WorldWideScience

Sample records for respiratory coronavirus 229e

  1. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  2. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Al-Khannaq, Maryam Nabiel; Ng, Kim Tien; Oong, Xiang Yong; Pang, Yong Kek; Takebe, Yutaka; Chook, Jack Bee; Hanafi, Nik Sherina; Kamarulzaman, Adeeba; Tee, Kok Keng

    2016-05-04

    The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region. © The American Society of Tropical Medicine and Hygiene.

  3. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials.

    Science.gov (United States)

    Warnes, Sarah L; Little, Zoë R; Keevil, C William

    2015-11-10

    The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. Respiratory viruses are responsible for more deaths globally than any other infectious agent. Animal coronaviruses that "host jump" to humans result in

  4. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C;

    1998-01-01

    and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...... to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...

  5. Antiseptic properties of two calix[4]arenes derivatives on the human coronavirus 229E.

    Science.gov (United States)

    Geller, C; Fontanay, S; Mourer, M; Dibama, H Massimba; Regnouf-de-Vains, J-B; Finance, C; Duval, R E

    2010-12-01

    Facing the lack in specific antiviral treatment, it is necessary to develop new means of prevention. In the case of the Coronaviridae this family is now recognized as including potent human pathogens causing upper and lower respiratory tract infections as well as nosocomial ones. Within the purpose of developing new antiseptics molecules, the antiseptic virucidal activity of two calix[4]arene derivatives, the tetra-para-sulfonato-calix[4]arene (C[4]S) and the 1,3-bis(bithiazolyl)-tetra-para-sulfonato-calix[4]arene (C[4]S-BTZ) were evaluated toward the human coronavirus 229E (HCoV 229E). Comparing these results with some obtained previously with chlorhexidine and hexamidine, (i) these two calixarenes did not show any cytotoxicity contrary to chlorhexidine and hexamidine, (ii) C[4]S showed as did hexamidine, a very weak activity against HCoV 229E, and (iii) the C[4]S-BTZ showed a stronger activity than chlorhexidine, i.e. 2.7 and 1.4log₁₀ reduction in viral titer after 5min of contact with 10⁻³mol L⁻¹ solutions of C[4]S-BTZ and chlorhexidine, respectively. Thus, the C[4]S-BTZ appeared as a promising virucidal (antiseptic) molecule.

  6. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor

    Science.gov (United States)

    Mills, John S.

    2007-01-01

    Peptides derived from the membrane proximal region of fusion proteins of human immunodeficiency viruses 1 and 2, Coronavirus 229 E, severe acute respiratory syndrome coronavirus and Ebola virus were all potent antagonists of the formyl peptide receptor expressed in Chinese hamster ovary cells. Binding of viral peptides was affected by the naturally occurring polymorphisms at residues 190 and 192, which are located at second extracellular loop-transmembrane helix 5 interface. Substitution of R190 with W190 enhanced the affinity for a severe acute respiratory syndrome coronavirus peptide 6 fold but reduced the affinity for N-formyl-Nle–Leu-Phe by 2.5 fold. A 12 mer peptide derived from coronavirus 229E (ETYIKPWWVWL) was the most potent antagonist of the formyl peptide receptor W190 with a Ki of 230 nM. Fluorescently labeled ETYIKPWWVWL was effectively internalized by all three variants with EC50 of ~25 nM. An HKU-1 coronavirus peptide, MYVKWPWYVWL, was a potent antagonist but N-formyl-MYVKWPWYVWL was a potent agonist. ETYIKPWWVWL did not stimulate GTPγS binding but inhibited the stimulation by formyl-NleLeuPhe. It also blocked β arrestin translocation and receptor downregulation induced by formyl-Nle–Leu–Phe. This indicates that formyl peptide receptor may be important in viral infections and that variations in its sequence among individuals may affect their likelihood of viral and bacterial infections. PMID:16842982

  7. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.

    Science.gov (United States)

    Shirato, Kazuya; Imada, Yoshio; Kawase, Miyuki; Nakagaki, Keiko; Matsuyama, Shutoku; Taguchi, Fumihiro

    2014-12-01

    Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease. © 2014 Wiley Periodicals, Inc.

  8. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiu-Mei [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Huang, Kuo-Jung [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Wang, Chin-Tien, E-mail: chintien@ym.edu.tw [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2014-01-20

    Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.

  9. Identification of Aminopeptidase N as a Cellular Receptor for Human Coronavirus-229E

    Science.gov (United States)

    1992-05-12

    feline enteric coronav irus feline infectious peritonitis virus hUman adult intestine hUman aminopeptidase N human aminopeptidase with 39 amino...coronavirus (TCV), rat coronavirus (RCV), cat feline infectious peritonitis virus (FIPV), and the hUman coronaviruses. These include the slow, patchy...While the cat, dog and pig serve as natural hosts for the other coronavirus group 1 viruses, feline infectious peritonitis virus (FIPV), canine

  10. Unraveling the Mysteries of Middle East Respiratory Syndrome Coronavirus

    Centers for Disease Control (CDC) Podcasts

    2014-03-11

    Dr. Aron Hall, a CDC coronavirus epidemiologist, discusses Middle East Respiratory Syndrome Coronavirus.  Created: 3/11/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/11/2014.

  11. Middle East respiratory syndrome coronavirus in children

    OpenAIRE

    Thabet, Farah; Chehab, May; Bafaqih, Hind; AlMohaimeed, Sulaiman

    2015-01-01

    The Middle East respiratory syndrome (MERS) is a new human disease caused by a novel coronavirus (CoV). The disease is reported mainly in adults. Data in children are scarce. The disease caused by MERS-CoV in children presents with a wide range of clinical manifestations, and it is associated with a lower mortality rate compared with adults. Poor outcome is observed mainly in admitted patients with medical comorbidities. We report a new case of MERS-CoV infection in a 9-month-old child compli...

  12. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2005-02-01

    Full Text Available Abstract Background Four human coronaviruses are currently known to infect the respiratory tract: human coronaviruses OC43 (HCoV-OC43 and 229E (HCoV-229E, SARS associated coronavirus (SARS-CoV and the recently identified human coronavirus NL63 (HCoV-NL63. In this study we explored the incidence of HCoV-NL63 infection in children diagnosed with respiratory tract infections in Belgium. Methods Samples from children hospitalized with respiratory diseases during the winter seasons of 2003 and 2004 were evaluated for the presence of HCoV-NL63 using a optimized pancoronavirus RT-PCR assay. Results Seven HCoV-NL63 positive samples were identified, six were collected during January/February 2003 and one at the end of February 2004. Conclusions Our results support the notation that HCoV-NL63 can cause serious respiratory symptoms in children. Sequence analysis of the S gene showed that our isolates could be classified into two subtypes corresponding to the two prototype HCoV-NL63 sequences isolated in The Netherlands in 1988 and 2003, indicating that these two subtypes may currently be cocirculating.

  13. Middle East Respiratory Syndrome Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Leila Sarparast

    2015-01-01

    Full Text Available Context: Middle East Respiratory Syndrome Coronavirus (MERS-CoV infection is an emerging human disease that has been reported from the Arabian Peninsula and Middle East countries since 2012. Although zoonotic transmission was postulated, virological and serological finding suggest that the dromedary camels act as the potential reservoirs of MERS-CoV infection to humans. As October 2014, a totally 855 confirmed cases with 333 related deaths were reported to WHO. All cases occurred in or epidemiologically linked to affected countries. The virus ability to induce a pandemic attack is limited. The clinical presentations vary and range from asymptomatic infection to severe respiratory disease and death. However, most severe disease occurs in elderly and in those with underlying conditions. Infection prevention and control measures are critical to prevent the possible spread of MERS-CoV infection is health care facilities and in the community. The WHO encourages all member states to perform surveillance of patients with acute severe respiratory infection and to carefully monitor any unusual patterns. This paper aims to review the current key characteristics of MERS-CoV infection in human and update the WHO recommendations about this illness.

  14. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture.

    Science.gov (United States)

    de Wilde, Adriaan H; Jochmans, Dirk; Posthuma, Clara C; Zevenhoven-Dobbe, Jessika C; van Nieuwkoop, Stefan; Bestebroer, Theo M; van den Hoogen, Bernadette G; Neyts, Johan; Snijder, Eric J

    2014-08-01

    Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼ 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response.

  15. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.

    Science.gov (United States)

    Chen, Lili; Gui, Chunshan; Luo, Xiaomin; Yang, Qingang; Günther, Stephan; Scandella, Elke; Drosten, Christian; Bai, Donglu; He, Xichang; Ludewig, Burkhard; Chen, Jing; Luo, Haibin; Yang, Yiming; Yang, Yifu; Zou, Jianping; Thiel, Volker; Chen, Kaixian; Shen, Jianhua; Shen, Xu; Jiang, Hualiang

    2005-06-01

    The 3C-like proteinase (3CLpro) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for anti-SARS-CoV drugs due to its crucial role in the viral life cycle. In this study, a database containing structural information of more than 8,000 existing drugs was virtually screened by a docking approach to identify potential binding molecules of SARS-CoV 3CLpro. As a target for screening, both a homology model and the crystallographic structure of the binding pocket of the enzyme were used. Cinanserin (SQ 10,643), a well-characterized serotonin antagonist that has undergone preliminary clinical testing in humans in the 1960s, showed a high score in the screening and was chosen for further experimental evaluation. Binding of both cinanserin and its hydrochloride to bacterially expressed 3CLpro of SARS-CoV and the related human coronavirus 229E (HCoV-229E) was demonstrated by surface plasmon resonance technology. The catalytic activity of both enzymes was inhibited with 50% inhibitory concentration (IC50) values of 5 microM, as tested with a fluorogenic substrate. The antiviral activity of cinanserin was further evaluated in tissue culture assays, namely, a replicon system based on HCoV-229E and quantitative test assays with infectious SARS-CoV and HCoV-229E. All assays revealed a strong inhibition of coronavirus replication at nontoxic drug concentrations. The level of virus RNA and infectious particles was reduced by up to 4 log units, with IC50 values ranging from 19 to 34 microM. These findings demonstrate that the old drug cinanserin is an inhibitor of SARS-CoV replication, acting most likely via inhibition of the 3CL proteinase.

  16. Biological Characteristics and Etiological Significance of Porcine Respiratory Coronavirus(PRCV)

    Institute of Scientific and Technical Information of China (English)

    FAN Xiuping; FENG Li; SHI Hongyan; CHEN Jianfei

    2009-01-01

    Porcine respiratory coronavirus (PRCV), a spike (S) gene natural deletion mutant of transmissible gastroenteritis virus (TGEV), causes porcine respiratory disease complex. Research advances on porcine respiratory coronavirus were reviewed from four aspects of biological character, the model function for SARS-CoV research, contribution of the immunity to PRCV to protection against TGEV challenge exposure and other etiological significance.

  17. Human coronavirus EMC is not the same as severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Perlman, Stanley; Zhao, Jincun

    2013-01-15

    A newly identified betacoronavirus, human coronavirus EMC (HCoV-EMC), has been isolated from several patients with respiratory and renal disease in the Middle East. While only a few infected patients have been identified, the mortality of the infection is greater than 50%. Like its better-known cousin severe acute respiratory syndrome coronavirus (SARS-CoV), HCoV-EMC appears to have originated from bats. In a recent article in mBio, Müller et al. described several important differences between the two viruses [M. A. Müller et al., mBio 3(6):e00515-12, 2012, doi:10.1128/mBio.00515-12]. Unlike SARS-CoV, HCoV-EMC can directly infect bat cells. As important, HCoV-EMC does not enter cells using the SARS-CoV receptor, human angiotensin-converting receptor-2 (hACE2). These results provide a strong incentive for identifying the host cell receptor used by HCoV-EMC. Identification of the receptor will provide insight into the pathogenesis of pulmonary and renal disease and may also suggest novel therapeutic interventions.

  18. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    Science.gov (United States)

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  19. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures

    Directory of Open Access Journals (Sweden)

    Al-Tawfiq JA

    2014-11-01

    Full Text Available Jaffar A Al-Tawfiq,1,2 Ziad A Memish3,4 1Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; 2Indiana University School of Medicine, Indianapolis, IN, USA; 3Ministry of Health, 4Alfaisal University, Riyadh, Saudi Arabia Abstract: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV infection in 2012 resulted in an increased concern of the spread of the infection globally. MERS-CoV infection had previously caused multiple health-care-associated outbreaks and resulted in transmission of the virus within families. Community onset MERS-CoV cases continue to occur. Dromedary camels are currently the most likely animal to be linked to human MERS-CoV cases. Serologic tests showed significant infection in adult camels compared to juvenile camels. The control of MERS-CoV infection relies on prompt identification of cases within health care facilities, with institutions applying appropriate infection control measures. In addition, determining the exact route of transmission from camels to humans would further add to the control measures of MERS-CoV infection. Keywords: MERS, Middle East respiratory syndrome coronavirus, epidemiology, control measures, transmission, Saudi Arabia

  20. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir

    OpenAIRE

    Mohd, Hamzah A.; Al-Tawfiq, Jaffar A; Memish, Ziad A.

    2016-01-01

    Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans. Though not confirmed yet, multiple surveillance and phylogenetic studies suggest a bat origin. The disease is heavily endemic in dromedary camel populations of East Africa and the Middle East. It is unclear as to when the virus was introduced to dromedary camels, but data from studies that investigated stored dromedary camel sera and ge...

  1. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency.

    Science.gov (United States)

    Szczawinska-Poplonyk, Aleksandra; Jonczyk-Potoczna, Katarzyna; Breborowicz, Anna; Bartkowska-Sniatkowska, Alicja; Figlerowicz, Magdalena

    2013-09-01

    Coronaviruses have been demonstrated to contribute substantially to respiratory tract infections among the child population. Though infected children commonly present mild upper airway symptoms, in high-risk patients with underlying conditions, particularly in immunocompromised children these pathogens may lead to severe lung infection and extrapulmonary disorders. In this paper, we provide the first report of the case of a 15-month-old child with severe combined immunodeficiency and coronavirus HKU1-related pneumonia with fatal respiratory distress syndrome.

  2. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  3. Severe acute respiratory syndrome coronavirus persistence in Vero cells

    Institute of Scientific and Technical Information of China (English)

    Gustavo Palacios; Omar Jabado; Neil Renwick; Thomas Briese; W. Ian Lipkin

    2005-01-01

    Background Several coronaviruses establish persistent infections in vitro and in vivo, however it is unknown whether persistence is a feature of the severe acute respiratory syndorme coronavirus (SARS-CoV) life cycle. This study was conducted to investigate viral persistence.Methods We inoculated confluent monolayers of Vero cells with SARS-CoV at a multiplicity of infection of 0.1 TCID50 and passaged the remaining cells every 4 to 8 days for a total of 11 passages. Virus was titrated at each passage by limited dilution assay and nucleocapsid antigen was detected by Western blot and immunofluoresence assays. The presence of viral particles in passage 11 cells was assessed by electron microscopy. Changes in viral genomic sequences during persistent infection were examined by DNA sequencing. Results Cytopathic effect was extensive after initial inoculation but diminished with serial passages. Infectious virus was detected after each passage and viral growth curves were identical for parental virus stock and virus obtained from passage 11 cells. Nucleocapsid antigen was detected in the majority of cells after initial inoculation but in only 10%-40% of cells at passages 2-11. Electron microscopy confirmed the presence of viral particles in passage 11 cells. Sequence analysis at passage 11 revealed fixed mutations in the spike (S) gene and ORFs 7a-8b but not in the nucleocapsid (N) gene. Conclusions SARS-CoV can establish a persistent infection in vitro. The mechanism for viral persistence is consistent with the formation of a carrier culture whereby a limited number of cells are infected with each round of virus replication and release. Persistence is associated with selected mutations in the SARS-CoV genome. This model may provide insight into SARS-related lung pathology and mechanisms by which humans and animals can serve as reservoirs for infection.

  4. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Vergara-Alert, Júlia; van den Brand, Judith M.A.; Widagdo, W.; Muñoz, Marta; Raj, Stalin; Schipper, Debby; Solanes, David; Cordón, Ivan; Bensaid, Albert; Haagmans, Bart L.

    2017-01-01

    Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible. PMID:27901465

  5. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus.

    Science.gov (United States)

    Alhogbani, Tariq

    2016-01-01

    The novel Middle east respiratory syndrome coronavirus (MeRS-CoV) has been identified as a cause of pneumonia; however, it has not been reported as a cause of acute myocarditis. A 60-year-old man presented with pneumonia and congestive heart failure. On the first day of admission, he was found to have an elevated troponin-l level and severe global left ventricular systolic dysfunction on echo-cardiography. The serum creatinine level was found mildly elevated. Chest radiography revealed in the lower lung fields accentuated bronchovascular lung markings and multiple small patchy opacities. Laboratory tests were negative for viruses known to cause myocarditis. Sputum sample was positive for MeRS-CoV. Cardiovascular magnetic resonance revealed evidence of acute myocarditis. the patient had all criteria specified by the international Consensus Group on CMR in Myocarditis that make a clinical suspicion for acute myocarditis. this was the first case that demonstrated that MeRS-CoV may cause acute myocarditis and acute-onset heart failure.

  6. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Zielecki, Florian; Weber, Michaela; Eickmann, Markus; Spiegelberg, Larissa; Zaki, Ali Moh; Matrosovich, Mikhail; Becker, Stephan; Weber, Friedemann

    2013-05-01

    Infections with human coronavirus EMC (HCoV-EMC) are associated with severe pneumonia. We demonstrate that HCoV-EMC resembles severe acute respiratory syndrome coronavirus (SARS-CoV) in productively infecting primary and continuous cells of the human airways and in preventing the induction of interferon regulatory factor 3 (IRF-3)-mediated antiviral alpha/beta interferon (IFN-α/β) responses. However, HCoV-EMC was markedly more sensitive to the antiviral state established by ectopic IFN. Thus, HCoV-EMC can utilize a broad range of human cell substrates and suppress IFN induction, but it does not reach the IFN resistance of SARS-CoV.

  7. Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels

    NARCIS (Netherlands)

    W. Widagdo; V.S. Raj (Stalin); D. Schipper (Debby); K. Kolijn (Kimberley); G.J.H.L. Leenders (Geert); B.J. Bosch (Berend Jan); A. Bensaid (Albert); J. Segalés (Joaquim); W. Baumgärtner (Wolfgang); A.D.M.E. Osterhaus (Albert); M.P.G. Koopmans D.V.M. (Marion); J.M.A. van den Brand (Judith); B.L. Haagmans (Bart)

    2016-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor-dipeptidyl peptidase 4 (DPP4)-is expressed in the upper respiratory tract epithelium of camels

  8. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

    NARCIS (Netherlands)

    B.L. Haagmans (Bart); S.H.S. Al Dhahiry (Said); C.B.E.M. Reusken (Chantal); V.S. Raj (Stalin); M. Galiano (Monica); R.H. Myers (Richard); G-J. Godeke (Gert-Jan); M. Jonges (Marcel); E. Farag (Elmoubasher); A. Diab (Ayman); H. Ghobashy (Hazem); F. Alhajri (Farhoud); M. Al-Thani (Mohamed); S.A. Al-Marri (Salih); H.E. Al Romaihi (Hamad); A. Al Khal (Abdullatif); A. Bermingham (Alison); A.D.M.E. Osterhaus (Albert); M.M. AlHajri (Mohd); M.P.G. Koopmans D.V.M. (Marion)

    2014-01-01

    textabstractBackground: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar link

  9. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  10. Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014.

    Science.gov (United States)

    Wernery, Ulrich; Corman, Victor M; Wong, Emily Y M; Tsang, Alan K L; Muth, Doreen; Lau, Susanna K P; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K; Patteril, Nissy Annie Georgy; Woo, Patrick C Y; Drosten, Christian

    2015-06-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother-calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk.

  11. Characterization of a novel coronavirus associated with severe acute respiratory syndrome

    NARCIS (Netherlands)

    P.A. Rota (Paul); M.S. Oberste (Steven); S.S. Monroe (Stephan); W.A. Nix (Allan); R. Campagnoli (Ray); J.P. Icenogle (Joseph); S. Penaranda; B. Bankamp (Bettina); K. Maher (Kaija); M.H. Chen (Min-hsin); S. Tong (Suxiong); A. Tamin (Azaibi); L. Lowe (Luis); M. Frace (Michael); J.L. DeRisi (Joseph); Q. Chen (Qi); D. Wang (David); D.D. Erdman (Dean); T.C. Peret (Teresa); C. Burns (Cara); T.G. Ksiazek (Thomas); P.E. Rollin (Pierre); A. Sanchez (Berenguer); S. Liffick (Stephanie); B. Holloway (Brian); J. Limor (Josef); K. McCaustland (Karen); M. Olsen-Rasmussen (Mellissa); S. Gunther; A.D.M.E. Osterhaus (Albert); C. Drosten (Christian); M.A. Pallansch (Mark); L.J. Anderson (Larry); W.J. Belline; R.A.M. Fouchier (Ron)

    2003-01-01

    textabstractIn March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The geno

  12. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  13. The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns”

    Directory of Open Access Journals (Sweden)

    Jasper Fuk-Woo Chan

    2013-07-01

    Full Text Available A novel lineage C betacoronavirus, originally named human coronavirus EMC/2012 (HCoV-EMC and recently renamed Middle East respiratory syndrome coronavirus (MERS-CoV, that is phylogenetically closely related to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5, which we discovered in 2007 from bats in Hong Kong, has recently emerged in the Middle East to cause a severe acute respiratory syndrome (SARS-like infection in humans. The first laboratory-confirmed case, which involved a 60-year-old man from Bisha, the Kingdom of Saudi Arabia (KSA, who died of rapidly progressive community-acquired pneumonia and acute renal failure, was announced by the World Health Organization (WHO on September 23, 2012. Since then, a total of 70 cases, including 39 fatalities, have been reported in the Middle East and Europe. Recent clusters involving epidemiologically-linked household contacts and hospital contacts in the Middle East, Europe, and Africa strongly suggested possible human-to-human transmission. Clinical and laboratory research data generated in the past few months have provided new insights into the possible animal reservoirs, transmissibility, and virulence of MERS-CoV, and the optimal laboratory diagnostic options and potential antiviral targets for MERS-CoV-associated infection.

  14. Association between respiratory infections in early life and later asthma is independent of virus type

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Vissing, Nadja Hawwa; Sevelsted, Astrid;

    2015-01-01

    (respiratory syncytial virus, rhinoviruses, other picornaviruses, coronaviruses 229E and OC43, parainfluenza viruses 1-3, influenza viruses AH1, AH3, and B, human metapneumovirus, adenoviruses, and bocavirus) and 3 pathogenic airway bacteria (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella...

  15. Middle East Respiratory Syndrome Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013.

    Science.gov (United States)

    Malik, Asim; El Masry, Karim Medhat; Ravi, Mini; Sayed, Falak

    2016-03-01

    As of June 19, 2015, the World Health Organization had received 1,338 notifications of laboratory-confirmed infection with Middle East respiratory syndrome coronavirus (MERS-CoV). Little is known about the course of or treatment for MERS-CoV in pregnant women. We report a fatal case of MERS-CoV in a pregnant woman administered combination ribavirin-peginterferon-α therapy.

  16. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis

    Science.gov (United States)

    McBride, Ruth; Fielding, Burtram C.

    2012-01-01

    A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509

  17. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuan-hai; XIONG Sheng; LI Jiu-xiang; QI Shu-yuan; WANG Yi-fei; LIU Xin-jian; LU Jia-hai; QIAN Chui-wen; WAN Zhuo-yue; YAN Xin-ge; ZHENG Huan-ying; ZHANG Mei-ying

    2005-01-01

    @@ Severe acute respiratory syndrome (SARS) is the first severe viral epidemic we encountered this century, which once spread in more than thirty countries in 2003.1 The etiological agent of SARS has been confirmed to be a novel coronavirus, namely SARS coronavirus (SARS-CoV),2,3 and the first outbreak of SARS has been successfully controlled worldwide, but the identification of SARS-CoV isolated from wild animals, the emergence of some sporadic SARS cases later after that outbreak, all suggest that the recurrence of such an epidemic is not unlikely in the future. In this case, development of SARS vaccines and specific drugs is undoubtedly essential to the control and prevention from the possible outbreak.4,5

  18. The Middle East respiratory syndrome coronavirus (MERS-CoV does not replicate in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Emmie de Wit

    Full Text Available In 2012 a novel coronavirus, MERS-CoV, associated with severe respiratory disease emerged in the Arabian Peninsula. To date, 55 human cases have been reported, including 31 fatal cases. Several of the cases were likely a result of human-to-human transmission. The emergence of this novel coronavirus prompts the need for a small animal model to study the pathogenesis of this virus and to test the efficacy of potential intervention strategies. In this study we explored the use of Syrian hamsters as a small animal disease model, using intratracheal inoculation and inoculation via aerosol. Clinical signs of disease, virus replication, histological lesions, cytokine upregulation nor seroconversion were observed in any of the inoculated animals, indicating that MERS-CoV does not replicate in Syrian hamsters.

  19. Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels

    NARCIS (Netherlands)

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor - dipeptidyl peptidase 4 (DPP4) - is expressed in the upper respiratory tract epithelium of camels but not

  20. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic sta

  1. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); D. Jochmans (Dirk); C.C. Posthuma (Clara); J.C. Zevenhoven-Dobbe (Jessika); S. van Nieuwkoop (Stefan); T.M. Bestebroer (Theo); B.G. van den Hoogen (Bernadette); J. Neyts; E.J. Snijder (Eric)

    2014-01-01

    textabstractCoronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previ

  2. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection

    Directory of Open Access Journals (Sweden)

    Anthony R. Fehr

    2016-12-01

    Full Text Available ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3. However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3’s de-ADP-ribosylation activity in vitro. Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN, interferon-stimulated gene (ISG, and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs.

  3. Sequence Analysis and Structural Prediction of the Severe Acute Respiratory Syndrome Coronavirus nsp5

    Institute of Scientific and Technical Information of China (English)

    Jia-Hai LU; Nan-Shan ZHONG; Ding-Mei ZHANG; Guo-Ling WANG; Zhong-Min GUO; Juan LI; Bing-Yan TAN; Li-Ping OU-YANG; Wen-Hua LING; Xin-Bing YU

    2005-01-01

    The non-structural proteins (nsp or replicase proteins) of coronaviruses are relatively conserved and can be effective targets for drugs. Few studies have been conducted into the function of the severe acute respiratory syndrome coronavirus (SARS-CoV) nsp5. In this study, bioinformatics methods were employed to predict the secondary structure and construct 3-D models of the SARS-CoV GD strain nsp5. Sequencing and sequential comparison was performed to analyze the mutation trend of the polymerase nsp5 gene during the epidemic process using a nucleotide-nucleotide basic local alignment search tool (BLASTN) and a protein-protein basic local alignment search tool (BLASTP). The results indicated that the nsp5 gene was steady during the epidemic process and the protein was homologous with other coronavirus nsp5 proteins. The protein encoded by the nsp5 gene was expressed in COS-7 cells and analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This study provided the foundation for further exploration of the protein's biological function, and contributed to the search for anti-SARS-CoV drugs.

  4. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair.

    Science.gov (United States)

    Knudsen, T B; Kledal, T N; Andersen, O; Eugen-Olsen, J; Kristiansen, T B

    2003-09-01

    The recent identification of a novel clinical entity, the severe acute respiratory syndrome (SARS), the rapid subsequent spread and case fatality rates of 14-15% have prompted a massive international collaborative investigation facilitated by a network of laboratories established by the World Health Organization (WHO). As SARS has the potential of becoming the first pandemic of the new millennium, a global warning by the WHO was issued on 12 March 2003. The disease, which is believed to have its origin in the Chinese Guangdong province, spread from Hong Kong via international airports to its current worldwide distribution. The concerted efforts of a globally united scientific community have led to the independent isolation and identification of a novel coronavirus from SARS patients by several groups. The extraordinarily rapid isolation of a causative agent of this newly emerged infectious disease constitutes an unprecedented scientific achievement. The main scope of the article is to provide the clinician with an overview of the natural history, epidemiology and clinical characteristics of SARS. On the basis of the recently published viral genome and structural features common to the members of the coronavirus family, a model for host cell-virus interaction and possible targets for antiviral drugs are presented. The epidemiological consequences of introducing a novel pathogen in a previously unexposed population and the origin and evolution of a new and more pathogenic strain of coronavirus are discussed.

  5. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy.

    Science.gov (United States)

    Decaro, Nicola; Campolo, Marco; Desario, Costantina; Cirone, Francesco; D'Abramo, Maria; Lorusso, Eleonora; Greco, Grazia; Mari, Viviana; Colaianni, Maria Loredana; Elia, Gabriella; Martella, Vito; Buonavoglia, Canio

    2008-01-01

    Four outbreaks of bovine respiratory disease (BRD) associated with bovine coronavirus (BCoV) infection in Italian cattle herds were reported. In 3 outbreaks, BRD was observed only in 2-3-month-old feedlot calves, whereas in the remaining outbreak, lactating cows, heifers, and calves were simultaneously affected. By using reverse transcription polymerase chain reaction (RT-PCR), BCoV RNA was detected in all outbreaks without evidence of concurrent viral pathogens (i.e., bovine respiratory syncytial virus, bovine herpesvirus type 1, bovine viral diarrhea virus, bovine parainfluenza virus). Common bacteria of cattle were recovered only from 2 outbreaks of BRD: Staphylococcus spp. and Proteus mirabilis (outbreak 1) and Mannheimia haemolytica (outbreak 4). A recently established real-time RT-PCR assay showed that viral RNA loads in nasal secretions ranged between 3.10 x 10(2) and 7.50 x 10(7) RNA copies/microl of template. Bovine coronavirus was isolated from respiratory specimens from all outbreaks except outbreak 1, in which real-time RT-PCR found very low viral titers in nasal swabs.

  6. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    Science.gov (United States)

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  7. Middle East Respiratory Syndrome Coronavirus Antibody Reactors Among Camels in Dubai, United Arab Emirates, in 2005

    OpenAIRE

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-01-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000–2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supp...

  8. [Importance of the case of coronavirus-associated severe acute respiratory syndrome detected in Hungary in 2005].

    Science.gov (United States)

    Rókusz, László; Jankovics, István; Jankovics, Máté; Sarkadi, Júlia; Visontai, Ildikó

    2013-11-24

    Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology.

  9. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    Science.gov (United States)

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  10. The nucleocapsid protein of human coronavirus NL63.

    Directory of Open Access Journals (Sweden)

    Kaja Zuwała

    Full Text Available Human coronavirus (HCoV NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E. Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  11. A Review of Novel Coronavirus, cause of Middle East Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Katayoun Vahdat

    2014-01-01

    Full Text Available Abstract Background: Isolation of a novel virus belonging to coronavirdae family in September 2012, from patients in Middle East who had died of an acute respiratory illness & renal failure lead to researches on this new virus. Here, a brief review to summarize the events of scientific findings of this new emerging virus. Material and Methods: This review is based on a comprehensive search of three databases (Pubmed, Embase and Cochrane and WHO reports. The searched keywords were new coronavirus, Middle East, acute respieratory distress syndrom & Saudi Arabia. Results: Due to novelty of virus only limited papers exist on searched databases, so only 50 papers were identified which after omitting repeated case reports, papers related to SARS and updated WHO reports, 30 papers were finally reviewed. Conclusion: WHO recommendation is evaluation of all patients with acute respiratory illness and history of travel to Saudi Arabia or other countries where this novel virus is epidemic.

  12. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human

    Science.gov (United States)

    Song, Huai-Dong; Tu, Chang-Chun; Zhang, Guo-Wei; Wang, Sheng-Yue; Zheng, Kui; Lei, Lian-Cheng; Chen, Qiu-Xia; Gao, Yu-Wei; Zhou, Hui-Qiong; Xiang, Hua; Zheng, Hua-Jun; Chern, Shur-Wern Wang; Cheng, Feng; Pan, Chun-Ming; Xuan, Hua; Chen, Sai-Juan; Luo, Hui-Ming; Zhou, Duan-Hua; Liu, Yu-Fei; He, Jian-Feng; Qin, Peng-Zhe; Li, Ling-Hui; Ren, Yu-Qi; Liang, Wen-Jia; Yu, Ye-Dong; Anderson, Larry; Wang, Ming; Xu, Rui-Heng; Wu, Xin-Wei; Zheng, Huan-Ying; Chen, Jin-Ding; Liang, Guodong; Gao, Yang; Liao, Ming; Fang, Ling; Jiang, Li-Yun; Li, Hui; Chen, Fang; Di, Biao; He, Li-Juan; Lin, Jin-Yan; Tong, Suxiang; Kong, Xiangang; Du, Lin; Hao, Pei; Tang, Hua; Bernini, Andrea; Yu, Xiao-Jing; Spiga, Ottavia; Guo, Zong-Ming; Pan, Hai-Yan; He, Wei-Zhong; Manuguerra, Jean-Claude; Fontanet, Arnaud; Danchin, Antoine; Niccolai, Neri; Li, Yi-Xue; Wu, Chung-I; Zhao, Guo-Ping

    2005-01-01

    The genomic sequences of severe acute respiratory syndrome coronaviruses from human and palm civet of the 2003/2004 outbreak in the city of Guangzhou, China, were nearly identical. Phylogenetic analysis suggested an independent viral invasion from animal to human in this new episode. Combining all existing data but excluding singletons, we identified 202 single-nucleotide variations. Among them, 17 are polymorphic in palm civets only. The ratio of nonsynonymous/synonymous nucleotide substitution in palm civets collected 1 yr apart from different geographic locations is very high, suggesting a rapid evolving process of viral proteins in civet as well, much like their adaptation in the human host in the early 2002–2003 epidemic. Major genetic variations in some critical genes, particularly the Spike gene, seemed essential for the transition from animal-to-human transmission to human-to-human transmission, which eventually caused the first severe acute respiratory syndrome outbreak of 2002/2003. PMID:15695582

  13. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia : a nationwide, cross-sectional, serological study

    NARCIS (Netherlands)

    Müller, Marcel A; Meyer, Benjamin; Corman, Victor M; Al-Masri, Malak; Turkestani, Abdulhafeez; Ritz, Daniel; Sieberg, Andrea; Aldabbagh, Souhaib; Bosch, Berend-J; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Albarrak, Ali M; Al-Shangiti, Ali M; Al-Tawfiq, Jaffar A; Wikramaratna, Paul; Alrabeeah, Abdullah A; Drosten, Christian; Memish, Ziad A

    2015-01-01

    BACKGROUND: Scientific evidence suggests that dromedary camels are the intermediary host for the Middle East respiratory syndrome coronavirus (MERS-CoV). However, the actual number of infections in people who have had contact with camels is unknown and most index patients cannot recall any such cont

  14. Evaluation of bovine coronavirus antibody levels, virus shedding, and respiratory disease incidence throughout the beef cattle production cycle

    Science.gov (United States)

    Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...

  15. Study on Substrate Specificity at Subsites for Severe Acute Respiratory Syndrome Coronavirus 3CL Protease

    Institute of Scientific and Technical Information of China (English)

    Yu-Fei SHAN; Gen-Jun XU

    2005-01-01

    Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable.In addition, based on both peptide-based assay and autocleavage assay, Ile at the P1' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.

  16. A rare cause of acute flaccid paralysis: Human coronaviruses

    Directory of Open Access Journals (Sweden)

    Cokyaman Turgay

    2015-01-01

    Full Text Available Acute flaccid paralysis (AFP is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time.

  17. Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015.

    Science.gov (United States)

    Furuse, Yuki; Okamoto, Michiko; Oshitani, Hitoshi

    2015-11-01

    Infection due to the Middle East respiratory syndrome coronavirus (MERS-CoV) is widespread. The present study was performed to assess the protocols used for the molecular diagnosis of MERS-CoV by analyzing the nucleotide sequences of viruses detected between 2012 and 2015, including sequences from the large outbreak in eastern Asia in 2015. Although the diagnostic protocols were established only 2 years ago, mismatches between the sequences of primers/probes and viruses were found for several of the assays. Such mismatches could lead to a lower sensitivity of the assay, thereby leading to false-negative diagnosis. A slight modification in the primer design is suggested. Protocols for the molecular diagnosis of viral infections should be reviewed regularly after they are established, particularly for viruses that pose a great threat to public health such as MERS-CoV.

  18. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi

    Science.gov (United States)

    Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N.; Bunga, Sudhir; Haynes, Lia M.; Hall, Aron J.; Kallen, Alexander J.; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L.; Gerber, Susan I.; Al Hosani, Farida Ismail

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013–May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities. PMID:26981708

  19. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi.

    Science.gov (United States)

    Hunter, Jennifer C; Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N; Bunga, Sudhir; Haynes, Lia M; Hall, Aron J; Kallen, Alexander J; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L; Gerber, Susan I; Al Hosani, Farida Ismail

    2016-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013-May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities.

  20. Molecular Advances in Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV)

    Institute of Scientific and Technical Information of China (English)

    Ken Yan Ching Chow; Chung Chau Hon; Raymond Kin Hi Hui; Raymond Tsz Yeung Wong; Chi Wai Yip; Fanya Zeng; Frederick Chi Ching Leung

    2003-01-01

    The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identification of the agent represented an important breakthrough, our understanding of the deadly virus remains limited. Detailed biological knowledge is crucial for the development of effective countermeasures, diagnostic tests, vaccines and antiviral drugs against the SARS-CoV. This article reviews the present state of molecular knowledge about SARS-CoV, from the aspects of comparative genomics, molecular biology of viral genes, evolution, and epidemiology, and describes the diagnostic tests and the anti-viral drugs derived so far based on the available molecular information.

  1. Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2015-11-01

    Full Text Available Infection due to the Middle East respiratory syndrome coronavirus (MERS-CoV is widespread. The present study was performed to assess the protocols used for the molecular diagnosis of MERS-CoV by analyzing the nucleotide sequences of viruses detected between 2012 and 2015, including sequences from the large outbreak in eastern Asia in 2015. Although the diagnostic protocols were established only 2 years ago, mismatches between the sequences of primers/probes and viruses were found for several of the assays. Such mismatches could lead to a lower sensitivity of the assay, thereby leading to false-negative diagnosis. A slight modification in the primer design is suggested. Protocols for the molecular diagnosis of viral infections should be reviewed regularly after they are established, particularly for viruses that pose a great threat to public health such as MERS-CoV.

  2. [Nosocomial infections due to human coronaviruses in the newborn].

    Science.gov (United States)

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  3. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction.

    Science.gov (United States)

    Morgan, Sherwin E; Vukin, Kirissa; Mosakowski, Steve; Solano, Patti; Stanton, Lolita; Lester, Lucille; Lavani, Romeen; Hall, Jesse B; Tung, Avery

    2014-11-01

    Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. Heliox may also enhance the bronchodilating effects of β-agonist administration for acute asthma. Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation.

  4. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    Science.gov (United States)

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  5. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS coronavirus

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    2017-06-01

    Full Text Available Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV, which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV, associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  6. Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection.

    Science.gov (United States)

    Kim, Kyu Yeun; Han, Song Yi; Kim, Ho Seong; Cheong, Hyang Min; Kim, Sung Soon; Kim, Dong Soo

    2017-01-01

    During the late autumn to winter season (October to December) in the Republic of Korea, respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract infections (LRTIs). Interestingly, in 2014, human coronavirus (HCoV) caused not only upper respiratory infections but also LRTIs more commonly than in other years. Therefore, we sought to determine the epidemiology, clinical characteristics, outcomes, and severity of illnesses associated with HCoV infections at a single center in Korea. We retrospectively identified patients with positive HCoV respiratory specimens between October 2014 and December 2014 who were admitted to Severance Children's Hospital at Yonsei University Medical Center for LRTI. Charts of the patients with HCoV infection were reviewed and compared with RSV infection. During the study period, HCoV was the third most common respiratory virus and accounted for 13.7% of infections. Coinfection was detected in 43.8% of children with HCoV. Interestingly, one patient had both HCoV-OC43 and HCoV-NL63. Mild pneumonia was most common (60.4%) with HCoV, and when combined with RSV, resulted in bronchiolitis. Two patients required care in the intensive care unit. However, compared with that of RSV infection, the disease course HCoV was short. Infections caused by HCoVs are common, and can cause LRTIs. During an epidemic season, clinicians should be given special consideration thereto. When combined with other medical conditions, such as neurologic or cardiologic diseases, intensive care unit (ICU) care may be necessary.

  7. Surveillance and Testing for Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, April 2015–February 2016

    Science.gov (United States)

    Bin Saeed, Abdulaziz A.; Alzahrani, Abdullah G.; Salameh, Iyad; Abdirizak, Fatima; Alhakeem, Raafat; Algarni, Homoud; El Nil, Osman A.; Mohammed, Mutaz; Assiri, Abdullah M.; Alabdely, Hail M.; Watson, John T.; Gerber, Susan I.

    2017-01-01

    Saudi Arabia has reported >80% of the Middle East respiratory syndrome coronavirus (MERS-CoV) cases worldwide. During April 2015–February 2016, Saudi Arabia identified and tested 57,363 persons (18.4/10,000 residents) with suspected MERS-CoV infection; 384 (0.7%) tested positive. Robust, extensive, and timely surveillance is critical for limiting virus transmission. PMID:28322710

  8. Severe respiratory illness associated with a novel coronavirus--Saudi Arabia and Qatar, 2012.

    Science.gov (United States)

    2012-10-12

    CDC is working closely with the World Health Organization (WHO) and other partners to better understand the public health risk presented by a recently detected, novel coronavirus. This virus has been identified in two patients, both previously healthy adults who suffered severe respiratory illness. The first patient, a man aged 60 years from Saudi Arabia, was hospitalized in June 2012 and died; the second patient, a man aged 49 years from Qatar with onset of symptoms in September 2012 was transported to the United Kingdom for intensive care. He remains hospitalized on life support with both pulmonary and renal failure. Person-to-person or health-care-associated transmission has not been identified to date. Interim case definitions based on acute respiratory illness and travel history were issued by WHO on September 29 and include criteria for "patient under investigation," "probable case," and "confirmed case". This information is current as of October 4. Updates on the investigation and the WHO case definition are available at http://www.who.int/csr/don/en/index.html.

  9. Modeling the Early Events of Severe Acute Respiratory Syndrome Coronavirus Infection In Vitro

    Science.gov (United States)

    Yen, Yu-Ting; Liao, Fang; Hsiao, Cheng-Hsiang; Kao, Chuan-Liang; Chen, Yee-Chun; Wu-Hsieh, Betty A.

    2006-01-01

    The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1α, CXCL10/IP-10, CCL4/MIP-1β, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury. PMID:16501078

  10. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Tao, Xinrong; Hill, Terence E.; Morimoto, Chikao; Peters, Clarence J.; Ksiazek, Thomas G.

    2013-01-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV. PMID:23824802

  11. Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt

    Science.gov (United States)

    Ali, Mohamed A; Shehata, Mahmoud M; Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; El-Taweel, Ahmed N; Atea, Mohamed; Hassan, Nagla; Bagato, Ola; Moatasim, Yassmin; Mahmoud, Sara H; Kutkat, Omnia; Maatouq, Asmaa M; Osman, Ahmed; McKenzie, Pamela P; Webby, Richard J; Kayali, Ghazi

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe human infections and dromedary camels are considered an intermediary host. The dynamics of natural infection in camels are not well understood. Through systematic surveillance in Egypt, nasal, rectal, milk, urine and serum samples were collected from camels between June 2014 and February 2016. Locations included quarantines, markets, abattoirs, free-roaming herds and farmed breeding herds. The overall seroprevalence was 71% and RNA detection rate was 15%. Imported camels had higher seroprevalence (90% vs 61%) and higher RT-PCR detection rates (21% vs 12%) than locally raised camels. Juveniles had lower seroprevalence than adults (37% vs 82%) but similar RT-PCR detection rates (16% vs 15%). An outbreak in a breeding herd, showed that antibodies rapidly wane, that camels become re-infected, and that outbreaks in a herd are sustained for an extended time. Maternal antibodies titers were very low in calves regardless of the antibody titers of the mothers. Our results support the hypothesis that camels are a reservoir for MERS-CoV and that camel trade is an important route of introducing the virus into importing countries. Findings related to waning antibodies and re-infection have implications for camel vaccine development, disease management and zoonotic threat. PMID:28050021

  12. Factors Influencing Emergency Nurses' Burnout During an Outbreak of Middle East Respiratory Syndrome Coronavirus in Korea.

    Science.gov (United States)

    Kim, Ji Soo; Choi, Jeong Sil

    2016-12-01

    Emergency department (ED) nurses suffer from persistent stress after experiencing the traumatic event of exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), which can subsequently lead to burnout. This study aimed to assess ED nurses' burnout level during an outbreak of MERS-CoV and to identify influencing factors in order to provide basic information for lowering and preventing the level of burnout. Study participants were ED nurses working in eight hospitals designated for treating MERS-CoV-infected patients in Korea. We performed multiple regression analysis to explore the factors influencing burnout. The ED nurses' burnout was affected by job stress (β=0.59, pburnout. ED nurses taking care of MERS-CoV-infected patients should be aware that burnout is higher for nurses in their divisions than nurses in other hospital departments and that job stress is the biggest influential factor of burnout. To be ready for the outbreak of emerging contagious diseases such as MERS-CoV, efforts and preparations should be made to reduce burnout. Job stress should be managed and resolved. Working conditions for mitigating job stress and systematic stress management programs should be provided, and hospital resources for the treatment of MERS-CoV need to be reinforced. Moreover, promoting support from family and friends is required. Copyright © 2016. Published by Elsevier B.V.

  13. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005.

    Science.gov (United States)

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-04-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000-2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supported by similar results in a MERS-CoV recombinant partial spike protein antibody ELISA. The two negative Dubai camels were both dromedary calves and remained negative over the 5 months studied. The six dromedary samples from USA and Canada were negative in both tests. These results support the recent findings that infection with MERS-CoV or a closely related virus is not a new occurrence in camels in the Middle East. Therefore, interactions of MERS-CoV at the human-animal interface may have been ongoing for several, perhaps many, years and by inference, a widespread pandemic may be less likely unless significant evolution of the virus allow accelerated infection and spread potential in the human population.

  14. Laboratory investigation and phylogenetic analysis of an imported Middle East respiratory syndrome coronavirus case in Greece.

    Directory of Open Access Journals (Sweden)

    Athanasios Kossyvakis

    Full Text Available Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient's history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract.

  15. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Jose L Nieto-Torres

    2014-05-01

    Full Text Available Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV envelope (E gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS

  16. Identification of Information Types and Sources by the Public for Promoting Awareness of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia

    Science.gov (United States)

    Hoda, Jradi

    2016-01-01

    Middle East Respiratory Syndrome (MERS) is a viral respiratory disease of serious consequences caused by MERS Coronavirus (MERS-CoV). Saudi communities still lack awareness of available protective measures to prevent the transmission of the virus. It is necessary to explore the current information-seeking strategies and preferences for…

  17. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  18. Variation analysis of the severe acute respiratory syndrome coronavirus putative non-structural protein 2 gene and construction of three-dimensional model

    Institute of Scientific and Technical Information of China (English)

    LU Jia-hai; CHEN Wei-qing; LING Wen-hua; YU Xin-bing; ZHONG Nan-shan; ZHANG Ding-mei; WANG Guo-ling; GUO Zhong-min; ZHANG Chuan-hai; TAN Bing-yan; OUYANG Li-ping; LIN Li; LIU Yi-min

    2005-01-01

    cells successfully. The result of sequencing and sequence comparison with other SARS-CoV strains showed that nsp2 gene was relatively conservative during the transmission and total five base sites mutated in about 100 strains investigated, three of which in the early and middle phases caused synonymous mutation, and another two base sites variation in the late phase resulted in the amino acid substitutions and secondary structure changes. The three-dimensional structure of the nsp2 protein was successfully constructed. Conclusions The results suggest that polymerase nsp2 is relatively stable during the phase of epidemic. The amino acid and secondary structure change may be important for viral infection. The fact that majority of single nucleotide variations (SNVs) are predicted to cause synonymous, as well as the result of low mutation rate of nsp2 gene in the epidemic variations, indicates that the nsp2 is conservative and could be a target for anti-SARS drugs. The three-dimensional structure result indicates that the nsp2 protein of GD strain is high homologous with 3CLpro of SARS-CoV urbani strain, 3CLpro of transmissible gastroenteritis virus and 3CLpro of human coronavirus 229E strain, which further suggests that nsp2 protein of GD strain possesses the activity of 3CLpro.

  19. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang (UMMC)

    2012-12-10

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

  20. Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Gilardi, K.; Menachery, V. D.; Goldstein, T.; Ssebide, B.; Mbabazi, R.; Navarrete-Macias, I.; Liang, E.; Wells, H.; Hicks, A.; Petrosov, A.; Byarugaba, D. K.; Debbink, K.; Dinnon, K. H.; Scobey, T.; Randell, S. H.; Yount, B. L.; Cranfield, M.; Johnson, C. K.; Baric, R. S.; Lipkin, W. I.; Mazet, J. A. K.

    2017-01-01

    ABSTRACT The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae. Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans. PMID:28377531

  1. Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus

    Science.gov (United States)

    Yu, Pin; Xu, Yanfeng; Deng, Wei; Bao, Linlin; Huang, Lan; Xu, Yuhuan; Yao, Yanfeng; Qin, Chuan

    2017-01-01

    Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments. PMID:28234937

  2. Blocking of Exchange Proteins Directly Activated by cAMP Leads to Reduced Replication of Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Tao, Xinrong; Mei, Feng; Agrawal, Anurodh; Peters, Clarence J.; Ksiazek, Thomas G.

    2014-01-01

    The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections and diseases represents a potential threat for worldwide spread and requires development of effective therapeutic strategies. In this study, we revealed a novel positive function of an exchange protein directly activated by cyclic AMP 1 (cAMP-1; Epac-1) on MERS-CoV replication. Specifically, we have shown that Epac-specific inhibitor treatment or silencing Epac-1 gene expression rendered cells resistant to viral infection. We believe Epac-1 inhibitors deserve further study as potential therapeutic agents for MERS-CoV infection. PMID:24453361

  3. Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014

    Science.gov (United States)

    Al Hosani, Farida Ismail; Al Mulla, Mariam; Kim, Lindsay; Pham, Huong; Alami, Negar N.; Khudhair, Ahmed; Hall, Aron J.; Aden, Bashir; El Saleh, Feda; Al Dhaheri, Wafa; Al Bandar, Zyad; Bunga, Sudhir; Abou Elkheir, Kheir; Tao, Ying; Hunter, Jennifer C.; Nguyen, Duc; Turner, Andrew; Pradeep, Krishna; Sasse, Jurgen; Weber, Stefan; Tong, Suxiang; Whitaker, Brett L.; Haynes, Lia M.; Curns, Aaron; Gerber, Susan I.

    2016-01-01

    In January 2013, several months after Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia, Abu Dhabi, United Arab Emirates, began surveillance for MERS-CoV. We analyzed medical chart and laboratory data collected by the Health Authority–Abu Dhabi during January 2013–May 2014. Using real-time reverse transcription PCR, we tested respiratory tract samples for MERS-CoV and identified 65 case-patients. Of these patients, 23 (35%) were asymptomatic at the time of testing, and 4 (6%) showed positive test results for >3 weeks (1 had severe symptoms and 3 had mild symptoms). We also identified 6 clusters of MERS-CoV cases. This report highlights the potential for virus shedding by mildly ill and asymptomatic case-patients. These findings will be useful for MERS-CoV management and infection prevention strategies. PMID:27314227

  4. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV in Oman

    Directory of Open Access Journals (Sweden)

    I.S. Al-Abaidani

    2014-12-01

    Full Text Available Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV. The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman.

  5. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection.

    Science.gov (United States)

    Hajeer, Ali H; Balkhy, Hanan; Johani, Sameera; Yousef, Mohammed Z; Arabi, Yaseen

    2016-01-01

    Middle East Respiratory Syndrome (MERS) is a disease of the lower respiratory tract and is characterized by high mortality. It is caused by a beta coronavirus (CoV) referred to as MERS-CoV. Majority of MERS-CoV cases have been reported from Saudi Arabia. We investigated the human leukocyte antigen (HLA) Class II alleles in patients with severe MERS who were admitted in our Intensive Care Unit. A total of 23 Saudi patients with severe MERS-CoV infection were typed for HLA class II, results were compared with those of 161 healthy controls. Two HLA class II alleles were associated with the disease; HLA-DRB1*11:01 and DQB1*02:02, but not with the disease outcome. Our results suggest that the HLA-DRB1*11:01 and DQB1*02:02 may be associated with susceptibility to MERS.

  6. Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014.

    Science.gov (United States)

    Al Hosani, Farida Ismail; Pringle, Kimberly; Al Mulla, Mariam; Kim, Lindsay; Pham, Huong; Alami, Negar N; Khudhair, Ahmed; Hall, Aron J; Aden, Bashir; El Saleh, Feda; Al Dhaheri, Wafa; Al Bandar, Zyad; Bunga, Sudhir; Abou Elkheir, Kheir; Tao, Ying; Hunter, Jennifer C; Nguyen, Duc; Turner, Andrew; Pradeep, Krishna; Sasse, Jurgen; Weber, Stefan; Tong, Suxiang; Whitaker, Brett L; Haynes, Lia M; Curns, Aaron; Gerber, Susan I

    2016-07-01

    In January 2013, several months after Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia, Abu Dhabi, United Arab Emirates, began surveillance for MERS-CoV. We analyzed medical chart and laboratory data collected by the Health Authority-Abu Dhabi during January 2013-May 2014. Using real-time reverse transcription PCR, we tested respiratory tract samples for MERS-CoV and identified 65 case-patients. Of these patients, 23 (35%) were asymptomatic at the time of testing, and 4 (6%) showed positive test results for >3 weeks (1 had severe symptoms and 3 had mild symptoms). We also identified 6 clusters of MERS-CoV cases. This report highlights the potential for virus shedding by mildly ill and asymptomatic case-patients. These findings will be useful for MERS-CoV management and infection prevention strategies.

  7. Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014

    NARCIS (Netherlands)

    Reusken, C B; Farag, E A; Jonges, M; Godeke, G J; El-Sayed, A M; Pas, S D; Raj, V S; Mohran, K A; Moussa, H A; Ghobashy, H; Alhajri, F; Ibrahim, A K; Bosch, B J; Pasha, S K; Al-Romaihi, H E; Al-Thani, M; Al-Marri, S A; AlHajri, M M; Haagmans, B L; Koopmans, M P

    2014-01-01

    Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral RN

  8. Middle east respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, june to September 2013

    NARCIS (Netherlands)

    C.B.E.M. Reusken (Chantal); M. Ababneh; V.S. Raj (Stalin); B. Meyer (Bernhard); A. Eljarah; S. Abutarbush; G-J. Godeke (Gert-Jan); T.M. Bestebroer (Theo); I. Zutt (I.); M.A. Müller (Marcel); B.J. Bosch (Berend Jan); P.J.M. Rottier (Peter); A.D.M.E. Osterhaus (Albert); C. Drosten (Christian); B.L. Haagmans (Bart); M.P.G. Koopmans D.V.M. (Marion)

    2013-01-01

    textabstractBetween June and September 2013, sera from 11 dromedary camels, 150 goats, 126 sheep and 91 cows were collected in Jordan, where the first human Middle-East respiratory syndrome (MERS) cluster appeared in 2012. All sera were tested for MERS-coronavirus (MERS-CoV) specific antibodies by p

  9. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  10. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc(and STAT) interactor

    Institute of Scientific and Technical Information of China (English)

    Weijia; Cheng; Shiyou; Chen; Ruiling; Li; Yu; Chen; Min; Wang; Deyin; Guo

    2015-01-01

    Severe acute respiratory syndrome coronavirus(SARS-Co V) encodes eight accessory proteins, the functions of which are not yet fully understood. SARS-Co V protein 6(P6) is one of the previously studied accessory proteins that have been documented to enhance viral replication and suppress host interferon(IFN) signaling pathways. Through yeast two-hybrid screening, we identified eight potential cellular P6-interacting proteins from a human spleen c DNA library. For further investigation, we targeted the IFN signaling pathway-mediating protein, N-Myc(and STAT) interactor(Nmi). Its interaction with P6 was confirmed within cells. The results showed that P6 can promote the ubiquitin-dependent proteosomal degradation of Nmi. This study revealed a new mechanism of SARS-Co V P6 in limiting the IFN signaling to promote SARS-Co V survival in host cells.

  11. The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor.

    Science.gov (United States)

    Karjee, Sumona; Minhas, Ankita; Sood, Vikas; Ponia, Sanket S; Banerjea, Akhil C; Chow, Vincent T K; Mukherjee, Sunil K; Lal, Sunil K

    2010-10-01

    RNA silencing suppressors (RSSs) are well studied for plant viruses but are not well defined to date for animal viruses. Here, we have identified an RSS from a medically important positive-sense mammalian virus, Severe acute respiratory syndrome coronavirus. The viral 7a accessory protein suppressed both transgene and virus-induced gene silencing by reducing the levels of small interfering RNA (siRNA). The suppression of silencing was analyzed by two independent assays, and the middle region (amino acids [aa] 32 to 89) of 7a was responsible for suppression. Finally, the RNA suppression property and the enhancement of heterologous replicon activity by the 7a protein were confirmed for animal cell lines.

  12. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease.

    Science.gov (United States)

    Yang, Xingxing; Chen, Xiaojuan; Bian, Guangxing; Tu, Jian; Xing, Yaling; Wang, Yayun; Chen, Zhongbin

    2014-03-01

    The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.

  13. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.

    Science.gov (United States)

    Lau, Susanna K P; Feng, Yun; Chen, Honglin; Luk, Hayes K H; Yang, Wei-Hong; Li, Kenneth S M; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y Y; Ahmed, Syed Shakeel; Yeung, Hazel C; Lam, Carol S F; Cai, Jian-Piao; Wong, Samson S Y; Chan, Jasper F W; Yuen, Kwok-Yung; Zhang, Hai-Lin; Woo, Patrick C Y

    2015-10-01

    Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8

  14. Preparation and development of equine hyperimmune globulin F(ab')2 against severe acute respiratory syndrome coronavirus

    Institute of Scientific and Technical Information of China (English)

    Jia-hai LU; Bing L WONG; Nan-shan ZHONG; Zhong-min GUO; Wen-yu HAN; Guo-ling WANG; Ding-mei ZHANG; Yi-fei WANG; Sheng-yun SUN; Qin-he YANG; Huan-ying ZHENG

    2005-01-01

    Aim: The resurgence of severe acute respiratory syndrome (SARS) is still a threat because the causative agent remaining in animal reservoirs is not fully understood,and sporadic cases continue to be reported. Developing high titers of anti-SARS hyperimmune globulin to provide an alternative pathway for emergent future prevention and treatment of SARS. Methods: SARS coronavirus (CoV)F69 (AY313906)and Z2-Y3 (AY394989) were isolated and identified from 2 different Cantonese onset SARS patients. Immunogen was prepared from SARS-CoV F69 strain. Six health horses were immunized 4 times and serum was collected periodically to measure the profile of specific IgG and neutralizing antibodies using indirect enzyme-linked immunosorbent assay and a microneutralization test. Sera were collected in large amounts at the peak, where IgG was precipitated using ammonium sulphate and subsequently digested with pepsin. The product was then purified using anion-exchange chromatography to obtain F(ab')2 fragments. Results: The specific IgG and neutralizing antibody titers peaked at approximately week 7 after the first immunization, with a maximum value of 1:14210. The sera collected at the peak were then purified. Fragment of approximately 15 g F(ab')2 was obtained from 1 litre antiserum and the purity was above 90% with the titer of 1:5120, which could neutralize the other strain (SARS-CoV Z2-Y3) as well. Conclusion: This research provides a viable strategy for the prevention and treatment of SARS coronavirus infection with equine hyperimmune globulin, with the purpose of combating any resurgence of SARS.

  15. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  16. Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens.

    Science.gov (United States)

    Mohamed, Deqa H; AlHetheel, AbdulKarim F; Mohamud, Hanat S; Aldosari, Kamel; Alzamil, Fahad A; Somily, Ali M

    2017-04-01

    Since discovery of Middle East respiratory syndrome coronavirus (MERS-CoV), a novel betacoronavirus first isolated and characterized in 2012, MERS-CoV real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays represent one of the most rapidly expanding commercial tests. However, in the absence of extensive evaluations of these assays on positive clinical material of different sources, evaluating their diagnostic effectiveness remains challenging. We describe the diagnostic performance evaluation of 3 common commercial MERS-CoV rRT-PCR assays on a large panel (n = 234) of upper respiratory tract specimens collected during an outbreak episode in Saudi Arabia. Assays were compared to the RealStar® MERS-CoV RT-PCR (Alton Diagnostics, Hamburg, Germany) assay as the gold standard. Results showed i) the TIB MolBiol® LightMix UpE and Orf1a assays (TIB MolBiol, Berlin, Germany) to be the most sensitive, followed by ii) the Anyplex™ Seegene MERS-CoV assay (Seegene, Seoul, Korea), and finally iii) the PrimerDesign™ Genesig® HCoV_2012 assay (PrimerDesign, England, United Kingdom). We also evaluate a modified protocol for the PrimerDesign™ Genesig® HCoV_2012 assay.

  17. Understanding Emerging Zoonotic Respiratory Viruses : Animal models for human influenza and coronavirus infections

    NARCIS (Netherlands)

    L.C.M. Wiersma (Lidewij)

    2016-01-01

    markdownabstractThe objective of the work presented in this thesis was to improve understanding of, and response to, emerging zoonotic respiratory viruses. To this end, various animal models were employed to represent respiratory viral infections in humans. The introduction serves to provide a backg

  18. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease.

    Science.gov (United States)

    Chou, Chi-Yuan; Lai, Hsing-Yi; Chen, Hung-Yi; Cheng, Shu-Chun; Cheng, Kai-Wen; Chou, Ya-Wen

    2014-02-01

    Papain-like protease (PLpro) is one of two cysteine proteases involved in the proteolytic processing of the polyproteins of Severe acute respiratory syndrome coronavirus (SARS-CoV). PLpro also shows significant in vitro deubiquitinating and de-ISGylating activities, although the detailed mechanism is still unclear. Here, the crystal structure of SARS-CoV PLpro C112S mutant in complex with ubiquitin (Ub) is reported at 1.4 Å resolution. The Ub core makes mostly hydrophilic interactions with PLpro, while the Leu-Arg-Gly-Gly C-terminus of Ub is located in the catalytic cleft of PLpro, mimicking the P4-P1 residues and providing the first atomic insights into its catalysis. One of the O atoms of the C-terminal Gly residue of Ub is located in the oxyanion hole consisting of the main-chain amides of residues 112 and 113. Mutations of residues in the PLpro-Ub interface lead to reduced catalytic activity, confirming their importance for Ub binding and/or catalysis. The structure also revealed an N-cyclohexyl-2-aminethanesulfonic acid molecule near the catalytic triad, and kinetic studies suggest that this binding site is also used by other PLpro inhibitors. Overall, the structure provides a foundation for understanding the molecular basis of coronaviral PLpro catalysis.

  19. Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia.

    Science.gov (United States)

    Lessler, Justin; Salje, Henrik; Van Kerkhove, Maria D; Ferguson, Neil M; Cauchemez, Simon; Rodriquez-Barraquer, Isabel; Hakeem, Rafat; Jombart, Thibaut; Aguas, Ricardo; Al-Barrak, Ali; Cummings, Derek A T

    2016-04-01

    Not all persons infected with Middle East respiratory syndrome coronavirus (MERS-CoV) develop severe symptoms, which likely leads to an underestimation of the number of people infected and an overestimation of the severity. To estimate the number of MERS-CoV infections that have occurred in the Kingdom of Saudi Arabia, we applied a statistical model to a line list describing 721 MERS-CoV infections detected between June 7, 2012, and July 25, 2014. We estimated that 1,528 (95% confidence interval (CI): 1,327, 1,883) MERS-CoV infections occurred in this interval, which is 2.1 (95% CI: 1.8, 2.6) times the number reported. The probability of developing symptoms ranged from 11% (95% CI: 4, 25) in persons under 10 years of age to 88% (95% CI: 72, 97) in those 70 years of age or older. An estimated 22% (95% CI: 18, 25) of those infected with MERS-CoV died. MERS-CoV is deadly, but this work shows that its clinical severity differs markedly between groups and that many cases likely go undiagnosed.

  20. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    Science.gov (United States)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  1. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Florian Wrensch

    2014-09-01

    Full Text Available The interferon-inducible transmembrane (IFITM proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs.

  2. Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections

    Directory of Open Access Journals (Sweden)

    Alimuddin Zumla

    2015-11-01

    Full Text Available Three years after its first discovery in Jeddah Saudi Arabia, the novel zoonotic pathogen of humans, the Middle East Respiratory Syndrome Coronavirus (MERS-CoV continues to be a major threat to global health security.1 Sporadic community acquired cases of MERS continue to be reported from the Middle East. The recent nosocomial outbreaks in hospitals in Seoul, Korea and at the National Guard Hospital in Riyadh, Saudi Arabia indicate the epidemic potential of MERS-CoV. Currently there are no effective anti-MERS-CoV anti-viral agents or therapeutics and MERS is associated with a high mortality rate (40% in hospitalised patients. A large proportion of MERS patients who die have a range of pulmonary pathology ranging from pneumonia to adult respiratory distress syndrome with multi-organ failure, compounded by co-morbidities, reflecting a precarious balance of interactions between the host-immune system and MERS-CoV. Whilst we wait for new MERS-CoV specific drugs, therapeutics and vaccines to be developed, there is a need to advance a range of Host-Directed Therapies. A range of HDTs are available, including commonly used drugs with good safety profiles, which could augment host innate and adaptive immune mechanisms to MERS-CoV, modulate excessive inflammation and reduce lung tissue destruction. We discuss the rationale and potential of using Host-Directed Therapies for improving the poor treatment outcomes associated with MERS. Carefully designed randomized controlled trials will be needed to determine whether HDTs could benefit patients with MERS. The recurrent outbreaks of MERS-CoV infections at hospitals in the Middle East present unique opportunities to conduct randomized clinical trials. The time has come for a more coordinated global response to MERS and a multidisciplinary global MERS-CoV response group is required to take forward priority research agendas.

  3. Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV

    Directory of Open Access Journals (Sweden)

    Wu Ting-Shu

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS, a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV. First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV. Results Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days and with the clinical pulmonary infection score. Conclusion The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease.

  4. Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States.

    Science.gov (United States)

    Wesley, R D; Woods, R D; Hill, H T; Biwer, J D

    1990-10-01

    A respiratory variant of transmissible gastroenteritis virus (TGEV), designated PRCV-Ind/89, was isolated from a swine breeding stock herd in Indiana. The virus was readily isolated from nasal swabs of pigs of different ages and induced cytopathology on primary porcine kidney cells and and on a swine testicular (ST) cell line. An 8-week-old pig infected oral/nasally with the respiratory variant and a contact pig showed no signs of respiratory or enteric disease. These pigs did not shed virus in feces but did shed the agent from the upper respiratory tract for approximately 2 weeks. Baby pigs from 2 separate litters (2 and 3 days old) also showed no clinical signs following oral/nasal inoculation with PRCV-Ind/89. In a third litter, 5 of 7 piglets (5 days old) infected either oral/nasally or by stomach tube developed a transient mild diarrhea with villous atrophy. However, virus was not isolated from rectal swabs or ileal homogenates of these piglets, and viral antigen was not detected in the ileum by fluorescent antibody staining even though the virus was easily recovered from nasal swabs and lung tissue homogenates. Swine antisera produced against PRCV-Ind/89 or enteric TGEV cross-neutralized either virus. In addition, an anti-peplomer monoclonal antibody, 4F6, that neutralizes TGEV also neutralized the PRCV-Ind/89 isolate. Radioimmunoassays with a panel of monoclonal antibodies indicated that the Indiana respiratory variant and the European PRCV are antigenically similar.

  5. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair

    DEFF Research Database (Denmark)

    Knudsen, T B; Kledal, T N; Andersen, O

    2003-01-01

    The recent identification of a novel clinical entity, the severe acute respiratory syndrome (SARS), the rapid subsequent spread and case fatality rates of 14-15% have prompted a massive international collaborative investigation facilitated by a network of laboratories established by the World Hea...

  6. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair

    DEFF Research Database (Denmark)

    Knudsen, T B; Kledal, T N; Andersen, O;

    2003-01-01

    The recent identification of a novel clinical entity, the severe acute respiratory syndrome (SARS), the rapid subsequent spread and case fatality rates of 14-15% have prompted a massive international collaborative investigation facilitated by a network of laboratories established by the World Hea...

  7. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts.

    Directory of Open Access Journals (Sweden)

    Stephanie Bertram

    Full Text Available The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2 in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.

  8. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.

    Science.gov (United States)

    Serrano, Pedro; Johnson, Margaret A; Chatterjee, Amarnath; Neuman, Benjamin W; Joseph, Jeremiah S; Buchmeier, Michael J; Kuhn, Peter; Wüthrich, Kurt

    2009-12-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

  9. Nuclear Magnetic Resonance Structure Shows that the Severe Acute Respiratory Syndrome Coronavirus-Unique Domain Contains a Macrodomain Fold▿

    Science.gov (United States)

    Chatterjee, Amarnath; Johnson, Margaret A.; Serrano, Pedro; Pedrini, Bill; Joseph, Jeremiah S.; Neuman, Benjamin W.; Saikatendu, Kumar; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for “middle of the SARS-unique domain”) in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection. PMID:19052085

  10. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus.

    Science.gov (United States)

    Qian, Zhaohui; Travanty, Emily A; Oko, Lauren; Edeen, Karen; Berglund, Andrew; Wang, Jieru; Ito, Yoko; Holmes, Kathryn V; Mason, Robert J

    2013-06-01

    Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.

  11. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Sheahan, Timothy; Whitmore, Alan; Long, Kristin; Ferris, Martin; Rockx, Barry; Funkhouser, William; Donaldson, Eric; Gralinski, Lisa; Collier, Martha; Heise, Mark; Davis, Nancy; Johnston, Robert; Baric, Ralph S

    2011-01-01

    Newly emerging viruses often circulate as a heterogeneous swarm in wild animal reservoirs prior to their emergence in humans, and their antigenic identities are often unknown until an outbreak situation. The newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV) and reemerging influenza virus cause disproportionate disease in the aged, who are also notoriously difficult to successfully vaccinate, likely due to immunosenescence. To protect against future emerging strains, vaccine platforms should induce broad cross-reactive immunity that is sufficient to protect from homologous and heterologous challenge in all ages. From initial studies, we hypothesized that attenuated Venezuelan equine encephalitis virus (VEE) replicon particle (VRP) vaccine glycoproteins mediated vaccine failure in the aged. We then compared the efficacies of vaccines bearing attenuated (VRP(3014)) or wild-type VEE glycoproteins (VRP(3000)) in young and aged mice within novel models of severe SARS-CoV pathogenesis. Aged animals receiving VRP(3000)-based vaccines were protected from SARS-CoV disease, while animals receiving the VRP(3014)-based vaccines were not. The superior protection for the aged observed with VRP(3000)-based vaccines was confirmed in a lethal influenza virus challenge model. While the VRP(3000) vaccine's immune responses in the aged were sufficient to protect against lethal homologous and heterologous challenge, our data suggest that innate defects within the VRP(3014) platform mediate vaccine failure. Exploration into the mechanism(s) of successful vaccination in the immunosenescent should aid in the development of successful vaccine strategies for other viral diseases disproportionately affecting the elderly, like West Nile virus, influenza virus, norovirus, or other emerging viruses of the future.

  12. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV, an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU (5 to 50 PFU/ml of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.

  13. Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan.

    Science.gov (United States)

    Shieh, Wun-Ju; Hsiao, Cheng-Hsiang; Paddock, Christopher D; Guarner, Jeannette; Goldsmith, Cynthia S; Tatti, Kathleen; Packard, Michelle; Mueller, Laurie; Wu, Mu-Zong; Rollin, Pierre; Su, Ih-Jen; Zaki, Sherif R

    2005-03-01

    This article describes the pathological studies of fatal severe acute respiratory syndrome (SARS) in a 73-year-old man during an outbreak of SARS in Taiwan, 2003. Eight days before onset of symptoms, he visited a municipal hospital that was later identified as the epicenter of a large outbreak of SARS. On admission to National Taiwan University Hospital in Taipei, the patient experienced chest tightness, progressive dyspnea, and low-grade fever. His condition rapidly deteriorated with increasing respiratory difficulty, and he died 7 days after admission. The most prominent histopathologic finding was diffuse alveolar damage of the lung. Immunohistochemical and in situ hybridization assays demonstrated evidence of SARS-associated coronavirus (SARS-CoV) infection in various respiratory epithelial cells, predominantly type II pneumocytes, and in alveolar macrophages in the lung. Electron microscopic examination also revealed coronavirus particles in the pneumocytes, and their identity was confirmed as SARS-CoV by immunogold labeling electron microscopy. This report is the first to describe the cellular localization of SARS-CoV in human lung tissue by using a combination of immunohistochemistry, double-stain immunohistochemistry, in situ hybridization, electron microscopy, and immunogold labeling electron microscopy. These techniques represent valuable laboratory diagnostic modalities and provide insights into the pathogenesis of this emerging infection.

  14. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies.

    Science.gov (United States)

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E

    2012-11-12

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  15. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    Directory of Open Access Journals (Sweden)

    Mihayl Varbanov

    2012-11-01

    Full Text Available The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV, were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS, due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV; led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1, NL63, HKU1 or SARS-CoV to survive in different environmental conditions (e.g. temperature and humidity, on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections, the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to

  16. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    OpenAIRE

    Sophie Le Poder

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious ...

  17. Molecular biological analysis of genotyping and phylogeny of severe acute respiratory syndrome associated coronavirus

    Institute of Scientific and Technical Information of China (English)

    王志刚; 李兰娟; 罗芸; 张俊彦; 王敏雅; 程苏云; 张严峻; 王晓萌; 卢亦愚; 吴南屏; 梅玲玲; 王赞信

    2004-01-01

    Background SARS-CoV is the causative agent of severe acute respiratory syndrome (SARS) which has been associated with outbreaks of SARS in Guangdong, Hong Kong and Beijing of China, and other regions worldwide. SARS-CoV from human has shown some variations but its origin is still unknown. The genotyping and phylogeny of SARS-CoV were analyzed and reported in this paper. Methods Full or partial genomes of 44 SARS-CoV strains were collected from GenBank. The genotype, single nucleotide polymorphism and phylogeny of these SARS-CoV strains were analyzed by molecular biological, bioinformatic and epidemiological methods. Conclusion The results mentioned above suggest that SARS-CoV is responding to host immunological pressures and experiencing variation which provide clues, information and evidence of molecular biology for the clinical pathology, vaccine developing and epidemic investigation.

  18. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  19. Human Coronaviruses HCoV-NL63 and HCoV-HKU1 in Hospitalized Children with Acute Respiratory Infections in Beijing, China

    Directory of Open Access Journals (Sweden)

    Li-Jin Cui

    2011-01-01

    Full Text Available The human coronaviruses (HCoVs HCoV-NL63 and HCoV-HKU1 are two recently discovered coronaviruses that circulate widely and are associated with acute respiratory infections (ARI. We detected HCoV-NL63 and HCoV-HKU1 in specimens collected from May 2008 to March 2010 from patients with ARI aged <7.75 years of age attending the Beijing Children's Hospital. Thirty-two (8.4% and 57 (14.9% of 382 specimens tested positive for HCoV-NL63 and HCoV-HKU1, respectively, by real-time RT-PCR. Use of a Luminex xTAG RVP Fast kit showed that coinfection with respiratory syncytial virus and parainfluenza 3 virus was common among patients infected with either virus type. In HCoV-HKU1-infected patients, the predominant clinical symptoms were cough, fever, and expectoration. In HCoV-NL63-infected patients they were cough, fever, and rhinorrhea. Phylogenetic studies showed that the HCoV-HKU1 nucleoprotein gene was relatively conserved compared to NCBI reference sequences, while the 1ab gene of HCoV-NL63 showed more variation.

  20. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Alaa Badawi

    2016-08-01

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV is associated with life-threatening severe illnesses and a mortality rate of approximately 35%, particularly in patients with underlying comorbidities. A systematic analysis of 637 MERS-CoV cases suggests that diabetes and hypertension are equally prevalent in approximately 50% of the patients. Cardiac diseases are present in 30% and obesity in 16% of the cases. These conditions down-regulate the synthesis of proinflammatory cytokines and impair the host's innate and humoral immune systems. In conclusion, protection against MERS-CoV and other respiratory infections can be improved if public health vaccination strategies are tailored to target persons with chronic disorders.

  1. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-Reactivity with SARS Coronavirus

    Directory of Open Access Journals (Sweden)

    David M Patrick

    2006-01-01

    Full Text Available BACKGROUND: In summer 2003, a respiratory outbreak was investigated in British Columbia, during which nucleic acid tests and serology unexpectedly indicated reactivity for severe acute respiratory syndrome coronavirus (SARS-CoV.

  2. From SARS coronavirus to novel animal and human coronaviruses.

    Science.gov (United States)

    To, Kelvin K W; Hung, Ivan F N; Chan, Jasper F W; Yuen, Kwok-Yung

    2013-08-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic.

  3. Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy.

    Science.gov (United States)

    Lanza, I; Shoup, D I; Saif, L J

    1995-06-01

    Passive protection provided by sows inoculated with the virulent Miller strain of transmissible gastroenteritis virus (TGEV), or the ISU-1 strain of porcine respiratory coronavirus (PRCV), or both was evaluated in nursing pigs challenge exposed with virulent TGEV. Four sows (group B) were inoculated with PRCV oronasally twice at 4 and 2 weeks before parturition; 1 sow (group C) was inoculated similarly, but in 2 subsequent pregnancies; and 2 sows (group D) were oronasally primed with PRCV at 4 weeks before parturition, and 2 weeks later were administered a booster inoculation of virulent TGEV. Two additional sows (group E) remained uninoculated and served as seronegative controls, and 1 sow (group A) that had been naturally infected with TGEV served as a seropositive control. The degree of passive immunity transferred by these sows to their litters was assessed by challenge exposing the pigs of sows in groups B-E (only the second litter of group C) with virulent TGEV at 3 to 5 days of age. After challenge exposure, clinical signs of infection and mortality were noted and fecal and nasal shedding of virus was assessed by ELISA. The IgA, IgG, and IgM antibody titers to TGEV were quantified in colostrum and milk of the sows by use of an isotype-specific monoclonal antibody-capture ELISA, using biotinylated monoclonal antibodies against each porcine isotype as detecting reagents. A plaque-reduction assay was used to quantify neutralizing antibody titers in serum, colostrum, milk, and fractionated whey (IgG and IgA/IgM). In the sow naturally infected with TGEV (group A), there was a pronounced decrease in IgG antibody titers to TGEV in the transition from colostrum to milk, and IgA TGEV antibodies became predominant, with high titers maintained throughout lactation. The 4 group-B sows partially protected their pigs after TGEV challenge exposure; mean mortality was 67%, compared with 100% in pigs suckling the 2 TGEV seronegative control sows (group-E litters). Although

  4. Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain.

    Science.gov (United States)

    Belouzard, Sandrine; Madu, Ikenna; Whittaker, Gary R

    2010-07-23

    Proteolytic priming is a common method of controlling the activation of membrane fusion mediated by viral glycoproteins. The severe acute respiratory syndrome coronavirus spike protein (SARS-CoV S) can be primed by a variety of host cell proteases, with proteolytic cleavage occurring both as the S1/S2 boundary and adjacent to a fusion peptide in the S2 domain. Here, we studied the priming of SARS-CoV S by elastase and show an important role for residue Thr(795) in the S2 domain. A series of alanine mutants were generated in the vicinity of the S2 cleavage site, with the goal of examining elastase-mediated cleavage within S2. Both proteolytic cleavage and fusion activation were modulated by altering the cleavage site position. We propose a novel mechanism whereby SARS-CoV fusion protein function can be controlled by spatial regulation of the proteolytic priming site, with important implications for viral pathogenesis.

  5. Tracing Airline Travelers for a Public Health Investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, 2014.

    Science.gov (United States)

    Regan, Joanna J; Jungerman, M Robynne; Lippold, Susan A; Washburn, Faith; Roland, Efrosini; Objio, Tina; Schembri, Christopher; Gulati, Reena; Edelson, Paul J; Alvarado-Ramy, Francisco; Pesik, Nicki; Cohen, Nicole J

    2016-01-01

    CDC routinely conducts contact investigations involving travelers on commercial conveyances, such as aircrafts, cargo vessels, and cruise ships. The agency used established systems of communication and partnerships with other federal agencies to quickly provide accurate traveler contact information to states and jurisdictions to alert contacts of potential exposure to two travelers with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) who had entered the United States on commercial flights in April and May 2014. Applying the same process used to trace and notify travelers during routine investigations, such as those for tuberculosis or measles, CDC was able to notify most travelers of their potential exposure to MERS-CoV during the first few days of each investigation. To prevent the introduction and spread of newly emerging infectious diseases, travelers need to be located and contacted quickly.

  6. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  7. Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination

    Science.gov (United States)

    Zevenhoven, Jessika C.; Weber, Friedemann; Züst, Roland; Kuri, Thomas; Dijkman, Ronald; Chang, Guohui; Siddell, Stuart G.; Snijder, Eric J.; Thiel, Volker; Davidson, Andrew D.

    2012-01-01

    Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs. PMID:22412934

  8. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    Science.gov (United States)

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential.

  9. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia.

    Science.gov (United States)

    Briese, Thomas; Mishra, Nischay; Jain, Komal; Zalmout, Iyad S; Jabado, Omar J; Karesh, William B; Daszak, Peter; Mohammed, Osama B; Alagaili, Abdulaziz N; Lipkin, W Ian

    2014-04-29

    ABSTRACT Complete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection. IMPORTANCE In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.

  10. Taking forward a ‘One Health’ approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential

    Directory of Open Access Journals (Sweden)

    Alimuddin Zumla

    2016-06-01

    Full Text Available The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa. Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a ‘One Health’ approach to control such zoonotic pathogens with epidemic potential.

  11. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

    Science.gov (United States)

    Chuck, Chi-Pang; Chen, Chao; Ke, Zhihai; Wan, David Chi-Cheong; Chow, Hak-Fun; Wong, Kam-Bo

    2013-01-01

    Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Feline and canine coronaviruses: common genetic and pathobiological features.

    Science.gov (United States)

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  13. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    Directory of Open Access Journals (Sweden)

    Sophie Le Poder

    2011-01-01

    Full Text Available A new human coronavirus responsible for severe acute respiratory syndrome (SARS was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  14. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014.

    Science.gov (United States)

    Ng, Dianna L; Al Hosani, Farida; Keating, M Kelly; Gerber, Susan I; Jones, Tara L; Metcalfe, Maureen G; Tong, Suxiang; Tao, Ying; Alami, Negar N; Haynes, Lia M; Mutei, Mowafaq Ali; Abdel-Wareth, Laila; Uyeki, Timothy M; Swerdlow, David L; Barakat, Maha; Zaki, Sherif R

    2016-03-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes an acute respiratory illness and is associated with a high case fatality rate; however, the pathogenesis of severe and fatal MERS-CoV infection is unknown. We describe the histopathologic, immunohistochemical, and ultrastructural findings from the first autopsy performed on a fatal case of MERS-CoV in the world, which was related to a hospital outbreak in the United Arab Emirates in April 2014. The main histopathologic finding in the lungs was diffuse alveolar damage. Evidence of chronic disease, including severe peripheral vascular disease, patchy cardiac fibrosis, and hepatic steatosis, was noted in the other organs. Double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant identified pneumocytes and epithelial syncytial cells as important targets of MERS-CoV antigen; double immunostaining with dipeptidyl peptidase 4 showed colocalization in scattered pneumocytes and syncytial cells. No evidence of extrapulmonary MERS-CoV antigens were detected, including the kidney. These results provide critical insights into the pathogenesis of MERS-CoV in humans.

  15. Detection of the Middle East Respiratory Syndrome Coronavirus Genome in an Air Sample Originating from a Camel Barn Owned by an Infected Patient

    Science.gov (United States)

    Hashem, Anwar M.; El-Kafrawy, Sherif A.; Sohrab, Sayed Sartaj; Aburizaiza, Asad S.; Farraj, Suha A.; Hassan, Ahmed M.; Al-Saeed, Muneera S.; Jamjoom, Ghazi A.; Madani, Tariq A.

    2014-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel betacoronavirus that has been circulating in the Arabian Peninsula since 2012 and causing severe respiratory infections in humans. While bats were suggested to be involved in human MERS-CoV infections, a direct link between bats and MERS-CoV is uncertain. On the other hand, serological and virological data suggest dromedary camels as the potential animal reservoirs of MERS-CoV. Recently, we isolated MERS-CoV from a camel and its infected owner and provided evidence for the direct transmission of MERS-CoV from the infected camel to the patient. Here, we extend this work and show that identical MERS-CoV RNA fragments were detected in an air sample collected from the same barn that sheltered the infected camel in our previous study. These data indicate that the virus was circulating in this farm concurrently with its detection in the camel and in the patient, which warrants further investigations for the possible airborne transmission of MERS-CoV. PMID:25053787

  16. Viral respiratory infections among Hajj pilgrims in 2013

    Institute of Scientific and Technical Information of China (English)

    Osamah; Barasheed; Harunor; Rashid; Mohammad; Alfelali; Mohamed; Tashani; Mohammad; Azeem; Hamid; Bokhary; Nadeen; Kalantan; Jamil; Samkari; Leon; Heron; Jen; Kok; Janette; Taylor; Haitham; El; Bashir; Ziad; A.Memish; Elizabeth; Haworth; Edward; C.Holmes; Dominic; E; Dwyer; Atif; Asghar; Robert; Booy

    2014-01-01

    Middle East respiratory syndrome coronavirus(MERS-Co V) has emerged in the Arabian Gulf region, with its epicentre in Saudi Arabia, the host of the ‘Hajj’ which is the world’s the largest mass gathering. Transmission of MERS-Co V at such an event could lead to its rapid worldwide dissemination. Therefore, we studied the frequency of viruses causing influenza-like illnesses(ILI) among participants in a randomised controlled trial at the Hajj 2013. We recruited 1038 pilgrims from Saudi Arabia, Australia and Qatar during the first day of Hajj and followed them closely for four days. A nasal swab was collected from each pilgrim who developed ILI. Respiratory viruses were detected using multiplex RT-PCR. ILI occurred in 112/1038(11%) pilgrims. Their mean age was 35 years, 49(44%) were male and 35(31%) had received the influenza vaccine pre-Hajj. Forty two(38%) pilgrims had laboratory-confirmed viral infections; 28(25%) rhinovirus, 5(4%) influenza A, 2(2%) adenovirus, 2(2%) human coronavirus OC43/229 E, 2(2%) parainfluenza virus 3, 1(1%) parainfluenza virus 1, and 2(2%) dual infections. No MERS-Co V was detected in any sample. Rhinovirus was the commonest cause of ILI among Hajj pilgrims in 2013. Infection control and appropriate vaccination are necessary to prevent transmission of respiratory viruses at Hajj and other mass gatherings.

  17. First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013.

    Science.gov (United States)

    Mailles, A; Blanckaert, K; Chaud, P; van der Werf, S; Lina, B; Caro, V; Campese, C; Guéry, B; Prouvost, H; Lemaire, X; Paty, M C; Haeghebaert, S; Antoine, D; Ettahar, N; Noel, H; Behillil, S; Hendricx, S; Manuguerra, J C; Enouf, V; La Ruche, G; Semaille, Caroline; Coignard, B; Lévy-Bruhl, D; Weber, F; Saura, C; Che, D

    2013-06-13

    In May 2013, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection was diagnosed in an adult male in France with severe respiratory illness, who had travelled to the United Arab Emirates before symptom onset. Contact tracing identified a secondary case in a patient hospitalised in the same hospital room. No other cases of MERS-CoV infection were identified among the index case’s 123 contacts, nor among 39 contacts of the secondary case, during the 10-day follow-up period.

  18. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.

    Science.gov (United States)

    Madu, Ikenna G; Roth, Shoshannah L; Belouzard, Sandrine; Whittaker, Gary R

    2009-08-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of alpha-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae.

  19. Elastase-mediated Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein at Discrete Sites within the S2 Domain*

    Science.gov (United States)

    Belouzard, Sandrine; Madu, Ikenna; Whittaker, Gary R.

    2010-01-01

    Proteolytic priming is a common method of controlling the activation of membrane fusion mediated by viral glycoproteins. The severe acute respiratory syndrome coronavirus spike protein (SARS-CoV S) can be primed by a variety of host cell proteases, with proteolytic cleavage occurring both as the S1/S2 boundary and adjacent to a fusion peptide in the S2 domain. Here, we studied the priming of SARS-CoV S by elastase and show an important role for residue Thr795 in the S2 domain. A series of alanine mutants were generated in the vicinity of the S2 cleavage site, with the goal of examining elastase-mediated cleavage within S2. Both proteolytic cleavage and fusion activation were modulated by altering the cleavage site position. We propose a novel mechanism whereby SARS-CoV fusion protein function can be controlled by spatial regulation of the proteolytic priming site, with important implications for viral pathogenesis. PMID:20507992

  20. Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide▿

    Science.gov (United States)

    Madu, Ikenna G.; Roth, Shoshannah L.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of α-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae. PMID:19439480

  1. Humoral immune responses in rabbits induced by an experimental inactivated severe acute respiratory syndrome coronavirus vaccine prepared from F69 strain

    Institute of Scientific and Technical Information of China (English)

    张传海; 郭中敏; 郑焕英; 陆家海; 王一飞; 鄢心革; 赵勇; 杜雄威; 张欣; 方苓; 凌文华; 戚树源; 余新炳; 钟南山

    2004-01-01

    Background The etiologic agent of severe acute respiratory syndrome (SARS) has been confirmed to be a novel coronavirus (CoV), namely SARS-CoV. Developing safe and effective SARS-CoV vaccines is essential for us to prevent the possible reemergence of its epidemic. Previous experiences indicate that inactivated vaccine is conventional and more hopeful to be successfully developed. Immunogenicity evaluation of an experimental inactivated SARS-CoV vaccine in rabbits was conducted and reported in this paper.Methods The large-scale cultured SARS-CoV F69 strain was inactivated with 0.4% formaldehyde and purified, then used as the immunogen combined with Freund's adjuvant. Eight adult New Zealand rabbits were immunized four times with this experimental inactivated vaccine. Twelve sets of rabbit serum were sampled from the third day to the seventy-fourth day after the first vaccination. The titers of specific anti-SARS-CoV IgG antibody were determined by indirect enzyme-linked immunosorbent assay, and the neutralizing antibody titers were detected with micro-cytopathic effect neutralization test.Conclusions The inactivated SARS-CoV vaccine made from F69 strain owns strong immunogenicity, and the cross neutralization response between the two different SARS-CoV strains gives a hint of the similar neutralizing epitopes, which provide stable bases for the development of inactivated SARS-CoV vaccines.

  2. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    Science.gov (United States)

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-01

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  3. Structural Factors of the Middle East Respiratory Syndrome Coronavirus Outbreak as a Public Health Crisis in Korea and Future Response Strategies.

    Science.gov (United States)

    Kim, Dong-Hyun

    2015-11-01

    The recent Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak has originated from a failure in the national quarantine system in the Republic of Korea as most basic role of protecting the safety and lives of its citizens. Furthermore, a number of the Korean healthcare system's weaknesses seem to have been completely exposed. The MERS-CoV outbreak can be considered a typical public health crisis in that the public was not only greatly terrorized by the actual fear of the disease, but also experienced a great impact to their daily lives, all in a short period of time. Preparedness for and an appropriate response to a public health crisis require comprehensive systematic public healthcare measures to address risks comprehensively with an all-hazards approach. Consequently, discussion regarding establishment of post-MERS-CoV improvement measures must focus on the total reform of the national quarantine system and strengthening of the public health infrastructure. In addition, the Korea Centers for Disease Control and Prevention must implement specific strategies of action including taking on the role of "control tower" in a public health emergency, training of Field Epidemic Intelligence Service officers, establishment of collaborative governance between central and local governments for infection prevention and control, strengthening the roles and capabilities of community-based public hospitals, and development of nationwide crisis communication methods.

  4. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

    Science.gov (United States)

    Alhamlan, F S; Majumder, M S; Brownstein, J S; Hawkins, J; Al-Abdely, H M; Alzahrani, A; Obaid, D A; Al-Ahdal, M N; BinSaeed, A

    2017-01-01

    Objectives As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. Design Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. Results A total of 1250 patients (aged 0–109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (pnosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed. PMID:28082362

  5. Bovine coronavirus antibody titers at weaning negatively correlate with incidence of bovine respiratory disease in the feed yard

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is a multifactorial disease caused by complex interactions among viral and bacterial pathogens, stressful management practices and host genetic variability. Although vaccines and antibiotic treatments are readily available to prevent and treat infection caus...

  6. MERS: Emergence of a novel human coronavirus

    NARCIS (Netherlands)

    V.S. Raj (Stalin); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); B.L. Haagmans (Bart)

    2014-01-01

    textabstractA novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels ma

  7. Genomic characterization and molecular detection of Middle East respiratory syndrome coronavirus%中东呼吸综合征冠状病毒基因组结构特征和分子检测

    Institute of Scientific and Technical Information of China (English)

    赵彦杰; 谭文杰

    2015-01-01

    Middle east respiratory syndrome coronavirus(MERS-CoV)was recently identified as a novel human coronavirus known to infect human with high mortality. It belongs to C clade of the betacoronavirus shown the similar genomic structure as other human coronaviruses.To date, some different subtypes of the viral genome were identified but its origin was unclear. Some evidences indicated it maybe came from the bats or dromedary. And series of molecular detection methods have been established and applied in lab and clinic.%中东呼吸综合征冠状病毒是新近确定的新型冠状病毒,致病性强、病死率高,是β冠状病毒的C组中可感染人的病毒。该病毒基因组结构与其他已知人类冠状病毒基因组结构相似。至今已经发现该病毒具有不同亚型。但是对于该病毒溯源不是十分清楚,有证据指向可能来源于蝙蝠或单峰驼。一系列针对该病毒的分子检测方法已建立并应用于实验室与临床。

  8. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection.

  9. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3▿

    Science.gov (United States)

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  10. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA.

    Science.gov (United States)

    Tanaka, Tomohisa; Kamitani, Wataru; DeDiego, Marta L; Enjuanes, Luis; Matsuura, Yoshiharu

    2012-10-01

    Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.

  11. A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age.

    Science.gov (United States)

    Wernery, Ulrich; El Rasoul, I Hassab; Wong, Emily Y M; Joseph, Marina; Chen, Yixin; Jose, Shanty; Tsang, Alan K L; Patteril, Nissy Annie Georgy; Chen, Honglin; Elizabeth, Shyna K; Yuen, Kwok-Yung; Joseph, Sunitha; Xia, Ningshao; Wernery, Renate; Lau, Susanna K P; Woo, Patrick C Y

    2015-12-02

    Middle East respiratory syndrome coronavirus (MERS-CoV) was detected by monoclonal antibody-based nucleocapsid protein-capture enzyme-linked immunosorbent assay (ELISA), RNA detection, and viral culture from the nasal sample of a 1-month-old dromedary calf in Dubai with sudden death. Whole genome phylogeny showed that this MERS-CoV strain did not cluster with the other MERS-CoV strains from Dubai that we reported recently. Instead, it formed a unique branch more closely related to other MERS-CoV strains from patients in Qatar and Hafr-Al-Batin in Saudi Arabia, as well as the MERS-CoV strains from patients in the recent Korean outbreak, in which the index patient acquired the infection during travel in the eastern part of the Arabian Peninsula. Non-synonymous mutations, resulting in 11 unique amino acid differences, were observed between the MERS-CoV genome from the present study and all the other available MERS-CoV genomes. Among these 11 unique amino acid differences, four were found in ORF1ab, three were found in the S1 domain of the spike protein, and one each was found in the proteins encoded by ORF4b, ORF5, envelope gene, and ORF8. MERS-CoV detection for all other 254 dromedaries in this closed dairy herd was negative by nucleocapsid protein-capture ELISA and RNA detection. MERS-CoV IgG sero-positivity gradually increased in dromedary calves with increasing age, with positivity rates of 75% at zero to three months, 79% at four months, 89% at five to six months, and 90% at seven to twelve months. The development of a rapid antigen detection kit for instantaneous diagnosis is warranted.Emerging Microbes & Infections (2015) 4, e74; doi:10.1038/emi.2015.74; published online 2 December 2015.

  12. Evaluation by indirect immunofluorescent assay and enzyme linked immunosorbent assay of the dynamic changes of serum antibody responses against severe acute respiratory syndrome coronavirus

    Institute of Scientific and Technical Information of China (English)

    MO Hong-ying; XU Jun; REN Xiao-lan; ZENG Guang-qiao; TAN Ya-xia; CHEN Rong-chang; Moira Chan-Yeung; ZHONG Nan-shan

    2005-01-01

    Background Severe acute respiratory syndrome coronavirus (SARS-CoV) is a newly emerging virus that gives rise to SARS patients with high rates of infectivity and fatality. To study the humoral immune responses to SARS-CoV, the authors evaluated IgG and IgM specific antibodies in patients' sera.Methods Two methods, enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescent assay (IFA), were used to detect specific serum IgG and IgM against SARS-CoV in 98 SARS patients and 250 controls consisting of patients with pneumonia, health-care professionals and healthy subjects. The serum antibody profiles were investigated at different times over one and a half years in 18 of the SARS patients. Results The sensitivity and specificity of ELISA for detecting IgG against SARS-CoV were 100.0% and 97.2% and for IgM 89.8% and 97.6% respectively; the figures using IFA for IgG were 100.0% and 100.0% and for IgM 81.8% and 100.0% respectively. During the first seven days of the antibodies trace test, no IgG and IgM were detected, but on day 15, IgG response increased dramatically, reaching a peak on day 60, remaining high up to day 180 and decreasing gradually until day 540. On day 15, IgM was detected, rapidly reached a peak, then declined gradually until day 180 when IgM was undetectable. Conclusion The detection of antibodies against SARS virus is helpful in the clinical diagnosis of SARS.

  13. The Same Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) yet Different Outbreak Patterns and Public Health Impacts on the Far East Expert Opinion from the Rapid Response Team of the Republic of Korea.

    Science.gov (United States)

    2015-12-01

    A Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) outbreak, the largest outbreak outside the Middle East in 2012, occurred in the Republic of Korea and resulted in a large number of cases, with 186 infected people, including 38 deaths. A Rapid Response Team (RRT) was appointed after a request from the Korean government on June 8, 2015 calling for specialists to manage and control the MERS-CoV outbreak. This report presents the opinion of the RRT who worked to manage this healthcare-associated MERS-CoV outbreak in Korea.

  14. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    Science.gov (United States)

    Lau, Susanna K P; Chan, Jasper F W

    2015-12-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.

  15. Viral etiology of respiratory infections in children under 5 years old living in tropical rural areas of Senegal: The EVIRA project.

    Science.gov (United States)

    Niang, Mbayame Ndiaye; Diop, Ousmane M; Sarr, Fatoumata Diene; Goudiaby, Deborah; Malou-Sompy, Hubert; Ndiaye, Kader; Vabret, Astrid; Baril, Laurence

    2010-05-01

    Acute respiratory infection is one of the leading causes of child morbidity, especially in developing countries. Viruses are recognized as the predominant causative agents of acute respiratory infections. In Senegal, few data concerning the causes of respiratory infections are available, and those known relate mainly to classical influenza infections. Clinical and virological surveillance of acute respiratory infections was carried out in a rural community in children less than 5 years old. A standardized questionnaire was used and a nasopharyngeal swab sample was collected from each patient. These samples were tested for the detection of 20 respiratory viruses by multiplex RT-PCR or by viral culture. A total of 82 acute respiratory episodes were included, and 48 (58.5%) were found to be positive, with a total of 55 viral detections; several samples were positive for two (n = 5) or 3 (n = 1) viruses. Ten different viruses were identified: influenza viruses A, B, and C (n = 25), human respiratory syncytial virus type A (n = 13), rhinoviruses (n = 8), human coronaviruses type 229E and NL63 (n = 6), parainfluenza viruses 3 and 4 (n = 2), and bocavirus (n = 1). These results provide evidence on the importance and the diversity of viruses as causative agents of acute respiratory infections in children living in a rural community in Senegal. The establishment of sentinel surveillance sites could help estimate the burden of acute respiratory infection in the pediatric population and should help prepare the health care systems to identify and respond to new viral respiratory emergencies.

  16. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  17. MERS-coronavirus: From discovery to intervention

    NARCIS (Netherlands)

    W. Widagdo; N. Okba (Nisreen); V. Stalin Raj; B.L. Haagmans (Bart)

    2017-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans a

  18. Coronavirus antibodies in African bat species.

    Science.gov (United States)

    Müller, Marcel A; Paweska, Janusz T; Leman, Patricia A; Drosten, Christian; Grywna, Klaus; Kemp, Alan; Braack, Leo; Sonnenberg, Karen; Niedrig, Matthias; Swanepoel, Robert

    2007-09-01

    Asian bats have been identified as potential reservoir hosts of coronaviruses associated with severe acute respiratory syndrome (SARS-CoV). We detected antibody reactive with SARS-CoV antigen in 47 (6.7%) of 705 bat serum specimens comprising 26 species collected in Africa; thus, African bats may harbor agents related to putative group 4 CoV.

  19. A decade after SARS: Strategies to control emerging coronaviruses

    Science.gov (United States)

    Graham, Rachel L.; Donaldson, Eric F.; Baric, Ralph S.

    2016-01-01

    Two novel coronaviruses have emerged in humans in the 21st century, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome human coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and have high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, a priority in the field is the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains. This review will: describe the emergence and identification of novel human coronaviruses over the last 10 years; review their key biological features, including tropism and receptor use; and summarize approaches to develop broadly effective vaccines. PMID:24217413

  20. 中东呼吸综合征冠状病毒(M ERS-CoV)的研究进展%Research progress of Middle East Respiratory Syndrome-Coronavirus (MERS-CoV)

    Institute of Scientific and Technical Information of China (English)

    阮红梅; 张健之

    2014-01-01

    Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus which can cause severe acute respiratory illness with a high mortality rate .There is no proven medication or vaccine for MERS-CoV .Currently MERS-CoV has spread from the main epidemic area ,the Middle East area ,to many other countries including United States of America and has the potential of global endemic .It has raised global public health concerns regarding the current situation and its future evolution .This review will mainly focus on the research progress of MERS-CoV about the animal reservoir and transmission , infection mechanisms and development of anti-viral drugs or vaccine .The goal is to provide with useful references to the devel-opment of specific drug and vaccine and an effective control and prevention of M ERS-CoV infection .%中东呼吸综合征冠状病毒(Middle East Respiratory Syndrome-Coronavirus ,MERS-CoV)是继SARS冠状病毒(SARS-CoV)之后发现的一种能引起人严重急性呼吸道疾病且具有高致死率的新型病毒。目前还没有有效的抗病毒治疗药物或疫苗。现已从主要流行的中东地区逐渐蔓延至多个国家,具有全球流行的潜在趋势,引起了世界各国的极大关注及众多的调查研究。本文主要对M ERS-CoV的传播源及途径、致病机理和抗病毒药物及疫苗等的研究进展做一综述,以期对研制特异的抗病毒药物及疫苗和实施切实有效的预防及控制措施提供参考。

  1. Middle East respiratory syndrome coronavirus and development of vaccines and specific drugs for its control%中东呼吸综合征冠状病毒及其疫苗和特异性药物的研发

    Institute of Scientific and Technical Information of China (English)

    瞿涤; 陆路; 姜世勃

    2015-01-01

    Middle East respiratory syndrome (MERS ) is a viral infection caused by a novel coronavirus (MERS‐CoV) .In this review ,we focus on the classification ,molecular structure and the proteins related to tissue tropisms and host range of MERS‐CoV .The efforts on development of drugs and vaccines for the control of MERS‐CoV are also discussed .%中东呼吸综合征冠状病毒(MERS‐CoV)是引起MERS的病原。本文就MERS‐CoV的分类、特性、决定宿主特异性的分子结构及其疫苗研究状况和特异性药物研究进展等方面进行综述。

  2. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression.

    Science.gov (United States)

    Bailey-Elkin, Ben A; Knaap, Robert C M; Johnson, Garrett G; Dalebout, Tim J; Ninaber, Dennis K; van Kasteren, Puck B; Bredenbeek, Peter J; Snijder, Eric J; Kikkert, Marjolein; Mark, Brian L

    2014-12-12

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PL(pro)) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PL(pro) was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PL(pro) domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PL(pro), we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PL(pro) to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PL(pro) DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PL(pro) domain was found to suppress IFN-β promoter activation, PL(pro) variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PL(pro), and not its proteolytic activity per se, in the inhibition of IFN-β promoter activity. The ability to decouple the DUB activity of PL(pro) from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PL(pro) as a viral DUB during MERS-CoV infection.

  3. Detection of feline coronavirus using microcantilever sensors

    Science.gov (United States)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  4. SARS and MERS: recent insights into emerging coronaviruses.

    Science.gov (United States)

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

  5. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  6. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV infection and evolution of persistent infection.

    Directory of Open Access Journals (Sweden)

    Yíngyún Caì

    Full Text Available Middle East respiratory syndrome coronavirus (MERS-CoV is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.

  7. Mass gathering and globalization of respiratory pathogens during the 2013 Hajj.

    Science.gov (United States)

    Memish, Z A; Assiri, A; Turkestani, A; Yezli, S; Al Masri, M; Charrel, R; Drali, T; Gaudart, J; Edouard, S; Parola, P; Gautret, P

    2015-06-01

    Every year, more than 10 million pilgrims arrive in the Kingdom of Saudi Arabia for the Hajj or Umrah. Crowding conditions lead to high rates of respiratory infections among the pilgrims, representing a significant cause of morbidity and a major cause of hospitalization. Pre- and post-Hajj nasal specimens were prospectively obtained from a paired cohort (692 pilgrims) and from nonpaired cohorts (514 arriving and 470 departing pilgrims) from 13 countries. The countries of residence included Africa (44.2%), Asia (40.2%), the United States (8.4%) and Europe (7.2%). Nasal specimens were tested for 34 respiratory pathogens using RT-PCR. A total of 80 512 PCRs were performed. The prevalence of viruses and bacteria increased, from 7.4% and 15.4% before the Hajj to 45.4% and 31.0% after the Hajj, respectively, due to the acquisition of rhinovirus, coronaviruses (229E, HKU1, OC43), influenza A H1N1, Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus. We did not identify Middle East respiratory coronavirus carriage. At arrival, the prevalence of several viruses was clearly dependent on the pilgrim's country of origin. After Hajj participation, these viruses were isolated among pilgrims from all countries, with few exceptions. No significant differences were observed between paired and nonpaired cohort results. Our results strongly suggest that, given the particularly crowded conditions during the rituals, an international mass gathering such as the Hajj may contribute to the globalization of respiratory pathogens after the cross-contamination of pilgrims harbouring pathogens that easily spread among participants. Influenza and pneumococcal vaccination, face mask use and hand hygiene should be considered in the context of the Hajj.

  8. MERS Coronaviruses in Dromedary Camels, Egypt

    OpenAIRE

    Chu, Daniel K. W.; Poon, Leo L.M.; Gomaa, Mokhtar M.; Shehata, Mahmoud M.; Perera, Ranawaka A. P. M.; Abu Zeid, Dina; El Rifay, Amira S.; Siu, Lewis Y.; Guan, Yi; Webby, Richard J; Mohamed A Ali; Peiris, Malik; Kayali, Ghazi

    2014-01-01

    We identified the near-full-genome sequence (29,908 nt, >99%) of Middle East respiratory syndrome coronavirus (MERS-CoV) from a nasal swab specimen from a dromedary camel in Egypt. We found that viruses genetically very similar to human MERS-CoV are infecting dromedaries beyond the Arabian Peninsula, where human MERS-CoV infections have not yet been detected.

  9. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  10. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  11. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  12. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Directory of Open Access Journals (Sweden)

    Yunjeong Kim

    2016-03-01

    Full Text Available Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP, can arise through mutation of FECV to FIP virus (FIPV. The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for

  13. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein.

    Science.gov (United States)

    Liu, Jun; Wu, Peng; Gao, Feng; Qi, Jianxun; Kawana-Tachikawa, Ai; Xie, Jing; Vavricka, Christopher J; Iwamoto, Aikichi; Li, Taisheng; Gao, George F

    2010-11-01

    Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β(2)-microglobulin (β(2)m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.

  14. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus.

    Science.gov (United States)

    Guo, Xiaojuan; Deng, Yao; Chen, Hong; Lan, Jiaming; Wang, Wen; Zou, Xiaohui; Hung, Tao; Lu, Zhuozhuang; Tan, Wenjie

    2015-08-01

    An ideal vaccine against mucosal pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) should confer sustained, protective immunity at both systemic and mucosal levels. Here, we evaluated the in vivo systemic and mucosal antigen-specific immune responses induced by a single intramuscular or intragastric administration of recombinant adenoviral type 5 (Ad5) or type 41 (Ad41) -based vaccines expressing the MERS-CoV spike (S) protein. Intragastric administration of either Ad5-S or Ad41-S induced antigen-specific IgG and neutralizing antibody in serum; however, antigen-specific T-cell responses were not detected. In contrast, after a single intramuscular dose of Ad5-S or Ad41-S, functional antigen-specific T-cell responses were elicited in the spleen and pulmonary lymphocytes of the mice, which persisted for several months. Both rAd-based vaccines administered intramuscularly induced systemic humoral immune responses (neutralizing IgG antibodies). Our results show that a single dose of Ad5-S- or Ad41-S-based vaccines represents an appealing strategy for the control of MERS-CoV infection and transmission.

  15. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  16. Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays.

    Science.gov (United States)

    Sung, R Y T; Chan, Paul K S; Tsen, Tracy; Li, A M; Lam, W Y; Yeung, Apple C M; Nelson, E A S

    2009-01-01

    Acute respiratory tract infection is a leading cause of hospital admission of children. This study used a broad capture, rapid and sensitive method (multiplex PCR assay) to detect 20 different respiratory pathogens including influenza A subtypes H1, H3, and H5; influenza B; parainfluenza types 1, 2, 3, and 4; respiratory syncytial virus (RSV) groups A and B; adenoviruses; human rhinoviruses; enteroviruses; human metapneumoviruses; human coronaviruses OC43, 229E, and SARS-CoV; Chlamydophila pneumoniae; Legionella pneumophila; and Mycoplasma pneumoniae; from respiratory specimens of 475 children hospitalized over a 12-month period for acute respiratory tract infections. The overall positive rate (47%) was about twice higher than previous reports based on conventional methods. Influenza A, parainfluenza and RSV accounted for 51%, and non-cultivable viruses accounted for 30% of positive cases. Influenza A peaked at March and June. Influenza B was detected in January, February, and April. Parainfluenza was prevalent throughout the year except from April to June. Most RSV infections were found between February and September. Adenovirus had multiple peaks, whereas rhinovirus and coronavirus OC43 were detected mainly in winter and early spring. RSV infection was associated with bronchiolitis, and parainfluenza was associated with croup; otherwise the clinical manifestations were largely nonspecific. In general, children infected with influenza A, adenovirus and mixed viruses had higher temperatures. In view of the increasing concern about unexpected outbreaks of severe viral infections, a rapid multiplex PCR assay is a valuable tool to enhance the management of hospitalized patients, and for the surveillance for viral infections circulating in the community.

  17. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.

    Science.gov (United States)

    Ng, Oi-Wing; Tan, Yee-Joo

    2017-01-02

    The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged in 2003, causing the SARS epidemic which resulted in a 10% fatality rate. The advancements in metagenomic techniques have allowed the identification of SARS-like coronaviruses (SL-CoVs) sequences that share high homology to the human SARS-CoV epidemic strains from wildlife bats, presenting concrete evidence that bats are the origin and natural reservoir of SARS-CoV. The application of reverse genetics further enabled that characterization of these bat CoVs and the prediction of their potential to cause disease in humans. The knowledge gained from such studies is valuable in the surveillance and preparation of a possible future outbreak caused by a spill-over of these bat SL-CoVs.

  18. Coronavirus Genomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Kwok-Yung Yuen

    2010-08-01

    Full Text Available The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV, between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1. Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

  19. Extremely low exposure of a community to severe acute respiratory syndrome coronavirus: false seropositivity due to use of bacterially derived antigens.

    NARCIS (Netherlands)

    Leung, D.T.; Maren, W.W.C. van; Chan, F.K.; Chan, W.S.; Lo, A.W.; Ma, C.H.; Tam, F.C.; To, K.F.; Chan, P.K.; Sung, J.J.; Lim, P.L.

    2006-01-01

    Estimates of seropositivity to a new infectious agent in a community are useful to public health. For severe acute respiratory syndrome (SARS), the figures are conflicting. Herein, we screened 12,000 people in a community stricken by SARS 10 months previously and found 53 individuals (0.44%) who had

  20. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Yu

    Full Text Available BACKGROUND: Acute respiratory tract infections (ARTIs represent a serious global health burden. To date, few reports have addressed the prevalence of respiratory viruses (RVs in adults with ARTIs attending an emergency department (ED. Therefore, the potential impact of respiratory virus infections on such patients remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To determine the epidemiological and clinical profiles of common and recently discovered respiratory viruses in adults with ARTIs attending an ED in Beijing, a 1-year consecutive study was conducted from May, 2010, to April, 2011. Nose and throat swab samples from 416 ARTI patients were checked for 13 respiratory viruses using multiple reverse transcription polymerase chain reaction(RT-PCR assays for common respiratory viruses, including influenza viruses (Flu A, B, and adenoviruses (ADVs, picornaviruses (PICs, respiratory syncytial virus (RSV, parainfluenza viruses (PIVs 1-3, combined with real-time RT-PCR for human metapneumovirus (HMPV and human coronaviruses (HCoVs, -OC43, -229E, -NL63, and -HKU1. Viral pathogens were detected in 52.88% (220/416 of patient samples, and 7.21% (30/416 of patients tested positive for more than one virus. PICs (17.79% were the dominant agents detected, followed by FluA (16.11%, HCoVs (11.78%, and ADV (11.30%. HMPV, PIVs, and FluB were also detected (<3%, but not RSV. The total prevalence and the dominant virus infections detected differed significantly between ours and a previous report. Co-infection rates were high for HCoV-229E (12/39, 30.76%, PIC (22/74, 29.73%, ADV (12/47, 25.53% and FluA (15/67, 22.39%. Different patterns of clinical symptoms were associated with different respiratory viruses. CONCLUSIONS: The pattern of RV involvement in adults with ARTIs attending an ED in China differs from that previously reported. The high prevalence of viruses (PIC, FluA, HCoVs and ADV reported here strongly highlight the need for the development of safe and

  1. Geographic distribution of MERS coronavirus among dromedary camels, Africa

    NARCIS (Netherlands)

    Reusken, Chantal B E M; Messadi, Lilia; Feyisa, Ashenafi; Ularamu, Hussaini; Godeke, Gert Jan; Danmarwa, Agom; Dawo, Fufa; Jemli, Mohamed; Melaku, Simenew; Shamaki, David; Woma, Yusuf; Wungak, Yiltawe; Gebremedhin, Endrias Zewdu; Zutt, Ilse; Bosch, Berend Jan; Haagmans, Bart L.; Koopmans, Marion P G

    2014-01-01

    We found serologic evidence for the circulation of Middle East respiratory syndrome coronavirus among dromedary camels in Nigeria, Tunisia, and Ethiopia. Circulation of the virus among dromedaries across broad areas of Africa may indicate that this disease is currently underdiagnosed in humans outsi

  2. MERS Coronavirus in Dromedary Camel Herd Saudi Arabia

    OpenAIRE

    Hemida, Maged G.; Chu, Daniel K. W.; Poon, Leo L.M.; Perera, Ranawaka A. P. M.; Alhammadi, Mohammad A.; Ng, Hoi-yee; Siu, Lewis Y.; Guan, Yi; Alnaeem, Abdelmohsen; Peiris, Malik

    2014-01-01

    A prospective study of a dromedary camel herd during the 2013–14 calving season showed Middle East respiratory syndrome coronavirus infection of calves and adults. Virus was isolated from the nose and feces but more frequently from the nose. Preexisting neutralizing antibody did not appear to protect against infection.

  3. Transmission of MERS-coronavirus in household contacts

    NARCIS (Netherlands)

    Drosten, Christian; Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Al-Masri, Malak; Hossain, Raheela; Madani, Hosam; Sieberg, Andrea; Bosch, Berend Jan; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Hajomar, Waleed; Albarrak, Ali M; Al-Tawfiq, Jaffar A; Zumla, Alimuddin I; Memish, Ziad A

    2014-01-01

    BACKGROUND: Strategies to contain the Middle East respiratory syndrome coronavirus (MERS-CoV) depend on knowledge of the rate of human-to-human transmission, including subclinical infections. A lack of serologic tools has hindered targeted studies of transmission. METHODS: We studied 26 index patien

  4. Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Michael J Lodes

    Full Text Available Bacterial and viral upper respiratory infections (URI produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluenza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format.

  5. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines

    NARCIS (Netherlands)

    M.A. Müller (Marcel); V.S. Raj (V. Stalin); D. Muth; B. Meyer (Bernhard); S. Kallies (Stephan); S.L. Smits (Saskia); R. Wollny (Robert); T.M. Bestebroer (Theo); S. Specht (Sabine); T. Suliman (Tasnim); K. Zimmermann (Kathrin); T. Binger (Tabea); I. Eckerle; M. Tschapka (Marco); A.M. Zaki (Ali); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); B.L. Haagmans (Bart); C. Drosten (Christian)

    2012-01-01

    textabstractA new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC i

  6. Development of a dose-response model for SARS coronavirus.

    Science.gov (United States)

    Watanabe, Toru; Bartrand, Timothy A; Weir, Mark H; Omura, Tatsuo; Haas, Charles N

    2010-07-01

    In order to develop a dose-response model for SARS coronavirus (SARS-CoV), the pooled data sets for infection of transgenic mice susceptible to SARS-CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta-Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 x l0(2)) could describe the dose-response relationship of the pooled data sets. The beta-Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS-CoV was calculated and compared with those of other coronaviruses. The does of SARS-CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV-229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS-CoV for apartment residents during the outbreak, which was back-calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose-response model for SARS-CoV at the present and would enable us to understand the possibility for reemergence of SARS.

  7. Comparison of effectiveness of whole viral,N and N199 proteins by ELISA for the rapid diagnosis of severe acute respiratory syndrome coronavirus

    Institute of Scientific and Technical Information of China (English)

    GUO Zhong-min; ZHONG Nan-shan; ZHU Xing-quan; LU Jia-hai; HAN Wen-yu; LIU Ze-yu; LI Guo-wei; LIAO Jia-wei; WANG Shu-min; WU Ying-song; ZHENG Huan-ying

    2007-01-01

    Background Although severe acute respiratory syndrome(SARS)has been controlled,the subsequently emerging sporadic cases in 2004 emphasize the necessity of developing a rapid diagnostic method,which would be of great help in clinical diagosis and also wild host screening.This study aims to establish an effective and rapid serological tool for the diagnosis of SARS-CoV by comparison among whole viral,N and N199 proteins by ELISA.Methods SARS-CoV N and N199(a truncated nucleocapsid gene)genes were cloned,expressed,identified by Western blotting,and applied in screening of human and swine samples.Sera of SARS convalescent-phase patients,normal human sera,sera of patients with other respiratory diseases,and swine sera were screened by ELISA,with whole SARS-CoV F69,N and N199 proteins as antigens.Results The sensitivity and specificity of N and N199 proteins in human sera diagnosis were approximate(P=0.743),which was higher than whole viral protein but the difference was not significant(P=0.234).The N199 protein proved to be more specific in swine sera screening than whole viral and N protein(P<0.001).Conclusion N199 protein is feasible in both clinical diagnosis and SARS-CoV reservoir screening.

  8. Severe acute respiratory syndrome, a pathological immune response to the new coronavirus--implications for understanding of pathogenesis, therapy, design of vaccines, and epidemiology.

    Science.gov (United States)

    Bermejo, Jesus F; Muñoz-Fernandez, M Angeles

    2004-01-01

    Findings coming from autopsies and serum of SARS patients suggest an important immune-inflammatory implication in the evolution to respiratory distress. Conditions such as HIV infection or treatment with immunosuppressors (in cancer or autoimmune diseases) are not among the bad prognosis factors for development of distress. To date, there have been no reported case fatalities in children, probably due to their more immature immune system. Our conclusions follow: (1) The milder form of SARS in children and the apparent protective factor that immunosupression represent rules out a significant viral cytopathic effect (they would be the most affected). (2) The evidence for immune implication in distress strongly supports immunomodulators for therapy: phosphodiesterase inhibitors (due to their down-modulating activity on proinflammatory cytokines); inhaled corticoids (aimed at producing a local immunomodulation); teophylline or nedocromil sodium (which prevents inflammatory cell recruitment into the airway wall). (3) An early immunomodulatory therapy, based on the levels of proinflammatory cytokines and clinical parameters to evaluate the respiratory function such as arterial oxygen saturation, could prevent the occurrence of distress. (4) Vaccine design should consider the immune origin of distress. (5) Physicians should be aware of mildly symptomatic patients (children, immuno-compromised hosts) to avoid transmission to immunocompetent adults.

  9. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    Science.gov (United States)

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses." Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Comparison of the Luminex xTAG RVP Fast assay and the Idaho Technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital.

    Science.gov (United States)

    Babady, N Esther; Mead, Peter; Stiles, Jeffrey; Brennan, Carrie; Li, Haijing; Shuptar, Susan; Stratton, Charles W; Tang, Yi-Wei; Kamboj, Mini

    2012-07-01

    Respiratory viruses are increasingly recognized as serious causes of morbidity and mortality in immunocompromised patients. The rapid and sensitive detection of respiratory viruses is essential for the early diagnosis and administration of appropriate antiviral therapy, as well as for the effective implementation of infection control measures. We compared the performance of two commercial assays, xTAG RVP Fast (Luminex Diagnostics, Toronto, Canada) and FilmArray RVP (FA RVP; Idaho Technology, Salt Lake City, UT), in pediatric patients at Memorial Sloan-Kettering Cancer Center. These assays detect the following viruses: respiratory syncytial virus; influenza A and B viruses; parainfluenza viruses 1, 2, 3, and 4; human metapneumovirus; adenovirus; enterovirus-rhinovirus; coronaviruses NL63, HKU1, 229E, and OC43; and bocavirus. We tested a total of 358 respiratory specimens from 173 pediatric patients previously tested by direct fluorescence assay (DFA) and viral culture. The overall detection rate (number of positive specimens/total specimens) for viruses tested by all methods was 24% for DFA/culture, 45% for xTAG RVP Fast, and 51% for FA RVP. The agreement between the two multiplex assays was 84.5%, and the difference in detection rate was statistically significant (P < 0.0001). Overall, the FA RVP assay was more sensitive than the xTAG RVP Fast assay and had a turnaround time of approximately 1 h. The sensitivity, simplicity, and random-access platform make FA RVP an excellent choice for laboratory on-demand service with low to medium volume.

  11. Viral Co-Infections in Pediatric Patients Hospitalized with Lower Tract Acute Respiratory Infections

    Science.gov (United States)

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Gormley, Stuart; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2015-01-01

    Background Molecular techniques can often reveal a broader range of pathogens in respiratory infections. We aim to investigate the prevalence and age pattern of viral co-infection in children hospitalized with lower tract acute respiratory infection (LT-ARI), using molecular techniques. Methods A nested polymerase chain reaction approach was used to detect Influenza (A, B), metapneumovirus, respiratory syncytial virus (RSV), parainfluenza (1–4), rhinovirus, adenovirus (A—F), bocavirus and coronaviruses (NL63, 229E, OC43) in respiratory samples of children with acute respiratory infection prospectively admitted to any of the GENDRES network hospitals between 2011–2013. The results were corroborated in an independent cohort collected in the UK. Results A total of 204 and 97 nasopharyngeal samples were collected in the GENDRES and UK cohorts, respectively. In both cohorts, RSV was the most frequent pathogen (52.9% and 36.1% of the cohorts, respectively). Co-infection with multiple viruses was found in 92 samples (45.1%) and 29 samples (29.9%), respectively; this was most frequent in the 12–24 months age group. The most frequently observed co-infection patterns were RSV—Rhinovirus (23 patients, 11.3%, GENDRES cohort) and RSV—bocavirus / bocavirus—influenza (5 patients, 5.2%, UK cohort). Conclusion The presence of more than one virus in pediatric patients admitted to hospital with LT-ARI is very frequent and seems to peak at 12–24 months of age. The clinical significance of these findings is unclear but should warrant further analysis. PMID:26332375

  12. Date of origin of the SARS coronavirus strains

    Directory of Open Access Journals (Sweden)

    Cai Lun

    2004-02-01

    Full Text Available Abstract Background A new respiratory infectious epidemic, severe acute respiratory syndrome (SARS, broke out and spread throughout the world. By now the putative pathogen of SARS has been identified as a new coronavirus, a single positive-strand RNA virus. RNA viruses commonly have a high rate of genetic mutation. It is therefore important to know the mutation rate of the SARS coronavirus as it spreads through the population. Moreover, finding a date for the last common ancestor of SARS coronavirus strains would be useful for understanding the circumstances surrounding the emergence of the SARS pandemic and the rate at which SARS coronavirus diverge. Methods We propose a mathematical model to estimate the evolution rate of the SARS coronavirus genome and the time of the last common ancestor of the sequenced SARS strains. Under some common assumptions and justifiable simplifications, a few simple equations incorporating the evolution rate (K and time of the last common ancestor of the strains (T0 can be deduced. We then implemented the least square method to estimate K and T0 from the dataset of sequences and corresponding times. Monte Carlo stimulation was employed to discuss the results. Results Based on 6 strains with accurate dates of host death, we estimated the time of the last common ancestor to be about August or September 2002, and the evolution rate to be about 0.16 base/day, that is, the SARS coronavirus would on average change a base every seven days. We validated our method by dividing the strains into two groups, which coincided with the results from comparative genomics. Conclusion The applied method is simple to implement and avoid the difficulty and subjectivity of choosing the root of phylogenetic tree. Based on 6 strains with accurate date of host death, we estimated a time of the last common ancestor, which is coincident with epidemic investigations, and an evolution rate in the same range as that reported for the HIV-1 virus.

  13. The Membrane Protein of Severe Acute Respiratory Syndrome Coronavirus Functions as a Novel Cytosolic Pathogen-Associated Molecular Pattern To Promote Beta Interferon Induction via a Toll-Like-Receptor-Related TRAF3-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-02-01

    Full Text Available Most of the intracellular pattern recognition receptors (PRRs reside in either the endolysosome or the cytoplasm to sense pathogen-derived RNAs, DNAs, or synthetic analogs of double-stranded RNA (dsRNA, such as poly(I:C. However, it remains elusive whether or not a pathogen-derived protein can function as a cytosolic pathogen-associated molecular pattern (PAMP. In this study, we demonstrate that delivering the membrane gene of severe acute respiratory syndrome coronavirus (SARS-CoV into HEK293T, HEK293ET, and immobilized murine bone marrow-derived macrophage (J2-Mφ cells significantly upregulates beta interferon (IFN-β production. Both NF-κB and TBK1-IRF3 signaling cascades are activated by M gene products. M protein rather than M mRNA is responsible for M-mediated IFN-β induction that is preferentially associated with the activation of the Toll-like receptor (TLR adaptor proteins MyD88, TIRAP, and TICAM2 but not the RIG-I signaling cascade. Blocking the secretion of M protein by brefeldin A (BFA failed to reverse the M-mediated IFN-β induction. The antagonist of both TLR2 and TLR4 did not impede M-mediated IFN-β induction, indicating that the driving force for the activation of IFN-β production was generated from inside the cells. Inhibition of TRAF3 expression by specific small interfering RNA (siRNA did not prevent M-mediated IFN-β induction. SARS-CoV pseudovirus could induce IFN-β production in an M rather than M(V68A dependent manner, since the valine-to-alanine alteration at residue 68 in M protein markedly inhibited IFN-β production. Overall, our study indicates for the first time that a pathogen-derived protein is able to function as a cytosolic PAMP to stimulate type I interferon production by activating a noncanonical TLR signaling cascade in a TRAF3-independent manner.

  14. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  15. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.

    Science.gov (United States)

    Raj, V Stalin; Mou, Huihui; Smits, Saskia L; Dekkers, Dick H W; Müller, Marcel A; Dijkman, Ronald; Muth, Doreen; Demmers, Jeroen A A; Zaki, Ali; Fouchier, Ron A M; Thiel, Volker; Drosten, Christian; Rottier, Peter J M; Osterhaus, Albert D M E; Bosch, Berend Jan; Haagmans, Bart L

    2013-03-14

    Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.

  16. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  17. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013

    NARCIS (Netherlands)

    Meyer, Benjamin; Müller, Marcel A.; Corman, Victor M.; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F.; Muth, Doreen; Bosch, Berend Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary came

  18. Detection Rate and Clinical Impact of Respiratory Viruses in Children with Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Ja Hye Kim

    2012-12-01

    Full Text Available &lt;B&gt;Purpose:&lt;/B&gt; The purpose of this prospective case-control study was to survey the detection rate of respiratory viruses in children with Kawasaki disease (KD by using multiplex reverse transcriptasepolymerase chain reaction (RT-PCR, and to investigate the clinical implications of the prevalence of respiratory viruses during the acute phase of KD. &lt;B&gt;Methods:&lt;/B&gt; RT-PCR assays were carried out to screen for the presence of respiratory syncytial virus A and B, adenovirus, rhinovirus, parainfluenza viruses 1 to 4, influenza virus A and B, metapneumovirus, bocavirus, coronavirus OC43/229E and NL63, and enterovirus in nasopharyngeal secretions of 55 KD patients and 78 control subjects. &lt;B&gt;Results:&lt;/B&gt; Virus detection rates in KD patients and control subjects were 32.7% and 30.8%, respectively (P=0.811. However, there was no significant association between the presence of any of the 15 viruses and the incidence of KD. Comparisons between the 18 patients with positive RT-PCR results and the other 37 KD patients revealed no significant differences in terms of clinical findings (including the prevalence of incomplete presentation of the disease and coronary artery diameter. &lt;B&gt;Conclusion:&lt;/B&gt; A positive RT-PCR for currently epidemic respiratory viruses should not be used as an evidence against the diagnosis of KD. These viruses were not associated with the incomplete presentation of KD and coronary artery dilatation.

  19. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    Science.gov (United States)

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.

  20. Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014

    Science.gov (United States)

    Raj, V. Stalin; Farag, Elmoubasher A.B.A.; Reusken, Chantal B.E.M.; Lamers, Mart M.; Pas, Suzan D.; Voermans, Jolanda; Smits, Saskia L.; Osterhaus, Albert D.M.E.; Al-Mawlawi, Naema; Al-Romaihi, Hamad E.; El-Sayed, Ahmed M.; Mohran, Khaled A.; Ghobashy, Hazem; Alhajri, Farhoud; Al-Thani, Mohamed; Al-Marri, Salih A.; El-Maghraby, Mamdouh M.; Koopmans, Marion P.G.

    2014-01-01

    We obtained the full genome of Middle East respiratory syndrome coronavirus (MERS-CoV) from a camel in Qatar. This virus is highly similar to the human England/Qatar 1 virus isolated in 2012. The MERS-CoV from the camel efficiently replicated in human cells, providing further evidence for the zoonotic potential of MERS-CoV from camels. PMID:25075761

  1. Clinical characteristics of human coronavirus in children with acute lower respiratory tract infection%人冠状病毒在急性下呼吸道感染儿童中的临床特征

    Institute of Scientific and Technical Information of China (English)

    刘军; 谢正德; 徐保平; 钱素云; 杨燕; 申昆玲

    2016-01-01

    Objective To describe the clinical characteristics of acute lower respiratory tract infection (ALRTI)caused by human coronavirus (HCoV)in children.Methods Three thousand five hundred and three hospi-talized children diagnosed with ALRTI in Beijing Children′s Hospital from March 2007 to February 201 3 were re-viewed.Nasopharyngeal aspirate(NPA)specimen was collected from each patient.Reverse transcription (RT)-poly-merase chain reaction(PCR)methods were applied to detect common respiratory viruses including respiratory syncytial virus (RSV),rhinovirus (RV),parainfluenza virus (PIV)type 1 -4,influenza virus type A and B (IFA,IFB),adeno-virus (AdV),enterovirus (EV),HCoV,human metapneumovirus (hMPV)and human bocavirus (HBoV).Serum anti-bodies of mycoplasma and sputum bacterial culture were also detected.Only HCoV positive patients were analyzed in this study.Results Eleven of 3 503 patients were proved as HCoV -positive in NPA specimens.Of the 1 1 children,8 cases were male and 3 cases were female (2.71 .0).The median age was 3 months.The clinical symptoms of HCoV infection included cough (1 1 /1 1 cases,1 00.0%),wheezing (1 0 /1 1 cases,90.9%),fever (6 /1 1 cases,54.5%)and poor appetite (7 /1 1 cases,63.6%).Wheezing (8 /1 1 cases,72.7%)and moist rale in inspiratory phase (5 /1 1 ca-ses,45.4%)could be heard.Most patient′s chest X -ray showed bronchopneumonia.Full blood count displayed that leukocyte was in the normal range.Conclusions Respiratory tract infection with HCoV -positive will be easier to spread to ALRTI,especially in infants less than 1 year old.The symptoms include fever,cough and wheezing,but poor appetite and diarrhea can also be detected.%目的:了解急性下呼吸道感染住院患儿人冠状病毒(HCoV)感染的临床表现。方法回顾性分析2007年3月至2013年2月在北京儿童医院因下呼吸道感染住院的患儿3503例,患儿在住院当日或次日采集鼻咽吸取物1份,采用反转录(RT)-PCR 方法进行

  2. 人感染新型冠状病毒致中东呼吸综合征的全球流行特征%Global epidemic characteristics of Middle East respiratory syndrome induced by a novel human coronavirus infection

    Institute of Scientific and Technical Information of China (English)

    顾春燕; 陈卓; 罗永能

    2013-01-01

    目的 了解人感染中东呼吸综合征冠状病毒确诊病例的全球流行特征.方法 对截至2013年8月31日,全球108例感染中东呼吸综合征冠状病毒病例的相关数据进行统计,总结分析其发病地点、时间、患者年龄、性别分布和临床症状轻重等特征.结果 108例病例主要发生在中东地区,少数在欧洲及非洲地区,病例数在2013年4月开始呈上升趋势.患者主要为中老年人,占52.8%,并且男性占60.2%,明显高于女性的32.4%.死亡病例共50例,死亡率46.3%,远高于SARS的10.3%,其中60岁以上患者的死亡率为61.5%.大多数病例临床症状严重或死亡,少数病例症状轻微或无症状.结论 中东呼吸综合征冠状病毒感染患者以中老年人为主,男性多于女性,并且死亡率远高于SARS.%Objective To understand the global epidemic characteristics of Middle East respiratory syndrome (MERS) cases induced by a novel human coronavirus infection.Methods The data of 108 MERS cases by the time of August 31st,2013 were analyzed statistically.The factors such as onset place,time,age and sex distributions as well as the clinical severity were summarized.Results The majority of 108 MERS cases took place in Middle East area,while the rest happened in Europe and Africa.New cases started to increase since April 2013.Middle-aged and old people accounted for 52.8%.The percent of male patients (60.4%) was apparently much higher than that of females (32.4%).Fifty cases were fatal and the overall mortality was 46.3%,which was much higher than the mortalrity of SARS(10.3%).The mortality of the patients over 60 years old was 61.5%.Most cases were severe or fatal,and a few cases were mild or asymptomatic.Conclusions Most MERS patients are middleaged and old people,and the ratio of male patients is much higher than that of females.Currently,the mortality of MERS is much higher than that of SARS.

  3. The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection. Some spike proteins of coronavirus, such as MHV, HCoV-OC43, AIBV and BcoV, are proteolytically cleaved into two subunits, S1 and S2. In contrast, TGV, FIPV and HCoV-229E are not. Many studies have shown that the cleavage of spike protein seriously affects its function. In order to investigate the maturation and proteolytic processing of the S protein of SARS CoV, we generated S1 and S2 subunit specific antibodies (Abs) as well as N, E and 3CL protein-specific Abs. Our results showed that the antibodies could efficiently and specifically bind to their corresponding proteins from E. coli expressed or lysate of SARS-CoV infected Vero-E6 cells by Western blot analysis. Furthermore, the anti-S 1 and S2 Abs were proved to be capable of binding to SARS CoV under electron microscope observation. When S2 Ab was used to perform immune precipitation with lysate of SARS-CoV infected cells, a cleaved S2 fragment was detected with S2-specific mAb by Western blot analysis. The data demonstrated that the cleavage of S protein was observed in the lysate, indicating that proteolytic processing of S protein is present in host cells.

  4. Coronavirus avian infectious bronchitis virus

    National Research Council Canada - National Science Library

    Cavanagh, Dave

    2007-01-01

    Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds...

  5. Rapid inactivation of SARS-like coronaviruses.

    Energy Technology Data Exchange (ETDEWEB)

    Kapil, Sanjay (Kansas State University, Manhattan, KS); Oberst, R. D. (Kansas State University, Manhattan, KS); Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  6. Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus

    Institute of Scientific and Technical Information of China (English)

    王鸣; 徐慧芳; 莫自耀; 郑伯健; 高阳; 顾菁; 秦鹏哲; 张周斌; 邹晓忠; 梁彩云; 赵宇腾; 高凯

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an infectious disease first recognized in November 2002 in Guangdong province, China. It was spread to many countries all over the world within a few months.1,2 By April 2003, SARS-associated coronavirus (SARS-CoV) was found to be the etiological agent.

  7. Detection of Coronaviruses in Bats of Various Species in Italy

    Directory of Open Access Journals (Sweden)

    Maria B. Boniotti

    2013-10-01

    Full Text Available Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS and the Middle East respiratory syndrome (MERS CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii, three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros, and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula, and Savi’s pipistrelle (Hypsugo savii. This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.

  8. Receptor recognition and cross-species infections of SARS coronavirus.

    Science.gov (United States)

    Li, Fang

    2013-10-01

    Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia.

    Directory of Open Access Journals (Sweden)

    Shaman Muradrasoli

    Full Text Available Coronaviruses (CoVs can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology.

  10. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    2004-01-01

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identifie

  11. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been

  12. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  13. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections.

    Science.gov (United States)

    Deng, Jikui; Ma, Zhuoya; Huang, Wenbo; Li, Chengrong; Wang, Heping; Zheng, Yuejie; Zhou, Rong; Tang, Yi-Wei

    2013-04-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens. In this study, we evaluated the Qiagen ResPlex II V2.0 kit and explored factors influencing its sensitivity. Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010. Total nucleic acids were extracted using the EZ1 system (Qiagen, Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA), FluB, parainfluenza virus 1 (PIV1), PIV2, PIV3, PIV4, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinoviruses (RhV), enteroviruses (EnV), human bocaviruses (hBoV), adenoviruses (AdV), four coronaviruses (229E, OC43, NL63 and HKU1), and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex II kit. In parallel, 16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV. Influenza and parainfluenza viral cultures were also performed. Among the total 438 NPS specimens collected during the study period, one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex, respectively. When results from monoplex PCR or cell culture were used as the reference standard, the multiplex PCR possessed specificities of 92.9-100.0%. The sensitivity of multiplex PCR for PIV3, hMPV, PIV1 and BoV were 73.1%, 70%, 66.7% and 55.6%, respectively, while low sensitivities (11.1%-40.0%) were observed for FluA, EnV, OC43, RSV and H1N1. Among the seven viruses/genotypes detected with higher frequencies, multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in FluA, H1N1-p and RSV (p=0.011-0.000). The Qiagen ResPlex II multiplex RT-PCR kit possesses excellent specificity for simultaneous

  14. MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983-1997

    NARCIS (Netherlands)

    Müller, Marcel A; Corman, Victor Max; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Bosch, Berend-Jan; Lattwein, Erik; Hilali, Mosaad; Musa, Bakri E; Bornstein, Set; Drosten, Christian

    2014-01-01

    To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)-seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main camel-ex

  15. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013

    NARCIS (Netherlands)

    Corman, Victor M.; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Said, Mohammed Y.; Gluecks, Ilona; Lattwein, Erik; Bosch, Berend Jan; Drexler, Jan Felix; Bornstein, Set; Drosten, Christian; Müller, Marcel A.

    2014-01-01

    Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992-2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity

  16. Human Infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013

    NARCIS (Netherlands)

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend Jan; Beer, Martin; Müller, Marcel A.; Kellam, Paul; Drosten, Christian

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species trans

  17. Human Infection with MERS Coronavirus after Exposure to Infected Camels, Saudi Arabia, 2013

    OpenAIRE

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Simon J Watson; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend-Jan; Beer, Martin; Müller, Marcel A.

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.

  18. The protein X4 of severe acute respiratory syndrome-associated coronavirus is expressed on both virus-infected cells and lung tissue of severe acute respiratory syndrome patients and inhibits growth of Balb/c 3T3 cell line

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-yu; GAN Qi-ni; ZHANG Xin; ZHENG Ying; LIU Shun-ai; WANG Xiao-ning; ZHONG Nan-shan; MA Da-long; SHUANG Bao; TAN Ya-xia; MENG Min-jie; HAN Pu; MO Xiao-ning; SONG Quan-sheng; QIU Xiao-yan; LUO Xin

    2005-01-01

    Background The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) includes sequences encoding the putative protein X4 (ORF8, ORF7a), consisting of 122 amino acids. The deduced sequence contains a probable cleaved signal peptide sequence and a C-terminal transmembrane helix, indicating that protein X4 is likely to be a type I membrane protein. This study was conducted to demonstrate whether the protein X4 was expressed and its essential function in the process of SARS-CoV infection.Methods The prokaryotic and eukaryotic protein X4-expressing plasmids were constructed. Recombinant soluble protein X4 was purified from E. Coli using ion exchange chromatography, and the preparation was injected into chicken for rising specific polyclonal antibodies. The expression of protein X4 in SARS-CoV-infected Vero E6 cells and lung tissues from patients with SARS was performed using immunofluorescence assay and immunohistochemistry technique. The preliminary function of protein X4 was evaluated by treatment with and over-expression of protein X4 in cell lines. Western blot was employed to evaluate the expression of protein X4 in SARS-CoV particles. Results We expressed and purified soluble recombinant protein X4 from E.coli, and generated specific antibodies against protein X4. Western blot proved that the protein X4 was not assembled in the SARS-CoV particles. Indirect immunofluorescence assays revealed that the expression of protein X4 was detected at 8 hours after infection in SARS-CoV-infected Vero E6 cells. It was also detected in the lung tissues from patients with SARS. Treatment with and overexpression of protein X4 inhibited the growth of Balb/c 3T3 cells as determined by cell counting and MTT assays. Conclusion The results provide the evidence of protein X4 expression following SARS-CoV infection, and may facilitate further investigation of the immunopathological mechanism of SARS.

  19. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  20. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene

    DEFF Research Database (Denmark)

    Liu, Lihong; Hägglund, Sara; Hakhverdyan, Mikhayil

    2006-01-01

    Bovine coronavirus (BCoV), a group 2 member of the genus Coronavirus in the family Coronaviridae, is an important pathogen in cattle worldwide. It causes diarrhea in adult animals (winter dysentery), as well as enteric and respiratory diseases in calves. The annual occurrence of BCoV epidemics...... herd, indicating new introduction of virus; (iii) identical sequences in four different Danish herds in samples obtained within 2 months, implying virus transmission between herds; and (iv) that at least two different virus strains were involved in the outbreaks of BCoV in Denmark during the spring...

  1. Possible SARS coronavirus transmission during cardiopulmonary resuscitation.

    Science.gov (United States)

    Christian, Michael D; Loutfy, Mona; McDonald, L Clifford; Martinez, Kennth F; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L; Mederski, Barbara; Green, Karen; Low, Donald E

    2004-02-01

    Infection of healthcare workers with the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control.

  2. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  3. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    Science.gov (United States)

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans.

  4. A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Directory of Open Access Journals (Sweden)

    Jin Yongjie

    2005-10-01

    Full Text Available Abstract Background The Severe Acute Respiratory Syndrome (SARS was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. Methods Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan. Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. Results Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. Conclusion We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak.

  5. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid-Based Western Blot Assay Were Rectified by the Use of Two Subunits (S1 and S2) of Spike for Detection of Antibody to SARS-CoV

    Science.gov (United States)

    Maache, Mimoun; Komurian-Pradel, Florence; Rajoharison, Alain; Perret, Magali; Berland, Jean-Luc; Pouzol, Stéphane; Bagnaud, Audrey; Duverger, Blandine; Xu, Jianguo; Osuna, Antonio; Paranhos-Baccalà, Glaucia

    2006-01-01

    To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV. PMID:16522785

  6. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Grum-Tokars, Valerie [Northwestern Univ., Chicago, IL (United States); Zhou, Ya [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Turlington, Mark [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Saldanha, S. Adrian [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Chase, Peter [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Eggler, Aimee [Purdue Univ., West Lafayette, IN (United States); Dawson, Eric S. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Baez-Santos, Yahira M. [Purdue Univ., West Lafayette, IN (United States); Tomar, Sakshi [Purdue Univ., West Lafayette, IN (United States); Mielech, Anna M. [Loyola Univ. Medical Center, Maywood, IL (United States); Baker, Susan C. [Loyola Univ. Medical Center, Maywood, IL (United States); Lindsley, Craig W. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Hodder, Peter [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Mesecar, Andrew [Purdue Univ., West Lafayette, IN (United States); Stauffer, Shaun R. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States)

    2012-12-11

    A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). But, unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure–activity relationships within S1', S1, and S2enzyme binding pockets. Moreover, the X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.

  7. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    Science.gov (United States)

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses.

    Science.gov (United States)

    Hadjinicolaou, Andreas V; Farcas, Gabriella A; Demetriou, Victoria L; Mazzulli, Tony; Poutanen, Susan M; Willey, Barbara M; Low, Donald E; Butany, Jagdish; Asa, Sylvia L; Kain, Kevin C; Kostrikis, Leondios G

    2011-04-01

    Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

  9. Application of RT-Bst to enhance detection of pathogenic viruses of the respiratory tract.

    Science.gov (United States)

    Kabir, M S; Clements, M O; Atkins, M; Kimmitt, P T

    2015-01-01

    Inefficiency of RT-PCR can be associated with the suboptimal process of reverse transcription as only 40-80% of RNA is converted to cDNA. We employed a novel method, RT-Bst, to enrich the concentration of cDNA for subsequent multiplex PCR detection of selected RNA viruses. The RT-Bst method amplifies cDNA through reverse transcription of viral RNA using reverse transcriptase and amplification of cDNA using Bst DNA polymerase. Viral RNA was extracted from 25 nasopharyngeal samples for detection of influenza A, B and C; parainfluenza 1-4; human coronaviruses 229E and OC43; respiratory syncytial virus (RSV) and rhinovirus. Both multiplex one-step RT-PCR and RT-Bst PCR were used to compare their performances for detection of virus sequences. These findings were compared with routine laboratory detection. When using RT-Bst PCR, 28% of samples yielded a viral pathogen compared to 20% with RT-PCR and 12% using routine diagnostic tests. RT-Bst PCR was shown to have particular utility in the detection of RSV RNA as this was present in 20% of the samples studied compared to 8% when using RT-PCR. For one patient, RT-Bst PCR was able to detect RSV five days earlier than conventional hospital diagnostic testing. RT-Bst and RT-Bst PCR can be used as alternative approaches to reverse transcription and one-step RT-PCR, respectively, for sequence-independent amplification of RNA virus sequences and a larger scale analysis of this new diagnostic approach is warranted.

  10. Proteolytic Activation of the Coronavirus Fusion Protein

    NARCIS (Netherlands)

    Wicht, O.

    2014-01-01

    Coronaviruses are enveloped viruses with a positive-stranded RNA genome. They have been isolated from various mammals and birds and can cause severe diseases among farm and companion animals. Cross-species transmission of animal viruses and genuine human coronavirus infections pose a potential

  11. Comparative properties of feline coronaviruses in vitro.

    Science.gov (United States)

    McKeirnan, A J; Evermann, J F; Davis, E V; Ott, R L

    1987-04-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to proteolytic inactivation when compared with the feline enteric coronavirus strain. This observation may serve as a useful in vitro marker to distinguish closely related members of the feline coronavirus group. Plaque assay results indicated that the feline infectious peritonitis virus strains produced large homogeneous plaques in comparison to the feline enteric coronavirus strain and canine coronavirus, which showed a heterogenous plaque size distribution. No naturally temperature sensitive mutants were detected in either of the feline coronavirus populations. Both of the viruses were antigenically related to feline infectious peritonitis virus and to a lesser extent to canine coronavirus by virus neutralization.

  12. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    Science.gov (United States)

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); V.S. Raj (Stalin); D. Oudshoorn (Diede); T.M. Bestebroer (Theo); S. van Nieuwkoop (Stefan); R. Limpens (Ronald); C.C. Posthuma (Clara); Y. van der Meer (Yvonne); M. Bárcena (Montserrat); B.L. Haagmans (Bart); E.J. Snijder (Eric); B.G. van den Hoogen (Bernadette)

    2013-01-01

    textabstractCoronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle Ea

  14. Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013–2015

    Directory of Open Access Journals (Sweden)

    Sowsan F. Atabani

    2016-06-01

    Conclusions: Respiratory tract infections in travellers/pilgrims returning to the UK from the Middle East are mainly due to rhinoviruses, influenza A, and influenza B. Whilst MERS-CoV was not detected in the 202 patients studied, heightened awareness of the possibility of MERS-CoV and continuous proactive surveillance are essential to rapidly identify cases of MERS-CoV and other seasonal respiratory tract viruses such as avian influenza, in patients presenting to hospital. Early identification and isolation may prevent outbreaks in nosocomial settings.

  15. Structural Characterization of Human Coronavirus NL63 N Protein.

    Science.gov (United States)

    Szelazek, Bozena; Kabala, Wojciech; Kus, Krzysztof; Zdzalik, Michal; Twarda-Clapa, Aleksandra; Golik, Przemyslaw; Burmistrz, Michal; Florek, Dominik; Wladyka, Benedykt; Pyrc, Krzysztof; Dubin, Grzegorz

    2017-06-01

    Coronaviruses are responsible for upper and lower respiratory tract infections in humans. It is estimated that 1 to 10% of the population suffers annually from cold-like symptoms related to infection with human coronavirus NL63 (HCoV-NL63), an alphacoronavirus. The nucleocapsid (N) protein, the major structural component of the capsid, facilitates RNA packing, links the capsid to the envelope, and is also involved in multiple other processes, including viral replication and evasion of the immune system. Although the role of N protein in viral replication is relatively well described, no structural data are currently available regarding the N proteins of alphacoronaviruses. Moreover, our understanding of the mechanisms of RNA binding and nucleocapsid formation remains incomplete. In this study, we solved the crystal structures of the N- and C-terminal domains (NTD, residues 10 to 140, and CTD, residues 221 to 340, respectively) of the N protein of HCoV-NL63, both at a 1.5-Å resolution. Based on our structure of NTD solved here, we proposed and experimentally evaluated a model of RNA binding. The structure of the CTD reveals the mode of N protein dimerization. Overall, this study expands our understanding of the initial steps of N protein-nucleic acid interaction and may facilitate future efforts to control the associated infections.IMPORTANCE Coronaviruses are responsible for the common cold and other respiratory tract infections in humans. According to multiple studies, 1 to 10% of the population is infected each year with HCoV-NL63. Viruses are relatively simple organisms composed of a few proteins and the nucleic acids that carry the information determining their composition. The nucleocapsid (N) protein studied in this work protects the nucleic acid from the environmental factors during virus transmission. This study investigated the structural arrangement of N protein, explaining the first steps of its interaction with nucleic acid at the initial stages of

  16. 兰州地区冠状病毒HKU1在儿童急性呼吸道感染的研究%Molecular epidemiological and clinical features of coronavirus HKU1 in children with acute respiratory tract infection in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    宋靖荣; 金玉; 段招军; 原新慧; 闫坤龙; 赵扬; 谢志萍; 高寒春

    2010-01-01

    . This study protocol was approved by the hospital ethics committee. The reverse transcription polymerase chain reaction (RT-PCR) was employed to screen HCoV-HKU1. Furthermore, other common respiratory viruses were screened in HCoV-HKU1 positive samples. All PCR positive products were sequenced, and phylogenetic analysis was conducted. Result The overall frequency of HCoV-HKU1 infection was 5.0% ( 15/301 ). The HCoV-HKU1 pol gene sequences shared a 95.8% -99.6% nucleotide identity with the human coronavirus-HKU1 strain, whereas the amino acid identity was 90.7% - 99.3%. The phylogenetic analysis revealed that the HCoV-HKU1 strain pol gene clustered with the HCoV-HKU1 strain N15 genotype B (no. DQ415911 ); 11 of 15 HCoV-HKU1 positive sample tested were mixed-infection. HCoV-HKU1 was detected only from November to April. Positive specimens peaked in November. Children with HCoV-HKU1 infection varied in age from 15 day to 12-years (median age, 10 months). The clinical diagnoses of HCoV-HKU1 positive patients included those with AURI and LURI. The clinical presentations of HCoV-HKU1 positive children included fever, cough, sputum production, diarrhea, vomiting; pharynx engorgement, crackles, and wheezing. The mean hospital stay of the 14 patients was 9.9 days. Six of 15 HCoV-HKU1 positive patients had an underlying illness, and they were all inpatients (hospital stay, mean, 11.2 days). There was no statistically significant difference in the detection rate between the two groups with and without underlying illnesses. Conclusion Human CoV-HKU1 infection exists in children with respiratory tract infections in Lanzhou region. A single HCoV-HKU1genotype B was circulating locally. The symptoms and clinical diagnoses of those infected with HCoV-HKU1had no specificity as compared with patients with other common respiratory viruses infection.

  17. Establishment of a fluorescent polymerase chain reaction method for the detection of the SARS-associated coronavirus and its clinical application

    Institute of Scientific and Technical Information of China (English)

    吴新伟; 程钢; 狄飚; 尹爱华; 何蕴韶; 王鸣; 周新宇; 何丽娟; 罗凯; 杜琳

    2003-01-01

    Objective To establish a fluorescent polymerase chain reaction (F-PCR) method for detecting the coronavirus related to severe acute respiratory syndrome (SARS) and to evaluate its value for clinical application. Methods The primers and the fluorescence-labeled probe were designed and synthesized according to the published sequence of the SARS-associated coronavirus genes. A F-PCR diagnosis kit for detecting the coronavirus was developed, and 115 clinical nasopharyngeal gargling liquid samples were tested. Results The sequence of PCR amplified products completely matched the related sequence of the SARS-associated coronavirus genome. Forty-nine out of 67 samples from identified SARS patients and 8 of 18 samples from persons having close contact with SARS patients showed positive results. All 30 samples from healthy controls were negative. Conclusion The F-PCR method established may be a rapid, accurate and efficient way for screening and for the early diagnosis of SARS patients.

  18. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  19. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  20. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    Science.gov (United States)

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  1. SARS-unique fold in the Rousettus bat coronavirus HKU9.

    Science.gov (United States)

    Hammond, Robert G; Tan, Xuan; Johnson, Margaret A

    2017-09-01

    The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + β fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions. © 2017 The Protein Society.

  2. Comparative properties of feline coronaviruses in vitro.

    OpenAIRE

    McKeirnan, A J; Evermann, J F; Davis, E. V.; Ott, R L

    1987-01-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to pr...

  3. Coronaviridae and SARS-associated Coronavirus Strain HSR1

    Science.gov (United States)

    Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-01-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  4. Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses

    Directory of Open Access Journals (Sweden)

    Gerard Kian-Meng Goh

    2012-01-01

    Full Text Available Besides being a common threat to farm animals and poultry, coronavirus (CoV was responsible for the human severe acute respiratory syndrome (SARS epidemic in 2002–4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M and nucleocapsid (N. This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.

  5. Anti-SARS coronavirus agents: a patent review (2008 - present).

    Science.gov (United States)

    Kumar, Vathan; Jung, Young-Sik; Liang, Po-Huang

    2013-10-01

    A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.

  6. The SARS coronavirus nucleocapsid protein--forms and functions.

    Science.gov (United States)

    Chang, Chung-ke; Hou, Ming-Hon; Chang, Chi-Fon; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-03-01

    The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein-protein and protein-nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses." Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Infection status of coronavirus type HCOV-OC43, type HCOV-229E, type HCOV-HKU1 and type HCOV-NL63 in Guizhou Province%贵州省冠状病毒感染状况

    Institute of Scientific and Technical Information of China (English)

    庄丽; 任丽娟; 付琳

    2012-01-01

    目的 对贵州省呼吸道症候群病例的冠状病毒HCOV-OC43型、HCOV-229E型、HCOV-HKU1型和HCOV-NL63型的感染状况进行检测.方法 提取病毒核酸RNA,通过实时荧光定量PCR(Real-Time PCR)方法检测冠状病毒.结果 在收集到的282份呼吸道症侯群病例标本中,冠状病毒HCOV-OC43型阳性有11份.其余均为阴性.其它三个型别未检出.结论 贵州省呼吸道症侯群病例中存在冠状病毒感染,其型别为冠状病毒HCOV-OC43型.阳性率为3.9%.

  8. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    Science.gov (United States)

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  9. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  10. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus.

    Science.gov (United States)

    Josset, Laurence; Menachery, Vineet D; Gralinski, Lisa E; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S; Yount, Boyd L; Graham, Rachel L; Baric, Ralph S; Katze, Michael G

    2013-04-30

    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the

  11. High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media.

    Science.gov (United States)

    Wiertsema, Selma P; Chidlow, Glenys R; Kirkham, Lea-Ann S; Corscadden, Karli J; Mowe, Eva N; Vijayasekaran, Shyan; Coates, Harvey L; Harnett, Gerald B; Richmond, Peter C

    2011-11-01

    Both bacteria and viruses play a role in the development of acute otitis media, however, the importance of specific viruses is unclear. In this study molecular methods were used to determine the presence of nucleic acids of human rhinoviruses (HRV; types A, B, and C), respiratory syncytial viruses (RSV; types A and B), bocavirus (HBoV), adenovirus, enterovirus, coronaviruses (229E, HKU1, NL63, and OC43), influenza viruses (types A, B, and C), parainfluenza viruses (types 1, 2, 3, 4A, and 4B), human metapneumovirus, and polyomaviruses (KI and WU) in the nasopharynx of children between 6 and 36 months of age either with (n = 180) or without (n = 66) a history of recurrent acute otitis media and in 238 middle ear effusion samples collected from 143 children with recurrent acute otitis media. The co-detection of these viruses with Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis was analyzed. HRV (58.3% vs. 42.4%), HBoV (52.2% vs. 19.7%), polyomaviruses (36.1% vs. 15.2%), parainfluenza viruses (29.4% vs. 9.1%), adenovirus (25.0% vs. 6.1%), and RSV (27.8% vs. 9.1%) were detected significantly more often in the nasopharynx of children with a history of recurrent acute otitis media compared to healthy children. HRV was predominant in the middle ear and detected in middle ear effusion of 46% of children. Since respiratory viruses were detected frequently in the nasopharynx of both children with and without a history of recurrent acute otitis media, the etiological role of specific viruses in recurrent acute otitis media remains uncertain, however, anti-viral therapies may be beneficial in future treatment and prevention strategies for acute otitis media.

  12. Antiviral activity of mycophenolic acid against influenza viruses and MERS coronavirus

    OpenAIRE

    Mok, Ka-Yi; 莫嘉怡

    2014-01-01

    Influenza virusand Middle East Respiratory Syndrome Coronavirus(MERS-CoV) cause life-threatening respiratory disease. There are 3 to 5million severe cases and 250,000 to 500,000 fatal cases caused by seasonal influenza virus A(H1N1)virus, A(H3N2) virus and influenza B virus every year. Pandemic influenza, which is associated with higher mortality, has once every few decades. Among various influenza viruses, the avian-origin A(H5N1)virus and A(H7N9) virus are the most virulent in humans. MERS-...

  13. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  14. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    OpenAIRE

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this ...

  15. Expression and Purification of SARS Coronavirus Membrane Protein

    Institute of Scientific and Technical Information of China (English)

    戴五星; 雷明军; 吴少庭; 陈智浩; 梁靓; 潘晖榕; 秦莉; 高士同; 袁仕善; 张仁利

    2004-01-01

    To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The re combinants were transformed into Escherichia coli (E. Coli) BL21 (DE3) and induced by Isopropylβ-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0. 992 1 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.

  16. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    Institute of Scientific and Technical Information of China (English)

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  17. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    Science.gov (United States)

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease.

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C; Chang, Kyeong-Ok

    2013-02-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.

  19. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  20. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target.

    Science.gov (United States)

    Keum, Young-Sam; Jeong, Yong-Joo

    2012-11-15

    Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase-nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    Science.gov (United States)

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

  2. Detection of human coronavirus strain HKU1 in a 2 years old girl with asthma exacerbation caused by acute pharyngitis

    Directory of Open Access Journals (Sweden)

    Amini Razieh

    2012-08-01

    Full Text Available Abstract Respiratory viral infections can trigger asthma attack which may lead to sever morbidity. In this report, using molecular methods, we show the chronological association between human coronavirus - HKU1 infection and asthma exacerbation in a two years and seven months old asthmatic girl who was not under treatment and was otherwise healthy.

  3. Biodiversity impact of host interferon-stimulated-gene-product 15 on the coronavirus Papain-like protease deISGylase functions

    Science.gov (United States)

    Coronaviruses are single-stranded, positive sense RNA viruses whose members have severe impact on human health and cause significant economic hardships. Some pertinent examples include severe acute and Middle East respiratory syndromes (SARS-CoV; MERS-CoV), porcine epidemic diarrhea virus (PEDV), an...

  4. Respiratory Virus Multiplex RT-PCR Assay Sensitivities and Influence Factors in Hospitalized Children with Lower Respiratory Tract Infections

    Institute of Scientific and Technical Information of China (English)

    Jikui Deng; Zhuoya Ma; Wenbo Huang; Chengrong Li; Heping Wang; Yuejie Zheng; Rong Zhou

    2013-01-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens.In this study,we evaluated the Qiagen ResPlex Ⅱ V2.0 kit and explored factors influencing its sensitivity.Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010.Total nucleic acids were extracted using the EZ1 system (Qiagen,Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA),FluB,parainfluenza virus 1 (PIV1),PIV2,PIV3,PIV4,respiratory syncytial virus (RSV),human metapneumovirus (hMPV),rhinoviruses (RhV),enteroviruses (EnV),human bocaviruses (hBoV),adenoviruses (AdV),four coronaviruses (229E,OC43,NL63 and HKU1),and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex Ⅱ kit.In parallel,16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV.Influenza and parainfluenza viral cultures were also performed.Among the total 438 NPS specimens collected during the study period,one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex,respectively.When results from monoplex PCR or cell culture were used as the reference standard,the multiplex PCR possessed specificities of 92.9-100.0%.The sensitivity of multiplex PCR for PIV3,hMPV,PIV1 and BoV were 73.1%,70%,66.7% and 55.6%,respectively,while low sensitivities (11.1%-40.0%) were observed for FluA,EnV,OC43,RSV and H1N1.Among the seven viruses/genotypes detected with higher frequencies,multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in F luA,H 1N 1-p and RSV (p=0.011-0.000).The Qiagen ResPlex Ⅱ multiplex RT-PCR kit possesses excellent specificity for simultaneous detection of 17

  5. Canine coronaviruses: Epidemiology, evolution and pathobiology

    NARCIS (Netherlands)

    Decaro, N.

    2009-01-01

    Coronaviruses (CoVs; order Nidovirales, family Coronaviridae) are viruses exceptionally prone to genetic evolution through the continual accumulation of mutations and by homologous recombination between related members. CoVs are organised into three antigenic groups of which group 1 is subdivided in

  6. Dynamics of the coronavirus replicative structures

    NARCIS (Netherlands)

    Hagemeijer, M.C.

    2011-01-01

    Coronaviruses (CoV) are positive-strand RNA (+RNA) viruses that are important infectious agents in both animals and man. Upon infection, CoVs generate large multicomponent protein complexes, consisting of 16 nonstructural proteins (nsp’s) and yet to be identified cellular proteins, dedicated to the

  7. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  8. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    eel to block binding of S to its receptor on various mouse cell lines and then challenged these cells with an HE expressing strain of MEV to...MAb-CCl an MEV iii strain expressing, HE could not infect mouse fibroblast cell lines or primary brain cells. Although murine coronavirus (MHV) and...Cell Cultures .. Virus Propagation and Purification ...............• Plaque assay .................... .... ............. . Hemagglutination Assay

  9. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice

    Institute of Scientific and Technical Information of China (English)

    Zhangsheng; Yang; Jun; Du; Gang; Chen; Jie; Zhao; Xuanming; Yang; Lishan; Su; Genhong; Cheng; Hong; Tang

    2014-01-01

    It remains challenging to develop animal models of lung infection and severe pneumonia by severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome cornavirus(MERS-Co V) without high level of containment. This inevitably hinders understanding of virushost interaction and development of appropriate countermeasures. Here we report that intranasal inoculation of sublethal doses of murine coronavirus mouse hepatitis virus A-59(MHV-A59), a hepatic and neuronal tropic coronavirus, can induce acute pneumonia and severe lung injuries in C57BL/6 mice. Inflammatory leukocyte infiltrations, hemorrhages and fibrosis of alveolar walls can be observed 2-11 days after MHV-A59 infection. This pathological manifestation is associated with dramatical elevation of tissue IP-10 and IFN-γ and moderate increase of TNF-α and IL-1β, but inability of anti-viral type I interferon response. These results suggest that intranasal infection of MHV-A59 would serve as a surrogate mouse model of acute respiratory distress syndrome by SARS-CoV and MERS-CoV infections.

  10. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.

  11. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  12. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    Science.gov (United States)

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is

  13. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  14. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

    NARCIS (Netherlands)

    Horzinek, M.C.; Herrewegh, A.A.; Rottier, P.J.M.; Groot, R.J. de

    1998-01-01

    Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to r

  15. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  16. An Investigation of the Pathology and Pathogens Associated with Porcine Respiratory Disease Complex in Denmark

    DEFF Research Database (Denmark)

    Hansen, Mette Sif; Pors, S. E.; Jensen, H. E.;

    2010-01-01

    Respiratory infections are among the most important diseases of growing pigs. In order to elucidate the multifactorial aetiology of porcine respiratory disease complex (PRDC) in Denmark, lungs from 148 finishing pigs with cranioventral bronchopneumonia (case group) and 60 pigs without lung lesions......), porcine reproductive and respiratory syndrome virus (both European and US type), porcine circovirus type 2 (PCV2), porcine respiratory coronavirus, porcine cytomegalovirus, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. All cases had cranioventral lobular bronchopneumonia consistent with PRDC...

  17. A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses.

    Science.gov (United States)

    Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M; Nichols, Daniel B; Wilson, Michael W; StJohn, Sarah E; Larsen, Scott D; Mesecar, Andrew D; Lenschow, Deborah J; Baric, Ralph S; Baker, Susan C

    2014-10-01

    To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR(-/-)) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities. Importance: Evaluating viral protease inhibitors in a small-animal model is a critical step in the path toward antiviral drug development. We modified a biosafety level 2 chimeric virus system to

  18. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study.

    Science.gov (United States)

    Berry, Michael; Fielding, Burtram C; Gamieldien, Junaid

    2015-12-15

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.

  19. Characterisation of human coronavirus-NL63 nucleocapsid protein

    African Journals Online (AJOL)

    Michael

    2012-09-18

    Sep 18, 2012 ... Coronavirus N is a multifunctional protein that plays an essential role in enhancing the efficiency of .... HCoV-NL63 was shown to be most similar to the human ... evolution of these coronaviruses and gave rise to the.

  20. Interferon-Beta 1a and SARS Coronavirus Replication

    Science.gov (United States)

    2004-02-01

    ribavirin remains uncertain because it has no activity against SARS-CoV in vitro. Molecular modeling studies suggest that rhinovirus 3Cpro inhibitors...coronavirus. Science 2003;300:1399–404. 3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure

  1. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.; Eisfeld, Amie J.; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C.; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S.; Katze, Michael G.; Waters, Katrina M.

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

  2. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    Science.gov (United States)

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  3. The emergence of human coronavirus EMC: how scared should we be?

    Science.gov (United States)

    Chan, Renee W Y; Poon, Leo L M

    2013-04-09

    A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to achieve infection. Additional research is urgently needed to better understand the pathogenicity and tissue tropism of this virus in humans. In their recent study published in mBio, Kindler et al. shed some light on these important topics (E. Kindler, H. R. Jónsdóttir, M. Muth, O. J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R. A. Fouchier, C. Drosten, M. A. Müller, R. Dijkman, and V. Thiel, mBio 4[1]:e00611-12, 2013). These authors report the use of differentiated pseudostratified human primary airway epithelial cells, an in vitro model with high physiological relevance to the human airway epithelium, to characterize the cellular tropism of HCoV-EMC. More importantly, the authors demonstrate the potential use of type I and type III interferons (IFNs) to control viral infection.

  4. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.

    Science.gov (United States)

    Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S

    2015-12-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.

  5. Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; CAI Zhen; CHEN Yong; LIN Zhanglin

    2006-01-01

    The spike protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) mediates cell fusion by binding to target cell surface receptors. This paper reports a simple method for dissecting the viral protein and for searching for foldable fragments in a random but systematic manner. The method involves digestion by DNase I to generate a pool of short DNA segments, followed by an additional step of reassembly of these segments to produce a library of DNA fragments with random ends but controllable lengths. To rapidly screen for discrete folded polypeptide fragments, the reassembled gene fragments were further cloned into a vector as N-terminal fusions to a folding reporter gene which was a variant of green fluorescent protein. Two foldable fragments were identified for the SARS-CoV spike protein, which coincide with various anti-SARS peptides derived from the hepated repeat (HR) region 2 of the spike protein. The method should be applicable to other viral proteins to isolate antigen or vaccine candidates, thus providing an alternative to the full-length proteins (subunits) or linear short peptides.

  6. Understanding the T cell immune response in SARS coronavirus infection.

    Science.gov (United States)

    Janice Oh, Hsueh-Ling; Ken-En Gan, Samuel; Bertoletti, Antonio; Tan, Yee-Joo

    2012-09-01

    The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development.

  7. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    Science.gov (United States)

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.

  8. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease

    Science.gov (United States)

    This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected fro...

  9. Novel Coronaviruses and Astroviruses in Bats

    Institute of Scientific and Technical Information of China (English)

    Daniel K. W. Chu; J. S. Malik Peiris; Leo L. M. Poon

    2009-01-01

    Zoonotic transmissions of emerging pathogens from wildlife to human have shaped the history of mankind. These events have also highlighted our poor understanding of microorganisms circulated in wild animals. Coronaviruses and astroviruses, which can be found from a wide range of mammals, were recently detected in bats. Strikingly, these bat viruses are genetically highly diverse and these interesting findings might help to better understand the evolution and ecology of these viruses. The discoveries of these novel bats viruses not only suggested that bats are important hosts for these virus families, but also reiterated the role of bats as a reservoir of viruses that might pose a zoonotic threat to human health.

  10. Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43.

    Science.gov (United States)

    Brandão, P E; Gregori, F; Richtzenhain, L J; Rosales, C A R; Villarreal, L Y B; Jerez, J A

    2006-09-01

    Bovine coronavirus (BCoV) causes enteric and respiratory dis- orders in calves and dysentery in cows. In this study, 51 stool samples of calves from 10 Brazilian dairy farms were analysed by an RT-PCR that amplifies a 488-bp fragment of the hypervariable region of the spike glycoprotein gene. Maximum parsimony genealogy with a heuristic algorithm using sequences from 15 field strains studied here and 10 sequences from GenBank and bredavirus as an outgroup virus showed the existence of two major clusters (1 and 2) in this viral species, the Brazilian strains segregating in both of them. The mean nucleotide identity between the 15 Brazilian strains was 98.34%, with a mean amino acid similarity of 98%. Strains from cluster 2 showed a deletion of 6 amino acids inside domain II of the spike protein that was also found in human coronavirus strain OC43, supporting the recent proposal of a zoonotic spill- over of BCoV. These results contribute to the molecular characterization of BCoV, to the prediction of the efficiency of immunogens, and to the definition of molecular markers useful for epidemiologic surveys on coronavirus-caused diseases.

  11. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  12. Effects of air temperature and relative humidity on coronavirus survival on surfaces.

    Science.gov (United States)

    Casanova, Lisa M; Jeon, Soyoung; Rutala, William A; Weber, David J; Sobsey, Mark D

    2010-05-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.

  13. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces▿

    Science.gov (United States)

    Casanova, Lisa M.; Jeon, Soyoung; Rutala, William A.; Weber, David J.; Sobsey, Mark D.

    2010-01-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces. PMID:20228108

  14. Automated extraction protocol for quantification of SARS-Coronavirus RNA in serum: an evaluation study

    Directory of Open Access Journals (Sweden)

    Lui Wing-bong

    2006-02-01

    Full Text Available Abstract Background We have previously developed a test for the diagnosis and prognostic assessment of the severe acute respiratory syndrome (SARS based on the detection of the SARS-coronavirus RNA in serum by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR. In this study, we evaluated the feasibility of automating the serum RNA extraction procedure in order to increase the throughput of the assay. Methods An automated nucleic acid extraction platform using the MagNA Pure LC instrument (Roche Diagnostics was evaluated. We developed a modified protocol in compliance with the recommended biosafety guidelines from the World Health Organization based on the use of the MagNA Pure total nucleic acid large volume isolation kit for the extraction of SARS-coronavirus RNA. The modified protocol was compared with a column-based extraction kit (QIAamp viral RNA mini kit, Qiagen for quantitative performance, analytical sensitivity and precision. Results The newly developed automated protocol was shown to be free from carry-over contamination and have comparable performance with other standard protocols and kits designed for the MagNA Pure LC instrument. However, the automated method was found to be less sensitive, less precise and led to consistently lower serum SARS-coronavirus concentrations when compared with the column-based extraction method. Conclusion As the diagnostic efficiency and prognostic value of the serum SARS-CoV RNA RT-PCR test is critically associated with the analytical sensitivity and quantitative performance contributed both by the RNA extraction and RT-PCR components of the test, we recommend the use of the column-based manual RNA extraction method.

  15. Diagnostic Methods for Feline Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sharif

    2010-01-01

    Full Text Available Feline coronaviruses (FCoVs are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP. FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV. Reverse transcriptase polymerase chain reaction (RT-PCR has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.

  16. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    Science.gov (United States)

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.

  17. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  18. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  19. A coronavirus detected in the vampire bat Desmodus rotundus

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Brandão

    Full Text Available This article reports on the identification of a group 2 coronavirus (BatCoV DR/2007 in a Desmodus rotundus vampire bat in Brazil. Phylogenetic analysis of ORF1b revealed that BatCoV DR/2007 originates from a unique lineage in the archetypical group 2 coronaviruses, as described for bat species elsewhere with putative importance in Public Health.

  20. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

    Science.gov (United States)

    Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D

    2010-05-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

  1. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein.

    Science.gov (United States)

    Escriou, Nicolas; Callendret, Benoît; Lorin, Valérie; Combredet, Chantal; Marianneau, Philippe; Février, Michèle; Tangy, Frédéric

    2014-03-01

    The recent identification of a novel human coronavirus responsible of a SARS-like illness in the Middle-East a decade after the SARS pandemic, demonstrates that reemergence of a SARS-like coronavirus from an animal reservoir remains a credible threat. Because SARS is contracted by aerosolized contamination of the respiratory tract, a vaccine inducing mucosal long-term protection would be an asset to control new epidemics. To this aim, we generated live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted recombinant Ssol protein, recombinant MV induced stronger and Th1-biased responses, a hallmark of live attenuated viruses and a highly desirable feature for an antiviral vaccine. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Genomic and single nucleotide polymorphism analysis of infectious bronchitis coronavirus.

    Science.gov (United States)

    Abolnik, Celia

    2015-06-01

    Infectious bronchitis virus (IBV) is a Gammacoronavirus that causes a highly contagious respiratory disease in chickens. A QX-like strain was analysed by high-throughput Illumina sequencing and genetic variation across the entire viral genome was explored at the sub-consensus level by single nucleotide polymorphism (SNP) analysis. Thirteen open reading frames (ORFs) in the order 5'-UTR-1a-1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3'UTR were predicted. The relative frequencies of missense: silent SNPs were calculated to obtain a comparative measure of variability in specific genes. The most variable ORFs in descending order were E, 3b, 5'UTR, N, 1a, S, 1ab, M, 4c, 5a, 6b. The E and 3b protein products play key roles in coronavirus virulence, and RNA folding demonstrated that the mutations in the 5'UTR did not alter the predicted secondary structure. The frequency of SNPs in the Spike (S) protein ORF of 0.67% was below the genomic average of 0.76%. Only three SNPS were identified in the S1 subunit, none of which were located in hypervariable region (HVR) 1 or HVR2. The S2 subunit was considerably more variable containing 87% of the polymorphisms detected across the entire S protein. The S2 subunit also contained a previously unreported multi-A insertion site and a stretch of four consecutive mutated amino acids, which mapped to the stalk region of the spike protein. Template-based protein structure modelling produced the first theoretical model of the IBV spike monomer. Given the lack of diversity observed at the sub-consensus level, the tenet that the HVRs in the S1 subunit are very tolerant of amino acid changes produced by genetic drift is questioned. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Fan, Rachel Y Y; Lau, Candy C Y; Wong, Emily Y M; Joseph, Sunitha; Tsang, Alan K L; Wernery, Renate; Yip, Cyril C Y; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-05-07

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5'-UCUAAAC-3' as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  4. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    Directory of Open Access Journals (Sweden)

    Patrick C. Y. Woo

    2016-05-01

    Full Text Available Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23 from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3% and 59 (100% of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001. Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV, respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  5. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    Science.gov (United States)

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Fan, Rachel Y. Y.; Lau, Candy C. Y.; Wong, Emily Y. M.; Joseph, Sunitha; Tsang, Alan K. L.; Wernery, Renate; Yip, Cyril C. Y.; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  6. European Surveillance for Pantropic Canine Coronavirus

    Science.gov (United States)

    Cordonnier, Nathalie; Demeter, Zoltan; Egberink, Herman; Elia, Gabriella; Grellet, Aurélien; Le Poder, Sophie; Mari, Viviana; Martella, Vito; Ntafis, Vasileios; von Reitzenstein, Marcela; Rottier, Peter J.; Rusvai, Miklos; Shields, Shelly; Xylouri, Eftychia; Xu, Zach; Buonavoglia, Canio

    2013-01-01

    Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5′ end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains. PMID:23100349

  7. [New coronavirus infection: new challenges, new legacies].

    Science.gov (United States)

    Cabrera-Gaytán, David Alejandro; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2014-01-01

    Introducción: emergió una nueva enfermedad por coronavirus. Su historia natural y sus determinantes todavía se están investigando. Se carece de una publicación que estudie todos los casos identificados en el mundo, por lo que el objetivo de este artículo estriba en describir los casos y defunciones por el nuevo coronavirus. Métodos: se revisaron las publicaciones en línea de la Organización Mundial de la Salud, del Centro Europeo para el Control y Prevención de Enfermedades y de la Eurosurveillance. Se realizó un análisis descriptivo de los casos, se calcularon los límites para proporciones con un alfa del 0.05 por prueba de Wilson y una prueba t de Student para diferencia de medias. Resultados: son 17 casos confirmados y 11 defunciones en varios países de Asia y Europa; predominaron los pacientes masculinos. La tasa de letalidad fue de 64.70 %; los que fallecieron se hospitalizaron cinco días después de los primeros síntomas. Se carece de publicaciones que describan la historia natural de la enfermedad; sin embargo, lo descrito en las publicaciones de Europa coincide con los resultados de este estudio. Conclusión: es necesario continuar con la vigilancia epidemiológica y la realización de nuevos estudios para evaluar el impacto de esta enfermedad en la salud pública internacional.

  8. Vaccines for Emerging Infectious Diseases: lessons from MERS coronavirus and Zika virus.

    Science.gov (United States)

    Maslow, Joel N

    2017-08-28

    The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized bywith novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.

  9. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells

    Science.gov (United States)

    Golda, Anna; Malek, Natalia; Dudek, Bartosz; Zeglen, Slawomir; Wojarski, Jacek; Ochman, Marek; Kucewicz, Ewa; Zembala, Marian

    2011-01-01

    Understanding the mechanisms of augmented bacterial pathogenicity in post-viral infections is the first step in the development of an effective therapy. This study assessed the effect of human coronavirus NL63 (HCoV-NL63) on the adherence of bacterial pathogens associated with respiratory tract illnesses. It was shown that HCoV-NL63 infection resulted in an increased adherence of Streptococcus pneumoniae to virus-infected cell lines and fully differentiated primary human airway epithelium cultures. The enhanced binding of bacteria correlated with an increased expression level of the platelet-activating factor receptor (PAF-R), but detailed evaluation of the bacterium–PAF-R interaction revealed a limited relevance of this process. PMID:21325482

  10. Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy

    Directory of Open Access Journals (Sweden)

    Eliana C.A. Benites

    2014-07-01

    Full Text Available OBJECTIVE: to estimate the prevalence of infection by respiratory viruses in pediatric patients with cancer and acute respiratory infection (ARI and/or fever. METHODS: cross-sectional study, from January 2011 to December 2012. The secretions of nasopharyngeal aspirates were analyzed in children younger than 21 years with acute respiratory infections. Patients were treated at the Grupo em Defesa da Criança Com Câncer (Grendacc and University Hospital (HU, Jundiaí, SP. The rapid test was used for detection of influenza virus (Kit Biotrin, Inc. Ireland, and real-time multiplex polymerase chain reaction (FTD, Respiratory pathogens, multiplex Fast Trade Kit, Malta for detection of influenza virus (H1N1, B, rhinovirus, parainfluenza virus, adenovirus, respiratory syncytial virus, human parechovirus, bocavirus, metapneumovirus, and human coronavirus. The prevalence of viral infection was estimated and association tests were used (χ2 or Fisher's exact test. RESULTS: 104 samples of nasopharyngeal aspirate and blood were analyzed. The median age was 12 ± 5.2 years, 51% males, 68% whites, 32% had repeated ARIs, 32% prior antibiotic use, 19.8% cough, and 8% contact with ARIs. A total of 94.3% were in good general status. Acute lymphocytic leukemia (42.3% was the most prevalent neoplasia. Respiratory viruses were detected in 50 samples: rhinoviruses (23.1%, respiratory syncytial virus AB (8.7%, and coronavirus (6.8%. Co-detection occurred in 19% of cases with 2 viruses and in 3% of those with 3 viruses, and was more frequent between rhinovirus and coronavirus 43. Fever in neutropenic patients was observed in 13%, of which four (30.7 were positive for viruses. There were no deaths. CONCLUSIONS: the prevalence of respiratory viruses was relevant in the infectious episode, with no increase in morbidity and mortality. Viral co-detection was frequent in patients with cancer and ARIs.

  11. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    Science.gov (United States)

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  13. Severe acute respiratory syndrome (SARS) in Hong Kong.

    Science.gov (United States)

    Tsang, Kenneth W; Mok, Thomas Y; Wong, Poon C; Ooi, Gaik C

    2003-09-01

    Severe acute respiratory syndrome (SARS) is a recently recognized and highly contagious pneumonic illness, caused by a novel coronavirus. While developments in diagnostic, clinical and other aspects of SARS research are well underway, there is still great difficulty for frontline clinicians as validated rapid diagnostic tests or effective treatment regimens are lacking. This article attempts to summarize some of the recent developments in this newly recognized condition from the Asia Pacific perspective.

  14. Respiratory viruses and bacteria among pilgrims during the 2013 Hajj.

    Science.gov (United States)

    Benkouiten, Samir; Charrel, Rémi; Belhouchat, Khadidja; Drali, Tassadit; Nougairede, Antoine; Salez, Nicolas; Memish, Ziad A; Al Masri, Malak; Fournier, Pierre-Edouard; Raoult, Didier; Brouqui, Philippe; Parola, Philippe; Gautret, Philippe

    2014-11-01

    Pilgrims returning from the Hajj might contribute to international spreading of respiratory pathogens. Nasal and throat swab specimens were obtained from 129 pilgrims in 2013 before they departed from France and before they left Saudi Arabia, and tested by PCR for respiratory viruses and bacteria. Overall, 21.5% and 38.8% of pre-Hajj and post-Hajj specimens, respectively, were positive for ≥1 virus (p = 0.003). One third (29.8%) of the participants acquired ≥1 virus, particularly rhinovirus (14.0%), coronavirus E229 (12.4%), and influenza A(H3N2) virus (6.2%) while in Saudi Arabia. None of the participants were positive for the Middle East respiratory syndrome coronavirus. In addition, 50.0% and 62.0% of pre-Hajj and post-Hajj specimens, respectively, were positive for Streptococcus pneumoniae (p = 0.053). One third (36.3%) of the participants had acquired S. pneumoniae during their stay. Our results confirm high acquisition rates of rhinovirus and S. pneumoniae in pilgrims and highlight the acquisition of coronavirus E229.

  15. Molecular phylogeny of coronaviruses including human SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Phylogenetic tree of coronaviruses (CoVs) including the human SARS-associated virus is reconstructed from complete genomes by using our newly developed K- string composition approach. The relation of the human SARS-CoV to other coronaviruses, i.e. the rooting of the tree is suggested by choosing an appropriate outgroup. SARS-CoV makes a separate group closer but still distant from G2 (CoVs in mammalian host). The relation between different isolates of the human SARS virus is inferred by first constructing an ultrametric distance matrix from counting sequence variations in the genomes. The resulting tree is consistent with clinic relations between the SARS-CoV isolates. In addition to a larger variety of coronavirus genomes these results provide phylogenetic knowledge based on independent novel methodology as compared to recent phylogenetic studies on SARS-CoV.

  16. Genotyping coronaviruses associated with feline infectious peritonitis.

    Science.gov (United States)

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP.

  17. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as pulmonary fibrosis , ...

  18. Detection of respiratory viruses and the associated chemokine responses in serious acute respiratory illness

    Science.gov (United States)

    Sumino, Kaharu C.; Walter, Michael J.; Mikols, Cassandra L.; Thompson, Samantha A.; Gaudreault-Keener, Monique; Arens, Max. Q.; Agapov, Eugene; Hormozdi, David; Gaynor, Anne M.; Holtzman, Michael J.; Storch, Gregory A.

    2010-01-01

    Background A specific diagnosis of a lower respiratory viral infection is often difficult despite frequent clinical suspicion. This low diagnostic yield may be improved by use of sensitive detection methods and biomarkers. Methods We investigated the prevalence, clinical predictors and inflammatory mediator profile of respiratory viral infection in serious acute respiratory illness. Sequential bronchoalveolar lavage (BAL) fluids from all patients hospitalized with acute respiratory illness over 12 months (n=283) were tested for the presence of 17 respiratory viruses by multiplex PCR assay and for newly-discovered respiratory viruses (bocavirus, WU and KI polyomaviruses) by single-target PCR. BAL samples also underwent conventional testing (direct immunoflorescence and viral culture) for respiratory virus at the clinician’s discretion. 27 inflammatory mediators were measured in subset of the patients (n=64) using a multiplex immunoassay. Results We detected 39 respiratory viruses in 37 (13.1% of total) patients by molecular testing, including rhinovirus (n=13), influenza virus (n=8), respiratory syncytial virus (n=6), human metapneumovirus (n=3), coronavirus NL63 (n=2), parainfluenza virus (n=2), adenovirus (n=1), and newly-discovered viruses (n=4). Molecular methods were 3.8-fold more sensitive than conventional methods. Clinical characteristics alone were insufficient to separate patients with and without respiratory virus. The presence of respiratory virus was associated with increased levels of interferon-γ-inducible protein 10 (IP -10)(p<0.001) and eotaxin-1 (p=0.017) in BAL. Conclusions Respiratory viruses can be found in patients with serious acute respiratory illness by use of PCR assays more frequently than previously appreciated. IP-10 may be a useful biomarker for respiratory viral infection. PMID:20627924

  19. Middle East respiratory syndrome: A new global threat

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Bhatia

    2016-01-01

    Full Text Available The outbreak of Middle East respiratory syndrome (MERS is reported from Saudi Arabia and the Republic of Korea. It is a respiratory disease caused by coronavirus. Camels are considered as a source for MERS transmission in humans, although the exact source is unknown. Human-to-human transmission is reported in the community with droplet and contact spread being the possible modes. Most patients without any underlying diseases remain asymptomatic or develop mild clinical disease, but some patients require critical care for mechanical ventilation, dialysis and other organ support. MERS is a disease with pandemic potential and awareness, and surveillance can prevent such further outbreaks.

  20. Utility of feline coronavirus antibody tests.

    Science.gov (United States)

    Addie, Diane D; le Poder, Sophie; Burr, Paul; Decaro, Nicola; Graham, Elizabeth; Hofmann-Lehmann, Regina; Jarrett, Oswald; McDonald, Michael; Meli, Marina L

    2015-02-01

    Eight different tests for antibodies to feline coronavirus (FCoV) were evaluated for attributes that are important in situations in veterinary practice. We compared four indirect immunofluorescent antibody tests (IFAT), one enzyme-linked immunosorbent assay (ELISA) (FCoV Immunocomb; Biogal) and three rapid immunochromatographic (RIM) tests against a panel of samples designated by consensus as positive or negative. Specificity was 100% for all but the two IFATs based on transmissible gastroenteritis virus (TGEV), at 83.3% and 97.5%. The IFAT and ELISA tests were best for obtaining an antibody titre and for working in the presence of virus. The RIM tests were the best for obtaining a result quickly (10-15 mins); of these, the Speed F-Corona was the most sensitive, at 92.4%, followed by FASTest feline infectious peritonitis (FIP; 84.6%) and Anigen Rapid FCoV antibody test (64.1%). Sensitivity was 100% for the ELISA, one FCoV IFAT and one TGEV IFAT; and 98.2% for a second TGEV IFA and 96.1% for a second FCoV IFAT. All tests worked with effusions, even when only blood products were stipulated in the instruction manual. The ELISA and Anigen RIM tests were best for small quantities of sample. The most appropriate FCoV antibody test to use depends on the reason for testing: in excluding a diagnosis of FIP, sensitivity, specificity, small sample quantity, rapidity and ability to work in the presence of virus all matter. For FCoV screening, speed and sensitivity are important, and for FCoV elimination antibody titre is essential. © ISFM and AAFP 2014.

  1. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    Science.gov (United States)

    Wang, Sheng-Fan; Tseng, Sung-Pin; Yen, Chia-Hung; Yang, Jyh-Yuan; Tsao, Ching-Han; Shen, Chun-Wei; Chen, Kuan-Hsuan; Liu, Fu-Tong; Liu, Wu-Tse; Chen, Yi-Ming Arthur; Huang, Jason C

    2014-08-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    Qing-He Nie; Xin-Dong Luo; Wu-Li Hui

    2003-01-01

    It has been proved that severe acute respiratory syndrome (SARS) is caused by SARS-associated coronavirus, a novel coronavirus. SARS originated in Guangdong Province, the People's Republic of China at the end of 2002. At present,it has spread to more than 33 countries or regions all over the world and affected 8 360 people and killed 764 by May 31,2003. Identification of the SARS causative agent and development of a diagnostic test are important. Detecting disease in its early stage, understanding its pathways of transmission and implementing specific prevention measures for the disease are dependent upon swift progress. Due to the efforts of the WHO-led network of laboratories testing for SARS, tests for the novel coronavirus have been developed with unprecedented speed. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses. WHO established the definitions of suspected and confirmed and probable cases. But the laboratory tests and definitions are limited. Until now, the primary measures included isolation, ribavirin and corticosteroid therapy, mechanical ventilation, etc. Other therapies such as convalescent plasma are being explored. It is necessary to find more effective therapy. There still are many problems to be solved in the course of conquering SARS.

  3. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    Science.gov (United States)

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.

  4. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    Science.gov (United States)

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  5. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  6. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.

    Science.gov (United States)

    Madu, Ikenna G; Belouzard, Sandrine; Whittaker, Gary R

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  7. A Real-Time PCR Assay for Bat SARS-Like Coronavirus Detection and Its Application to Italian Greater Horseshoe Bat Faecal Sample Surveys

    Directory of Open Access Journals (Sweden)

    Andrea Balboni

    2012-01-01

    Full Text Available Bats are source of coronaviruses closely related to the severe acute respiratory syndrome (SARS virus. Numerous studies have been carried out to identify new bat viruses related to SARS-coronavirus (bat-SARS-like CoVs using a reverse-transcribed-polymerase chain reaction assay. However, a qualitative PCR could underestimate the prevalence of infection, affecting the epidemiological evaluation of bats in viral ecology. In this work an SYBR Green-real time PCR assay was developed for diagnosing infection with SARS-related coronaviruses from bat guano and was applied as screening tool in a survey carried out on 45 greater horseshoe bats (Rhinolophus ferrumequinum sampled in Italy in 2009. The assay showed high sensitivity and reproducibility. Its application on bats screening resulted in a prevalence of 42%. This method could be suitable as screening tool in epidemiological surveys about the presence of bat-SARS-like CoVs, consequently to obtain a more realistic scenario of the viral prevalence in the population.

  8. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  9. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  10. 儿童急性上呼吸道感染夏季和冬季病毒病原学分析%Etiology Study on Virus in Children with Acute Upper Respiratory Infection during Summer and Winter

    Institute of Scientific and Technical Information of China (English)

    顾艳红; 刘兰吉; 孙利; 苏颖; 徐朝阳

    2012-01-01

    Objective To evaluate etiologic characteristics of virus in children with acute upper respiratory infection ( AURI ) during summer and winter in Qinhuangdao district. Methods 169 AURI children admitted from June to August in 2010 and 152 AURI children admitted from November 2010 to January 2011 were involved into the study. Multiplex PCR method was used to detect 15 kinds of viruses in 321 samples of throat swab, including adenovirus A/B/C/D, coronavirus 229E/NL63, parainfluenza virus 1, 2 and 3 , coronavirus OC43/HKU1, rhinovirus A/B/C, influenza virus A, respiratory syncytial virus A/ B, bocavirus 1/2/3/4, influenza virus B, metapneumovirus, parainfluenza virus 4 and enterovirus. Results A total of 321 samples were detected, and 208 samples were positive, with a detection rate of 64. 8%. 185 samples had single virus, including 55 cases of enterovirus, 41 cases of influenza virus, 32 cases of respiratory syncytial virus, 24 cases of adenovirus, 17 cases of rhinovirus, 6 cases of metapneumovirus, 6 cases of coronavirus and 4 cases of bocavirus. 23 samples had two kinds of viruses , including 7 cases of respiratory syncytial virus combined with influenza virus, 3 cases of enterovirus combined with adenovirus , 3 cases of adenovirus combined with influenza virus, 3 cases of adenovirus combined with respiratory syncytial virus, 2 cases of enterovirus combined with rhinovirus, one case of enterovirus combined with respiratory syncytial virus, one case of en- terovirus combined with bocavirus, one case of influenza virus combined with coronavirus, one case of adenovirus combined with rhinovirus, and one case of adenovirus combined with metapneumovirus. Viruses detected in summer were mainly enterovirus, adenovirus and influenza virus; while the viruses detected in winter were mainly respiratory syncytial virus, influenza virus and adenovirus. Rhinovirus, coronavirus, metapneumovirus and bocavirus were sporadic type viruses. The detection rates of enterovirus in summer

  11. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    Science.gov (United States)

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.

  12. Pathogenesis of severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding-mei; LU Jia-hai; ZHONG Nan-shan

    2008-01-01

    Severe acute respiratory syndrome (SARS) first emerged in Guangdong province,China in November2002.During the following 3 months,it spread rapidly across the world,resulting in approximately 800 deaths.In 2004,subsequent sporadic cases emerged in Singapore and China.A novel coronavims,SARS-CoV,was identified as the etiological agent of SARS.1,2 This virus belongs to a family of large,positive,single-stranded RNA viruses.Nevertheless,genomic characterization shows that the SARS-CoV is only moderately related to other known coronaviruses.3 In contrast with previously described coronaviruses,SARS-CoV infection typically causes severe symptoms related to the lower respiratory tract.The SARS-CoV genome includes 14 putative open reading frames encoding 28 potential proteins,and the functions of many of these proteins are not known.4 A number of complete and partial autopsies of SARS patients have been reported since the first outbreak in 2003.The predominant pathological finding in these cases was diffuse alveolar damage (DAD).This severe pulmonary injury of SARS patients is caused both by direct viral effects and immunopathogenetic factors.5 Many important aspects of the pathogenesis of SARS have not yet been fully clarified.In this article,we summarize the most important mechanisms involved in the complex pathogenesis of SARS,including clinical characters,host and receptors,immune system response and genetic factors.

  13. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.

    Science.gov (United States)

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua

    2006-01-20

    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  14. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features.

    Science.gov (United States)

    Lei, Jian; Mesters, Jeroen R; Drosten, Christian; Anemüller, Stefan; Ma, Qingjun; Hilgenfeld, Rolf

    2014-09-01

    The Middle-East Respiratory Syndrome coronavirus (MERS-CoV) causes severe acute pneumonia and renal failure. The MERS-CoV papain-like protease (PL(pro)) is a potential target for the development of antiviral drugs. To facilitate these efforts, we determined the three-dimensional structure of the enzyme by X-ray crystallography. The molecule consists of a ubiquitin-like domain and a catalytic core domain. The catalytic domain displays an extended right-hand fold with a zinc ribbon and embraces a solvent-exposed substrate-binding region. The overall structure of the MERS-CoV PL(pro) is similar to that of the corresponding SARS-CoV enzyme, but the architecture of the oxyanion hole and of the S3 as well as the S5 specificity sites differ from the latter. These differences are the likely reason for reduced in vitro peptide hydrolysis and deubiquitinating activities of the MERS-CoV PL(pro), compared to the homologous enzyme from the SARS coronavirus. Introduction of a side-chain capable of oxyanion stabilization through the Leu106Trp mutation greatly enhances the in vitro catalytic activity of the MERS-CoV PL(pro). The unique features observed in the crystal structure of the MERS-CoV PL(pro) should allow the design of antivirals that would not interfere with host ubiquitin-specific proteases.

  15. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.

    Science.gov (United States)

    Wong, Swee Kee; Li, Wenhui; Moore, Michael J; Choe, Hyeryun; Farzan, Michael

    2004-01-30

    The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.

  16. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  18. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Juan Reguera

    Full Text Available The coronaviruses (CoVs are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10-20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN, a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs of two closely related CoV strains, transmissible gastroenteritis virus (TGEV and porcine respiratory CoV (PRCV, in complex with their receptor, porcine APN (pAPN, or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.

  19. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Anjeanette Roberts

    2007-01-01

    Full Text Available No single animal model for severe acute respiratory syndrome (SARS reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15 that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15, duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as

  20. Critical care medicine for emerging Middle East respiratory syndrome: Which point to be considered?

    Science.gov (United States)

    Wiwanitkit, Viroj

    2015-09-01

    The Middle East respiratory syndrome (MERS) is a new emerging respiratory tract infection. This coronavirus infection is firstly reported from the Middle East, and it becomes threat for the global public health at present due to its existence in a remote area such as USA and Korea. The concern on the management of the patients is very important. Since most of the patients can develop severe respiratory illness and critical care management is needed, the issue on critical care for MERS is the topic to be discussed in critical medicine.

  1. Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus

    DEFF Research Database (Denmark)

    Have, P; Moving, V; Svansson, V

    1992-01-01

    Antibodies to a transmissible gastroenteritis virus (TGEV)-related coronavirus have been demonstrated in mink sera by indirect immunofluorescence, peroxidase-linked antibody assays and immunoblotting. This is the first serological evidence of a specific coronavirus infection in mink. The putative......-reacted with N and M polypeptides of porcine epidemic diarrhea virus (PEDV). Thus MCV may occupy an intermediate position between the TGEV group of coronaviruses and PEDV. The possibility that MCV may be associated with syndromes of acute enteritis in preweaning mink is discussed....

  2. Accessory proteins of SARS-CoV and other coronaviruses.

    Science.gov (United States)

    Liu, Ding Xiang; Fung, To Sing; Chong, Kelvin Kian-Long; Shukla, Aditi; Hilgenfeld, Rolf

    2014-09-01

    The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Prevalence of Korean cats with natural feline coronavirus infections

    Directory of Open Access Journals (Sweden)

    Lee Myoung-Heon

    2011-09-01

    Full Text Available Abstract Background Feline coronavirus is comprised of two pathogenic biotypes consisting of feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV, which are both divided into two serotypes. To examine the prevalence of Korean cats infected with feline coronavirus (FCoV type I and II, fecal samples were obtained from 212 cats (107 pet and 105 feral in 2009. Results Fourteen cats were FCoV-positive, including infections with type I FCoV (n = 8, type II FCoV (n = 4, and types I and II co-infection (n = 2. Low seroprevalences (13.7%, 29/212 of FCoV were identified in chronically ill cats (19.3%, 16/83 and healthy cats (10.1%, 13/129. Conclusions Although the prevalence of FCoV infection was not high in comparison to other countries, there was a higher prevalence of type I FCoV in Korean felines. The prevalence of FCoV antigen and antibody in Korean cats are expected to gradually increase due to the rising numbers of stray and companion cats.

  4. Genomic organization and expression of the 3' end of the canine and feline enteric coronaviruses

    NARCIS (Netherlands)

    Vennema, H; Rossen, J W; Wesseling, J; Horzinek, M C; Rottier, P J

    1993-01-01

    The genomic organization at the 3' end of canine coronavirus (CCV) and feline enteric coronavirus (FECV) was determined by sequence analysis and compared to that of feline infectious peritonitis virus (FIPV) and transmissible gastroenteritis virus (TGEV) of swine. Comparison of the latter two has pr

  5. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    NARCIS (Netherlands)

    Walls, Alexandra C; Tortorici, M Alejandra; Bosch, Berend-Jan; Frenz, Brandon; Rottier, Peter J M; DiMaio, Frank; Rey, Félix A; Veesler, David

    2016-01-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion f

  6. Detection of respiratory viruses by real-time polymerase chain reaction in outpatients with acute respiratory infection

    Directory of Open Access Journals (Sweden)

    Ronaldo Bragança Martins Júnior

    2014-09-01

    Full Text Available Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR and indirect immunofluorescence assay (IIF. Through IIF, 33 (20.4% specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3% positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV. Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1 pdm09 virus, human coronavirus (HCoV NL63 and HCoV HKU1].

  7. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.

    Science.gov (United States)

    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung

    2012-05-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.

  8. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    2007-08-01

    Full Text Available Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1. In cell culture, nsp1 of mouse hepatitis virus (MHV, like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.

  9. Detection of novel respiratory viruses from influenza-like illness in the Philippines.

    Science.gov (United States)

    Furuse, Yuki; Suzuki, Akira; Kishi, Makiko; Galang, Hazel O; Lupisan, Socorro P; Olveda, Remigio M; Oshitani, Hitoshi

    2010-05-01

    Several novel viruses have been recently identified in respiratory samples. However, the epidemiology of these viruses in tropical countries remains unclear. The aim of the present study was to provide an overview of the epidemiology of novel respiratory viruses, including human metapneumovirus, human bocavirus, new subtypes of human coronavirus (NL63 and HKU1), KI virus, WU virus, and Melaka virus in the Philippines, a tropical country. Nasopharyngeal aspirates from 465 patients with influenza-like illness were collected in 2006 and 2007. Reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to detect viruses from culture-negative specimens. Human metapneumovirus, human bocavirus, human coronavirus HKU1, KI virus, and WU virus were detected for the first time in the Philippines; Melaka virus was not found.

  10. Isolation of Coronavirus NL63 from Blood from Children in Rural Haiti: Phylogenetic Similarities with Recent Isolates from Malaysia.

    Science.gov (United States)

    Beau De Rochars, Valery Madsen; Lednicky, John; White, Sarah; Loeb, Julia; Elbadry, Maha A; Telisma, Taina; Chavannes, Sonese; Anilis, Marie Gina; Cella, Eleonora; Ciccozzi, Massimo; Okech, Bernard A; Salemi, Marco; Morris, J Glenn

    2017-01-11

    Human coronavirus (HCoV) NL63 is recognized as a common cause of upper respiratory infections and influenza-like illness. In screening children with acute undifferentiated febrile illness in a school cohort in rural Haiti, we identified HCoV-NL63 in blood samples from four children. Cases clustered over an 11-day period; children did not have respiratory symptoms, but two had gastrointestinal complaints. On phylogenetic analysis, the Haitian HCoV-NL63 strains cluster together in a highly supported monophyletic clade linked most closely with recently reported strains from Malaysia; two respiratory HCoV-NL63 strains identified in north Florida in the same general period form a separate clade, albeit again with close linkages with the Malaysian strains. Our data highlight the variety of presentations that may be seen with HCoV-NL63, and underscore the apparent ease with which CoV strains move among countries, with our data consistent with recurrent introduction of strains into the Caribbean (Haiti and Florida) from Asia. © The American Society of Tropical Medicine and Hygiene.

  11. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    Directory of Open Access Journals (Sweden)

    Roh C

    2012-05-01

    Full Text Available Changhyun RohDivision of Biotechnology, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, Republic of KoreaAbstract: Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS, and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV nucleocapsid (N protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (--catechin gallate and (--gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (--catechin gallate and (--gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 µg mL–1, (--catechin gallate and (--gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.Keywords: SARS, RNA oligonucleotide, quantum dots, inhibitor, screening

  12. Protein Subcellular Localization Prediction and Genomic Polymorphism Analysis of the SARS Coronavirus

    Institute of Scientific and Technical Information of China (English)

    季星来; 柳树群; 李岭; 孙之荣

    2004-01-01

    The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus (CoV).Several sequences of the complete genome of SARS-CoV have been determined.The subcellular localization (SubLocation) of annotated open-reading frames of the SARS-CoV genome was predicted using a support vector machine.Several gene products were predicted to locate in the Golgi body and cell nucleus.The SubLocation information was combined with predicted transmembrane information to develop a model of the viral life cycle.The results show that this information can be used to predict the functions of genes and even the virus pathogenesis.In addition,the entire SARS viral genome sequences currently available in GenBank were compared to identify the sequence variations among different isolates.Some variations in the Hong Kong strains may be related to the special clinical manifestations and provide clues for understanding the relationship between gene functions and evolution.These variations reflect the evolution of the SARS virus in human populations and may help development of a vaccine.

  13. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Institute of Scientific and Technical Information of China (English)

    Xin-Wei Wang; Xiao-Ming Wu; Wen-Jun Xiao; Xiu-Mei Zhu; Chang-Qing Gu; Jing Yin; Wei Wei; Wei Yao; Chao Liu; Jian-Feng Li; Guo-Rong Ou; Jin-Song Li; Min-Nian Wang; Tong-Yu Fang; Gui-Jie Wang; Yao-Hui Qiu; Huai-Huan Wu; Fu-Huan Chao; Jun-Wen Li; Ting-Kai Guo; Bei Zhen; Qing-Xin Kong; Bin Yi; Zhong Li; Nong Song; Min Jin

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system.METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SAPS patients in Beijing in China.RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise,cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals.The RNA could not be detected in urine and stool samples from patients recovered from SARS.CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded.

  14. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway

    Institute of Scientific and Technical Information of China (English)

    Hongliang Wang; Peng Yang; Kangtai Liu; Feng Guo; Yanli Zhang; Gongyi Zhang; Chengyu Jiang

    2008-01-01

    While severe acute respiratory syndrome coronavirus (SARS-CoV)fwas initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.

  15. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus.

    Science.gov (United States)

    Yasui, Fumihiko; Kohara, Michinori; Kitabatake, Masahiro; Nishiwaki, Tetsu; Fujii, Hideki; Tateno, Chise; Yoneda, Misako; Morita, Kouichi; Matsushima, Kouji; Koyasu, Shigeo; Kai, Chieko

    2014-04-01

    While the 2002-2003 outbreak of severe acute respiratory syndrome (SARS) resulted in 774 deaths, patients who were affected with mild pulmonary symptoms successfully recovered. The objective of the present work was to identify, using SARS coronavirus (SARS-CoV) mouse infection models, immune factors responsible for clearing of the virus. The elimination of pulmonary SARS-CoV infection required the activation of B cells by CD4(+) T cells. Furthermore, passive immunization (post-infection) with homologous (murine) anti-SARS-CoV antiserum showed greater elimination efficacy against SARS-CoV than that with heterologous (rabbit) antiserum, despite the use of equivalent titers of neutralizing antibodies. This distinction was mediated by mouse phagocytic cells (monocyte-derived infiltrating macrophages and partially alveolar macrophages, but not neutrophils), as demonstrated both by adoptive transfer from donors and by immunological depletion of selected cell types. These results indicate that the cooperation of anti-SARS-CoV antibodies and phagocytic cells plays an important role in the elimination of SARS-CoV. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    Science.gov (United States)

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  17. Respiratory alkalosis.

    Science.gov (United States)

    Foster, G T; Vaziri, N D; Sassoon, C S

    2001-04-01

    Respiratory alkalosis is an extremely common and complicated problem affecting virtually every organ system in the body. This article reviews the various facets of this interesting problem. Respiratory alkalosis produces multiple metabolic abnormalities, from changes in potassium, phosphate, and calcium, to the development of a mild lactic acidosis. Renal handling of the above ions is also affected. The etiologies may be related to pulmonary or extrapulmonary disorders. Hyperventilation syndrome is a common etiology of respiratory alkalosis in the emergency department setting and is a diagnosis by exclusion. There are many cardiac effects of respiratory alkalosis, such as tachycardia, ventricular and atrial arrhythmias, and ischemic and nonischemic chest pain. In the lungs, vasodilation occurs, and in the gastrointestinal system there are changes in perfusion, motility, and electrolyte handling. Therapeutically, respiratory alkalosis is used for treatment of elevated intracranial pressure. Correction of a respiratory alkalosis is best performed by correcting the underlying etiology.

  18. Coronavirus bovino: Infecciones neumoentéricas (Bovine coronavirus:Neumoenteric infections

    Directory of Open Access Journals (Sweden)

    Betancourt, Martell, Alexander|

    2006-12-01

    Full Text Available Coronavirus bovino (BCoV es reconocido como un importante agente patógeno del ganado bovino, el cual está asociado a tres síndromes clínicos diferentes, Síndrome diarreico neonatal del ternero, caracterizado en terneros recién nacidos por diarreas líquidas profusas, en ocasiones hemorrágicas, anorexia, deshidratación y frecuentemente la muerte; Disentería de Invierno, la cual ocurre primariamente en bovinos adultos y cursa con severas diarreas, algunas veces con restos de sangre y mucus, decrecimiento de laproducción láctea, depresión, anorexia y descargas nasolagrimales; y finalmente como causa de infecciones respiratorias en vacas, incluida la Fiebre de Embarque. En todos los casos el diagnóstico requiere deensayos de laboratorio para la confirmación de BCoV, debido que resulta imposible su reconocimiento basado en elementos clínicos y anatomopatológicos por su similitud con otras enfermedades. Hasta elmomento todos los aislados de BCoV, tanto de cuadros entéricos como respiratorios pertenecen a un solo serotipo, pero con dos o tres subtipos identificados por seroneutralización empleando anticuerposmonoclonales. En adición, diferencias genéticas (por mutaciones puntuales, no delecciones han sido detectadas en el gen S, diferenciando entre aislados entéricos y respiratorios. No obstante, numerosos experimentos han demostrado la protección cruzada experimentada por terneros recién nacidos, privados de calostro ygnotobióticos, inoculados con aislados de BCoV obtenidos a partir de cuadros entéricos y respiratorios de terneros y bovinos adultos, los cuales resultaron protegidos al desafío subsiguiente con cepas de BCoV asociadas a diarrea.

  19. RESPIRATORY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    10.1 Respiratory failure2003068 Evaluation of non-invasive ventilation in a-cute respiratory failure with chronic obstructive pulmonary disease. GU Jianyong(顾俭勇), et al. Dept E-mergen, Zhongshan Hosp, Fudan Univ, Shanghai 200032. Shanghai J Med 2002; 25 (12): 741 - 743.Objective:To observe the effect of non-invasive venti-lation(NIV) in acute respiratory failure with chronic

  20. Molecular analysis of the bovine coronavirus S1 gene by direct sequencing of diarrheic fecal specimens

    Directory of Open Access Journals (Sweden)

    E. Takiuchi

    2008-04-01

    Full Text Available Bovine coronavirus (BCoV causes severe diarrhea in newborn calves, is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. The BCoV S protein plays a fundamental role in viral attachment and entry into the host cell, and is cleaved into two subunits termed S1 (amino terminal and S2 (carboxy terminal. The present study describes a strategy for the sequencing of the BCoV S1 gene directly from fecal diarrheic specimens that were previously identified as BCoV positive by RT-PCR assay for N gene detection. A consensus sequence of 2681 nucleotides was obtained through direct sequencing of seven overlapping PCR fragments of the S gene. The samples did not undergo cell culture passage prior to PCR amplification and sequencing. The structural analysis was based on the genomic differences between Brazilian strains and other known BCoV from different geographical regions. The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity for amino acids and more similar to the BCoV-ENT strain (98.7% for nucleotides and 98.7% for amino acids. Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, these strains clustered with the American (BCoV-ENT, 182NS and Canadian (BCQ20, BCQ2070, BCQ9, BCQ571, BCQ1523 calf diarrhea and the Canadian winter dysentery (BCQ7373, BCQ2590 strains, but clustered on a separate branch of the Korean and respiratory BCoV strains. The BCoV strains of the present study were not clustered in the same branch of previously published Brazilian strains (AY606193, AY606194. These data agree with the genealogical construction and suggest that at least two different BCoV strains are circulating in Brazil.

  1. Viral Etiologies of Infant Bronchiolitis, Croup, and Upper Respiratory Illness during Four Consecutive Years

    Science.gov (United States)

    Miller, E. Kathryn; Gebretsadik, Tebeb; Carroll, Kecia N.; Dupont, William D.; Mohamed, Yassir A.; Morin, Laura-Lee; Heil, Luke; Minton, Patricia A.; Woodward, Kimberly; Liu, Zhouwen; Hartert, Tina V.; Williams, John V.

    2013-01-01

    Background Prospective data on viral etiology and clinical characteristics of bronchiolitis and upper respiratory illness in infants is limited. Methods This prospective cohort enrolled previously healthy term infants during inpatient or outpatient visits for acute upper respiratory illness (URI) or bronchiolitis during September - May 2004–2008. Illness severity was determined using an ordinal bronchiolitis severity score. Common respiratory viruses were identified by real-time RT-PCR. Results Of 648 infants, 67% were enrolled during inpatient visits and 33% during outpatient visits. Seventy percent had bronchiolitis, 3% croup, and 27% URI. Among infants with bronchiolitis, 76% had RSV, 18% HRV, 10% influenza, 2% coronavirus, 3% HMPV, and 1% PIV. Among infants with croup, 39% had HRV, 28% PIV, 28% RSV, 11% influenza, 6% coronavirus, and none HMPV. Among infants with URI, 46% had HRV, 14% RSV, 12% influenza, 7% coronavirus, 6% PIV, and 4% HMPV. Individual viruses exhibited distinct seasonal, demographic, and clinical expression. Conclusions The most common infections among infants seeking care in unscheduled medical visits for URI or bronchiolitis were RSV and HRV. Demographic differences were observed between patients with different viruses, suggesting that host and viral factors play a role in phenotypic expression of viral illness. PMID:23694832

  2. Self-collected mid-turbinate swabs for the detection of respiratory viruses in adults with acute respiratory illnesses.

    Directory of Open Access Journals (Sweden)

    Oscar E Larios

    Full Text Available BACKGROUND: The gold standard for respiratory virus testing is a nasopharyngeal (NP swab, which is collected by a healthcare worker. Midturbinate (MT swabs are an alternative due to their ease of collection and possible self-collection by patients. The objective of this study was to compare the respiratory virus isolation of flocked MT swabs compared to flocked NP swabs. METHODS: Beginning in October 2008, healthy adults aged 18 to 69 years were recruited into a cohort and followed up for symptoms of influenza. They were asked to have NP and MT swabs taken as soon as possible after the onset of a fever or two or more respiratory symptoms with an acute onset. The swabs were tested for viral respiratory infections using Seeplex® RV12 multiplex PCR detection kit. Seventy six pairs of simultaneous NP and MT swabs were collected from 38 symptomatic subjects. Twenty nine (38% of these pairs were positive by either NP or MT swabs or both. Sixty nine (91% of the pair results were concordant. Two samples (3% for hCV OC43/HKU1 and 1 sample (1% for rhinovirus A/B were positive by NP but negative by MT. One sample each for hCV 229E/NL63, hCV OC43/HKU1, respiratory syncytial virus A, and influenza B were positive by MT but negative by NP. CONCLUSIONS: Flocked MT swabs are sensitive for the diagnosis of multiple respiratory viruses. Given the ease of MT collection and similar results between the two swabs, it is likely that MT swabs should be the preferred method of respiratory cell collection for outpatient studies. In light of this data, larger studies should be performed to ensure that this still holds true and data should also be collected on the patient preference of collection methods.

  3. Severe acute respiratory syndrome: pertinent clinical characteristics and therapy.

    Science.gov (United States)

    File, Thomas M; Tsang, Kenneth W T

    2005-01-01

    Severe acute respiratory syndrome (SARS) is a newly emerged infection that is caused by a previously unrecognized virus - a novel coronavirus designated as SARS-associated coronavirus (SARS-CoV). From November 2002 to July 2003 the cumulative number of worldwide cases was >8000, with a mortality rate of close to 10%. The mortality has been higher in older patients and those with co-morbidities. SARS has been defined using clinical and epidemiological criteria and cases are considered laboratory-confirmed if SARS coronavirus is isolated, if antibody to SARS coronavirus is detected, or a polymerase chain reaction test by appropriate criteria is positive. At the time of writing (24 May 2004), no specific therapy has been recommended. A variety of treatments have been attempted, but there are no controlled data. Most patients have been treated throughout the illness with broad-spectrum antimicrobials, supplemental oxygen, intravenous fluids, and other supportive measures. Transmission of SARS is facilitated by close contact with patients with symptomatic infection. The majority of cases have been reported among healthcare providers and family members of SARS patients. Since SARS-CoV is contagious, measures for prevention center on avoidance of exposure, and infection control strategies for suspected cases and contacts. This includes standard precautions (hand hygiene), contact precautions (gowns, goggles, gloves) and airborne precautions (negative pressure rooms and high efficiency masks). In light of reports of new cases identified during the winter of 2003-4 in China, it seems possible that SARS will be an important cause of pneumonia in the future, and the screening of outpatients at risk for SARS may become part of the pneumonia evaluation.

  4. Antiviral therapy and prophylaxis of acute respiratory infections

    Directory of Open Access Journals (Sweden)

    L. V. Osidak

    2012-01-01

    Full Text Available Thearticle presents the results of years of studies (including biochemical and immunological of the effectiveness of application and prophylaxis (in relation to nosocomial infections and the safety of antiviral chemical preparation Arbidol in 694 children with influenza and influenza-like illness, including the coronavirus infection (43 children and combined lesions of respiratory tract (150, indicating the possible inclusion of the drug in the complex therapy for children with the listed diseases, regardless of the severity and nature of their course. The studies were conducted according to the regulated standard of test conditions and randomized clinical trials.

  5. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  6. The Paradox of Feline Coronavirus Pathogenesis: A Review

    Directory of Open Access Journals (Sweden)

    Luciana Wanderley Myrrha

    2011-01-01

    Full Text Available Feline coronavirus (FCoV is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP. Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  7. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  8. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests.

    Science.gov (United States)

    Chan, Kwok-Hung; Chan, Jasper Fuk-Woo; Tse, Herman; Chen, Honglin; Lau, Candy Choi-Yi; Cai, Jian-Piao; Tsang, Alan Ka-Lun; Xiao, Xincai; To, Kelvin Kai-Wang; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Zheng, Bo-Jiang; Wang, Ming; Yuen, Kwok-Yung

    2013-08-01

    A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Two (2.1%) animal handlers had IF antibody titer of ≥ 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. RESPIRATORY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    2004494 Respiratory control in obstructive sleep apnea hypopnea syndrome. WANG Wei (王玮), et al. Instit Respir Dis, 1st Affili Hosp, China Med Limy, Shenyang 110001. Chin J Intern Med 2004; 43 (9): 647-650.

  10. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats.

    Science.gov (United States)

    Vogel, Liesbeth; Van der Lubben, Mariken; te Lintelo, Eddie G; Bekker, Cornelis P J; Geerts, Tamara; Schuijff, Leontine S; Grinwis, Guy C M; Egberink, Herman F; Rottier, Peter J M

    2010-01-01

    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.

  11. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  12. [Respiratory distress].

    Science.gov (United States)

    Galili, D; Garfunkel, A; Elad, S; Zusman, S P; Malamed, S F; Findler, M; Kaufman, E

    2002-01-01

    Dental treatment is usually conducted in the oral cavity and in very close proximity to the upper respiratory airway. The possibility of unintentionally compromising this airway is high in the dental environment. The accumulation of fluid (water or blood) near to the upper respiratory airway or the loosening of teeth fragmentations and fallen dental instruments can occur. Also, some of the drugs prescribed in the dental practice are central nervous system depressants and some are direct respiratory drive depressors. For this reason, awareness of the respiratory status of the dental patient is of paramount importance. This article focuses on several of the more common causes of respiratory distress, including airway obstruction, hyperventilation, asthma, bronchospasm, pulmonary edema, pulmonary embolism and cardiac insufficiency. The common denominator to all these conditions described here is that in most instances the patient is conscious. Therefore, on the one hand, valuable information can be retrieved from the patient making diagnosis easier than when the patient is unconscious. On the other hand, the conscious patient is under extreme apprehension and stress under such situations. Respiratory depression which occurs during conscious sedation or following narcotic analgesic medication will not be dealt with in this article. Advanced pain and anxiety control techniques such as conscious sedation and general anesthesia should be confined only to operators who undergo special extended training.

  13. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections.

    Science.gov (United States)

    Shen, Li Wen; Mao, Hui Juan; Wu, Yan Ling; Tanaka, Yoshimasa; Zhang, Wen

    2017-08-01

    Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2. Copyright © 2017. Published by Elsevier B.V.

  14. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A

    OpenAIRE

    Susanna K. P. Lau; Woo, Patrick C.Y.; Li, Kenneth S. M.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Luk, Hayes K. H.; Cai, Jian-Piao; Chan, Kwok-Hung; Zheng, Bo-Jian; Wang, Ming; Yuen, Kwok-Yung

    2015-01-01

    We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCo...

  15. Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Sharma, Nidhi; Hoshika, Shuichi; Bradley, Andrea C; Bradley, Kevin M; Yang, Zunyi; Benner, Steven A

    2015-11-15

    Nucleic acid (NA)-targeted tests detect and quantify viral DNA and RNA (collectively xNA) to support epidemiological surveillance and, in individual patients, to guide therapy. They commonly use polymerase chain reaction (PCR) and reverse transcription PCR. Although these all have rapid turnaround, they are expensive to run. Multiplexing would allow their cost to be spread over multiple targets, but often only with lower sensitivity and accuracy, noise, false positives, and false negatives; these arise by interactions between the multiple nucleic acid primers and probes in a multiplexed kit. Here we offer a multiplexed assay for a panel of respiratory viruses that mitigates these problems by combining several nucleic acid analogs from the emerging field of synthetic biology: (i) self-avoiding molecular recognition systems (SAMRSs), which facilitate multiplexing, and (ii) artificially expanded genetic information systems (AEGISs), which enable low-noise PCR. These are supplemented by "transliteration" technology, which converts standard nucleotides in a target to AEGIS nucleotides in a product, improving hybridization. The combination supports a multiplexed Luminex-based respiratory panel that potentially differentiates influenza viruses A and B, respiratory syncytial virus, severe acute respiratory syndrome coronavirus (SARS), and Middle East respiratory syndrome (MERS) coronavirus, detecting as few as 10 MERS virions in a 20-μl sample. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. High-yield expression of recombinant SARS coronavirus nucleocapsid protein in methylotrophic yeast Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Ru-Shi Liu; Kun-Yu Yang; Jian Lin; Yi-Wei Lin; Zhi-Hong Zhang; Jun Zhang; Ning-Shao Xia

    2004-01-01

    AIM: Nucleocapsid (N) protein plays an important role in reproduction and pathological reaction of severe acute respiratory syndrome (SARS) coronavirus (SCoV), theantigenicity of the protein is better than spike (S) protein.This study was to find a highly specific and antigenic recombinant SCoV nucleocapsid (rSCoVN) protein, and to provide a basis for further researches on early diagnosis of SARS.METHODS: Full length cDNA of SCoV nucleocapsid (SCoVN)protein was amplified through polymerase chain reaction (PCR) and cloned into yeast expression vector pPIC3.5K to construct plasmid of pPIC3.5K-SCoVN. The plasmid was linearized and then transformed into Pichia pastoris (P. pastoris) GS115 (HisMut+) by electroporation. His+Mut+recombinant strains were identified by PCR and cultivated on MM/MD plates. The influence of different factors on biomass and rSCoVN protein production during induction phase, such as various induction media, dissolved oxygen (DO) and different final concentrations of methanol, was subsequently studied. The expression level and activation were detected by SDS-PAGE and Western-blot respectively.RESULTS: All of the recombinants were His+Mut+ aftertransformation of P. pastoriswith linearized plasmids. The BMMY medium was optimal for recombinant ScoVN (rSCoVN)protein expression and growth of the recombinant strains.The final optimal concentration of methanol was 20 mL/L,the DO had a significant effect on rSCoVN protein expression and growth of recombinant strains. The rSCoVN protein expressed in recombinant strains was about 8% of the total cell protein, 520 mg/L of rSCoVN protein was achieved,and a maximum cell ,A at 600 nm of 62 was achieved in shake flask culture. The rSCoVN protein had a high specificity against mouse-anti-SARS-CoVN-mAb and SARS positive sera, but had no cross-reaction with normal human serum.The biological activity of rSCoVN expressed in P. pastoris was about 4-fold higher than that expressed in E.coliwhen the same rSCoVN protein

  17. A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant.

    Science.gov (United States)

    Agnihothram, Sudhakar; Yount, Boyd L; Donaldson, Eric F; Huynh, Jeremy; Menachery, Vineet D; Gralinski, Lisa E; Graham, Rachel L; Becker, Michelle M; Tomar, Sakshi; Scobey, Trevor D; Osswald, Heather L; Whitmore, Alan; Gopal, Robin; Ghosh, Arun K; Mesecar, Andrew; Zambon, Maria; Heise, Mark; Denison, Mark R; Baric, Ralph S

    2014-03-25

    Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. IMPORTANCE The 2012 outbreak of MERS-CoV raises the specter

  18. Frequently Asked Questions on Middle East Respiratory Syndrome Coronavirus (MERS‐CoV)

    Science.gov (United States)

    ... widespread in dromedary camels in the Middle East, Africa and parts of South Asia. It is possible ... board planes and ships, and banners, pamphlets, and radio announcements at international points of entry, can also ...

  19. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus.

    Science.gov (United States)

    Castilla, J; Sola, I; Pintado, B; Sánchez-Morgado, J M; Enjuanes, L

    1998-01-01

    Protection against coronavirus infections can be provided by the oral administration of virus neutralizing antibodies. To provide lactogenic immunity, eighteen lines of transgenic mice secreting a recombinant IgG1 monoclonal antibody (rIgG1) and ten lines of transgenic mice secreting recombinant IgA monoclonal antibodies (rIgA) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. Genes encoding the light and heavy chains of monoclonal antibody (MAb) 6A.C3 were expressed under the control of regulatory sequences derived from the mouse genomic DNA encoding the whey acidic protein (WAP) and beta-lactoglobulin (BLG), which are highly abundant milk proteins. The MAb 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species. This MAb does not allow the selection of neutralization escaping virus mutants. The antibody was expressed in the milk of transgenic mice with titers of one million as determined by RIA, and neutralized TGEV infectivity by one million fold corresponding to immunoglobulin concentrations of 5 to 6 mg per ml. Matrix attachment regions (MAR) sequences were not essential for rIgG1 transgene expression, but co-microinjection of MAR and antibody genes led to a twenty to ten thousand-fold increase in the antibody titer in 50% of the rIgG1 transgenic animals generated. Co-microinjection of the genomic BLG gene with rIgA light and heavy chain genes led to the generation of transgenic mice carrying the three transgenes. The highest antibody titers were produced by transgenic mice that had integrated the antibody and BLG genes, although the number of transgenic animals generated does not allow a definitive conclusion on the enhancing effect of BLG co-integration. Antibody expression levels were transgene copy number independent and integration site dependent. The generation of transgenic animals producing virus neutralizing antibodies in the milk could be a general approach to provide protection

  20. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage.

    Directory of Open Access Journals (Sweden)

    Jean Kaoru Millet

    Full Text Available BACKGROUND: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S. There are still many unknowns on the implication of cellular factors that regulate the entry process. METHODOLOGY/PRINCIPAL FINDINGS: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. CONCLUSIONS/SIGNIFICANCE: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.

  1. Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

    Science.gov (United States)

    Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan

    2013-05-01

    The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.

  2. Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains Infection at the Entry Stage

    Science.gov (United States)

    Millet, Jean Kaoru; Kien, François; Cheung, Chung-Yan; Siu, Yu-Lam; Chan, Wing-Lim; Li, Huiying; Leung, Hiu-Lan; Jaume, Martial; Bruzzone, Roberto; Malik Peiris, Joseph S.; Altmeyer, Ralf Marius; Nal, Béatrice

    2012-01-01

    Background Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection. PMID:23185364

  3. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus.

    Science.gov (United States)

    McDermott, Jason E; Mitchell, Hugh D; Gralinski, Lisa E; Eisfeld, Amie J; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S; Katze, Michael G; Waters, Katrina M

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.

  4. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    Science.gov (United States)

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  6. The seasonality of respiratory viruses in patients with chronic rhinosinusitis.

    Science.gov (United States)

    Lima, Jesse T; Paula, Flavia E; Proença-Modena, José L; Demarco, Ricardo C; Buzatto, Guilherme P; Saturno, Tamara H; Delcaro, Luana S; Tamashiro, Edwin; Valera, Fabiana C P; Arruda, Eurico; Anselmo-Lima, Wilma T

    2015-01-01

    Chronic rhinosinusitis (CRS) is a common illness, yet little is known about its pathogenesis, including the role played by respiratory viruses. A transversal prospective study was conducted to analyze the seasonality of CRS using real-time polymerase chain reaction to detect respiratory virus genomes in secretions and tissue samples from patients with CRS with and without nasal polyps. The frequency of viral detection was 41% (31/75). The respiratory virus most frequently detected was human rhinovirus, found in 18 patients (24%), followed by human metapneumovirus, human enterovirus, human respiratory sincicial virus, human adenovirus, human bocavirus, human coronavirus, and human influenza virus, detected in 12 (16%), five (6.6%), four (5.3%), four (5.3%), two (2.6%), two (2.6%), and one (1.3%) patient(s), respectively. Although none of the patients presented symptoms when the samples were collected, there was a peak in detection of the most prevalent virus in the autumn and winter seasons of both years, similar to the pattern that occurs in acute conditions. The pattern of respiratory virus seasonality found in nasal mucosa, polyps, and paranasal sinus samples in patients with CRS reinforces the possibility of asymptomatic respiratory viral infections.

  7. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    Science.gov (United States)

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2017-08-07

    Leading etiologies of acute illnesses, respiratory viruses typically cause self-limited diseases, though severe complications can occur in fragile patients. Rhinoviruses, respiratory enteroviruses, influenza virus, respiratory syncytial viruses and coronaviruses are highly prevalent respiratory pathogens, but due to the lack of reliable animal models, their differential pathogenesis remains poorly characterized. To compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with rhinoviruses RV-A55, RV-A49, RV-B48, RV-C8 and RV-C15, respiratory enterovirus EV-D68, influenza virus H3N2, respiratory syncytial virus RSV-B and coronavirus HCoV-OC43. Replication kinetics, cell tropism, impact on tissue integrity and cytokine secretion were compared. Virus adaptation and tissue response were assessed through RNA-sequencing. Rhinoviruses, RSV-B and HCoV-OC43 infected ciliated cells and caused no major cell death while H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses except RV-B48 and HCoV-OC43 altered cilia beating and MCC. H3N2 was the strongest cytokine-inducer and HCoV-OC43 the weakest. Persistent infection was observed in all cases. RNA-sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4-days post-infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection-phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory infections in immunocompromised hosts. Copyright © 2017. Published by Elsevier Inc.

  8. Misdiagnostic analysis of clinically diagnosed severe acute respiratory syndrome after following up 197 convalescent patients

    Institute of Scientific and Technical Information of China (English)

    LIU You-ning; TIAN Qing; HU Hong; XIE Li-xin; FAN Bao-xing; XU Hong-min; CHEN Wei-jun

    2005-01-01

    @@ The severe acute respiratory syndrome (SARS) is an emerging and highly contagious infection caused by a newly discovered strain of coronavirus.1 Since the clinical case definition of SARS is similar to other severe atypical pneumonias, specific laboratory tests that can accurately diagnose SARS-associated coronavirus (SARS-CoV) infection are important. However, published data are insufficient to investigate whether clinically diagnosed SARS patients may include some non-SARS pneumonia. Therefore, we aimed to determine clinical and laboratory features to differentiate SARS patients from non-SARS pneumonias that could reduce misdiagnosis of SARS. A retrospective analysis of clinical and laboratory characteristics after the initial onset of SARS, as well as its convalescent-phase, was examined from clinically diagnosed 197 SARS patients.

  9. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    Directory of Open Access Journals (Sweden)

    Makoto Ujike

    2015-04-01

    Full Text Available The envelopes of coronaviruses (CoVs contain primarily three proteins; the two major glycoproteins spike (S and membrane (M, and envelope (E, a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER-Golgi intermediate compartment (ERGIC. For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.

  10. Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals

    Indian Academy of Sciences (India)

    JIBIN SADASIVAN; MANMEET SINGH; JAYASRI DAS SARMA

    2017-06-01

    Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is localized in the ER or ERGIC compartment and OC43 spike protein is predominantly localized in thelysosome. Differential localization can be explained by signal sequence. The sequence alignment using Clustal Wshows that the signal sequence present at the cytoplasmic tail plays an important role in spike protein localization. Aunique GYQEL motif is identified at the cytoplasmic terminal of OC43 spike protein which helps in localization in thelysosome, and a novel KLHYT motif is identified in the cytoplasmic tail of SARS spike protein which helps in ER orERGIC localization. This study sheds some light on the role of cytoplasmic tail of spike protein in cell-to-cell fusion,coronavirus host cell fusion and subsequent pathogenicity.

  11. Orchitis in a cat associated with coronavirus infection.

    Science.gov (United States)

    Sigurdardóttir, O G; Kolbjørnsen, O; Lutz, H

    2001-01-01

    A case of severe, pyogranulomatous and necrotizing orchitis in a cat, which later succumbed to systemic feline infectious peritonitis (FIP), is described. The 3.5-year-old cat, positive for feline immunodeficiency virus infection, presented with a left testicular enlargement. A few months after castration the animal was humanely destroyed due to declining health. Post-mortem examination revealed inflammatory lesions in abdominal organs and in the brain compatible with FIP. Infection was confirmed with a reverse transcriptase-polymerase chain reaction test and by immunohistochemical demonstration of coronavirus antigen in the affected tissues, including the left testicle. FIP is usually a systemic disease. However, lesions and presenting clinical signs in a single organ system such as the brain are not uncommon. The results of this case study indicate that orchitis, although rare, should be on the list of lesions of FIP.

  12. Respiratory protection and emerging infectious diseases: lessons from severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    John H. Lange

    2005-01-01

    @@ The severe acute respiratory syndrome (SARS) that emerged 2002-2003 and apparently again 2004 (reported by the news media on December 27, 2003) as the first confirmed case by the World Health Organization (WHO)1,2 raised awareness of emerging infectious diseases.3 Every year there are both new and old infectious diseases emerging as potential pandemic agents.4-6 However, few of these diseases receive the public attention and concern expressed as occurred during the emergence of SARS. Much of this concern was a result of the rapid spread of the novel coronavirus (CoV) to different regions of the world and its high infectivity, especially for health care workers (HCW).3 In many ways, the high percent of HCW infected is a warning of the potential hazards of old and emerging infectious diseases.6 However, SARS was not the only disease (e.g. Monkeypox) that emerged in 2003,3 rather it received the greatest attention.

  13. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    Science.gov (United States)

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.

  14. Respiratory failure

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970318 A study on evoked potentials in cor pul-monale patients with chronic respiratory failure.QIAO Hui(乔慧), et al. Beijing Neurosurg Instit,Beijing, 100050. Chin J Geriatr 1997; 16(1): 43-45. Objective: Evoked protential was used to detect thechange of brain function in cor pulmonale patients with

  15. RESPIRATORY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    6.1 Upper respiratory tract disease and bronchial asthma2004073 A study on the heterogenous apoptosis of lymphocytes, eosinophils, and neutrophils from peripheral blood of asthmatic patients. LIU Chuntao (刘春涛), et al. West China Hosp, Sichuan Univ, Chengdu 610041. Chin J Tuberc Respir Dis 2003; 26(10):610 - 614.

  16. Absence of association between angiotensin converting enzyme polymorphism and development of adult respiratory distress syndrome in patients with severe acute respiratory syndrome: a case control study

    Directory of Open Access Journals (Sweden)

    Chiu Rossa WK

    2005-04-01

    Full Text Available Abstract Background It has been postulated that genetic predisposition may influence the susceptibility to SARS-coronavirus infection and disease outcomes. A recent study has suggested that the deletion allele (D allele of the angiotensin converting enzyme (ACE gene is associated with hypoxemia in SARS patients. Moreover, the ACE D allele has been shown to be more prevalent in patients suffering from adult respiratory distress syndrome (ARDS in a previous study. Thus, we have investigated the association between ACE insertion/deletion (I/D polymorphism and the progression to ARDS or requirement of intensive care in SARS patients. Method One hundred and forty genetically unrelated Chinese SARS patients and 326 healthy volunteers were recruited. The ACE I/D genotypes were determined by polymerase chain reaction and agarose gel electrophoresis. Results There is no significant difference in the genotypic distributions and the allelic frequencies of the ACE I/D polymorphism between the SARS patients and the healthy control subjects. Moreover, there is also no evidence that ACE I/D polymorphism is associated with the progression to ARDS or the requirement of intensive care in the SARS patients. In multivariate logistic analysis, age is the only factor associated with the development of ARDS while age and male sex are independent factors associated with the requirement of intensive care. Conclusion The ACE I/D polymorphism is not directly related to increased susceptibility to SARS-coronavirus infection and is not associated with poor outcomes after SARS-coronavirus infection.

  17. Respiratory Distress

    Science.gov (United States)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  18. RESPIRATORY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    7.1 Upper respiratory tract disease and bronchial asthma2003306 Effects of vaccae on airway contraction and inflammation in asthmatic guinea pigs. ZHAO Xiao(赵晓燕), et al. Zhejiang Respir Drug Res Lab Med Sch, Zhejiang Univ, Hangzhou 310031. Chin J Tuberc Respir Dis 2003;26(4):218-222.Objective: To study the effects of Mycobacterium vaccae(M. vaccae)on the lung function, airway hyper-

  19. Clinical study on high-resolution CT and pulmonary function in severe acute respiratory syndrome patients during recovery phase

    Institute of Scientific and Technical Information of China (English)

    YIN Cheng-hong; HE Zheng-yi; MA Da-qing; ZHANG Shu-wen; WANG Bao-en; WANG Chao; WEN Yan; JIANG Li; LIU Ying; JIAO Yun-min; CHEN Jiang-hong; TANG Shu-zhen; YUE Mao-xing

    2005-01-01

    @@ Severe acute respiratory syndrome (SARS) is an acute respiratory infectious disease caused by a novel coronavirus, firstly broke out in November 2002 in Guangdong and prevailed quickly in Beijing, Hong Kong, Taiwan and other regions of China. It was one of the most potential pandemic diseases and had affected more than 20 other countries.1,2 There have been a lot of resear-ches2-7 in terms of its etiology, epidemiology, pathogenesis, clinical characteristics, diagnostics, treatment and prevention, vaccines and so on.

  20. Structure of the C-terminal domain of nsp4 from feline coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Snijder, Eric J.; Gorbalenya, Alexander E. [Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Berglind, Hanna; Nordlund, Pär [Division of Biophysics, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, Karolinska Institute, SE-171 77 Stockholm (Sweden); Coutard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille (France); Tucker, Paul A., E-mail: tucker@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  1. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China.

    Directory of Open Access Journals (Sweden)

    Qing-Ye Zhuang

    Full Text Available The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV, and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV. The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks.

  2. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    Science.gov (United States)

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  3. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shuai CHEN; Hua-liang JIANG; Li-li CHEN; Hai-bin LUO; Tao SUN; Jing CHEN; Fei YE; Jian-hua CAI; Jing-kang SHEN; Xu SHEN

    2005-01-01

    Aim: To characterize enzymatic activity of severe acute respiratory syndrome(SARS) coronavirus (CoV) 3C-like protease (3CLpro) and its four site-directed mutants. Methods: Based on the fluorescence resonance energy transfer (FRET)principle using 5-[(2'-aminoethyl)-amino] naphthelenesulfonic acid (EDANS) and 4-[[4-(dimethylamino) phenyl] azo] benzoic acid (Dabcyl) as the energy transfer pair, one fluorogenic substrate was designed for the evaluation of SARS-CoV 3CLpro proteolytic activity. Results: The kinetic parameters of the fluorogenic substrate have been determined as Km=404 μmol.L-1, kcat=1.08 min-1, and kcat/Km=2.7 gered activity switches, and site-directed mutagenesis analysis of SARS-CoV 3CLpro revealed that substitutions of His41, Cys145, and His163 resulted in complete loss of enzymatic activity, while replacement of Met162 with Ala caused strongly increased activity. Conclusion: This present work has provided valuable information for understanding the catalytic mechanism of SARS-CoV 3CLpro. This FRET-based assay might supply an ideal approach for the exploration SARSCoV 3CLpro putative inhibitors.

  4. Allelic Variation in the Toll-Like Receptor Adaptor Protein Ticam2 Contributes to SARS-Coronavirus Pathogenesis in Mice.

    Science.gov (United States)

    Gralinski, Lisa E; Menachery, Vineet D; Morgan, Andrew P; Totura, Allison L; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T; Baric, Ralph S

    2017-06-07

    Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1-58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2, an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2(-/-) mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. Copyright © 2017 Gralinski et al.

  5. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.

    Science.gov (United States)

    Yu, Mi-Sun; Lee, June; Lee, Jin Moo; Kim, Younggyu; Chin, Young-Won; Jee, Jun-Goo; Keum, Young-Sam; Jeong, Yong-Joo

    2012-06-15

    Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET)-based double-strand (ds) DNA unwinding assay or by using a colorimetry-based ATP hydrolysis assay. While none of the compounds, examined in our study inhibited the DNA unwinding activity or ATPase activity of human HCV helicase protein, we found that myricetin and scutellarein potently inhibit the SARS-CoV helicase protein in vitro by affecting the ATPase activity, but not the unwinding activity, nsP13. In addition, we observed that myricetin and scutellarein did not exhibit cytotoxicity against normal breast epithelial MCF10A cells. Our study demonstrates for the first time that selected naturally-occurring flavonoids, including myricetin and scultellarein might serve as SARS-CoV chemical inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    Science.gov (United States)

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection.

  7. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    Science.gov (United States)

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  8. RESPIRATORY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    7.1 Upper Respiratory Tract Diesase And Bronchial Asthma 2007072 Dysfunction of releasing adrenaline in asthmatic adrenaline medullary chromaffin cells due to functional redundancy primed by nerve growth factor. WANG Jun(汪俊), et al. Dept Resp Dis Xiangya Hosp Central South Univ, Changsha 410008. Chin J Tuberc Dis 2006;29(12):812-815. Objective To investigate the possible causes of the dysfunction of adrenaline release in asthma rats and to identify the role of nerve growth factor(NGF) in this process.

  9. Respiratory System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    8.1 Respiratory failure2007204 Comparison of the effects of BiPAP ventilation combined with lung recruitment maneuvers and low tidal volume A/C ventilation in patients with acute respiratory distress syndrome. WANG Xiaozhi(王晓芝),et al. Dept Respir & Intensive Care Unit, Binzhou Med Coll, Binzhou 256603. Chin J Tuberc Respir Dis 2007;30(1):44-47. Objective To compare the effects of BiPAP ventilation combined with lung recruitment maneuvers(LRM) with low tidal volume A/C ventilation in patients with acute respiratory distress syndrome (ARDS). Methods A prospective, randomized comparison of BiPAP mechanical ventilation combined with lung recruitment maneuvers(test group) with low tidal volume A/C ventilation (control group) was conducted in 28 patients with ARDS. FiO2/PaO2 ratio, respiratory system compliance(Cs), central venous pressure (CVP), duration of ventilation support were recorded at 0 h, 48 h and 72 h separately. The ventilation associated lung injury and mortality at 28 d were also recorded. Results The FiO2/PaO2 ratio were (298±16) and (309±16) cm H2O, Cs were (38.4±2.2) and (42.0±1.3) ml/cm H2O, CVP were (13.8±0.8) and (11.6±0.7) cm H2O in the test group at 48 h and 72 h separately. In the control group, FiO2/PaO2 ratio were (212±12) and (246±17) cm H2O, Cs were (29.5±1.3) and (29.0±1.0) ml/cm H2O, CVP were 18.6±1.1 and (16.8±1.0) cm H2O. The results were better in the test group as compared with the control group (t=10.03-29. 68, all P<0.01). The duration of ventilation support in the test group was shorter than the control group [(14±3) d vs (19±3)d, t=4.80, P<0.01]. The mortality in 28 d and ventilation associated lung injury were similar in the two groups. Conclusion The results show that combination of LRM with BiPAP mode ventilation, as compared with the control group, contributes to the improved FiO2/PaO2 ratio, pulmonary compliance, stable homodynamic and shorter duration of ventilation support in patients with ARDs.

  10. Discovery of Anti-SARS Coronavirus Drug Based on Molecular Docking and Database Screening

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Feng(陈海峰); YAO,Jian-Hua(姚建华); SUN,Jing(孙晶); LI,Qiang(李强); LI,Feng(李丰); FAN,Bo-Tao(范波涛); YUAN,Shen-Gang(袁身刚)

    2004-01-01

    The active site of 3CL proteinase (3CLpro) for coronavirus was identified by comparing the crystal structures of human and porcine coronavirus. The inhibitor of the main protein of rhinovirus (Ag7088) could bind with 3CLpro of human coronavirus, then it was selected as the reference for molecular docking and database screening. The ligands from two databases were used to search potential lead structures with molecular docking. Several structures from natural products and ACD-SC databases were found to have lower binding free energy with 3CLpro than that of Ag7088. These structures have similar hydrophobicity to Ag7088. They have complementary electrostatic potential and hydrogen bond acceptor and donor with 3CLpro, showing that the strategy of anti-SARS drug design based on molecular docking and database screening is feasible.

  11. Middle east respiratory syndrome-corona virus infection: A case report of sieral computed tomographic findings in a young male patient

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jin; Lee, Ki Nam; Kang, Eun Ju; Lee, Hyuck [Dong A University Hospital, Busan (Korea, Republic of)

    2016-02-15

    Radiologic findings of Middle East respiratory syndrome (MERS), a novel coronavirus infection, have been rarely reported. We report a 30-year-old male presented with fever, abdominal pain, and diarrhea, who was diagnosed with MERS. A chest computed tomographic scan revealed rapidly developed multifocal nodular consolidations with ground-glass opacity halo and mixed consolidation, mainly in the dependent and peripheral areas. After treatment, follow-up imaging showed that these abnormalities markedly decreased but fibrotic changes developed.

  12. Suppression of feline coronavirus replication in vitro by cyclosporin A.

    Science.gov (United States)

    Tanaka, Yoshikazu; Sato, Yuka; Osawa, Shuichi; Inoue, Mai; Tanaka, Satoka; Sasaki, Takashi

    2012-04-30

    The feline infectious peritonitis virus (FIPV) is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA), an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT) to bind cellular cyclophilins (CyP), dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP) but not CyP) did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  13. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection.

    Science.gov (United States)

    Addie, Diane D; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L

    2012-02-01

    Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.

  14. Passively acquired challenge immunity to enterotropic coronavirus in mice.

    Science.gov (United States)

    Homberger, F R; Barthold, S W

    1992-01-01

    Maternally-derived passive immunity of infant mice to challenge infection with enterotropic coronavirus mouse hepatitis virus strain Y (MHV-Y) was studied. Pups born to both naive and immune dams, but nursed by naive foster dams, were susceptible to infection, while naive or immune pups nursed by immune foster dams were protected. The MHV infectious dose was identical among naive pups inoculated at 1, 2, 3, or 4 weeks of age. Pups nursing immune dams resisted infection when inoculated at 1, 2, or 3 weeks of age. Three week old pups were protected only if they were allowed access to their immune dams. Pups born to MHV immune dams 4 in consecutive litters acquired equal MHV IgG titers in serum and whey and were all protected against challenge infection. Only pups actively ingesting immune whey at the time of or within two hours after virus inoculation were effectively protected. Pups born to dams immunized by oral inoculation with live MHV acquired both MHV-specific IgA and IgG in their whey, while pups born to dams immunized with killed virus acquired only IgG. Both IgA and IgG, but not IgG alone, were required for complete protection.

  15. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  16. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Xu; Xiao-Ming Gao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abspresent in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified.It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease.

  17. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    XiaojunXu; Xiao-MingGao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abs present in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified. It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease. Cellular & Molecular Immunology. 2004;1(2):119-122.

  18. Suppression of feline coronavirus replication in vitro by cyclosporin A

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshikazu

    2012-04-01

    Full Text Available Abstract The feline infectious peritonitis virus (FIPV is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA, an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT to bind cellular cyclophilins (CyP, dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP but not CyP did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  19. Sites of feline coronavirus persistence in healthy cats.

    Science.gov (United States)

    Kipar, Anja; Meli, Marina L; Baptiste, Keith E; Bowker, Laurel J; Lutz, Hans

    2010-07-01

    Feline coronavirus (FCoV) is transmitted via the faecal-oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia.

  20. Respiratory failure

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930118 Facial or nasal mask pressure supportventilation in managing acute exacerbation ofchronic respiratory failure in COPD patients.CHEN Rongchang(陈荣昌),et al.GuangzhouInstit Respir Dis,Guangzhou 510120.Chin Tu-berc & Respir Dis 1992;15(5)285-287.Eleven COPD patients(age:65±9 yrs)withacute exacerbation of chronic respiratory failure(PaCO2 11.3±1.1kPa)were treated with maskpressure support ventilation,another 10 similarpatients(age:68±12yrs)served as controls.Bi-PAP ventilator was used with the followingmodifications:(1)Non-rehreathing valve set-in proximal to mask;(2)5 LPM oxygen flow de-livered into mask to reduce the dead space ef-fect.Mask ventilation was given 2-3 hours ev-ery time and 1-2 times daily for 7 days.Syn-

  1. Severe acute respiratory syndrome: vaccine on the way

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding-mei; WANG Guo-ling; LU Jia-hai

    2005-01-01

    @@ In November 2002, a new disease-severe acute respiratory syndrome, or SARS-first emerged in Guangdong Province, China. Subsequently, it spread to more than 30 countries worldwide.1 The causative agent was identified to be a previously unknown member of the coronaviridae family, and was named SARS coronavirus (SARS-CoV). SARS coronavirus is a large, enveloped, positive-sense RNA virus. The genome is about 30 kb, which is predicted to contain 14 functional open reading frames (ORFs). Two large 5'-terminal ORFs (1a and 1b) encode the polymerases that are required for viral RNA synthesis. The remaining twelve ORFs encode four structural proteins [spike protein (S), envelope protein (E), membrane protein (M) and nucleocapsid protein (N)] and eight accessory proteins.2 Though the SARS-CoV genome is clear, a great deal more work will be required to develop an efficient vaccine and effective drugs. Neutralizing antibodies were detectable in the convalescent sera of SARS patients, and sera from recovered patients could be used to treat newly infected individuals.3 The data suggest that protective humoral immunity is achievable and that vaccines can be developed for prevention of SARS. In this article, we review and discuss progress towards development of a SARS vaccine.

  2. Current status of severe acute respiratory syndrome in China

    Institute of Scientific and Technical Information of China (English)

    Qing-He Nie; Xin-Dong Luo; Jian-Zhong Zhang; Qin Su

    2003-01-01

    Severe acute respiratory syndrome (SARS), also called infectious atypical pneumonia, is an emerging infectious disease caused by a novel variant of coronavirus (SARS associated coronavirus, SARS-CoV). It is mainly characterized by pulmonary infection with a high infectivity and fatality.SARS is swept across almost all the continents of the globe, and has currently involved 33 countries and regions, including the mainland China, Hong Kong, Taiwan, North America and Europe. On June 30, 2003, an acumulative total reached 8450 cases with 810 deaths. SARS epidemic was very rampant in March, April and May 2003 in the mainland of China and Hong Kong. Chinese scientists and healthcare workers cooperated closely with other scientists from all over the world to fight the disease. On April 16, 2003, World Health Organization (WHO) formally declared that SARSCoV was an etiological agent of SARS. Currently, there is no specific and effective therapy and prevention method for SARS. The main treatments include corticosteroid therapy,antiviralagents, anti-infection, mechanical ventilation and isolation. This disease can be prevented and controlled, and it is also curable. Under the endeavor of the Chinese Government, medical staffs and other related professionals,SARS has been under control in China, and Chinese scientists have also made a great contribution to SARS research.Otherstudies in developing new detection assays and therapies, and discovering new drugs and vaccines are in progress. In this paper, we briefly review the current status of SARS in China.

  3. Incidence of respiratory viruses in a pediatric population: molecular and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Anna Di Taranto

    2012-09-01

    Full Text Available Introduction: Respiratory infections are not well defined and the etiology is often unknown. Material and method: four hundred fortynine subjectrs were enrolled in the study; in all patientes there was a suspect of inflammatory diseases of the respiratory tract. At admission, a nasopharyngeal swab was made. A multiplex PCR was performed after extraction and reverse transcription of viral RNA. The amplified fragments were revealed by using an electrophoresis separation. Results: Two hundred and four patients (45.4% were hospitalized for infection of the upper respiratory tract, 141 (31.4% for lower respiratory infection and the remaining (23% for other symptoms. One hundred fiftyseven (35% patients were positive for human influenza A (H1N1 subtype and 184 for other respiratory viruses,of which 59 (32% gave a positive for respiratory syncytial virus, 42 (23% for rhinovirus, 31 (17% for parainfluenza virus, 12 (6.5% for coronavirus, 28 (15% for adenovirus and 6 (3% for influenza B (3% and 6 (3% for metapneumovirus. The M1 gene sequence of influenza A H1N1 strains from 12 patients had a high identity with that of the reference virus. Conclusion: Furthermore H1N1 and RSV were the main causative agents of acute respiratory infection. A molecular approach provides an accurate and rapid aetiological diagnosis of viral respiratory infections. The molecolar features in the M1 gene suggested that the H1N1 influenza strains circulating in Apulia region had a conserved genetic make up.

  4. Viral and Bacterial Pathogens in Bovine Respiratory Disease in Finland

    Directory of Open Access Journals (Sweden)

    Soveri T

    2004-12-01

    Full Text Available Pathogens causing bovine respiratory tract disease in Finland were investigated. Eighteen cattle herds with bovine respiratory disease were included. Five diseased calves from each farm were chosen for closer examination and tracheobronchial lavage. Blood samples were taken from the calves at the time of the investigation and from 86 calves 3–4 weeks later. In addition, 6–10 blood samples from animals of different ages were collected from each herd, resulting in 169 samples. Serum samples were tested for antibodies to bovine parainfluenza virus-3 (PIV-3, bovine respiratory syncytial virus (BRSV, bovine coronavirus (BCV, bovine adenovirus-3 (BAV-3 and bovine adenovirus-7 (BAV-7. About one third of the samples were also tested for antibodies to bovine virus diarrhoea virus (BVDV with negative results. Bacteria were cultured from lavage fluid and in vitro susceptibility to selected antimicrobials was tested. According to serological findings, PIV-3, BAV-7, BAV-3, BCV and BRSV are common pathogens in Finnish cattle with respiratory problems. A titre rise especially for BAV-7 and BAV-3, the dual growth of Mycoplasma dispar and Pasteurella multocida, were typical findings in diseased calves. Pasteurella sp. strains showed no resistance to tested antimicrobials. Mycoplasma bovis and Mannheimia haemolytica were not found.

  5. Australian Hajj pilgrims’ knowledge about MERS-CoV and other respiratory infections

    Institute of Scientific and Technical Information of China (English)

    Mohamed; Tashani; Mohammad; Alfelali; Osamah; Barasheed; Fayeza; Nusrat; Fatema; Amani; Alqahtani; Harunor; Rashid; Robert; Booy

    2014-01-01

    <正>Dear Editor,With the intense crowding in mass gatherings such as Hajj,there is a high risk of acquisition of airborne in-fections with the potential for its transmission in the pilgrims’country of origin(Memish Z A,et al.,2014).The risk of importing serious infections from Hajj has escalated since the emergence of the Middle East respiratory syndrome coronavirus(MERS-CoV)in Saudi Arabia and other neighbouring countries from September2012.Active surveillance of Hajj pilgrims in 2012 and 2013

  6. Acute otitis media and respiratory viruses.

    Science.gov (United States)

    Bulut, Yunus; Güven, Mehmet; Otlu, Bariş; Yenişehirli, Gülgün; Aladağ, Ibrahim; Eyibilen, Ahmet; Doğru, Salim

    2007-03-01

    The present study was performed to elucidate the clinical outcome, and etiology of acute otitis media (AOM) in children based on virologic and bacteriologic tests. The study group consisted of 120 children aged 6 to 144 months with AOM. Middle ear fluid (MEF) was tested for viral pathogens by reverse transcriptase polymerase chain reaction (RT-PCR) and for bacteria by gram-staining and culture. Clinical response was assessed on day 2 to 4, 11 to 13, 26 to 28. Respiratory viruses were isolated in 39 patients (32.5%). Respiratory syncytial virus (RSV) (46.5%) was the most common virus identified in MEF samples, followed by human rhinovirus (HRV) (25.6%), human coronavirus (HCV) (11.6%), influenza (IV) type A (9.3%), adenovirus type sub type A (AV) (4%), and parainfluenza (PIV) type -3 (2%) by RT-PCR. In total 69 bacterial species were isolated from 65 (54.8%) of 120 patients. Streptococcus pneumoniae (S. pneumoniae) was the most frequently isolated bacteria. Viral RNA was detected in 31 (56.3%) of 55 bacteria-negative specimens and in 8 (12.3%) of 65 bacteria-positive MEF samples. No significant differences were found between children representing viral infection alone, combined viral and bacterial infection, bacterial infection alone, and neither viral nor bacterial infection, regarding clinical cure, relapse and reinfection rates. A significantly higher rate of secretory otitis media (SOM) was observed in alone or combined RSV infection with S. pneumonia or Haemophilus influenzae (H. influenzae) than in other viruses infection. Conclusion. This study provides information about etiologic agents and diagnosis of AOM in Turkish children. The findings highlight the importance of common respiratory viruses and bacterial pathogens, particularly RSV, HRV, S. pneumoniae and H. influenzae, in predisposing to and causing AOM in children.

  7. Respiratory Syncytial Virus

    Science.gov (United States)

    ... share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Respiratory syncytial virus, or RSV, is a ... States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In the United ...

  8. Neonatal respiratory distress syndrome

    Science.gov (United States)

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs between days ...

  9. Pivotal Role of Receptor-Interacting Protein Kinase 1 and Mixed Lineage Kinase Domain-Like in Neuronal Cell Death Induced by the Human Neuroinvasive Coronavirus OC43.

    Science.gov (United States)

    Meessen-Pinard, Mathieu; Le Coupanec, Alain; Desforges, Marc; Talbot, Pierre J

    2017-01-01

    Human coronaviruses (HCoV) are respiratory pathogens with neuroinvasive, neurotropic, and neurovirulent properties, highlighting the importance of studying the potential implication of these viruses in neurological diseases. The OC43 strain (HCoV-OC43) was reported to induce neuronal cell death, which may participate in neuropathogenesis. Here, we show that HCoV-OC43 harboring two point mutations in the spike glycoprotein (rOC/Us183-241) was more neurovirulent than the wild-type HCoV-OC43 (rOC/ATCC) in mice and induced more cell death in murine and human neuronal cells. To evaluate the role of regulated cell death (RCD) in HCoV-OC43-mediated neural pathogenesis, we determined if knockdown of Bax, a key regulator of apoptosis, or RIP1, a key regulator of necroptosis, altered the percentage of neuronal cell death following HCoV-OC43 infection. We found that Bax-dependent apoptosis did not play a significant role in RCD following infection, as inhibition of Bax expression mediated by RNA interference did not confer cellular protection against the cell death process. On the other hand, we demonstrated that RIP1 and MLKL were involved in neuronal cell death, as RIP1 knockdown and chemical inhibition of MLKL significantly increased cell survival after infection. Taken together, these results indicate that RIP1 and MLKL contribute to necroptotic cell death after HCoV-OC43 infection to limit viral replication. However, this RCD could lead to neuronal loss in the mouse CNS and accentuate the neuroinflammation process, reflecting the severity of neuropathogenesis. Because they are naturally neuroinvasive and neurotropic, human coronaviruses are suspected to participate in the development of neurological diseases. Given that the strain OC43 is neurovirulent in mice and induces neuronal cell death, we explored the neuronal response to infection by characterizing the activation of RCD. Our results revealed that classical apoptosis associated with the Bax protein does not play a

  10. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    Science.gov (United States)

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  11. Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons

    Directory of Open Access Journals (Sweden)

    Sunčanica Ljubin-Sternak

    2016-01-01

    Full Text Available The aim of this study was to determine the causative agent of acute respiratory infection (ARI in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV (28.6%, followed by parainfluenza viruses (PIVs types 1–3 (18.4%, rhinovirus (HRV (14.3%, human metapneumovirus (10.1%, adenovirus (AdV (7.1%, influenza viruses types A and B (4.8%, and coronaviruses (4.2%. In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%, bocavirus (HBoV (10.5%, PIV-4 (2.6%, and parechovirus (1.3%. There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P>0.05. AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P<0.001.

  12. Long-Term Care Facilities: A Cornucopia of Viral Pathogens

    Science.gov (United States)

    Falsey, Ann R.; Dallal, Gerard E.; Formica, Maria A.; Andolina, Gloria G.; Hamer, Davidson H.; Leka, Lynette L.; Meydani, Simin Nikbin

    2010-01-01

    Objectives To determine the frequency and types of respiratory viruses circulating in Boston long-term care facilities (LTCFs) during a 3-year period. Design Observational. Setting Thirty-three Boston-area LTCFs over a 3-year period. Participants Residents of long-term care who had previously participated in a trial of vitamin E supplementation and had paired serum samples available for viral analysis. Measurements Viral antibody titers to eight respiratory viruses (influenza A and B, respiratory syncytial virus (RSV), parainfluenza virus serotype three (PIV-3), PIV-2, human metapneumovirus (hMPV), and coronaviruses 229E and OC43) were measured using enzyme immunoassay at baseline and 53 weeks. Infection was defined as a more than quadrupling of viral titers. Clinical data on respiratory illnesses were collected throughout the study period. Results A total of 617 persons were enrolled in the trial. Of these, 382 (62%) had sera available for viral analysis. A total of 204 viral infections were documented in 157 subjects. Serological responses to all eight viruses were documented, with hMPV (12.8%) and coronavirus 229E (10.5%) being the most common and PIV-2 (2.4%) the least common. The occurrence of bronchitis (P = .007), pneumonia (P = .02), and any lower respiratory tract infection (P = .002) was significantly associated with having a viral diagnosis. Conclusion A wide range of respiratory viruses cocirculates in LTCFs and contributes to respiratory illness morbidity in these populations. PMID:18557966

  13. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections.

    Science.gov (United States)

    Koo, Bonhan; Jin, Choong Eun; Lee, Tae Yoon; Lee, Jeong Hoon; Park, Mi Kyoung; Sung, Heungsup; Park, Se Yoon; Lee, Hyun Jung; Kim, Sun Mi; Kim, Ji Yeun; Kim, Sung-Han; Shin, Yong

    2017-04-15

    Recently, RNA viral infections caused by respiratory viruses, such as influenza, parainfluenza, respiratory syncytial virus, coronavirus, and Middle East respiratory syndrome-coronavirus (MERS-CoV), and Zika virus, are a major public health threats in the world. Although myriads of diagnostic methods based on RNA amplification have been developed in the last decades, they continue to lack speed, sensitivity, and specificity for clinical use. A rapid and accurate diagnostic method is needed for appropriate control, including isolation and treatment of the patients. Here, we report an isothermal, label-free, one-step RNA amplification and detection system, termed as iROAD, for the diagnosis of respiratory diseases. It couples a one-step isothermal RNA amplification method and a bio-optical sensor for simultaneous viral RNA amplification/detection in a label-free and real-time manner. The iROAD assay offers a one-step viral RNA amplification/detection example to rapid analysis (<20min). The detection limit of iROAD assay was found to be 10-times more sensitive than that of real-time reverse transcription-PCR method. We confirmed the clinical utility of the iROAD assay by detecting viral RNAs obtained from 63 human respiratory samples. We envision that the iROAD assay will be useful and potentially adaptable for better diagnosis of emerging infectious diseases including respiratory diseases.

  14. Detection of feline coronavirus in captive Felidae in the USA.

    Science.gov (United States)

    Kennedy, Melissa; Citino, Scott; McNabb, Amanda Hillis; Moffatt, Amy Serino; Gertz, Karen; Kania, Stephen

    2002-11-01

    Feline coronavirus (FCoV) is an important pathogen of domestic and nondomestic Felidae. Investigation into the prevalence of FCoV in exotic Felidae has relied primarily on serology. The usefulness of genetic detection of FCoV using reverse transcription and nested polymerase chain reaction (RT/nPCR) for viral screening was investigated. Seventy-five biologic samples, primarily feces, from captive felids from 11 institutions were tested using PCR. Serum samples collected from all but 12 of these animals were tested for antibodies to type I and type II FCoV by indirect immunofluorescence. Twenty-four animals were positive using RT/nPCR for virus. Twenty-nine animals were seropositive to type I and/or type II FCoV. From serologic data, infection with a virus antigenically related to FCoV type I occurred most commonly. Serology did not correlate with virus shedding because 13 animals were seronegative to FCoV type I and II but positive using RT/nPCR for virus. Conversely, 20 animals were seropositive but negative using RT/nPCR for FCoV. Some of the populations in which virus was detected had experienced health problems, including feline infectious peritonitis (FIP), necrotizing colitis, and mild enteritis. In addition to its role in FIP, this virus may play a role in gastrointestinal diseases of infected animals. This study demonstrates that FCoV is a significant infectious agent of captive felids because over half of the animals tested were positive by viral genetic detection, serology, or both. Dependence upon one method for detection of infection is unreliable.

  15. Is There Still Room for Novel Viral Pathogens in Pediatric Respiratory Tract Infections?

    Science.gov (United States)

    Taboada, Blanca; Espinoza, Marco A.; Isa, Pavel; Aponte, Fernando E.; Arias-Ortiz, María A.; Monge-Martínez, Jesús; Rodríguez-Vázquez, Rubén; Díaz-Hernández, Fidel; Zárate-Vidal, Fernando; Wong-Chew, Rosa María; Firo-Reyes, Verónica; del Río-Almendárez, Carlos N.; Gaitán-Meza, Jesús; Villaseñor-Sierra, Alberto; Martínez-Aguilar, Gerardo; Salas-Mier, Ma. del Carmen; Noyola, Daniel E.; Pérez-Gónzalez, Luis F.; López, Susana; Santos-Preciado, José I.; Arias, Carlos F.

    2014-01-01

    Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low. PMID:25412469

  16. Is there still room for novel viral pathogens in pediatric respiratory tract infections?

    Directory of Open Access Journals (Sweden)

    Blanca Taboada

    Full Text Available Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250 hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526 were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.

  17. Is there still room for novel viral pathogens in pediatric respiratory tract infections?

    Science.gov (United States)

    Taboada, Blanca; Espinoza, Marco A; Isa, Pavel; Aponte, Fernando E; Arias-Ortiz, María A; Monge-Martínez, Jesús; Rodríguez-Vázquez, Rubén; Díaz-Hernández, Fidel; Zárate-Vidal, Fernando; Wong-Chew, Rosa María; Firo-Reyes, Verónica; del Río-Almendárez, Carlos N; Gaitán-Meza, Jesús; Villaseñor-Sierra, Alberto; Martínez-Aguilar, Gerardo; Salas-Mier, Ma del Carmen; Noyola, Daniel E; Pérez-Gónzalez, Luis F; López, Susana; Santos-Preciado, José I; Arias, Carlos F

    2014-01-01

    Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.

  18. A reverse transcription loop-mediated isothermal amplification (LAMP) assay for the detection of feline Coronavirus

    National Research Council Canada - National Science Library

    Angelica Stranieri; Stefania Lauzi; Alessia Giordano; Saverio Paltrinieri

    2016-01-01

    ...). The addition of two loop primers allows the reaction time to be of one hour only (Nagamine et al., 2002). The aim of this study was to develop a reverse transcription LAMP assay for an easy and inexpensive detection of feline Coronavirus...

  19. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver|info:eu-repo/dai/nl/32291177X; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W|info:eu-repo/dai/nl/181688255; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723; Rottier, Peter J M|info:eu-repo/dai/nl/068451954; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  20. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus

    NARCIS (Netherlands)

    Kusters, J G; Jager, E J; Niesters, H G; van der Zeijst, B A

    1990-01-01

    Under laboratory conditions coronaviruses were shown to have a high frequency of recombination. In The Netherlands, vaccination against infectious bronchitis virus (IBV) is performed with vaccines that contain several life-attenuated virus strains. These highly effective vaccines may create ideal

  1. First Case of Systemic Coronavirus Infection in a Domestic Ferret (Mustela putorius furo) in Peru.

    Science.gov (United States)

    Lescano, J; Quevedo, M; Gonzales-Viera, O; Luna, L; Keel, M K; Gregori, F

    2015-12-01

    A domestic ferret from Lima, Peru, died after ten days of non-specific clinical signs. Based on pathology, immunohistochemistry and molecular analysis, ferret systemic coronavirus (FRSCV)-associated disease was diagnosed for the first time in South America. This report highlights the potential spread of pathogens by the international pet trade.

  2. Activation of the chicken type I IFN response by infectious bronchitis coronavirus

    NARCIS (Netherlands)

    Kint, J.; Fernandez Gutierrez, M.M.; Maier, H.J.; Britton, P.; Langereis, M.A.; Koumans, J.; Wiegertjes, G.F.; Forlenza, M.

    2015-01-01

    Coronaviruses from both the Alpha and Betacoronavirus genera, interfere with the type I interferon (IFN) response in various ways, ensuring limited activation of the IFN response in most cell types. Of Gammacoronaviruses that mainly infect birds, little is known about activation of the host immune r

  3. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  4. Circulation of Group 2 Coronaviruses in a Bat Species Common to Urban Areas in Western Europe

    NARCIS (Netherlands)

    Reusken, C.B.E.M.; Lina, P.H.C.; Pielaat, A.; Vries, de A.; Dam-Deisz, C.; Adema, J.; Drexler, J.F.; Drosten, C.; Kooi, E.A.

    2010-01-01

    Fecal samples of 211 bats representing 13 different bat species from 31 locations in the Netherlands were analyzed for the presence of coronaviruses (CoV) using a genus-wide reverse transcription (RT)-polymerase chain reaction. CoVs are known for their high potential for interspecies transmission, i

  5. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; de Beer, R; Godeke, G J; Raamsman, M J; Horzinek, M C; Vennema, H; Rottier, P J

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to th

  6. A Structural analysis of M protein in coronavirus assembly and morphology

    DEFF Research Database (Denmark)

    W. Neuman, Benjamin; Kiss, Gabriella; H. Kunding, Andreas

    2011-01-01

    The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy...

  7. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    such as the cystic fibrosis transmembrane conductance regulator ( CFTR), transcription factors CREB-RP and OCT-I, and components of the ubiquitin pathway. Conclusions: Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified...

  8. A Structural analysis of M protein in coronavirus assembly and morphology

    DEFF Research Database (Denmark)

    W. Neuman, Benjamin; Kiss, Gabriella; H. Kunding, Andreas

    2011-01-01

    The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy...... protein functions to promote virus assembly....

  9. Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China.

    Science.gov (United States)

    Wang, Wen; Lin, Xian-Dan; Guo, Wen-Ping; Zhou, Run-Hong; Wang, Miao-Ruo; Wang, Cai-Qiao; Ge, Shuang; Mei, Sheng-Hua; Li, Ming-Hui; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although rodents are important reservoirs for RNA viruses, to date only one species of rodent coronavirus (CoV) has been identified. Herein, we describe a new CoV, denoted Lucheng Rn rat coronavirus (LRNV), and novel variants of two Betacoronavirus species termed Longquan Aa mouse coronavirus (LAMV) and Longquan Rl rat coronavirus (LRLV), that were identified in a survey of 1465 rodents sampled in China during 2011-2013. Phylogenetic analysis revealed that LAMV and LRLV fell into lineage A of the genus Betacoronavirus, which included CoVs discovered in humans and domestic and wild animals. In contrast, LRNV harbored by Rattus norvegicus formed a distinct lineage within the genus Alphacoronavirus in the 3CL(pro), RdRp, and Hel gene trees, but formed a more divergent lineage in the N and S gene trees, indicative of a recombinant origin. Additional recombination events were identified in LRLV. Together, these data suggest that rodents may carry additional unrecognized CoVs.

  10. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells

    NARCIS (Netherlands)

    C. Burkard (Christine); M.H. Verheije (Monique); B.L. Haagmans (Bart); F.J.M. van Kuppeveld (Frank ); P.J.M. Rottier (Peter); B.J. Bosch (Berend Jan); C.A.M. de Haan (Cornelis)

    2015-01-01

    textabstractIn addition to transporting ions, the multisubunit Na+,K+-ATPase also functions by relaying cardiotonic steroid (CTS)-binding- induced signals into cells. In this study, we analyzed the role of Na+,K+-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection.

  11. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  12. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection.

    Science.gov (United States)

    Sun, Junfeng; Han, Zongxi; Shao, Yuhao; Cao, Zhongzan; Kong, Xiangang; Liu, Shengwang

    2014-06-01

    Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D-DIGE followed MALDI-TOF/TOF-MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Clinical Pearls in Venovenous Extracorporeal Life Support for Adult Respiratory Failure.

    Science.gov (United States)

    Tay, Chee Kiang; Sung, Kiick; Cho, Yang Hyun

    2017-09-06

    Extracorporeal life support (ECLS) has been widely utilized to treat neonatal respiratory failure for two decades. However, its uptake in the case of adult respiratory failure has been slow because of a paucity of quality evidence and a sluggish tempo of ECLS-related technological advances. In recent years, interest in ECLS has been piqued after encouraging results were reported from its use during the 2009 H1N1 influenza pandemic. In a world constantly under threat from another influenza epidemic or deadly novel respiratory infection, e.g., the severe acute respiratory syndrome (SARS) virus, the Middle East respiratory syndrome coronavirus (MERS-CoV), the role of venovenous (VV) ECLS as a treatment modality for acute respiratory distress syndrome (ARDS) cannot be overemphasized. In hopes of standardizing practice, the Extracorporeal Life Support Organization (ELSO) has published books and guidelines on ECLS. However, high-level evidence to guide clinical decisions is still expediently needed in this field. Relying on the available literature and our experience in the recent South Korean MERS-CoV outbreak, we hope to highlight key physiologic and clinical points in VV ECLS for adult respiratory failure in this review.

  14. First full length sequences of the S gene of European isolates reveal further diversity among turkey coronaviruses.

    OpenAIRE

    MAUREL, Stéphan; Toquin, Didier; Briand, François-Xavier; QUEGUINER, Maryline; ALLEE, Chantal; BERTIN, Joel; RETAUX, Charlotte; TURBLIN, Vincent; Morvan, Hervé; Eterradossi, Nicolas

    2011-01-01

    Abstract An increasing incidence of enteric disorders clinically evocative of the poult enteritis complex has been observed in turkeys in France since 2003. Using a newly designed real-time RT-PCR assay specific for the nucleocapsid (N) gene of infectious bronchitis virus (IBV) and turkey coronaviruses (TCoV), coronaviruses were identified in 37 % of the intestinal samples collected from diseased turkey flocks. The full length Spike (S) gene of these viruses was amplified, cloned a...

  15. Contact tracing the first Middle East respiratory syndrome case in the Philippines, February 2015

    Directory of Open Access Journals (Sweden)

    Sheryl Racelis

    2015-07-01

    Full Text Available Background: Middle East respiratory syndrome (MERS is an illness caused by a coronavirus in which infected persons develop severe acute respiratory illness. A person can be infected through close contacts. This is an outbreak investigation report of the first confirmed MERS case in the Philippines and the subsequent contact tracing activities. Methods: Review of patient records and interviews with health-care personnel were done. Patient and close contacts were tested for MERS-coronavirus (CoV by real time-polymerase chain reaction. Close contacts were identified and categorized. All traced contacts were monitored daily for appearance of illness for 14 days starting from the date of last known exposure to the confirmed case. A standard log sheet was used for symptom monitoring. Results: The case was a 31-year-old female who was a health-care worker in Saudi Arabia. She had mild acute respiratory illness five days before travelling to the Philippines. On 1 February, she travelled with her husband to the Philippines while she had a fever. On 2 February, she attended a health facility in the Philippines. On 8 February, respiratory samples were tested for MERS-CoV and yielded positive results. A total of 449 close contacts were identified, and 297 (66% were traced. Of those traced, 15 developed respiratory symptoms. All of them tested negative for MERS. Discussion: In this outbreak investigation, the participation of health-care personnel in conducting vigorous contact tracing may have reduced the risk of transmission. However, being overly cautious to include more contacts for the outbreak response should be further reconsidered.

  16. Effect of coronavirus infection on reproductive performance of turkey hens.

    Science.gov (United States)

    Awe, Olusegun O; Ali, Ahmed; Elaish, Mohamed; Ibrahim, Mahmoud; Murgia, Maria; Pantin-Jackwood, Mary; Saif, Yehia M; Lee, Chang-Won

    2013-09-01

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates the possible involvement of TCoV in egg-production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV pathogenesis in turkey hens and its effect on reproductive performance. In the present study, we assessed the possible effect of TCoV on the reproductive performance of experimentally infected turkey hens. In two separate trials, 29- to 30-wk-old turkey hens in peak egg production were either mock-infected or inoculated orally with TCoV (Indiana strain). Cloacal swabs and intestinal and reproductive tissues were collected and standard reverse-transcription PCR was conducted to detect TCoV RNA. In the cloacal swabs, TCoV was detected consistently at 3, 5, 7, and 12 days postinoculation (DPI) with higher rates of detection after 5 DPI (> 90%). All intestinal samples were also positive for TCoV at 7 DPI, and microscopic lesions consisting of severe enteritis with villous atrophy were observed in the duodenum and jejunum of TCoV-infected hens. In one of the trials TCoV was detected from the oviduct of two birds at 7 DPI; however, no or mild microscopic lesions were present. In both experimental trials an average of 28%-29% drop in egg production was observed in TCoV-infected turkey hens between 4 and 7 DPI. In a separate trial we also confirmed that TCoV can efficiently transmit from infected to contact control hens. Our results show that TCoV infection can affect the reproductive performance in turkey hens, causing a transient drop in egg production. This drop in egg production most likely occurred as consequence of the severe enteritis produced by the TCoV. However, the potential replication of TCoV in the oviduct and its effect on pathogenesis should be considered and further investigated.

  17. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Li Sun

    Full Text Available Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV NL63 and severe acute respiratory syndrome (SARS CoV papain-like proteases (PLP antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS. STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN. We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM or SARS-CoV (PLpro-TM inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.

  18. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  19. A meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing novel coronavirus infections.

    Science.gov (United States)

    Lin, C; Ye, R; Xia, Y L

    2015-12-02

    Novel coronavirus (nCoV) belongs to the Coronaviridae family, which includes the virus that causes SARS, or severe acute respiratory syndrome. However, infection source, transmission route, and host of nCoV have not yet been thoroughly characterized. In some cases, nCoV presented a limited person-to-person transmission. Therefore, early diagnosis of nCoV may be of importance for reducing the spread of disease in public. Methods for nCoV diagnosis involve smear dyeing inspection, culture identification, and real-time PCR detection, all of which are proved highly effective. Here, we performed a meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing nCoV infection. Fifteen articles conformed to the inclusion and exclusion criteria for further meta-analysis on the basis of a wide range of publications searched from databases involving PubMed, EMBASE, Web of Science, Medline, ISI. We analyzed the stability and publication bias as well as examined the heterogeneity inspection of real-time PCR detection in contrast to smear staining and culture identification. The fixed-effect model was adopted in our meta-analysis. Our result demonstrated that the combination of real-time PCR and smear diagnostics yielded an odds ratio (OR) = 1.91, 95% confidence interval (CI) = 1.51-2.41, Z = 5.43, P real-time PCR and culture identification yielded OR = 2.44, 95%CI = 1.77-3.37, Z = 5.41, P real-time PCR as an efficient method that offers an auxiliary support for future nCoV diagnosis.

  20. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options.

    Science.gov (United States)

    Zumla, Alimuddin; Memish, Ziad A; Maeurer, Markus; Bates, Matthew; Mwaba, Peter; Al-Tawfiq, Jaffar A; Denning, David W; Hayden, Frederick G; Hui, David S

    2014-11-01

    The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multiazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections.

  1. Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses.

    Science.gov (United States)

    Jeong, Ji Hun; Kim, Kyung Hee; Jeong, Sung Hwan; Park, Jeong Woong; Lee, Sang Min; Seo, Yiel Hea

    2014-12-01

    Diagnostic tests for respiratory viral infections use traditionally either nasopharyngeal washes or swabs. Sputum is representative of the lower respiratory tract but is used rarely for viral testing. The aim of this study was to compare the detection rates of respiratory viruses from nasopharyngeal swabs and sputum using a multiplex real-time reverse transcription-polymerase chain reaction (RT-PCR). Adults who were admitted or presented to the clinics of Gil Medical Center with acute respiratory symptoms were recruited from 1 November 2012 to 31 March 2013. Paired specimens of nasopharyngeal swabs and sputum were obtained from 154 subjects, and RNA was extracted and tested for 16 different respiratory viruses using the Anyplex II RV16 Detection kit (Seegene, Seoul, Korea). The positive rate was 53% (81/154) for nasopharyngeal swabs and 68% (105/154) for sputum (P viruses were identified for 107 illnesses. Influenza A virus, RSV A, HRV, coronavirus OC43, and adenovirus were detected more frequently in sputum samples than in nasopharyngeal swabs (P viruses from sputum samples were significantly higher than those from nasopharyngeal swabs in adults using real-time multiplex RT-PCR. These findings suggest that sputum would benefit for the detection of respiratory viruses by nucleic acid amplification tests (NAATs) in patients who produce sputum. Further studies are needed to establish standardized RNA extraction methods from sputum samples.

  2. The role of infections and coinfections with newly identified and emerging respiratory viruses in children

    Directory of Open Access Journals (Sweden)

    Debiaggi Maurizia

    2012-10-01

    Full Text Available Abstract Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV, influenza A and B viruses, parainfluenza viruses (PIVs, adenovirus, rhinovirus (HRV, have repeatedly been detected in acute lower respiratory tract infections (LRTI in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV, coronaviruses NL63 (HcoV-NL63 and HKU1 (HcoV-HKU1, human Bocavirus (HBoV, new enterovirus (HEV, parechovirus (HpeV and rhinovirus (HRV strains, polyomaviruses WU (WUPyV and KI (KIPyV and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

  3. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus.

    Science.gov (United States)

    Tanaka, Yoshikazu; Amano, Arisa; Morisaki, Masateru; Sato, Yuka; Sasaki, Takashi

    2016-02-01

    Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.

  4. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    Directory of Open Access Journals (Sweden)

    Beth N. Licitra

    2014-08-01

    Full Text Available Canine enteric coronavirus (CCoV is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host.

  5. Respiratory Syncytial Virus and Other Respiratory Viral Infections in Older Adults With Moderate to Severe Influenza-like Illness

    Science.gov (United States)

    Falsey, Ann R.; McElhaney, Janet E.; Beran, Jiri; van Essen, Gerrit A.; Duval, Xavier; Esen, Meral; Galtier, Florence; Gervais, Pierre; Hwang, Shinn-Jang; Kremsner, Peter; Launay, Odile; Leroux-Roels, Geert; McNeil, Shelly A.; Nowakowski, Andrzej; Richardus, Jan Hendrik; Ruiz-Palacios, Guillermo; St Rose, Suzanne; Devaster, Jeanne-Marie; Oostvogels, Lidia; Durviaux, Serge; Taylor, Sylvia

    2014-01-01

    Background. Few studies have prospectively assessed viral etiologies of acute respiratory infections in community-based elderly individuals. We assessed viral respiratory pathogens in individuals ≥65 years with influenza-like illness (ILI). Methods. Multiplex reverse-transcriptase polymerase chain reaction identified viral pathogens in nasal/throat swabs from 556 episodes of moderate-to-severe ILI, defined as ILI with pneumonia, hospitalization, or maximum daily influenza symptom severity score (ISS) >2. Cases were selected from a randomized trial of an adjuvanted vs nonadjuvanted influenza vaccine conducted in elderly adults from 15 countries. Results. Respiratory syncytial virus (RSV) was detected in 7.4% (41/556) moderate-to-severe ILI episodes in elderly adults. Most (39/41) were single infections. There was a significant association between country and RSV detection (P = .004). RSV prevalence was 7.1% (2/28) in ILI with pneumonia, 12.5% (8/64) in ILI with hospitalization, and 6.7% (32/480) in ILI with maximum ISS > 2. Any virus was detected in 320/556 (57.6%) ILI episodes: influenza A (104/556, 18.7%), rhinovirus/enterovirus (82/556, 14.7%), coronavirus and human metapneumovirus (each 32/556, 5.6%). Conclusions. This first global study providing data on RSV disease in ≥65 year-olds confirms that RSV is an important respiratory pathogen in the elderly. Preventative measures such as vaccination could decrease severe respiratory illnesses and complications in the elderly. PMID:24482398

  6. Respiratory Development and Respiratory Distress Syndrome.

    Science.gov (United States)

    Rubarth, Lori Baas; Quinn, Jenny

    2015-01-01

    Respiratory development is crucial for all newborn infants. Premature infants may be born at an early stage of development and lack sufficient surfactant production. This results in respiratory distress syndrome. This article reviews the normal fetal development of the lung as well as the disorder that develops because of an early birth.

  7. Respiratory viruses in acute exacerbations of chronic obstructive pulmonary disease

    Science.gov (United States)

    Koul, Parvaiz A; Mir, Hyder; Akram, Shabir; Potdar, Varsha; Chadha, Mandeep S

    2017-01-01

    Objective: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) cause significant morbidity, mortality, and an inexorable decline of lung function. Data from developed countries have shown viruses to be important causes of AECOPD, but data from developing countries like India are scant. We set out to determine the contribution of viruses in the causation of hospitalized patients with AECOPD. Methods: Twin nasopharyngeal/oropharyngeal swabs collected from 233 patients admitted with an acute AECOPD and tested for respiratory viruses including respiratory syncytial virus A and B, parainfluenza were (PIV) 1, 2, 3, and 4, human metapneumovirus (hMPV) A and B, influenza A and B, enterovirus, corona NL65, OC43, and 229E viruses, adenovirus 2 and 4, rhinovirus, and bocavirus, by duplex real time reverse-transcription polymerase chain reaction (qRT-PCR) using CDC approved primers and probes. Samples positive for influenza A were subtyped for A/H1N1pdm09 and A/H3N2 whereas influenza B samples were subtyped into B/Yamagata and B/Victoria subtypes, using primers and probes recommended by CDC, USA. Results: Respiratory viruses were detected in 46 (19.7%) cases, influenza A/H3N2 and rhinoviruses being the most common viruses detected. More than one virus was isolated in four cases consisting of hMPV-B + adeno-2 + Inf-B; rhino + H3N2, PIV-1 + rhino; and PIV-1+ hMPV-B in one case each. Ancillary supportive therapeutic measures included bronchodilators, antibiotics, steroids, and ventilation (noninvasive in 42 and invasive in 4). Antiviral therapy was instituted in influenza-positive patients. Three patients with A/H3N2 infection died during hospitalization. Conclusions: We conclude that respiratory viruses are important contributors to AECOPD in India. Our data calls for prompt investigation during an exacerbation for viruses to obviate inappropriate antibiotic use and institute antiviral therapy in viral disease amenable to antiviral therapy. Appropriate

  8. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    Science.gov (United States)

    2011-01-06

    West Nile viruses . In contrast, they do not inhibit replication of murine leukemia virus (MLV), or the entry processes of amphotropic MLV, Machupo virus ...MACV), Lassa virus (LASV), or lympho- cytic choriomeningitis virus (LCMV). Although IFITM proteins are induced by type I and II interferons, most...processes of several highly pathogenic viruses – Marburg virus , Ebola virus , and SARS coronavirus – are similarly disrupted by IFITM proteins. We

  9. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium.

    Science.gov (United States)

    Addie, Diane D; Paltrinieri, Saverio; Pedersen, Niels C

    2004-04-01

    In August 2002, scientists and veterinarians from all over the world met in Scotland to discuss feline coronavirus (FCoV) and feline infectious peritonitis (FIP). The conference ended with delegates dividing into three workshops to draw up recommendations for FCoV control, diagnosis and treatment and future research. The workshops were chaired by the three authors and the recommendations are presented in this paper.

  10. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.

    Science.gov (United States)

    Thorp, Edward B; Boscarino, Joseph A; Logan, Hillary L; Goletz, Jeffrey T; Gallagher, Thomas M

    2006-02-01

    Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.

  11. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid.

    OpenAIRE

    Sturman, L S; Holmes, K V; Behnke, J.

    1980-01-01

    The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus a...

  12. The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    Full Text Available The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing and 38,000×(Illumina. The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

  13. Multiple Sequence Alignment of the M Proteinin SARS—Associated and Other Known Coronaviruses

    Institute of Scientific and Technical Information of China (English)

    史定华; 周晖杰; 王斌宾; 顾燕红; 王翼飞

    2003-01-01

    In this paper, we report a multiple sequence alignment result on the basis of 10 amino acid sequences of the M protein,which come from different coronaviruses (4 SARS-associated and 6 others known). The alignment model was based on the profile HMM (Hidden Markov Model), and the model training was implemented through the SAHMM (Self-Adapting Hidden Markov Model)software developed by the authors.

  14. A Review of Coronavirus Infections in Avain%禽源冠状病毒感染情况概述

    Institute of Scientific and Technical Information of China (English)

    庄青叶; 陈继明; 王楷宬

    2015-01-01

    Based on epidemiological investigation,surveillance,gene analysis of coronaviruses in birds in the world,coronavirus infections and the related diseases in avian were summarized in this paper. Avian-origin coronavirus has a very complex population with abundant diversity,involving viruses in Gammacoronavirus and Deltacoronavirus at least. Avian infectious bronchitis virus existed and was endemic in almost all chicken-producing countries. Turkey coronavirus,duck coronavirus,goose coronavirus,pigeon coronavirus were already detected in avian and some of these were pandemic. A few other Deltacoronavirus were only detected in wildfowl .%以国内外对冠状病毒在禽类中的流行病学调查、监测和基因分析等研究报道为基础,从病毒分类学角度,对各“种”冠状病毒在禽类中的感染情况和引起的相关疾病进行简要概述。全球在禽类中发现的冠状病毒种类较多,至少涉及丙型和丁型冠状病毒属。其中,鸡传染性支气管炎病毒几乎在全球所有养鸡国家中存在,并呈地方性流行;火鸡冠状病毒、鸭冠状病毒、鹅冠状病毒、鸽冠状病毒也在禽类中被发现,部分病毒已在禽群中流行;其他丁型冠状病毒属病毒仅在少数野鸟中被发现。

  15. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.

    Science.gov (United States)

    DeDiego, Marta L; Nieto-Torres, Jose L; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-12-19

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  16. Technology in respiratory medicine

    African Journals Online (AJOL)

    Repro

    Respiratory medicine is the subspecialty in medicine which ... The very nature of respiratory physiology ... of this essential step with resultant loss of accuracy in .... intensity of treatment, or for medicolegal .... likened to trying to manage dia-.

  17. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    Science.gov (United States)

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  18. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  19. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    Science.gov (United States)

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  20. Genome sequence variation analysis of two SARS coronavirus isolates after passage in Vero cell culture

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; LI Ning; HU Liangxiang; DU Zhenglin; GAO Qiang; GAO Hong; NING Ye; FENG Jidong; ZHANG Jiansan; YIN Weidong

    2004-01-01

    SARS coronavirus is an RNA virus whose replication is error-prone, which provides possibility for escape of host defenses, and even leads to evolution of new viral strains during the passage or the transmission. Lots of variations have been detected among different SARS-CoV strains. And a study on these variations is helpful for development of efficient vaccine. Moreover, the test of nucleic acid characterization and genetic stability of SARS-CoV is important in the research of inactivated vaccine. The whole genome sequences of two SARS coronavirus strains after passage in Vero cell culture were determined and were compared with those of early passages, respectively. Results showed that both SARS coronavirus strains have high genetic stability, although nearly 10 generations were passed. Four nucleotide variations were observed between the second passage and the 11th passage of Sino1 strain for identification of SARS inactivated vaccine. Moreover, only one nucleotide was different between the third passage and the 10th passage of Sino3 strain for SARS inactivated vaccine. Therefore, this study suggested it was possible to develop inactivated vaccine against SARS-CoV in the future.

  1. Full genome analysis of a novel type II feline coronavirus NTU156.

    Science.gov (United States)

    Lin, Chao-Nan; Chang, Ruey-Yi; Su, Bi-Ling; Chueh, Ling-Ling

    2013-04-01

    Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.

  2. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  3. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  4. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be cleav

  5. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6.

    Science.gov (United States)

    Li, Shih-Wen; Wang, Ching-Ying; Jou, Yu-Jen; Huang, Su-Hua; Hsiao, Li-Hsin; Wan, Lei; Lin, Ying-Ju; Kung, Szu-Hao; Lin, Cheng-Wen

    2016-05-05

    Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLPro) reportedly inhibits the production of type I interferons (IFNs) and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene 1 (RIG-I) pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ)) concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals.

  6. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  7. Respiratory DNA viruses are undetectable in nasopharyngeal secretions from adenotonsillectomized children

    Science.gov (United States)

    Prates, Mirela Moreira; Gagliardi, Talita Bianca; Biasoli, Balduino; Leite, Marcelo Junqueira; Buzatto, Guilherme; Hyppolito, Miguel Angelo; Aragon, Davi Casale; Tamashiro, Edwin; Valera, Fabiana Cardoso Pereira

    2017-01-01

    Respiratory viruses are frequently detected in association with chronic tonsillar hypertrophy in the absence of symptoms of acute respiratory infection (ARI). The present analysis was done in follow-up to a previous clinical study done by this same group. Nasopharyngeal washes (NPWs) were obtained from 83 of 120 individuals at variable times post adenotonsillectomy, in the absence of ARI symptoms. A look back at virus detection results in NPWs from the same 83 individuals at the time of tonsillectomy revealed that 73.5% (61/83) were positive for one or more viruses. The overall frequency of respiratory virus detection in post-tonsillectomy NPWs was 58.8%. Rhinovirus (RV) was the agent most frequently detected, in 38 of 83 subjects (45.8%), followed by enterovirus in 7 (8.4%), human metapneumovirus in 6 (7.2%), human respiratory syncytial virus in 3 (3.6%) and human coronavirus in 1 (1.2%). Remarkably, there was no detection of adenovirus (HAdV) or human bocavirus (HBoV) in asymptomatic individuals in follow-up of adenotonsillectomy. In keeping with persistence of respiratory DNA viruses in human tonsils, tonsillectomy significantly reduces asymptomatic shedding of HAdV and HBoV in NPWs. PMID:28306724

  8. Distribution of respiratory viruses which cause lower respiratory tract infection in pediatric age group

    Institute of Scientific and Technical Information of China (English)

    Selim Dereci; Ayegl opur iek; Serdar zkasap; Muhammed Ali Mutlu; Sema Kocyiit; Kazm ahin

    2015-01-01

    Objective: To determine the appropriate treatment regimen and the clinical course of the lower respiratory tract infections(RTIs) and to detect the common viral causes of lowerRTIs. Methods:The present study included a total of 255 pediatric patients aged less than 7 years old and admitted to the Department of Pediatrics of Rize Training and Research Hospital between January 2014 and January 2015 with clinical pre-diagnosis of lowerRTI. Nasopharyngeal swab specimens collected from these patients were tested for viral pathogens by using multiplexRT-PCR kit the ResPlex II plus PanelPRE (Qiagen, Germany). Results: A total of 212 out of 255 (83.1%) specimens revealed positive for one or more viral pathogens. The most common detected pathogens were respiratory syncytial virus (RSV) A/B in 110 samples (43.1%), rhinovirus in 51 samples (20.0%), adenovirus in 36 samples (14.1%), influenzae virus A in 32 samples (12.5%), and coronavirus in 24 samples (9.4%). In 76 samples (29.8%), more than one viral pathogen were detected.RSV was seen in more than 50% patients in the first 2 years.RSV was the most common pathogen in each year of the first 5 years but rhinovirus, influenza A and adenovirus were seen more thanRSV after the fifth year. A total of 95.8% of the viral detections were seen between November and April without a significant peak amongst these months. The distribution of the pathogens by months of the year showed no significance. Conclusions:These findings can contribute to epidemiological data of Turkey. Detection of the viral pathogens causing lowerRTIscan be critical in management of the disease, decrease inappropriate antibiotic treatment, and lower the morbidity and mortality rates in such diseases.

  9. Distribution of respiratory viruses which cause lower respiratory tract infection in pediatric age group

    Directory of Open Access Journals (Sweden)

    Selim Dereci

    2015-07-01

    Full Text Available Objective: To determine the appropriate treatment regimen and the clinical course of the lower respiratory tract infections( RTI s and to detect the common viral causes of lower RTI s. Methods: The present study included a total of 255 pediatric patients aged less than 7 years old and admitted to the Department of Pediatrics of Rize Training and Research Hospital between January 2014 and January 2015 with clinical pre-diagnosis of lower RTI . Nasopharyngeal swab specimens collected from these patients were tested for viral pathogens by using multiplex RT- PCR kit the ResPlex II plus Panel PRE (Qiagen, Germany. Results: A total of 212 out of 255 (83.1% specimens revealed positive for one or more viral pathogens. The most common detected pathogens were respiratory syncytial virus ( RSV A/B in 110 samples (43.1%, rhinovirus in 51 samples (20.0%, adenovirus in 36 samples (14.1%, influenzae virus A in 32 samples (12.5%, and coronavirus in 24 samples (9.4%. In 76 samples (29.8%, more than one viral pathogen were detected. RSV was seen in more than 50% patients in the first 2 years. RSV was the most common pathogen in each year of the first 5 years but rhinovirus, influenza A and adenovirus were seen more than RSV after the fifth year. A total of 95.8% of the viral detections were seen between November and April without a significant peak amongst these months. The distribution of the pathogens by months of the year showed no significance. Conclusions: These findings can contribute to epidemiological data of Turkey. Detection of the viral pathogens causing lower RTIs can be critical in management of the disease, decrease inappropriate antibiotic treatment, and lower the morbidity and mortality rates in such diseases.

  10. Fibromyalgia after severe acute respiratory syndrome: a case report

    Institute of Scientific and Technical Information of China (English)

    TIAN Xin-ping; ZENG Xiao-feng; XU Wen-bin

    2006-01-01

    @@ Since November 2002, an infectious disease with unknown cause occurred in China and many countries had been involved. Cases were reported in 28 countries and more than 5050 individuals had been infected.1 Lung is the most frequently involved organ and can be fatal in severe cases. At the end of February 2003, it was defined as Severe Acute Respiratory Syndrome (SARS) by World Health Organization. China had a SARS epidemic in the spring of 2003. More than 1000 patients were infected and some patients died of respiratory failure.Finally, a new variant of coronavirus was suspected to be the pathogen although the pathogenesis was still unclear. Since it is a new disease and we have very limited knowledge about its clinical sequela, we followed the survived patients closely in order to understand it in depth. During the follow up, we discovered an interesting patient who was finally diagnosed as fibromyalgia. We report this case herein to share our experience with clinicians who may see patients with SARS or fibromyalgia.

  11. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    Institute of Scientific and Technical Information of China (English)

    Selles Sidi Mohammed Ammar; Kouidri Mokhtaria; Belhamiti Belkacem Tahar; Ait Amrane Amar; Benia Ahmed Redha; Bellik Yuva; Hammoudi Si Mohamed; Niar Abdellatif; Boukra Laid

    2014-01-01

    Objective: To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive’s parameters such as age group and sex.Methods:Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay.Results:The present study demonstrates that the both BCoV and GARV are involved in the (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43%associated with GARV), respectively.Conclusions:The results showed that the prevalence of rotavirus and coronavirus infection are 14.63%neonatal calves’ diarrhea, where the frequency of BCoV is clearly higher than that of GARV.

  12. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    Science.gov (United States)

    Ammar, Selles Sidi Mohammed; Mokhtaria, Kouidri; Tahar, Belhamiti Belkacem; Amar, Ait Amrane; Redha, Benia Ahmed; Yuva, Bellik; Mohamed, Hammoudi Si; Abdellatif, Niar; Laid, Boukrâa

    2014-01-01

    Objective To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive's parameters such as age group and sex. Methods Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay. Results The results showed that the prevalence of rotavirus and coronavirus infection are 14.63% (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43% associated with GARV), respectively. Conclusions The present study demonstrates that the both BCoV and GARV are involved in the neonatal calves' diarrhea, where the frequency of BCoV is clearly higher than that of GARV. PMID:25183104

  13. Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea

    Directory of Open Access Journals (Sweden)

    Shui Shan Lee

    2015-09-01

    Conclusions: Publicly available data from multiple sources, including the media, are useful to describe the epidemic history of an outbreak. The effective control of MERS-CoV hinges on the upholding of infection control standards and an understanding of health-seeking behaviours in the community.

  14. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

    Science.gov (United States)

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-05-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.

  15. Respiratory Protection against Pesticides

    OpenAIRE

    Kurt, Burak; Akbaba, Muhsin

    2015-01-01

    Although the respiratory (breathing) system tolerates exposure to a limited degree, some chemicals can impair or destroy portions of it. For many pesticides, the respiratory system is the quickest and most direct route into the circulatory system, allowing rapid transport throughout the body. Thus, it is important to follow the pesticide label and follow directions for control of exposure, especially when respiratory protection is specified. A respirator is a safety device covering at least t...

  16. Role of the lipid rafts in the life cycle of canine coronavirus.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  17. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  18. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  19. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Terczynska-Dyla, Ewa; Vieyres, Gabrielle

    2013-01-01

    The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response...... to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion...

  20. Middle East respiratory syndrome coronavirus (MERS-CoV viral shedding in the respiratory tract: an observational analysis with infection control implications

    Directory of Open Access Journals (Sweden)

    Ziad A. Memish

    2014-12-01

    Conclusions: Contacts cleared MERS-CoV earlier than ill patients. This finding could be related to the types of sample as well as the types of patient studied. More ill patients with significant comorbidities shed the virus for a significantly longer time. The results of this study could have critical implications for infection control guidance and its application in healthcare facilities handling positive cases.