\\ud of sound art. The research engages with the intersection of sound, mobility and\\ud art through original empirical work and theoretically through a critical engagement with\\ud sound studies. In dialogue with the work of De Certeau, Lefebvre, Huhtamo and Habermas\\ud in terms of the poetics of walking, rhythms, media archeology and questions of\\ud publicness, I understand sound art as an experimental mobil...

  15. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  16. Sounding the field: recent works in sound studies.

    Boon, Tim

    2015-09-01

    For sound studies, the publication of a 593-page handbook, not to mention the establishment of at least one society - the European Sound Studies Association - might seem to signify the emergence of a new academic discipline. Certainly, the books under consideration here, alongside many others, testify to an intensification of concern with the aural dimensions of culture. Some of this work comes from HPS and STS, some from musicology and cultural studies. But all of it should concern members of our disciplines, as it represents a long-overdue foregrounding of the aural in how we think about the intersections of science, technology and culture.

  17. Sound from charged particles in liquids

    Askar'yan, G.A.

    1980-01-01

    Two directions of sound application appearing during the charged particles passing through liquid - in biology and for charged particles registration are considered. Application of this sound in radiology is determined by a contribution of its hypersound component (approximately 10 9 Hz) to radiology effect of ionizing radiation on micro-organisms and cells. Large amplitudes and pressure gradients in a hypersound wave have a pronounced destructive breaking effect on various microobjects (cells, bacteria, viruses). An essential peculiarity of these processes is the possibility of control by choosing conditions changing hypersound generation, propagation and effect. This fact may lead not only to the control by radiaiton effects but also may explain and complete the analogy of ionizing radiation and ultrasound effect on bioobjects. The second direction is acoustic registration of passing ionizing particles. It is based on the possibility of guaranteed signal reception from a shower with 10 15 -10 16 eV energy in water at distances of hundreds of meters. Usage of acoustic technique for neutrino registration in the DUMAND project permits to use a detecting volume of water with a mass of 10 9 t and higher

  18. Conditioned sounds enhance visual processing.

    Fabrizio Leo

    Full Text Available This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral or monetary outcomes (+50 euro cents, -50 cents, 0 cents. In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.

  19. A DIY Ultrasonic Signal Generator for Sound Experiments

    Riad, Ihab F.

    2018-02-01

    Many physics departments around the world have electronic and mechanical workshops attached to them that can help build experimental setups and instruments for research and the training of undergraduate students. The workshops are usually run by experienced technicians and equipped with expensive lathing, computer numerical control (CNC) machines, electric measuring instruments, and several other essential tools. However, in developing countries such as Sudan, the lack of qualified technicians and adequately equipped workshops hampers efforts by these departments to supplement their laboratories with the equipment they need. The only other option is to buy the needed equipment from specialized manufacturers. The latter option is not feasible for the departments in developing countries where funding for education and research is scarce and very limited and as equipment from these manufacturers is typically too expensive. These departments struggle significantly in equipping undergraduate teaching laboratories, and here we propose one way to address this.

  20. A DIY Ultrasonic Signal Generator for Sound Experiments

    Riad, Ihab F.

    2018-01-01

    Many physics departments around the world have electronic and mechanical workshops attached to them that can help build experimental setups and instruments for research and the training of undergraduate students. The workshops are usually run by experienced technicians and equipped with expensive lathing, computer numerical control (CNC) machines,…

  1. Sound-contingent visual motion aftereffect

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  2. Submersion and acute respiratory failure

    Yu-Jang Su

    2014-01-01

    Conclusions: Submersion patients who are hypothermic on arrival of emergency department (ED are risky to respiratory failure and older, more hypothermic, longer hospital stay in suicidal submersion patients.

  3. Management of Postoperative Respiratory Failure.

    Mulligan, Michael S; Berfield, Kathleen S; Abbaszadeh, Ryan V

    2015-11-01

    Despite best efforts, postoperative complications such as postoperative respiratory failure may occur and prompt recognition of the process and management is required. Postoperative respiratory failure, such as postoperative pneumonia, postpneumonectomy pulmonary edema, acute respiratory distress-like syndromes, and pulmonary embolism, are associated with high morbidity and mortality. The causes of these complications are multifactorial and depend on preoperative, intraoperative, and postoperative factors, some of which are modifiable. The article identifies some of the risk factors, causes, and treatment strategies for successful management of the patient with postoperative respiratory failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.

    Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N

    2013-04-01

    Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.

  5. Binaural loudness summation for directional sounds

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    the binaural loudness summation of the at-ear signals. Even though the effects of HRTFs were taken into account, considerable individual differences in the binaural summation of loudness remained. In order to create conditions in which the directional at-ear changes were identical for all participants......, the present experiment employed 'generic' HRTFs to create directional sounds via binaural synthesis. When inspecting the results of the listening tests, however, large individual differences were still evident, as in the earlier study. The generality of this finding was further corroborated by running...... an independent, inexperienced sample of ten participants exclusively being exposed to the present generic HRTFs. Despite the individual differences, the average results suggest a relatively simple rule for combining the binaural input when carrying out acoustical measurements using an artificial head...

  6. Respiratory mass spectrometer

    Mostert, J.W. (Pretoria Univ. (South Africa). Dept. of Anesthesiology)

    1983-06-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M/sup 2/ body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O/sub 2/ consumption of less than 50 ml O/sub 2//min/M/sup 2/) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery.

  7. The respiratory mass spectrometer

    Mostert, J.W.

    1983-01-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M 2 body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O 2 consumption of less than 50 ml O 2 /min/M 2 ) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery

  8. Acute Respiratory Distress Syndrome

    Carmen Sílvia Valente Barbas

    2012-01-01

    Full Text Available This paper, based on relevant literature articles and the authors' clinical experience, presents a goal-oriented respiratory management for critically ill patients with acute respiratory distress syndrome (ARDS that can help improve clinicians' ability to care for these patients. Early recognition of ARDS modified risk factors and avoidance of aggravating factors during hospital stay such as nonprotective mechanical ventilation, multiple blood products transfusions, positive fluid balance, ventilator-associated pneumonia, and gastric aspiration can help decrease its incidence. An early extensive clinical, laboratory, and imaging evaluation of “at risk patients” allows a correct diagnosis of ARDS, assessment of comorbidities, and calculation of prognostic indices, so that a careful treatment can be planned. Rapid administration of antibiotics and resuscitative measures in case of sepsis and septic shock associated with protective ventilatory strategies and early short-term paralysis associated with differential ventilatory techniques (recruitment maneuvers with adequate positive end-expiratory pressure titration, prone position, and new extracorporeal membrane oxygenation techniques in severe ARDS can help improve its prognosis. Revaluation of ARDS patients on the third day of evolution (Sequential Organ Failure Assessment (SOFA, biomarkers and response to infection therapy allows changes in the initial treatment plans and can help decrease ARDS mortality.

  9. Respiratory symptoms of megaesophagus

    Fabio Di Stefano

    2013-03-01

    Full Text Available Megaesophagus as the end result of achalasia is the consequence of disordered peristalsis and the slow decompensation of the esophageal muscular layer. The main symptoms of achalasia are dysphagia, regurgitation, chest pain and weight loss, but respiratory symptoms, such as coughing, particularly when patients lie in a horizontal position, may also be common due to microaspiration. A 70-year old woman suffered from a nocturnal cough and shortness of breath with stridor. She reported difficulty in swallowing food over the past ten years, but had adapted by eating a semi-liquid diet. Chest X-ray showed right hemithorax patchy opacities projecting from the posterior mediastinum. Chest computed tomography scan showed a marked dilatation of the esophagus with abundant food residues. Endoscopy confirmed the diagnosis of megaesophagus due to esophageal achalasia, excluding other causes of obstruction, such as secondary esophagitis, polyps, leiomyoma or leiomyosarcoma. In the elderly population, swallowing difficulties due to esophageal achalasia are often underestimated and less troublesome than the respiratory symptoms that are caused by microaspiration. The diagnosis of esophageal achalasia, although uncommon, should be considered in patients with nocturnal chronic coughs and shortness of breath with stridor when concomitant swallowing difficulties are present.

  10. Acute respiratory distress syndrome

    Marco Confalonieri

    2017-04-01

    Full Text Available Since its first description, the acute respiratory distress syndrome (ARDS has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foster geographic variability and contrasting outcome data. A large international multicentre prospective cohort study including 50 countries across five continents reported that ARDS is underdiagnosed, and there is potential for improvement in its management. Furthermore, epidemiological data from low-income countries suggest that a revision of the current definition of ARDS is needed in order to improve its recognition and global clinical outcome. In addition to the well-known risk-factors for ARDS, exposure to high ozone levels and low vitamin D plasma concentrations were found to be predisposing circumstances. Drug-based preventive strategies remain a major challenge, since two recent trials on aspirin and statins failed to reduce the incidence in at-risk patients. A new disease-modifying therapy is awaited: some recent studies promised to improve the prognosis of ARDS, but mortality and disabling complications are still high in survivors in intensive care.

  11. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    Sana, Furrukh; Ballal, Tarig; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2014-01-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation

  12. Ultrahromatizm as a Sound Meditation

    Zaytseva Marina

    2016-08-01

    Full Text Available The article scientifically substantiates the insights on the theory and the practice of using microchromatic in modern musical art, defines compositional and expressive possibilities of microtonal system in the works of composers of XXI century. It justifies the author's interpretation of the concept of “ultrahromatizm”, as a principle of musical thinking, which is connected with the sound space conception as the space-time continuum. The paper identifies the correlation of the notions “microchromatism” and “ultrahromatizm”. If microchromosome is understood, first and for most, as the technique of dividing the sound into microparticles, ultrahromatizm is interpreted as the principle of musical and artistic consciousness, as the musical focus of consciousness on the formation of the specific model of sound meditation and understanding of the world.

  13. 33 CFR 83.36 - Signals to attract attention (Rule 36).

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Signals to attract attention... SECURITY INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.36 Signals to attract attention (Rule 36). If necessary to attract the attention of another vessel, any vessel may make light or sound...

  14. The Influence of Fundamental Frequency and Sound Pressure Level Range on Breathing Patterns in Female Classical Singing

    Collyer, Sally; Thorpe, C. William; Callaghan, Jean; Davis, Pamela J.

    2008-01-01

    Purpose: This study investigated the influence of fundamental frequency (F0) and sound pressure level (SPL) range on respiratory behavior in classical singing. Method: Five trained female singers performed an 8-s messa di voce (a crescendo and decrescendo on one F0) across their musical F0 range. Lung volume (LV) change was estimated, and…

  15. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  16. Making sound vortices by metasurfaces

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  17. Antenna for Ultrawideband Channel Sounding

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  18. The Multisensory Sound Lab: Sounds You Can See and Feel.

    Lederman, Norman; Hendricks, Paula

    1994-01-01

    A multisensory sound lab has been developed at the Model Secondary School for the Deaf (District of Columbia). A special floor allows vibrations to be felt, and a spectrum analyzer displays frequencies and harmonics visually. The lab is used for science education, auditory training, speech therapy, music and dance instruction, and relaxation…

  19. Sound symbolism: the role of word sound in meaning.

    Svantesson, Jan-Olof

    2017-09-01

    The question whether there is a natural connection between sound and meaning or if they are related only by convention has been debated since antiquity. In linguistics, it is usually taken for granted that 'the linguistic sign is arbitrary,' and exceptions like onomatopoeia have been regarded as marginal phenomena. However, it is becoming more and more clear that motivated relations between sound and meaning are more common and important than has been thought. There is now a large and rapidly growing literature on subjects as ideophones (or expressives), words that describe how a speaker perceives a situation with the senses, and phonaesthemes, units like English gl-, which occur in many words that share a meaning component (in this case 'light': gleam, glitter, etc.). Furthermore, psychological experiments have shown that sound symbolism in one language can be understood by speakers of other languages, suggesting that some kinds of sound symbolism are universal. WIREs Cogn Sci 2017, 8:e1441. doi: 10.1002/wcs.1441 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  20. Offshore dredger sounds: Source levels, sound maps, and risk assessment

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2016-01-01

    The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels