WorldWideScience

Sample records for respiratory chemoreflex responses

  1. The effects of carbon monoxide on respiratory chemoreflexes in humans

    Vesely, A.E.; Somogyi, R.B.; Sasano, Hiroshi; Sasano, Nobuko; Fisher, J.A.; Duffin, James

    2004-01-01

    As protection against low-oxygen and high-carbon-dioxide environments, the respiratory chemoreceptors reflexly increase breathing. Since CO is also frequently present in such environments, it is important to know whether CO affects the respiratory chemoreflexes responsiveness. Although the peripheral chemoreceptors fail to detect hypoxia produced by CO poisoning, whether CO affects the respiratory chemoreflex responsiveness to carbon dioxide is unknown. The responsiveness of 10 healthy male volunteers were assessed before and after inhalation of ∼1200 ppm CO in air using two iso-oxic rebreathing tests; hypoxic, to emphasize the peripheral chemoreflex, and hyperoxic, to emphasize the central chemoreflex. Although mean (SEM) COHb values of 10.2 (0.2)% were achieved, no statistically significant effects of CO were observed. The average differences between pre- and post-CO values for ventilation response threshold and sensitivity were -0.5 (0.9) mmHg and 0.8 (0.3) L/min/mmHg, respectively, for hyperoxia, and 0.7 (1.1) mmHg and 1.2 (0.8) L/min/mmHg, respectively, for hypoxia. The 95% confidence intervals for the effect of CO were small. We conclude that environments with low levels of CO do not have a clinically significant effect acutely on either the central or the peripheral chemoreflex responsiveness to carbon dioxide

  2. Intra-individual variability in cerebrovascular and respiratory chemosensitivity: Can we characterize a chemoreflex "reactivity profile"?

    Borle, Kennedy J; Pfoh, Jamie R; Boulet, Lindsey M; Abrosimova, Maria; Tymko, Michael M; Skow, Rachel J; Varner, Amy; Day, Trevor A

    2017-08-01

    Intra-individual variability in the magnitude of human cerebrovascular and respiratory chemoreflex responses is largely unexplored. By comparing response magnitudes of cerebrovascular CO 2 reactivity (CVR; middle and posterior cerebral arteries; MCA, PCA), central (CCR; CO 2 ) and peripheral respiratory chemoreflexes (PCR; CO 2 and O 2 ), we tested the hypothesis that a within-individual reactivity magnitude profile could be characterized. The magnitudes of CVR and CCR were tested with hyperoxic rebreathing and PCR magnitudes were tested through transient respiratory tests (TT-CO 2 , hypercapnia; TT-N 2 , hypoxia). No significant intra-individual relationships were found between CCR vs. CVR (MCA and PCA), CCR vs. PCR (TT-N 2 or TT-CO 2 ) (r0.3) response magnitudes. Statistically significant relationships were found between MCA vs. PCA reactivity (r=0.45, Pvariability that exists in human cerebrovascular and respiratory chemoreflexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of chemoreflexes on respiratory variability in healthy subjects

    van den Aardweg, Joost G.; Karemaker, John M.

    2002-01-01

    The background of this study was the hypothesis that respiratory variability is influenced by chemoreflex regulation, In search for periodicities in the variability due to instability of the respiratory control system, spectral analysis was applied to breath-to-breath variables in 19 healthy

  4. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  5. Acrolein Causes TRPA1-Mediated Sensory Irritation and Indirect Potentiation of TRPV1-Mediated Pulmonary Chemoreflex Response

    We previously demonstrated that acute exposure to acrolein causes immediate sensory irritation, with rapid decrease in heart rate (HR) and increase in inspiratory time (Ti), and potentiation of pulmonary chemoreflex response 24hrs later; of these effects only the latter is mediat...

  6. Hyperadditive Ventilatory Response Arising from Interaction between the Carotid Chemoreflex and the Muscle Mechanoreflex in Healthy Humans.

    Silva, Talita M; Aranda, Liliane C; Paula-Ribeiro, Marcelle; Oliveira, Diogo M; Medeiros, Wladimir Musetti; Vianna, Lauro C; Nery, Luiz E; Silva, Bruno M

    2018-03-22

    Physical exercise potentiates the carotid chemoreflex control of ventilation (VE). Hyperadditive neural interactions may partially mediate the potentiation. However, some neural interactions remain incompletely explored. As the potentiation occurs even during low-intensity exercise, we tested the hypothesis that the carotid chemoreflex and the muscle mechanoreflex could interact in a hyperadditive fashion. Fourteen young healthy subjects inhaled, randomly, in separate visits, 12% O 2 to stimulate the carotid chemoreflex, and 21% O 2 as control. A rebreathing circuit maintained isocapnia. During gases administration, subjects either remained at rest (i.e., normoxic and hypoxic rest) or the muscle mechanoreflex was stimulated, via passive knee movement (i.e., normoxic and hypoxic movement). Surface muscle electrical activity did not increase during the passive movement, confirming the absence of active contractions. Hypoxic rest and normoxic movement similarly increased VE [change (mean {plus minus} SEM) = 1.24 {plus minus} 0.72 vs. 0.73 {plus minus} 0.43 L/min, respectively; P = 0.46], but hypoxic rest only increased tidal volume (Vt) and normoxic movement only increased breathing frequency (BF). Hypoxic movement induced greater VE and mean inspiratory flow (Vt/Ti) increase than the sum of hypoxic rest and normoxic movement isolated responses (VE change: hypoxic movement = 3.72 {plus minus} 0.81 vs. sum = 1.96 {plus minus} 0.83 L/min, P = 0.01; Vt/Ti change: hypoxic movement = 0.13 {plus minus} 0.03 vs. sum = 0.06 {plus minus} 0.03 L/s, P = 0.02). Moreover, hypoxic movement increased both Vt and BF. Collectively, the results indicate the carotid chemoreflex and the muscle mechanoreflex interacted mediating a hyperadditive ventilatory response in healthy humans.

  7. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

    Ruffault, Pierre Louis; D’Autréaux, Fabien; Hayes, John A.

    2015-01-01

    . Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN...

  8. Perinatal Fluoxetine Exposure Impairs the CO2 Chemoreflex. Implications for Sudden Infant Death Syndrome.

    Bravo, Karina; Eugenín, Jaime L; Llona, Isabel

    2016-09-01

    High serotonin levels during pregnancy affect central nervous system development. Whether a commonly used antidepressant such as fluoxetine (a selective serotonin reuptake inhibitor) taken during pregnancy may adversely affect respiratory control in offspring has not been determined. The objective was to determine the effect of prenatal-perinatal fluoxetine exposure on the respiratory neural network in offspring, particularly on central chemoreception. Osmotic minipumps implanted into CF-1 mice on Days 5-7 of pregnancy delivered 7 milligrams per kilogram per day of fluoxetine, achieving plasma levels within the range found in patients. Ventilation was assessed in offspring at postnatal Days 0-40 using head-out body plethysmography. Neuronal activation was evaluated in the raphe nuclei and in the nucleus tractus solitarius by c-Fos immunohistochemistry during normoxic eucapnia and hypercapnia (10% CO2). Respiratory responses to acidosis were evaluated in brainstem slices. Prenatal-perinatal fluoxetine did not affect litter size, birth weight, or the postnatal growth curve. Ventilation under eucapnic normoxic conditions was similar to that of control offspring. Fluoxetine exposure reduced ventilatory responses to hypercapnia at P8-P40 (P Fluoxetine applied acutely on control slices did not modify their respiratory response to acidosis. We concluded that prenatal-perinatal fluoxetine treatment impairs central respiratory chemoreception during postnatal life. These results are relevant in understanding the pathogenesis of respiratory failures, such as sudden infant death syndrome, associated with brainstem serotonin abnormalities and the failure of respiratory chemoreflexes.

  9. From the Cover: Prenatal Nicotinic Exposure Attenuates Respiratory Chemoreflexes Associated With Downregulation of Tyrosine Hydroxylase and Neurokinin 1 Receptor in Rat Pup Carotid Body.

    Zhao, Lei; Zhuang, Jianguo; Gao, Xiuping; Ye, Chunyan; Lee, Lu-Yuan; Xu, Fadi

    2016-09-01

    Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor (α7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. CAROTID BODY CHEMO-REFLEX: A DRIVER OF AUTONOMIC ABNORMALITIES IN SLEEP APNEA

    Prabhakar, Nanduri R.

    2016-01-01

    Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemo-reflex is a potent regulator of the sympathetic tone, blood pressure, and breathing. Sleep apnea is a disease of the respiratory system affecting several million adult humans. Apneas occur during sleep often due to obstruction of the upper airway (obstructive sleep apnea, OSA) or due to defective respiratory rhythm generation by the central nervous system (central sleep apnea). Patients with sleep apnea exhibit several co-morbidities; most notable among them being the heightened sympathetic nerve activity, and hypertension. Emerging evidence suggests that intermittent hypoxia (IH) resulting from periodic apnea stimulates the carotid body and the ensuing chemo-reflex mediates the increased sympathetic tone and hypertension in sleep apnea patients. Rodent models of IH, simulating the O2 saturation profiles encountered during sleep apnea have provided important insights into the cellular and molecular mechanisms underlying the heightened carotid body chemo-reflex. This article describes how IH affects the carotid body function, and discusses the cellular, molecular and epigenetic mechanisms underlying the exaggerated chemo-reflex. PMID:27474260

  11. Comparing and characterizing transient and steady-state tests of the peripheral chemoreflex in humans.

    Pfoh, Jamie R; Tymko, Michael M; Abrosimova, Maria; Boulet, Lindsey M; Foster, Glen E; Bain, Anthony R; Ainslie, Philip N; Steinback, Craig D; Bruce, Christina D; Day, Trevor A

    2016-03-01

    What is the central question of this study? We aimed to characterize the cardiorespiratory and cerebrovascular responses to transient and steady-state tests of the peripheral chemoreflex and to compare the hypoxic ventilatory responses (HVRs) between these tests. What is the main finding and its importance? The cardiovascular and cerebrovascular responses to transient tests were small in magnitude and short in duration. The steady-state isocapnic hypoxia test elicited a larger HVR than the transient 100% N(2) test, but the response magnitudes were correlated within individuals. The transient test of the HVR elicits fewer systemic effects than steady-state techniques and may have greater experimental utility than previously appreciated. Carotid chemoreceptors detect changes in arterial PO(2) and PCO(2), eliciting a peripheral chemoreflex (PCR). Steady-state (SS) hypoxia tests using dynamic end-tidal forcing (DEF) have been used to assess the hypoxic ventilatory response (HVR) but may be confounded by concomitant systemic effects. Transient tests of the PCR have also been developed but are not widely used, nor have the cardiovascular and cerebrovascular responses been characterized. We characterized the cardiorespiratory and cerebrovascular responses to transient tests of the PCR and compared the HVR between transient and SS-DEF tests. We hypothesized that the cardiovascular and cerebrovascular responses to the transient tests would be minimal and that the respiratory responses elicited from the transient and SS-DEF tests would be different in magnitude and not well correlated within individuals. Participants underwent five consecutive trials of two transient tests [three-breath 100% N(2) (TT-N(2)) and a single-breath 13% CO(2), in air] and two 10 min SS-DEF tests [isocapnic (SS-ISO) and poikilocapnic (SS-POI) hypoxia]. In response to the transient tests, heart rate, mean arterial pressure and the middle and posterior cerebral artery blood velocity increased (all P

  12. Peripheral chemoreflex inhibition with low-dose dopamine: new insight into mechanisms of extreme apnea.

    Bain, Anthony R; Dujic, Zeljko; Hoiland, Ryan L; Barak, Otto F; Madden, Dennis; Drvis, Ivan; Stembridge, Mike; MacLeod, David B; MacLeod, Douglas M; Ainslie, Philip N

    2015-11-01

    The purpose of this study was to determine the impact of peripheral chemoreflex inhibition with low-dose dopamine on maximal apnea time, and the related hemodynamic and cerebrovascular responses in elite apnea divers. In a randomized order, participants performed a maximal apnea while receiving either intravenous 2 μg·kg(-1)·min(-1) dopamine or volume-matched saline (placebo). The chemoreflex and hemodynamic response to dopamine was also assessed during hypoxia [arterial O2 tension, (PaO2 ) ∼35 mmHg] and mild hypercapnia [arterial CO2 tension (PaCO2 ) ∼46 mmHg] that mimicked the latter parts of apnea. Outcome measures included apnea duration, arterial blood gases (radial), heart rate (HR, ECG), mean arterial pressure (MAP, intra-arterial), middle (MCAv) and posterior (PCAv) cerebral artery blood velocity (transcranial ultrasound), internal carotid (ICA) and vertebral (VA) artery blood flow (ultrasound), and the chemoreflex responses. Although dopamine depressed the ventilatory response by 27 ± 41% (vs. placebo; P = 0.01), the maximal apnea duration was increased by only 5 ± 8% (P = 0.02). The PaCO2 and PaO2 at apnea breakpoint were similar (P > 0.05). When compared with placebo, dopamine increased HR and decreased MAP during both apnea and chemoreflex test (P all breathe. Copyright © 2015 the American Physiological Society.

  13. Prediction of the Chemoreflex Gain by Common Clinical Variables in Heart Failure.

    Gianluca Mirizzi

    Full Text Available Peripheral and central chemoreflex sensitivity, assessed by the hypoxic or hypercapnic ventilatory response (HVR and HCVR, respectively, is enhanced in heart failure (HF patients, is involved in the pathophysiology of the disease, and is under investigation as a potential therapeutic target. Chemoreflex sensitivity assessment is however demanding and, therefore, not easily applicable in the clinical setting. We aimed at evaluating whether common clinical variables, broadly obtained by routine clinical and instrumental evaluation, could predict increased HVR and HCVR.191 patients with systolic HF (left ventricular ejection fraction--LVEF--<50% underwent chemoreflex assessment by rebreathing technique to assess HVR and HCVR. All patients underwent clinical and neurohormonal evaluation, comprising: echocardiogram, cardiopulmonary exercise test (CPET, daytime cardiorespiratory monitoring for breathing pattern evaluation. Regarding HVR, multivariate penalized logistic regression, Bayesian Model Averaging (BMA logistic regression and random forest analysis identified, as predictors, the presence of periodic breathing and increased slope of the relation between ventilation and carbon dioxide production (VE/VCO2 during exercise. Again, the above-mentioned statistical tools identified as HCVR predictors plasma levels of N-terminal fragment of proBNP and VE/VCO2 slope.In HF patients, the simple assessment of breathing pattern, alongside with ventilatory efficiency during exercise and natriuretic peptides levels identifies a subset of patients presenting with increased chemoreflex sensitivity to either hypoxia or hypercapnia.

  14. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  15. Cellular immune responses to respiratory viruses

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  16. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus

    White, Mitchell R; Crouch, Erika; Vesona, Jenny

    2005-01-01

    of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms...... of IAV while reducing the respiratory burst response to virus....

  17. Enhancement of Immune Memory Responses to Respiratory Infection

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  18. Respiratory Effects and Systemic Stress Response Following ...

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  19. Bronchodilator responsiveness and reported respiratory symptoms in an adult population.

    Wan C Tan

    Full Text Available BACKGROUND: The relationship between patient-reported symptoms and objective measures of lung function is poorly understood. AIM: To determine the association between responsiveness to bronchodilator and respiratory symptoms in random population samples. METHODS: 4669 people aged 40 years and older from 8 sites in Canada completed interviewer-administered respiratory questionnaires and performed spirometry before and after administration of 200 ug of inhaled salbutamol. The effect of anthropometric variables, smoking exposure and doctor-diagnosed asthma (DDA on bronchodilator responsiveness in forced expiratory volume in 1 second (FEV1 and in forced vital capacity (FVC were evaluated. Multiple logistic regression was used to test for association between quintiles of increasing changes in FEV1 and in FVC after bronchodilator and several respiratory symptoms. RESULTS: Determinants of bronchodilator change in FEV1 and FVC included age, DDA, smoking, respiratory drug use and female gender [p<0.005 to p<0.0001 ]. In subjects without doctor-diagnosed asthma or COPD, bronchodilator response in FEV1 was associated with wheezing [p for trend<0.0001], while bronchodilator response for FVC was associated with breathlessness. [p for trend <0.0001]. CONCLUSIONS: Bronchodilator responsiveness in FEV1 or FVC are associated with different respiratory symptoms in the community. Both flow and volume bronchodilator responses are useful parameters which together can be predictive of both wheezing and breathlessness in the general population.

  20. Forced vital capacity and not central chemoreflex predicts maximal hyperoxic breath-hold duration in elite apneists.

    Bain, Anthony R; Barak, Otto F; Hoiland, Ryan L; Drvis, Ivan; Bailey, Damian M; Dujic, Zeljko; Mijacika, Tanja; Santoro, Antoinette; DeMasi, Daniel K; MacLeod, David B; Ainslie, Philip N

    2017-08-01

    The determining mechanisms of a maximal hyperoxic apnea duration in elite apneists have remained unexplored. We tested the hypothesis that maximal hyperoxic apnea duration in elite apneists is related to forced vital capacity (FVC) but not the central chemoreflex (for CO 2 ). Eleven elite apneists performed a maximal dry static-apnea with prior hyperoxic (100% oxygen) pre-breathing, and a central chemoreflex test via a hyperoxic re-breathing technique (hyperoxic-hypercapnic ventilatory response: HCVR); expressed as the increase in ventilation (pneumotachometry) per increase in arterial CO 2 tension (PaCO 2 ; radial artery). FVC was assessed using standard spirometry. Maximal apnea duration ranged from 807 to 1262s (mean=1034s). Average HCVR was 2.0±1.2Lmin -1 mmHg -1 PaCO 2 . The hyperoxic apnea duration was related to the FVC (r 2 =0.45, p0.05). These findings were interpreted to suggest that during a hyperoxic apnea, a larger initial lung volume prolongs the time before reaching intolerable discomfort associated with pending lung squeeze, while CO 2 sensitivity has little impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.

    Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro

    2018-05-01

    What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying

  2. Carbon dioxide induces erratic respiratory responses in bipolar disorder.

    Mackinnon, Dean F; Craighead, Brandie; Lorenz, Laura

    2009-01-01

    CO(2) respiration stimulates both anxiety and dyspnea ("air hunger") and has long been used to study panic vulnerability and respiratory control. High comorbidity with panic attacks suggests individuals with bipolar disorder may also mount a heightened anxiety response to CO(2). Moreover, problems in the arousal and modulation of appetites are central to the clinical syndromes of mania and depression; hence CO(2) may arouse an abnormal respiratory response to "air hunger". 72 individuals (34 bipolar I, 25 depressive and bipolar spectrum, 13 with no major affective diagnosis) breathed air and air with 5% CO(2) via facemask for up to 15 min each; subjective and respiratory responses were recorded. Nearly half the subjects diverged from the typical response to a fixed, mildly hypercapneic environment, which is to increase breathing acutely, and then maintain a hyperpneic plateau. The best predictors of an abnormal pattern were bipolar diagnosis and anxiety from air alone. 25 individuals had a panic response; panic responses from CO(2) were more likely in subjects with bipolar I compared to other subjects, however the best predictors of a panic response overall were anxiety from air alone and prior history of panic attacks. Heterogeneous sample, liberal definition of panic attack. Carbon dioxide produces abnormal respiratory and heightened anxiety responses among individuals with bipolar and depressive disorders. These may be due to deficits in emotional conditioning related to fear and appetite. Although preliminary, this work suggests a potentially useful test of a specific functional deficit in bipolar disorder.

  3. The CD8 T Cell Response to Respiratory Virus Infections.

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  4. Respiratory Effects and Systemic Stress Response Following ...

    Previous studies have demonstrated that exposure to ozone, a pulmonary irritant, causes myriad systemic metabolic and pulmonary effects that are attributed to neuronal and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically-impaired models. In order to elucidate the systemic consequences and the contribution of the HPA axis in mediating metabolic and respiratory effects of acrolein, a sensory irritant, we examined pulmonary, nasal, and systemic effects in rats following exposure. Male, 10 week old Wistar and Goto Kakizaki (GK) rats, a non-obese type II diabetic Wistar-derived model, were exposed to 0, 2 or 4 ppm acrolein, 4h/day for 1 or 2 days. Acrolein exposure at 4 ppm significantly increased pulmonary and nasal damage in both strains as demonstrated by increased inspiratory and expiratory times indicating labored breathing, elevated biomarkers of injury, and neutrophilic inflammation. Overall, at both time points acrolein exposure caused noticeably more damage in the nasal passages as opposed to the lung with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also led to metabolic impairment by inducing hyperglycemia and glucose intolerance (GK>Wistar) as indicated by glucose tolerance testing. In addition, serum total cholesterol (GKs only), LDL cholesterol (both strains), and free fatty acids (GK>Wistar) levels increased; however, no acrolein-induced changes were noted in branched-c

  5. Respiratory Changes in Response to Cognitive Load: A Systematic Review.

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M; Van den Bergh, Omer

    2016-01-01

    When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load.

  6. Cellular and mucosal immune responses in the respiratory tract of ...

    Summary: This experiment was conducted to evaluate the cellular and mucosal responses in the respiratory tract of Nigerian goats vaccinated intranasally with recombinant Mannheimia hemolytica bacterine. Twenty one goats were divided into five groups, five goats each in three vaccinated groups while three goats each ...

  7. Respiratory

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  8. Respiratory activity as a determinant of radiation survival response

    Bruce, A K; Berner, J D [State Univ. of New York, Buffalo (USA). Dept. of Biology

    1976-09-01

    Respiration is depressed in irradiated bacteria reaching a minimum level in most strains at 1-3 h after exposure when incubated in growth medium. Since a delay in response is observed, direct action on respiratory enzymes is unlikely. The dosage response of respiration varies widely in the strains studied. All strains exhibit two-component dosage-response curves. The facts suggest that respiration is a major factor in influencing cell survival and may be the principal mechanism through which chemical agents modify radiation response.

  9. Acute renal response to rapid onset respiratory acidosis.

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  10. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  11. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure.

    Marcus, Noah J; Pügge, Carolin; Mediratta, Jai; Schiller, Alicia M; Del Rio, Rodrigo; Zucker, Irving H; Schultz, Harold D

    2015-07-15

    In chronic heart failure (CHF), carotid body chemoreceptor (CBC) activity is increased and contributes to increased tonic and hypoxia-evoked elevation in renal sympathetic nerve activity (RSNA). Elevated RSNA and reduced renal perfusion may contribute to development of the cardio-renal syndrome in CHF. Exercise training (EXT) has been shown to abrogate CBC-mediated increases in RSNA in experimental heart failure; however, the effect of EXT on CBC control of renal blood flow (RBF) is undetermined. We hypothesized that CBCs contribute to tonic reductions in RBF in CHF, that stimulation of the CBC with hypoxia would result in exaggerated reductions in RBF, and that these responses would be attenuated with EXT. RBF was measured in CHF-sedentary (SED), CHF-EXT, CHF-carotid body denervation (CBD), and CHF-renal denervation (RDNX) groups. We measured RBF at rest and in response to hypoxia (FiO2 10%). All animals exhibited similar reductions in ejection fraction and fractional shortening as well as increases in ventricular systolic and diastolic volumes. Resting RBF was lower in CHF-SED (29 ± 2 ml/min) than in CHF-EXT animals (46 ± 2 ml/min, P < 0.05) or in CHF-CBD animals (42 ± 6 ml/min, P < 0.05). In CHF-SED, RBF decreased during hypoxia, and this was prevented in CHF-EXT animals. Both CBD and RDNX abolished the RBF response to hypoxia in CHF. Mean arterial pressure increased in response to hypoxia in CHF-SED, but was prevented by EXT, CBD, and RDNX. EXT is effective in attenuating chemoreflex-mediated tonic and hypoxia-evoked reductions in RBF in CHF. Copyright © 2015 the American Physiological Society.

  12. Enhancement of Immune Memory Responses to Respiratory Infection

    2017-08-01

    Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0361 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Farrah

  13. Renal acidification responses to respiratory acid-base disorders.

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  14. Transient cardio-respiratory responses to visually induced tilt illusions

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  15. Vena Cava Responsiveness to Controlled Isovolumetric Respiratory Efforts.

    Folino, Anna; Benzo, Marco; Pasquero, Paolo; Laguzzi, Andrea; Mesin, Luca; Messere, Alessandro; Porta, Massimo; Roatta, Silvestro

    2017-10-01

    Respirophasic variation of inferior vena cava (IVC) size is affected by large variability with spontaneous breathing. This study aims at characterizing the dependence of IVC size on controlled changes in intrathoracic pressure. Ten healthy subjects, in supine position, performed controlled isovolumetric respiratory efforts at functional residual capacity, attaining positive (5, 10, and 15 mmHg) and negative (-5, -10, and -15 mmHg) alveolar pressure levels. The isovolumetric constraint implies that equivalent changes are exhibited by alveolar and intrathoracic pressures during respiratory tasks. The IVC cross-sectional area equal to 2.88 ± 0.43 cm 2 at baseline (alveolar pressure = 0 mmHg) was progressively decreased by both expiratory and inspiratory efforts of increasing strength, with diaphragmatic efforts producing larger effects than thoracic ones: -55 ± 15% decrease, at +15 mmHg of alveolar pressure (P < .01), -80 ± 33 ± 12% at -15 mmHg diaphragmatic (P < .01), -33 ± 12% at -15 mmHg thoracic. Significant IVC changes in size (P < .01) and pulsatility (P < .05), along with non significant reduction in the response to respiratory efforts, were also observed during the first 30 minutes of supine rest, detecting an increase in vascular filling, and taking place after switching from the standing to the supine position. This study quantified the dependence of the IVC cross-sectional area on controlled intrathoracic pressure changes and evidenced the stronger influence of diaphragmatic over thoracic activity. Individual variability in thoracic/diaphragmatic respiratory pattern should be considered in the interpretation of the respirophasic modulations of IVC size. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Respiratory symptoms, sensitization, and exposure-response relationships in spray painters exposed to isocyanates

    Pronk, A.; Preller, L.; Raulf-Heimsoth, M.; Jonkers, I.C.L.; Lammers, J.-W.; Wouters, I.M.; Doekes, G.; Wisnewski, A.V.; Heederik, D.

    2007-01-01

    Rationale: Associations between oligomeric isocyanate exposure, sensitization, and respiratory disease have received little attention, despite the extensive use of isocyanate oligomers. Objectives: To investigate exposure-response relationships of respiratory symptoms and sensitization in a large

  17. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  19. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  20. Respiratory epithelial cell responses to cigarette smoke: the unfolded protein response.

    Kelsen, Steven G

    2012-12-01

    Cigarette smoking exposes the respiratory epithelium to highly toxic, reactive oxygen nitrogen species which damage lung proteins in the endoplasmic reticulum (ER), the cell organelle in which all secreted and membrane proteins are processed. Accumulation of damaged or misfolded proteins in the ER, a condition termed ER stress, activates a complex cellular process termed the unfolded protein responses (UPR). The UPR acts to restore cellular protein homeostasis by regulating all aspects of protein metabolism including: protein translation and syntheses; protein folding; and protein degradation. However, activation of the UPR may also induce signaling pathways which induce inflammation and cell apoptosis. This review discusses the role of UPR in the respiratory epithelial cell response to cigarette smoke and the pathogenesis of lung diseases like COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile

    Reen, F. Jerry; Woods, David F.; Mooij, Marlies J.; Adams, Claire; O'Gara, Fergal

    2012-01-01

    Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection. PMID:23049911

  2. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    Rabouw, Huib H; Langereis, Martijn A; Knaap, Robert C M; Dalebout, Tim J; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J; Kikkert, Marjolein; de Groot, Raoul J; van Kuppeveld, Frank J M

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I

  3. [The prediction of atrial fibrillation recurrence after electrical cardioversion with the chemoreflex sensitivity].

    Budeus, M; Hennersdorf, M; Perings, C; Strauer, B E

    2004-04-01

    Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the reccurrence of atrial fibrilation after electrical cardioversion. We measured the CHRS among 43 patients 24 h after successful electrical cardioversion and the patients were controlled for at least 6 months. During the six months of follow-up a recurrence was observed in 18 patients with a mean of 8.3 days. There was no difference in organic heart disease or in the use of drugs. Left atrial diameter was not significantly larger in patients with a recurrence. Patients with a recurrence have a significantly lower CHRS than patients with sinus rhythm (2.41 +/- 1.82 vs 5.62 +/- 3.02 ms/mmHg, p atrial fibrillation. The predictive power of the method has to be examined by prospective investigations of a larger patient population and a longer follow-up. Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the recurrence of atrial fibrillation after electrical cardioversion.

  4. Respiratory symptoms and bronchial responsiveness in competitive swimmers.

    Stadelmann, Katrin; Stensrud, Trine; Carlsen, Kai-Haakon

    2011-03-01

    A high prevalence of bronchial hyperresponsiveness (BHR) and respiratory symptoms has been reported among competitive swimmers. From the 2002 Winter Olympics, BHR measurements or bronchodilator reversibility have been required for approved use of β2-agonists in sports. The first aim of this study was to evaluate the relationship among respiratory symptoms in young elite swimmers, eucapnic voluntary hyperpnea (EVH), and the inhaled dose of methacholine, causing a 20% decrease in forced expiratory volume in 1 s (FEV1; PD(20 methacholine)). The second aim of this study was to assess the repeatability of the EVH test. For this study, 15 male and 9 female adolescent elite swimmers, aged 15 to 25 yr, performed one PD(20 methacholine) test and two EVH tests in a randomized order. Dry air containing 5% CO2 was inhaled for 6 min with a target ventilation of ≥85% of maximum voluntary ventilation (minimum = 65%). PD(20 methacholine) ≤2 μmol and EVH with FEV1 reduction ≥10% were considered positive. Respiratory symptoms and medication were reported in the modified AQUA2008 questionnaire. Twenty swimmers (83%) reported respiratory symptoms, 13 (65%) of them had a positive provocation test. Fourteen (58%) had at least one positive test to either EVH or PD(20 methacholine); three had only one positive EVH test. One athlete had BHR without symptoms. The sensitivity of PD(20 methacholine) ≤2 μmol for respiratory symptoms was 50% versus 60% and 47.37% for the two EVH tests, respectively, and 75% for PD(20 methacholine) ≤4 μmol. The Bland-Altman plot of the two EVH tests showed a consistent distribution, with only one subject outside the limits of agreement. BHR was frequently found among adolescent competitive swimmers. PD(20 methacholine) ≤2 μmol and EVH ≥ 10% compared well, but PD(20 methacholine) ≤4 μmol had the highest sensitivity for respiratory symptoms. The EVH test has high repeatability but is very expensive and uncomfortable to perform.

  5. Association of serum Clara cell protein CC16 with respiratory infections and immune response to respiratory pathogens in elite athletes.

    Kurowski, Marcin; Jurczyk, Janusz; Jarzębska, Marzanna; Moskwa, Sylwia; Makowska, Joanna S; Krysztofiak, Hubert; Kowalski, Marek L

    2014-04-15

    Respiratory epithelium integrity impairment caused by intensive exercise may lead to exercise-induced bronchoconstriction. Clara cell protein (CC16) has anti-inflammatory properties and its serum level reflects changes in epithelium integrity and airway inflammation. This study aimed to investigate serum CC16 in elite athletes and to seek associations of CC16 with asthma or allergy, respiratory tract infections (RTIs) and immune response to respiratory pathogens. The study was performed in 203 Olympic athletes. Control groups comprised 53 healthy subjects and 49 mild allergic asthmatics. Serum levels of CC16 and IgG against respiratory viruses and Mycoplasma pneumoniae were assessed. Allergy questionnaire for athletes was used to determine symptoms and exercise pattern. Current versions of ARIA and GINA guidelines were used when diagnosing allergic rhinitis and asthma, respectively. Asthma was diagnosed in 13.3% athletes, of whom 55.6% had concomitant allergic rhinitis. Allergic rhinitis without asthma was diagnosed in 14.8% of athletes. Mean CC16 concentration was significantly lower in athletes versus healthy controls and mild asthmatics. Athletes reporting frequent RTIs had significantly lower serum CC16 and the risk of frequent RTIs was more than 2-fold higher in athletes with low serum CC16 (defined as equal to or less than 4.99 ng/ml). Athletes had significantly higher anti-adenovirus IgG than healthy controls while only non-atopic athletes had anti-parainfluenza virus IgG significantly lower than controls. In all athletes weak correlation of serum CC16 and anti-parainfluenza virus IgG was present (R = 0.20, p athletes a weak positive correlations of CC16 with IgG specific for respiratory syncytial virus (R = 0.29, p = 0.009), parainfluenza virus (R = 0.31, p = 0.01) and adenovirus (R = 0.27, p = 0.02) were seen as well. Regular high-load exercise is associated with decrease in serum CC16 levels. Athletes with decreased CC16 are

  6. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  7. Variation among sows in response to porcine reproductive and respiratory syndrome

    Rashidi, H.; Mulder, H.A.; Mathur, P.K.; Knol, E.F.; Arendonk, van J.A.M.

    2014-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with negative impacts on reproduction of sows. Genetic selection to improve the response of sows to PRRS could be an approach to control the disease. Determining sow response to PRRS requires knowing pathogen burden and sow

  8. Dose-response relationships and threshold levels in skin and respiratory allergy

    Arts, J.H.E.; Mommers, C.; Heer, C.de

    2006-01-01

    A literature study was performed to evaluate dose-response relationships and no-effect levels for sensitization and elicitation in skin- and respiratory allergy. With respect to the skin, dose-response relationships and no-effect levels were found for both intradermal and topical induction, as well

  9. Dose response effect of cement dust on respiratory muscles competence in cement mill workers.

    Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad

    2006-12-01

    Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p competence and stratification of results shows a dose-effect of years of exposure in cement mill.

  10. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  11. Phrenic motor outputs in response to bronchopulmonary C‐fibre activation following chronic cervical spinal cord injury

    2016-01-01

    Key points Activation of bronchopulmonary C‐fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity.Following chronic cervical spinal cord injury, bronchopulmonary C‐fibre activation‐induced inhibition of phrenic activity was exaggerated.Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C‐fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord‐injured animals.These data suggest that activation of bronchopulmonary C‐fibres may retard phrenic output recovery following cervical spinal cord injury.The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Abstract Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin‐induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8–9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra‐jugular capsaicin (1.5 μg kg−1) injection was performed to activate the bronchopulmonary C‐fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin‐induced prolongation of expiratory duration was significantly attenuated in C2Hx

  12. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.

    Lee, Kun-Ze

    2016-10-15

    Activation of bronchopulmonary C-fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity. Following chronic cervical spinal cord injury, bronchopulmonary C-fibre activation-induced inhibition of phrenic activity was exaggerated. Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C-fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord-injured animals. These data suggest that activation of bronchopulmonary C-fibres may retard phrenic output recovery following cervical spinal cord injury. The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin-induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8-9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra-jugular capsaicin (1.5 μg kg -1 ) injection was performed to activate the bronchopulmonary C-fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin-induced prolongation of expiratory duration was significantly attenuated in C2Hx animals. However, ipsilateral phrenic

  13. Respiratory Responses to Stimulation of Branchial Vagus Nerve Ganglia of a Teleost Fish

    Ballintijn, C.M.; Luiten, P.G.M.

    1983-01-01

    The effects of electrical stimulation of epibranchial vagus ganglia upon respiration of the carp were investigated. Single shocks evoked fast twitch responses in a number of respiratory muscles with latencies around 18 msec to the beginning and 30-35 msec to the peak of activity. Shocks given during

  14. Progress in Global Surveillance and Response Capacity 10 Years After Severe Acute Respiratory Syndrome

    2013-04-10

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases' synopsis, Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome.  Created: 4/10/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/11/2013.

  15. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  16. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    Sana, Furrukh

    2014-03-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest techniques for dealing with background clutter in situations when it might be time variant. We also present a novel methodology for reducing the required sampling rate of the system significantly while achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above challenges and providing a low-complexity solution for the monitoring of respiratory movements.

  17. Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice.

    Voituron, Nicolas; Shvarev, Yuri; Menuet, Clément; Bevengut, Michelle; Fasano, Caroline; Vigneault, Erika; El Mestikawy, Salah; Hilaire, Gérard

    2010-10-26

    To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response. Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25-50 µM, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice. These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers.

  18. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing

    2015-01-01

    The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  19. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Xiaolu Wang

    Full Text Available The laryngeal chemoreflex (LCR induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS, the vestibular nuclear complex (VNC, the loose formation of the nucleus ambiguus (AmbL, the rostral ventral respiratory group (RVRG, the ventrolateral reticular complex (VLR, the pre-Bötzinger complex (PrBöt, the Bötzinger complex (Böt, the spinal trigeminal nucleus (SP5, and the raphe obscurus nucleus (ROb bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic, and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  20. RSV-induced bronchiolitis but not upper respiratory tract infection is accompanied by an increased nasal IL-18 response

    van Benten, Inesz J.; van Drunen, Cornelis M.; Koopman, Laurens P.; Kleinjan, Alex; van Middelkoop, Barbara C.; de Waal, Leon; Osterhaus, Albert D. M. E.; Neijens, Herman J.; Fokkens, Wytske J.

    2003-01-01

    The aim of this study was to investigate potential differences in the local nasal immune response between bronchiolitis and upper respiratory tract infection induced by respiratory syncytial virus (RSV). Nasal brush samples were obtained from 14 infants with RSV bronchiolitis and from 8 infants with

  1. Effect of Menthol on Respiratory and Perceptual Responses to Exercise in Firefighter Protective Gear

    Yang Zhang

    2015-09-01

    Full Text Available Impaired respiration reduces firefighters’ work capacity. This study evaluated the effect of menthol lozenge on respiratory and perceptual responses during exercise in a hot environment. Ten participants wearing firefighter protective gear performed two repeated exercise and rest trials in a counter-balanced order. Exercise consisted of two bouts of 20-min treadmill exercise at 60% of maximal oxygen uptake and one bout of 20-min stepping exercise at a wet bulb global temperature of 35°C. Participants either took 10-mg menthol or control lozenges prior to the beginning of each exercise bout. Respiratory gas exchange, heart rate, thermal sensation, and breathing comfort were continuously recorded. Menthol lozenges significantly increased pulmonary ventilation (menthol: 45.0±6.6 L•min-1 vs. control: 41.4±5.8 L•min-1 and menthol: 52.7±9.7 L•min-1 vs. control: 46.5±7.0 L•min-1, for the 1st and 2nd treadmill exercise, respectively and oxygen consumption (menthol: 26.7±2.0 ml•kg-1•min-1 vs. control: 25.2±2.3 ml•kg-1•min-1 and menthol: 28.8±2.3 ml•kg-1•min-1 vs. control: 26.9±1.9 ml•kg-1•min-1, for the 1st and 2nd treadmill exercise, respe¬cti¬ve¬ly (p0.05. The ventilatory equivalents though were not different throughout the exercise (p>0.05. Ratings of thermal sensation and breathing comfort were not different (p>0.05. It was concluded that menthol could alter breathing pattern and increase respiratory responses during strenuous exercise in the heat. There was no favorable effect of menthol on respiratory or perceptual responses under exercise-heat stress.

  2. Modification of Traffic-related Respiratory Response by Asthma Control in a Population of Car Commuters

    Mirabelli, Maria C.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Holguin, Fernando; Kewada, Priya; Winquist, Andrea; Flanders, W. Dana; Sarnat, Jeremy A.

    2015-01-01

    Background Effects of traffic-related exposures on respiratory health are well documented, but little information is available about whether asthma control influences individual susceptibility. We analyzed data from the Atlanta Commuter Exposure study to evaluate modification of associations between rush-hour commuting, in-vehicle air pollution, and selected respiratory health outcomes by asthma control status. Methods Between 2009 and 2011, 39 adults participated in Atlanta Commuter Exposure, and each conducted two scripted rush-hour highway commutes. In-vehicle particulate components were measured during all commutes. Among adults with asthma, we evaluated asthma control by questionnaire and spirometry. Exhaled nitric oxide, forced expiratory volume in 1 second (FEV1), and other metrics of respiratory health were measured precommute and 0, 1, 2, and 3 hours postcommute. We used mixed effects linear regression to evaluate associations between commute-related exposures and postcommute changes in metrics of respiratory health by level of asthma control. Results We observed increased exhaled nitric oxide across all levels of asthma control compared with precommute measurements, with largest postcommute increases observed among participants with below-median asthma control (2 hours postcommute: 14.6% [95% confidence interval {CI} = 5.7, 24.2]; 3 hours postcommute: 19.5% [95% CI = 7.8, 32.5]). No associations between in-vehicle pollutants and percent of predicted FEV1 were observed, although higher PM2.5 was associated with lower FEV1 % predicted among participants with below-median asthma control (3 hours postcommute: −7.2 [95% CI = −11.8, −2.7]). Conclusions Level of asthma control may influence respiratory response to in-vehicle exposures experienced during rush-hour commuting. PMID:25901844

  3. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction

    Cyr, Derek D.; Lucas, Joseph E.; Zaas, Aimee K.; Woods, Christopher W.; Newby, L. Kristin; Kraus, William E.; Ginsburg, Geoffrey S.

    2015-01-01

    Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection

  4. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  5. Systemic signature of the lung response to respiratory syncytial virus infection.

    Jeroen L A Pennings

    Full Text Available Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics.

  6. Reassessment of the cardio-respiratory stress response, using the king penguin as a model.

    Willener, Astrid S T; Halsey, Lewis G; Strike, Siobhán; Enstipp, Manfred R; Georges, Jean-Yves; Handrich, Yves

    2015-01-01

    Research in to short-term cardio-respiratory changes in animals in reaction to a psychological stressor typically describes increases in rate of oxygen consumption (V̇(O2)) and heart rate. Consequently, the broad consensus is that they represent a fundamental stressor response generalizable across adult species. However, movement levels can also change in the presence of a stressor, yet studies have not accounted for this possible confound on heart rate. Thus the direct effects of psychological stressors on the cardio-respiratory system are not resolved. We used an innovative experimental design employing accelerometers attached to king penguins (Aptenodytes patagonicus) to measure and thus account for movement levels in a sedentary yet free-to-move animal model during a repeated measures stress experiment. As with previous studies on other species, incubating king penguins (N = 6) exhibited significant increases in both V̇(O2) and heart rate when exposed to the stressor. However, movement levels, while still low, also increased in response to the stressor. Once this was accounted for by comparing periods of time during the control and stress conditions when movement levels were similar as recorded by the accelerometers, only V̇(O2) significantly increased; there was no change in heart rate. These findings offer evidence that changing movement levels have an important effect on the measured stress response and that the cardio-respiratory response per se to a psychological stressor (i.e. the response as a result of physiological changes directly attributable to the stressor) is an increase in V̇(O2) without an increase in heart rate.

  7. Early immune response patterns to pathogenic bacteria are associated to increased risk of lower respiratory infections in children

    Vissing, N. H.; Larsen, Jeppe Madura; Rasmussen, Mette Annelie

    2014-01-01

    Neonatal colonisation of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood (1). Therefore, we hypothesized that children developing LRI have an abnormal immune response to pathogenic bacteria in infancy. We aimed...... to characterise the systemic immune response to pathogenic bacteria at the age of 6 months and study the association with incidence of LRI during the first 3 years of life....

  8. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress?

    Herbert, Neill A.; Steffensen, John F.

    2006-01-01

    a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure  and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate......Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of "respiratory distress" (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether...

  9. Non-response in a cross-sectional study of respiratory health in Norway

    Abrahamsen, Regine; Svendsen, Martin Veel; Henneberger, Paul K; Gundersen, G?lin Finckenhagen; Tor?n, Kjell; Kongerud, Johny; Fell, Anne Kristin M?ller

    2016-01-01

    Objectives Declining participation in epidemiological studies has been reported in recent decades and may lead to biased prevalence estimates and selection bias. The aim of the study was to identify possible causes and effects of non-response in a population-based study of respiratory health in Norway. Design The Telemark study is a longitudinal study that began with a cross-sectional survey in 2013. Setting In 2013, a random sample of 50?000 inhabitants aged 16?50?years, living in Telemark c...

  10. Sex-specific respiratory effects of acute and chronic caffeine administration in newborn rats.

    Kouchi, Hayet; Uppari, NagaPraveena; Joseph, Vincent; Bairam, Aida

    2017-06-01

    Caffeine is widely used for the treatment of apnea of prematurity (AoP) but whether this effect varies with sex is unknown. To shed some light on this question, we present a summary of data obtained on the effects of caffeine on the respiratory chemoreflexes and apnea frequency in 1- and 12-days old male and female rats. Caffeine was either administered as a single acute injection (10mg/kg, i.p.) or for 10 consecutive days (7.5mg/kg/day between 3 and 12days of life by gavage, simulating its clinical use). Acute caffeine had little effects on breathing in 1-day old male and female rats. In 12-days old female rats caffeine reduced the response to hypercapnia (not hypoxia) compared to males. During the steady state of hypoxia females had a lower frequency of apneas than males, and acute injection of caffeine decreased the frequency of apnea, suppressing the differences between males and females. In 12-days old rats chronic administration of caffeine stimulated basal breathing and decreased the frequency of apnea similarly in males and females. In response to hypoxia, chronic caffeine administration also masked the difference in respiratory frequency between males and females observed in control rats. Female rats had lower frequency of apnea than males with or without caffeine treatment. These observations indicate that sex influences the respiratory responses to caffeine and this effect seems to depend on the modality of administration (acute vs chronic) and environmental oxygen (normoxia vs hypoxia). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Lower lymphocyte response in severe cases of acute bronchiolitis due to respiratory syncytial virus].

    Ramos-Fernández, José Miguel; Moreno-Pérez, David; Antúnez-Fernández, Cristina; Milano-Manso, Guillermo; Cordón-Martínez, Ana María; Urda-Cardona, Antonio

    2017-08-14

    Acute bronchiolitis (AB) of the infant has a serious outcome in 6-16% of the hospital admitted cases. Its pathogenesis and evolution is related to the response of the T lymphocytes. The objective of the present study is to determine if the lower systemic lymphocytic response is related to a worse outcome of AB in hospitalised infants. Retrospective observational-analytical study of cases-controls nested in a cohort of patients admitted due to RSV-AB between the period from October 2010 to March 2015. Those with a full blood count in the first 48hours of respiratory distress were included. Infants with underlying disease, bacterial superinfection, and premature infants <32 weeks of gestation were excluded. The main dichotomous variable was PICU admission. Other variables were: gender, age, post-menstrual age, gestational and post-natal tobacco exposure, admission month, type of lactation, and days of onset of respiratory distress. Lymphocyte counts were categorised by quartiles. Bivariate analysis was performed with the main variable and then by logistic regression to analyse confounding factors. The study included 252 infants, of whom 6.6% (17) required PICU admission. The difference in mean±SD of lymphocytes for patients admitted to and not admitted to PICU was 4,044±1755 and 5,035±1786, respectively (Student-t test, P<.05). An association was found between PICU admission and lymphocyte count <3700/ml (Chi-squared, P=.019; OR: 3.2) and it was found to be maintained in the logistic regression, regardless of age and all other studied factors (Wald 4.191 P=.041, OR: 3.8). A relationship was found between lymphocytosis <3700/ml in the first days of respiratory distress and a worse outcome in previously healthy infants <12 months and gestational age greater than 32 weeks with RSV-AB. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  12. Respiratory responses of the air-breathing fish Hoplosternum littorale to hypoxia and hydrogen sulfide.

    Affonso, E G; Rantin, F T

    2005-07-01

    The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.

  13. Factors affecting responses of infants with respiratory distress syndrome to exogenous surfactant therapy.

    Ho, N K

    1993-02-01

    Approximately 20% to 30% of infants with respiratory distress syndrome (RDS) do not respond to surfactant replacement therapy. Unfortunately there is no uniform definition of 'response' or 'non-response' to surfactant therapy. Response was based on improvement in a/A PO2 and/or mean airway pressure (MAP) by some and on improvement in FIO2 and/or MAP by others. Even the point of time at which evaluation of response was done is different in various reports. There is an urgent need to adopt an uniform definition. Most premature babies are surfactant deficient which is the aetiological factor of RDS. Generally good antenatal care and perinatal management are essential in avoidance of premature birth. Babies with lung hypoplasia and who are extremely premature (less than 24 weeks of gestation) do not respond well to exogenous surfactant replacement because of structural immaturity. Prompt management of asphyxiated birth and shock are necessary as there may be negative response to surfactant replacement. Foetal exposure to glucocorticoids improves responsiveness to postnatal administration of surfactant. Antenatal steroid therapy has become an important part of management of RDS with surfactant replacement. The premature lungs with high alveolar permeability tend to develop pulmonary oedema. With the presence of plasma-derived surfactant inhibitors, the response to exogenous surfactant may be affected. These inhibitors may also be released following ventilator barotrauma. The standard of neonatal intensive care such as ventilatory techniques has an important bearing on the outcome of the RDS babies.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Respiratory sinus arrhythmia responses to cognitive tasks: effects of task factors and RSA indices.

    Overbeek, Thérèse J M; van Boxtel, Anton; Westerink, Joyce H D M

    2014-05-01

    Many studies show that respiratory sinus arrhythmia (RSA) decreases while performing cognitive tasks. However, there is uncertainty about the role of contaminating factors such as physical activity and stress-inducing task variables. Different methods to quantify RSA may also contribute to variable results. In 83 healthy subjects, we studied RSA responses to a working memory task requiring varying levels of cognitive control and a perceptual attention task not requiring strong cognitive control. RSA responses were quantified in the time and frequency domain and were additionally corrected for differences in mean interbeat interval and respiration rate, resulting in eight different RSA indices. The two tasks were clearly differentiated by heart rate and facial EMG reference measures. Cognitive control induced inhibition of RSA whereas perceptual attention generally did not. However, the results show several differences between different RSA indices, emphasizing the importance of methodological variables. Age and sex did not influence the results. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cardio-respiratory and plasma lactate responses to exercise with low draught resistances in standardbred trotters.

    Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A

    1996-12-01

    Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.

  16. Toll-8/Tollo negatively regulates antimicrobial response in the Drosophila respiratory epithelium.

    Idir Akhouayri

    2011-10-01

    Full Text Available Barrier epithelia that are persistently exposed to microbes have evolved potent immune tools to eliminate such pathogens. If mechanisms that control Drosophila systemic responses are well-characterized, the epithelial immune responses remain poorly understood. Here, we performed a genetic dissection of the cascades activated during the immune response of the Drosophila airway epithelium i.e. trachea. We present evidence that bacteria induced-antimicrobial peptide (AMP production in the trachea is controlled by two signalling cascades. AMP gene transcription is activated by the inducible IMD pathway that acts non-cell autonomously in trachea. This IMD-dependent AMP activation is antagonized by a constitutively active signalling module involving the receptor Toll-8/Tollo, the ligand Spätzle2/DNT1 and Ect-4, the Drosophila ortholog of the human Sterile alpha and HEAT/ARMadillo motif (SARM. Our data show that, in addition to Toll-1 whose function is essential during the systemic immune response, Drosophila relies on another Toll family member to control the immune response in the respiratory epithelium.

  17. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training?

    Radhakrishnan, K; Sharma, V K; Subramanian, S K

    2017-05-10

    Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (prespiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.

  18. ASSESSMENT OF EFFICACY IN APPLICATION OF TOPICAL IMMUNOLOGIC RESPONSE MODIFIER FOR PREVENTION OF INFLUENZA AND ACUTE RESPIRATORY INFECTIONS IN CHILDREN

    I.N. Lytkina

    2009-01-01

    Full Text Available The purpose of this work was to assess the efficacy of bacterial lysate for prevention of acute respiratory infections. The article provides results of monitoring children in the orphanage who were administered the medication of this group as a prophylactic drug against acute respiratory infections. Children also from orphanages who were not administered the medication were selected as a control group. It was found that out of 80 children who underwent preventive treatment, only 26 children fell ill, while out of 80 children in the control group so did 78 orphans. The results achieved allowed the topical immunologic response modifier to be recommended as a general preventive medication for wide use in children in the period of seasonal respiratory infection incidence rate pickup.Key words: influenza, acute respiratory infections, preventive treatment, children.

  19. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus.

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel

    2015-04-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  1. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  2. Lipoxin A4, a 5-lipoxygenase pathway metabolite, modulates immune response during acute respiratory tularemia.

    Singh, Anju; Rahman, Tabassum; Bartiss, Rose; Arabshahi, Alireza; Prasain, Jeevan; Barnes, Stephen; Musteata, Florin Marcel; Sellati, Timothy J

    2017-02-01

    Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A 4 (LXA 4 ) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA 4 inhibits PGE 2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5 -/- ) mice that are incapable of generating LXA 4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5 -/- mice as compared with their wild-type counterparts. Alox5 -/- mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA 4 to Alox5 -/- mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA 4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria. © Society for Leukocyte Biology.

  3. Cytokine responses to two common respiratory pathogens in children are dependent on interleukin-1β

    Alice C-H. Chen

    2017-10-01

    Full Text Available Protracted bacterial bronchitis (PBB in young children is a common cause of prolonged wet cough and may be a precursor to bronchiectasis in some children. Although PBB and bronchiectasis are both characterised by neutrophilic airway inflammation and a prominent interleukin (IL-1β signature, the contribution of the IL-1β pathway to host defence is not clear. This study aimed to compare systemic immune responses against common pathogens in children with PBB, bronchiectasis and control children and to determine the importance of the IL-1β pathway. Non-typeable Haemophilus influenzae (NTHi stimulation of peripheral blood mononuclear cells (PBMCs from control subjects (n=20, those with recurrent PBB (n=20 and bronchiectasis (n=20 induced high concentrations of IL-1β, IL-6, interferon (IFN-γ and IL-10. Blocking with an IL-1 receptor antagonist (IL-1Ra modified the cellular response to pathogens, inhibiting cytokine synthesis by NTHi-stimulated PBMCs and rhinovirus-stimulated PBMCs (in a separate PBB cohort. Inhibition of IFN-γ production by IL-1Ra was observed across multiple cell types, including CD3+ T cells and CD56+ NK cells. Our findings highlight the extent to which IL-1β regulates the cellular immune response against two common respiratory pathogens. While blocking the IL-1β pathway has the potential to reduce inflammation, this may come at the cost of protective immunity against NTHi and rhinovirus.

  4. Metabolic response to feeding in Tupinambis merianae: circadian rhythm and a possible respiratory constraint.

    Klein, Wilfried; Perry, Steven F; Abe, Augusto S; Andrade, Denis V

    2006-01-01

    The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.

  5. Changing patterns of inpatient respiratory care services over a decade at the Cleveland Clinic: challenges posed and proposed responses.

    Orens, Douglas K; Kester, Lucy; Konrad, Dale J; Stoller, James K

    2005-08-01

    ,921 services/y). The number of respiratory therapy consults performed yearly, beginning in 1992 when the service was first implemented, rose to over 10,000/y by 2001. At the same time, the cost of respiratory therapy services delivered per patient decreased by 4.2%. Regarding staffing trends, the number of full-time-equivalent employees increased by 50% (from 65 to 97.5). However, the percent turnover rate among respiratory therapists decreased by 2.3-fold (from 11.5% to 5%). In the face of these trends, the hospital mortality rate for patients with diagnosis-related group 088 (high users of respiratory care services) decreased by 53%, and the length of hospital stay for all patients receiving respiratory treatments decreased by 30%. This analysis shows that trends of growing demands for respiratory care services have been accompanied by generally improving clinical outcomes and favorable retention of respiratory therapists in our section. We believe that a focus on the process of care, including enhanced professionalism, communication, and participation, has permitted a favorable response to these rising demands.

  6. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  7. Interaction between gas cooking and GSTM1 null genotype in bronchial responsiveness: results from the European Community Respiratory Health Survey.

    Amaral, A.F.S.; Ramasamy, A.; Castro-Giner, F.; Minelli, C.; Accordini, S.; Sorheim, I.C.; Pin, I.; Kogevinas, M.; Jögi, R.; Balding, D.J.; Norbäck, D.; Verlato, G.; Olivieri, M.; Probst-Hensch, N.; Janson, C.; Zock, J.P.; Heinrich, J.; Jarvis, D.L.

    2014-01-01

    Background: Increased bronchial responsiveness is characteristic of asthma. Gas cooking, which is a major indoor source of the highly oxidant nitrogen dioxide, has been associated with respiratory symptoms and reduced lung function. However, little is known about the effect of gas cooking on

  8. Zinc source and concentration altered physiological responses of beef heifers during a combined viral-bacterial respiratory challenge

    Three treatments were evaluated in feedlot heifers to determine the effects of zinc supplementation on the immune response to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (255+/-15 kg) were subjected to a 30d period of Zn depletion, then randomly assigned to one ...

  9. Predictors of bronchodilator responsiveness in infants with wheezing associated respiratory tract infection.

    Deerojanawong, J; Prapphal, N

    1994-07-01

    The responsiveness to bronchodilator is variable in infants with wheezing associated respiratory illness (WARI). Factors for prediction of the response will lead to more rational use of the bronchodilator in these infants. We examined the possible predictive factors in 44 children under 2 years of age who had their first episode of WARI. All of them were treated with 0.15 mg/kg of nebulized salbutamol. Thirty patients (68%) with decreasing clinical score > or = 3 after treatment were considered as the responders while the remainder (14 infants) were non responders. By using Chi-square test, Fisher exact test and Mann-Whitney U test to compare the data of the 2 groups, the significant factors for the responders were older than 6 months and history of previous LRI (p < 0.01). The significant factors for the non-responders included concurrent diarrhea, patchy pulmonary infiltration and positive RSV in the nasopharyngeal secretion (p < 0.01). These results suggested effective bronchodilator therapy in infants older than 6 months or having a history of previous LRI. Those who had acute RSV infection or patchy infiltration in chest X-ray and associated diarrhea were less likely to respond.

  10. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  11. Proinflammatory Cytokine Responses in Extra-Respiratory Tissues During Severe Influenza

    Short, Kirsty R; Veeris, Rebecca; Leijten, Lonneke M; van den Brand, Judith M; Jong, Victor L; Stittelaar, Koert J; Osterhaus, Ab D M E|info:eu-repo/dai/nl/074960172; Andeweg, Arno C; van Riel, Debby

    2017-01-01

    Severe influenza is often associated with disease manifestations outside the respiratory tract. While proinflammatory cytokines can be detected in the lungs and blood of infected patients, the role of extra-respiratory organs in the production of proinflammatory cytokines is unknown. Here, we show

  12. Proinflammatory Cytokine Responses in Extra-Respiratory Tissues during Severe Influenza

    Short, Kirsty R.; Veeris, Rebecca; Leijten, Lonneke M.; van den Brand, Judith M A; Jong, Victor L.; Stittelaar, Koert; Osterhaus, Ab D.M.E.; Andeweg, Arno C; Van Riel, Debby

    2017-01-01

    Severe influenza is often associated with disease manifestations outside the respiratory tract. While proinflammatory cytokines can be detected in the lungs and blood of infected patients, the role of extra-respiratory organs in the production of proinflammatory cytokines is unknown. Here, we show

  13. Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Daly Melissa

    2006-08-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. Methods To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. Results RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. Conclusion Neonatal RSV exposure results in long term

  14. FDG PET/CT for therapeutic response monitoring in multi-site non-respiratory tuberculosis

    Geng Tian; Yong Xiao; Bin Chen; Jun Xia; Hong Guan; Qunyi Deng

    2010-01-01

    Background: Tuberculosis (TB) can produce positive signals during 18 F-fluorodeoxyglucose positron emission/computed tomography (FDG PET/CT) scanning. Until now, there has been no better method than clinical assessment to evaluate the therapeutic response of non-respiratory TB (NRTB). Purpose: To retrospectively assess the ability of FDG PET/CT to evaluate the response to anti-TB treatment in patients with NRTB. Material and Methods: Three patients with multi-site NRTB underwent repeat PET/CT scans during anti-TB treatment. Changes in maximal standard uptake value (SUVmax) of the TB lesions on PET/CT images were analyzed between two scans. Initial PET/CT scans were performed before the start of anti-TB treatment, and later scans were performed after completion of the treatment. Results: Patient 1, a 63-year-old female, and patient 2, a 50-year-old male, were diagnosed as multi-site NRTB by biopsy. Patient 3, a 37-year-old male was diagnosed clinically. These patients demonstrated multiple FDG-avid lesions in whole body on initial PET/CT images. The highest SUVmax of patient 1, 2, and 3 were 13.6, 17.7, and 13.9 separately. After completion of the treatment, all positive signals of patient 1, 2, and 3 decreased to undetectable value on repeated PET/CT scans with intervals of 318 days, 258 days, and 182 days separately. Conclusion: FDG PET/CT scan may be useful for monitoring responses to anti-TB treatment in patients with NRTB

  15. Respiratory and cardiovascular response during electronic control device (ECD exposure in law enforcement trainees

    Kirsten M. VanMeenen

    2013-04-01

    Full Text Available Objective: Law enforcement represents a large population of workers who may be exposed to electronic control devices (ECDs. Little is known about the potential effect of exposure to these devices on respiration or cardiovascular response during current discharge. Methods: Participants (N=23 were trainees exposed to 5 seconds of an ECD (Taser X26® as a component of training. Trainees were asked to volitionally inhale during exposure. Respiratory recordings involved a continuous waveform recorded throughout the session including during the exposure period. Heart rate was calculated from a continuous pulse oximetry recording. Results: The exposure period resulted in the cessation of normal breathing patterns in all participants and in particular a decrease in inspiratory activity. No significant changes in heart rate during ECD exposure were found. Conclusions: This is the first study to examine breathing patterns during ECD exposure with the resolution to detect changes over this discrete period of time. In contrast to reports suggesting respiration is unaffected by ECDs, present evidence suggests that voluntary inspiration is severely compromised. There is no evidence of cardiac disruption during ECD exposure.

  16. Acute exposure to realistic acid fog: effects on respiratory function and airway responsiveness in asthmatics.

    Leduc, D; Fally, S; De Vuyst, P; Wollast, R; Yernault, J C

    1995-11-01

    Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fogs with physical and chemical characteristics similar to those of natural fogs assessed in this urban area. Fogwater was sampled using a screen collector where droplets are collected by inertial impaction and chemical content of fogwater was assessed by measurement of conductivity, pH, visible colorimetry, high pressure liquid chromatography, and atomic absorption spectrophotometry over a period of one year. The fogwater composition was dominated by NH4+ and SO4- ions. First we evaluated the possible effect of fog acidity alone. For this purpose 14 subjects with asthma were exposed at rest for 1 hr [mass median aerodynamic diameter to a large-particle (MMAD), 9 microns] aerosol with H2SO4 concentration of 500 micrograms/m3 (pH 2.5) and osmolarity of 300 mOsm. We did not observe significant change in pulmonary function or bronchial responsiveness to metacholine. In the second part of the work, 10 asthmatic subjects were exposed to acid fog (MMAD, 7 microns) containing sulfate and ammonium ions (major ions recovered in naturally occurring fogs) with pH 3.5 and osmolarity 30 mOsm. Again, pulmonary function and bronchial reactivity were not modified after inhalation of this fog. It was concluded that short-term exposure to acid fog reproducing acidity and hypoosmolarity of natural polluted fogs does not induce bronchoconstriction and does not change bronchial responsiveness in asthmatics.

  17. Quantitative trait loci associated with the immune response to a bovine respiratory syncytial virus vaccine.

    Richard J Leach

    Full Text Available Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501 which was genotyped for 165 microsatellite markers (covering all autosomes to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected.Heifers from the same population (n = 195 were subsequently immunised with a 40-mer Foot-and-Mouth Disease Virus peptide (FMDV in a previous publication. Several of these QTL associated with the FMDV traits had overlapping peak positions with QTL in the current study, including the QTL on BTA23 which included the bovine Major Histocompatibility Complex (BoLA, and QTL on BTA9 and BTA24, suggesting that the genes underlying these QTL may control responses to multiple antigens. These results lay the groundwork for future investigations to identify the

  18. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    Sana, Furrukh; Ballal, Tarig; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2014-01-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation

  19. [The response of the upper respiratory tract to the impact of atmospheric pollution].

    Mukhamadiev, R A; Ismagilov, Sh M

    2015-01-01

    The present literature review characterizes the environmental conditions in the Russian Federation in general and the Republic of Tatarstan in particular with special reference to the influence of atmospheric pollution on the development and the clinical picture of the diseases of the respiratory organs including pathology of the upper respiratory tract in the populations of the industrial centres and other environmentally unfriendly areas. The views of the domestic and foreign authors concerning the role of the environmental factors in the clinical picture of the upper respiratory tract disorders are described in detail. The authors emphasize the necessity of the further investigationsinto this problem and the development of the methods for the prevention of diseases of the upper respiratory react.

  20. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV in Oman

    I.S. Al-Abaidani

    2014-12-01

    Full Text Available Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV. The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman.

  2. Respiratory sinus arrhythmia responses to induced emotional states: effects of RSA indices, emotion induction method, age, and sex.

    Overbeek, Thérèse J M; van Boxtel, Anton; Westerink, Joyce H D M

    2012-09-01

    The literature shows large inconsistencies in respiratory sinus arrhythmia (RSA) responses to induced emotional states. This may be caused by differences in emotion induction methods, RSA quantification, and non-emotional demands of the situation. In 83 healthy subjects, we studied RSA responses to pictures and film fragments eliciting six different discrete emotions relative to neutral baseline stimuli. RSA responses were quantified in the time and frequency domain and were additionally corrected for differences in mean heart rate and respiration rate, resulting in eight different RSA response measures. Subjective ratings of emotional stimuli and facial electromyographic responses indicated that pictures and film fragments elicited the intended emotions. Although RSA measures showed various emotional effects, responses were quite heterogeneous and frequently nonsignificant. They were substantially influenced by methodological factors, in particular time vs. frequency domain response measures, correction for changes in respiration rate, use of pictures vs. film fragments, and sex of participants. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  4. Circulatory, respiratory and metabolic responses in Thoroughbred horses during the first 400 meters of exercise.

    Littlejohn, A; Snow, D H

    1988-01-01

    These studies investigated circulatory, respiratory and metabolic responses in four Thoroughbred geldings during the first 400 metres of galloping (mean speed 14.4 +/- 0.38 m.s-1), cantering (mean speed 10.0 +/- 0.61 m.s-1) and walking (mean speed 1.58 +/- 0.05 m.s-1) from a standing start. A radio-controlled device which collected blood samples anaerobically during each 100 m section of the exercise track allowed analyses of changes in and functional relationships of the variables measured. During the 400 m gallop, the mean heart rate (HR) increased from 125 to 201 beats.min-1 and the haematocrit (Hct) from 0.513 to 0.589 l/l-1. The haemoglobin [Hb], lactate [LA] and potassium [K+] concentrations increased significantly, while the pH and the partial pressure of oxygen (PaO2) decreased significantly. The arterial partial pressure of carbon dioxide (PaCO2) and the plasma bicarbonate concentration did not change significantly. There were significant correlations between HR and Hct, HR and [Hb], HR and PaO2, HR and pH, HR and PvCO2, HR and [LA], HR and [K+], pH and [K+], Hct and PaO2, [Hb] and PaO2, PaCO2 and PaO2, [LA] and PaO2, pH and PaO2, [K+] and PaO2, stride frequency and PaO2. With the exception of the PvCO2 which increased significantly, changes in venous blood during the gallop were in the same direction as those of arterial blood. Thirty seconds before the start of the gallop, both HR and [Hb] were significantly higher than at rest, providing an approximate three-fold increase in oxygen delivery compared to that of the resting state.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Differential gene expression responses distinguish contact and respiratory sensitizers and nonsensitizing irritants in the local lymph node assay.

    Adenuga, David; Woolhiser, Michael R; Gollapudi, B Bhaskar; Boverhof, Darrell R

    2012-04-01

    Genomic approaches have the potential to enhance the specificity and predictive accuracy of existing toxicology endpoints, including those for chemical sensitization. The present study was conducted to determine whether gene expression responses can distinguish contact sensitizers (1-chloro-2,4-dinitrobenzene [DNCB] and hexyl cinnamic aldehyde [HCA]), respiratory sensitizers (ortho-phthalaldehyde and trimellitic anhydride [TMA]), and nonsensitizing irritants (methyl salicylate [MS] and nonanoic acid [NA]) in the local lymph node assay (LLNA). Female Balb/c mice received doses of each chemical as per the standard LLNA dosing regimen on days 1, 2, and 3. Auricular lymph nodes were analyzed for tritiated thymidine ((3)HTdR) incorporation on day 6 and for gene expression responses on days 6 and 10. All chemicals induced dose-dependent increases in stimulation index, which correlated strongly with the number of differentially expressed genes. A majority of genes modulated by the irritants were similarly altered by the sensitizers, consistent with the irritating effects of the sensitizers. However, a select number of responses involved with immune-specific functions, such as dendritic cell activation, were unique to the sensitizers and may offer the ability to distinguish sensitizers from irritants. Genes for the mast cell proteases 1 and 8, Lgals7, Tim2, Aicda, Il4, and Akr1c18 were more strongly regulated by respiratory sensitizers compared with contact sensitizers and may represent potential biomarkers for discriminating between contact and respiratory sensitizers. Collectively, these data suggest that gene expression responses may serve as useful biomarkers to distinguish between respiratory and contact sensitizers and nonsensitizing irritants in the LLNA.

  6. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    Danielle Botelho

    2018-03-01

    Full Text Available Here we examine the organ level toxicology of both carbon black (CB and silver nanoparticles (AgNP. We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF. C57Bl6/J male mice were intratracheally instilled with saline (control, low (0.05 μg/g or high (0.5 μg/g doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

  7. Cross-shift study of exposure-response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry

    Straumfors, Anne; Heldal, Kari Kulvik; Eduard, Wijnand; Wouters, Inge M; Ellingsen, Dag G; Skogstad, Marit

    2016-01-01

    OBJECTIVE: We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. METHODS: Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and

  8. Reduced nasal IL-10 and enhanced TNFalpha responses during rhinovirus and RSV-induced upper respiratory tract infection in atopic and non-atopic infants

    van Benten, I. J.; van Drunen, C. M.; Koevoet, J. L. M.; Koopman, L. P.; Hop, W. C. J.; Osterhaus, A. D. M. E.; Neijens, H. J.; Fokkens, W. J.

    2005-01-01

    Rhinovirus and respiratory syncytial virus (RSV) are the most prevalent inducers of upper respiratory tract infections (URTI) in infants and may stimulate immune maturation. To estimate the amount of immune stimulation, nasal immune responses were examined during rhinovirus and RSV-induced URTI in

  9. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility

    Price, David B; Buhl, Roland; Chan, Adrian

    2018-01-01

    BACKGROUND: Chronic non-specific respiratory symptoms are difficult to manage. This trial aimed to evaluate the association between baseline fractional exhaled nitric oxide (FeNO) and the response to inhaled corticosteroids in patients with non-specific respiratory symptoms. METHODS: In this doub...

  10. Attend or defend? Sex differences in behavioral, autonomic, and respiratory response patterns to emotion-eliciting films.

    Wilhelm, Frank H; Rattel, Julina A; Wegerer, Melanie; Liedlgruber, Michael; Schweighofer, Simon; Kreibig, Sylvia D; Kolodyazhniy, Vitaliy; Blechert, Jens

    2017-12-01

    Sex differences in emotional reactivity have been studied primarily for negative but less so for positive stimuli; likewise, sex differences in the psychophysiological response-patterning during such stimuli are poorly understood. Thus, the present study examined sex differences in response to negative/positive and high/low arousing films (classified as threat-, loss-, achievement-, and recreation-related, vs. neutral films), while measuring 18 muscular, autonomic, and respiratory parameters. Sex differences emerged for all films, but were most prominent for threat-related films: Despite equivalent valence and arousal ratings, women displayed more facial-muscular and respiratory responding than men and pronounced sympathetic activation (preejection period, other cardiovascular and electrodermal measures), while men showed coactivated sympathetic/parasympathetic responding (including increased respiratory sinus arrhythmia). This indicates a prototypical threat-related defense response in women, while men showed a pattern of sustained orienting, which can be understood as a shift toward less threat proximity in the defense cascade model. Clinical implications are discussed within a socio-evolutionary framework. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Meta-Analysis of the Association between Gender and Protective Behaviors in Response to Respiratory Epidemics and Pandemics.

    Moran, Kelly R; Del Valle, Sara Y

    2016-01-01

    Respiratory infectious disease epidemics and pandemics are recurring events that levy a high cost on individuals and society. The health-protective behavioral response of the public plays an important role in limiting respiratory infectious disease spread. Health-protective behaviors take several forms. Behaviors can be categorized as pharmaceutical (e.g., vaccination uptake, antiviral use) or non-pharmaceutical (e.g., hand washing, face mask use, avoidance of public transport). Due to the limitations of pharmaceutical interventions during respiratory epidemics and pandemics, public health campaigns aimed at limiting disease spread often emphasize both non-pharmaceutical and pharmaceutical behavioral interventions. Understanding the determinants of the public's behavioral response is crucial for devising public health campaigns, providing information to parametrize mathematical models, and ultimately limiting disease spread. While other reviews have qualitatively analyzed the body of work on demographic determinants of health-protective behavior, this meta-analysis quantitatively combines the results from 85 publications to determine the global relationship between gender and health-protective behavioral response. The results show that women in the general population are about 50% more likely than men to adopt/practice non-pharmaceutical behaviors. Conversely, men in the general population are marginally (about 12%) more likely than women to adopt/practice pharmaceutical behaviors. It is possible that factors other than pharmaceutical/non-pharmaceutical status not included in this analysis act as moderators of this relationship. These results suggest an inherent difference in how men and women respond to epidemic and pandemic respiratory infectious diseases. This information can be used to target specific groups when developing non-pharmaceutical public health campaigns and to parameterize epidemic models incorporating demographic information.

  12. A Meta-Analysis of the Association between Gender and Protective Behaviors in Response to Respiratory Epidemics and Pandemics.

    Kelly R Moran

    Full Text Available Respiratory infectious disease epidemics and pandemics are recurring events that levy a high cost on individuals and society. The health-protective behavioral response of the public plays an important role in limiting respiratory infectious disease spread. Health-protective behaviors take several forms. Behaviors can be categorized as pharmaceutical (e.g., vaccination uptake, antiviral use or non-pharmaceutical (e.g., hand washing, face mask use, avoidance of public transport. Due to the limitations of pharmaceutical interventions during respiratory epidemics and pandemics, public health campaigns aimed at limiting disease spread often emphasize both non-pharmaceutical and pharmaceutical behavioral interventions. Understanding the determinants of the public's behavioral response is crucial for devising public health campaigns, providing information to parametrize mathematical models, and ultimately limiting disease spread. While other reviews have qualitatively analyzed the body of work on demographic determinants of health-protective behavior, this meta-analysis quantitatively combines the results from 85 publications to determine the global relationship between gender and health-protective behavioral response. The results show that women in the general population are about 50% more likely than men to adopt/practice non-pharmaceutical behaviors. Conversely, men in the general population are marginally (about 12% more likely than women to adopt/practice pharmaceutical behaviors. It is possible that factors other than pharmaceutical/non-pharmaceutical status not included in this analysis act as moderators of this relationship. These results suggest an inherent difference in how men and women respond to epidemic and pandemic respiratory infectious diseases. This information can be used to target specific groups when developing non-pharmaceutical public health campaigns and to parameterize epidemic models incorporating demographic information.

  13. Respiratory acidosis

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  14. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    Angela Pizzolla

    Full Text Available The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND. Respiratory tolerance was induced by repeated intranasal (i.n. administration of ovalbumin (OVA, prior to induction of allergic airway inflammation (AAI by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation.

  15. Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria.

    Vissing, Nadja Hawwa; Larsen, Jeppe Madura; Rasmussen, Morten Arendt; Chawes, Bo Lund Krogsgaard; Thysen, Anna Hammerich; Bønnelykke, Klaus; Brix, Susanne; Bisgaard, Hans

    2016-05-01

    Neonatal colonization of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood. Therefore, we hypothesized that children developing LRI have an aberrant immune response to pathogenic bacteria in infancy. The objective was to characterize in vitro the early life systemic immune response to pathogenic bacteria and study the possible association with incidence of LRI during the first 3 years of life. The Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) is a clinical birth cohort study of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2, IL-5, IL-10, IL-13 and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. A multivariable model including all cytokine responses from the 3 different bacterial stimulations significantly identified children at risk of LRI (P = 0.006). The immune response pattern associated with LRI was characterized by perturbed production of several cytokines rather than production of one specific cytokine, and was independent of concurrent asthma. TNF-α and IL-5 were key drivers but did not explain the entire variation in LRI susceptibility. Children at risk of future LRI present a perturbed systemic immune response upon exposure to common airway pathogens in early life.

  16. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  17. Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria

    Vissing, Nadja Hawwa; Larsen, Jeppe Madura; Rasmussen, Morten Arendt

    2016-01-01

    of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to H. influenzae, M. catarrhalis and S. pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2......, IL-5, IL-10, IL-13, and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. RESULTS:: A multivariable model including all cytokine responses from the three different bacterial stimulations...

  18. Cardiovascular, respiratory and metabolic responses to temperature and hypoxia of the winter frog Rana catesbeiana

    Rocha P.L.

    1997-01-01

    Full Text Available The objective of the present study was to determine the effects of hypoxia and temperature on the cardiovascular and respiratory systems and plasma glucose levels of the winter bullfrog Rana catesbeiana. Body temperature was maintained at 10, 15, 25 and 35oC for measurements of breathing frequency, heart rate, arterial blood pressure, metabolic rate, plasma glucose levels, blood gases and acid-base status. Reducing body temperature from 35 to 10oC decreased (P<0.001 heart rate (bpm from 64.0 ± 3.1 (N = 5 to 12.5 ± 2.5 (N = 6 and blood pressure (mmHg (P<0.05 from 41.9 ± 2.1 (N = 5 to 33.1 ± 2.1 (N = 6, whereas no significant changes were observed under hypoxia. Hypoxia-induced changes in breathing frequency and acid-base status were proportional to body temperature, being pronounced at 25oC, less so at 15oC, and absent at 10oC. Hypoxia at 35oC was lethal. Under normoxia, plasma glucose concentration (mg/dl decreased (P<0.01 from 53.0 ± 3.4 (N = 6 to 35.9 ± 1.7 (N = 6 at body temperatures of 35 and 10oC, respectively. Hypoxia had no significant effect on plasma glucose concentration at 10 and 15oC, but at 25oC there was a significant increase under conditions of 3% inspired O2. The arterial PO2 and pH values were similar to those reported in previous studies on non-estivating Rana catesbeiana, but PaCO2 (37.5 ± 1.9 mmHg, N = 5 was 3-fold higher, indicating increased plasma bicarbonate levels. The estivating bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since during low body temperatures the sensitivity of most physiological systems to hypoxia is reduced

  19. Respiratory immune responses in the chicken; Towards development of mucosal avian influenza virus vaccines

    de Geus, E.D.

    2012-01-01

    Several important poultry pathogens, including avian influenza virus (AIV), enter the host through the mucosae of the respiratory tract (RT) and subsequently disseminate towards other organs in the body. Therefore, animal health significantly depends on the control of infection in the lung tissue by

  20. Autonomic and cardio-respiratory responses to exercise in Brugada Syndrome patients

    Raoyrin Chanavirut, MSc

    2016-10-01

    Conclusion: Thai BrS patients had a more rapid rate of restoration of the parasympathetic and smaller level of sympathetic activation after exercise. They had mild hyperkalemia which is reduced according to the exercise. Furthermore, they exhibited impaired cardio-respiratory fitness.

  1. Respiratory sinus arrhythmia responses to cognitive tasks : effects of task factors and RSA indices

    Overbeek, T.; Boxtel, van Anton; Westerink, J.H.D.M.

    2014-01-01

    Many studies show that respiratory sinus arrhythmia (RSA) decreases while performing cognitive tasks. However, there is uncertainty about the role of contaminating factors such as physical activity and stress-inducing task variables. Different methods to quantify RSA may also contribute to variable

  2. Respiratory sinus arrhythmia responses to cognitive tasks: Effects of task factors and RSA indices

    Overbeek, T.J.M.; van Boxtel, A.; Westerink, J.H.D.M.

    2014-01-01

    Many studies show that respiratory sinus arrhythmia (RSA) decreases while performing cognitive tasks. However, there is uncertainty about the role of contaminating factors such as physical activity and stress-inducing task variables. Different methods to quantify RSA may also contribute to variable

  3. Immunological response to quadrivalent HPV vaccine in treatment of recurrent respiratory papillomatosis

    Tjon Pian Gi, Robin E. A.; San Giorgi, Michel R. M.; Pawlita, Michael; Michel, Angelika; van Hemel, Bettien M.; Schuuring, Ed M. D.; van den Heuvel, Edwin R.; van der Laan, Bernard F. A. M.; Dikkers, Frederik G.

    2016-01-01

    Aim of this study was to explore influence of the quadrivalent HPV vaccine (Gardasil(A (R))) on the immune status of recurrent respiratory papillomatosis (RRP) patients. In retrospective observational study, six RRP patients who received the quadrivalent HPV vaccine and whose HPV seroreactivity was

  4. Immunological response to quadrivalent HPV vaccine in treatment of recurrent respiratory papillomatosis

    Tjon Pian Gi, R.E.A.; San Giorgi, M.R.M.; Pawlita, M.; Michel, A.; van Hemel, B.M.; Schuuring, E.M.D.; van den Heuvel, E.R.; van der Laan, B.F.A.M.; Dikkers, F.G.

    2016-01-01

    Aim of this study was to explore influence of the quadrivalent HPV vaccine (Gardasil®) on the immune status of recurrent respiratory papillomatosis (RRP) patients. In retrospective observational study, six RRP patients who received the quadrivalent HPV vaccine and whose HPV seroreactivity was

  5. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia.

    Morparia, Kavita G; Reddy, Srijaya K; Olivieri, Laura J; Spaeder, Michael C; Schuette, Jennifer J

    2018-04-01

    The determination of fluid responsiveness in the critically ill child is of vital importance, more so as fluid overload becomes increasingly associated with worse outcomes. Dynamic markers of volume responsiveness have shown some promise in the pediatric population, but more research is needed before they can be adopted for widespread use. Our aim was to investigate effectiveness of respiratory variation in peak aortic velocity and pulse pressure variation to predict fluid responsiveness, and determine their optimal cutoff values. We performed a prospective, observational study at a single tertiary care pediatric center. Twenty-one children with normal cardiorespiratory status undergoing general anesthesia for neurosurgery were enrolled. Respiratory variation in peak aortic velocity (ΔVpeak ao) was measured both before and after volume expansion using a bedside ultrasound device. Pulse pressure variation (PPV) value was obtained from the bedside monitor. All patients received a 10 ml/kg fluid bolus as volume expansion, and were qualified as responders if stroke volume increased >15% as a result. Utility of ΔVpeak ao and PPV and to predict responsiveness to volume expansion was investigated. A baseline ΔVpeak ao value of greater than or equal to 12.3% best predicted a positive response to volume expansion, with a sensitivity of 77%, specificity of 89% and area under receiver operating characteristic curve of 0.90. PPV failed to demonstrate utility in this patient population. Respiratory variation in peak aortic velocity is a promising marker for optimization of perioperative fluid therapy in the pediatric population and can be accurately measured using bedside ultrasonography. More research is needed to evaluate the lack of effectiveness of pulse pressure variation for this purpose.

  6. Repetitive hypoxia rapidly depresses cardio-respiratory responses during active sleep but not quiet sleep in the newborn lamb

    Johnston, Renea V; Grant, Daniel A; Wilkinson, Malcolm H; Walker, Adrian M

    1999-01-01

    Arousal from sleep is an important protective response to hypoxia that becomes rapidly depressed in active sleep (AS) when hypoxia is repeated. This study questioned whether there might also be selective depression of cardio-respiratory responses to hypoxia during AS. Nine newborn lambs (7-22 days of age) were studied over three successive nights. The first and third nights were baseline studies (inspired oxygen fraction, Fi,O2= 0.21). During the second night, during every epoch of sleep, lambs were exposed to 60 s episodes of isocapnic hypoxia (Fi,O2= 0.10). During quiet sleep (QS), the probability of arousal in hypoxia exceeded the probability of spontaneous arousal (P ventilatory and blood pressure responses in AS, but not in QS. Selective depression of responses during AS may render the newborn particularly vulnerable to hypoxia in this state. PMID:10457072

  7. Assessment of respiratory and ion transport potential of Penaeus japonicus gills in response to environmental pollution

    H.A. ABDEL-MOHSEN

    2009-06-01

    Full Text Available The present study aims to pinpoint the respiratory and ion transport potential of gills of Penaeus japonicus living in Abu-Qir Bay, East of Alexandria, Egypt. Our results revealed clear histological impairments in gill structure. These alterations were mainly represented by the presence of large vacuoles in gill axis and gill lamellae. In addition, narrow, disrupted gill lamellae with wavy cuticle and shrunk pillar cells were detected. Moreover, some cells clearly showed pyknosis. Gill ultrastructure also showed abnormal chromatin condensation inside the nucleus. Obvious alterations in the typical shape and structure of mitochondria were observed. Noticeably, the main characteristics of ion regulating gill epithelium were absent thus suggesting a low ion transport activity of P. japonicus gills. Statistically, this was further proved by the significantly higher activity levels of respiratory enzymes, namely, lactate dehydrogenase (LDH and succinate dehydrogenase (SDH compared to those of the ion transport enzymes, namely, adenosine triphosphatase (ATPase and carbonic anhydrase (CA in gills and haemolymph. SDH activity levels were higher than the corresponding levels of LDH in gills and its own level in haemolymph, indicating a contradictory effect of pollution on respiratory enzyme activity levels.

  8. Respiratory symptoms and bronchial responsiveness are related to dietary salt intake and urinary potassium excretion in male children.

    Pistelli, R; Forastiere, F; Corbo, G M; Dell'Orco, V; Brancato, G; Agabiti, N; Pizzabiocca, A; Perucci, C A

    1993-04-01

    To investigate whether dietary salt intake and urinary sodium and potassium levels are related to respiratory symptoms and bronchial responsiveness, a cross-sectional study among 2593 subjects aged 9 to 16 was conducted in four communities of the Latium region (Italy). Questionnaires were administered to the parents, urine samples were collected, lung function, methacholine challenge tests and prick tests were performed. Information about familial and personal dietary salt use and respiratory health was collected from the parents of 2439 (94%) subjects. A total of 2020 methacholine challenge tests and 916 urinary sodium and potassium levels were available for analysis. Personal table salt use was strongly related to cough and phlegm apart from colds (adjusted odds ratios, OR, 1.87, 95% confidence intervals, CI, 1.20-2.90), wheezing apart from colds (OR, 2.19, 95% CI, 1.27-3.77), wheezing with dyspnoea (OR, 1.45, 95% CI, 0.98-2.12) and wheezing after exercise (OR, 2.16, 95% CI, 1.35-3.44). These associations were mainly found in boys. Use of familial table salt and canned food showed no relation to respiratory symptoms. Increased bronchial responsiveness was associated with a higher urinary potassium excretion in boys, but not with urinary sodium. In conclusion, personal table salt use is related to an increased prevalence of bronchial symptoms; an increase in bronchial responsiveness among those with higher potassium excretion also seems to be implied. Although it is difficult to interpret the results of this study in causal terms, the findings might be relevant to the distribution of bronchial symptoms and diseases in the population.

  9. Interaction between gas cooking and GSTM1 null genotype in bronchial responsiveness: results from the European Community Respiratory Health Survey

    Amaral, André F S; Ramasamy, Adaikalavan; Castro-Giner, Francesc; Minelli, Cosetta; Accordini, Simone; Sørheim, Inga-Cecilie; Pin, Isabelle; Kogevinas, Manolis; Jõgi, Rain; Balding, David J; Norbäck, Dan; Verlato, Giuseppe; Olivieri, Mario; Probst-Hensch, Nicole; Janson, Christer; Zock, Jan-Paul; Heinrich, Joachim; Jarvis, Deborah L

    2014-01-01

    Background Increased bronchial responsiveness is characteristic of asthma. Gas cooking, which is a major indoor source of the highly oxidant nitrogen dioxide, has been associated with respiratory symptoms and reduced lung function. However, little is known about the effect of gas cooking on bronchial responsiveness and on how this relationship may be modified by variants in the genes GSTM1, GSTT1 and GSTP1, which influence antioxidant defences. Methods The study was performed in subjects with forced expiratory volume in one second at least 70% of predicted who took part in the multicentre European Community Respiratory Health Survey, had bronchial responsiveness assessed by methacholine challenge and had been genotyped for GSTM1, GSTT1 and GSTP1-rs1695. Information on the use of gas for cooking was obtained from interviewer-led questionnaires. Effect modification by genotype on the association between the use of gas for cooking and bronchial responsiveness was assessed within each participating country, and estimates combined using meta-analysis. Results Overall, gas cooking, as compared with cooking with electricity, was not associated with bronchial responsiveness (β=−0.08, 95% CI −0.40 to 0.25, p=0.648). However, GSTM1 significantly modified this effect (β for interaction=−0.75, 95% CI −1.16 to −0.33, p=4×10−4), with GSTM1 null subjects showing more responsiveness if they cooked with gas. No effect modification by GSTT1 or GSTP1-rs1695 genotypes was observed. Conclusions Increased bronchial responsiveness was associated with gas cooking among subjects with the GSTM1 null genotype. This may reflect the oxidant effects on the bronchi of exposure to nitrogen dioxide. PMID:24613990

  10. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  11. Acute exposure to realistic acid fog: effects on respiratory function and airway responsiveness in asthmatics.

    Leduc, Dimitri; Fally, Sophie; De Vuyst, Paul; Wollast, Roland; Yernault, Jean Claude

    1995-01-01

    Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fog...

  12. Facial Involuntary Movements and Respiratory Failure in CANOMAD, Responsive to IVIG Therapy

    Kate Johnson

    2015-01-01

    Full Text Available CANOMAD is a rare chronic neuropathy, characterized by chronic sensory ataxia and intermittent brain stem symptoms due to antidisialosyl antibodies. The disorder results in significant morbidity but is poorly understood and often misdiagnosed. We describe a unique case of CANOMAD, associated with involuntary movements of the face; patient reported exacerbations with citrus and chocolate and respiratory muscle weakness. Our patient was initially misdiagnosed with Miller Fisher Syndrome, highlighting the need for vigilance should neurological symptoms recur in patients initially diagnosed with a Guillain Barre variant. Moreover, the optimal treatment is unknown. This patient responded remarkably to intravenous immunoglobulin and has been maintained on this treatment, without further exacerbations.

  13. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs.

    Varun Dwivedi

    Full Text Available Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV. We entrapped PLGA [poly (lactide-co-glycolides] nanoparticles with killed PRRSV antigens (Nano-KAg and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

  14. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. Copyright © 2014. Published by Elsevier Ltd.

  15. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  16. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  17. Anatomical architecture and responses to acidosis of a novel respiratory neuron group in the high cervical spinal cord (HCRG) of the neonatal rat.

    Okada, Y; Yokota, S; Shinozaki, Y; Aoyama, R; Yasui, Y; Ishiguro, M; Oku, Y

    2009-01-01

    It has been postulated that there exists a neuronal mechanism that generates respiratory rhythm and modulates respiratory output pattern in the high cervical spinal cord. Recently, we have found a novel respiratory neuron group in the ventral portion of the high cervical spinal cord, and named it the high cervical spinal cord respiratory group (HCRG). In the present study, we analyzed the detailed anatomical architecture of the HCRG region by double immunostaining of the region using a neuron-specific marker (NeuN) and a marker for motoneurons (ChAT) in the neonatal rat. We found a large number of small NeuN-positive cells without ChAT-immunoreactivity, which were considered interneurons. We also found two and three clusters of motoneurons in the ventral portion of the ventral horn at C1 and C2 levels, respectively. Next, we examined responses of HCRG neurons to respiratory and metabolic acidosis in vitro by voltage-imaging together with cross correlation techniques, i.e., by correlation coefficient imaging, in order to understand the functional role of HCRG neurons. Both respiratory and metabolic acidosis caused the same pattern of changes in their spatiotemporal activation profiles, and the respiratory-related area was enlarged in the HCRG region. After acidosis was introduced, preinspiratory phase-dominant activity was recruited in a number of pixels, and more remarkably inspiratory phase-dominant activity was recruited in a large number of pixels. We suggest that the HCRG composes a local respiratory neuronal network consisting of interneurons and motoneurons and plays an important role in respiratory augmentation in response to acidosis.

  18. Respiratory alkalosis

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  19. Immunological response to quadrivalent HPV vaccine in treatment of recurrent respiratory papillomatosis.

    Tjon Pian Gi, Robin E A; San Giorgi, Michel R M; Pawlita, Michael; Michel, Angelika; van Hemel, Bettien M; Schuuring, Ed M D; van den Heuvel, Edwin R; van der Laan, Bernard F A M; Dikkers, Frederik G

    2016-10-01

    Aim of this study was to explore influence of the quadrivalent HPV vaccine (Gardasil(®)) on the immune status of recurrent respiratory papillomatosis (RRP) patients. In retrospective observational study, six RRP patients who received the quadrivalent HPV vaccine and whose HPV seroreactivity was measured were included. Multiplex HPV Serology was used to determine HPV-specific antibodies pre- and post-vaccination. Surgical interventions and patient records were analyzed. Five HPV6 and 1 HPV11 infected patient were included. Mean antibody reactivity against the associated HPV type rose from 1125 median fluorescence intensity (MFI) pre-vaccination to 4690 MFI post-vaccination (p immunological increase can cause decrease in number of surgeries.

  20. Characterization of the CD8(+)T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    Lukens, M.V.; Claassen, E.A.W.; Graaff, de P.M.A.; Dijk, van M.E.A.; Hoogerhout, P.; Toebes, M.; Schumacher, T.N.; Most, van der R.G.; Kimpen, J.L.L.; Bleek, van G.M.

    2006-01-01

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4+ and CD8+ T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse

  1. Cigarette smoke induces molecular responses in respiratory tissues of ApoE−/− mice that are progressively deactivated upon cessation

    Boué, Stéphanie; De León, Héctor; Schlage, Walter K.; Peck, Michael J.; Weiler, Horst; Berges, An; Vuillaume, Grégory; Martin, Florian; Friedrichs, Baerbel; Lebrun, Stefan

    2013-01-01

    Cigarette smoking is the primary etiology of chronic obstructive pulmonary disease (COPD) and a risk factor for both lung and cardiovascular (CV) diseases, which are rarely investigated concomitantly. Although smoking cessation shows clear CV risk benefit, lung-related disease risk remains higher in former smokers than in never smokers. We sought to determine the differential molecular responses of murine respiratory tissues to better understand the toxicity pathways involved in smoking-related disease risk and those related to the benefits of smoking cessation. ApoE −/− mice were exposed to mainstream cigarette smoke (CS) or a smoking cessation-mimicking protocol for up to 6 months and transcriptomics analysis of nasal epithelium and lung parenchyma performed. We supported our gene expression profiling approach with standard lung histopathology and bronchoalveolar lavage fluid (BALF) analysis. Many BALF analytes involved in functions ranging from inflammation to cell proliferation and tissue remodeling were found elevated in BALF. Gene expression levels of these molecules were also increased in lung tissue, suggesting that the inflammatory response was the result of local tissue activation and the contribution of recruited inflammatory cells. Gene set enrichment analysis (GSEA) of expression data from murine lungs and nasal epithelium showed distinct activation patterns of inflammation, complement, and xenobiotic metabolism pathways during CS exposure that were deactivated upon smoking cessation. Pathways involved in cell proliferation and tissue remodeling were activated by CS and progressively deactivated upon smoke exposure cessation. Differential CS-mediated responses of pulmonary and nasal tissues reflect common mechanisms but also the varying degrees of epithelial functional specialization and exposure along the respiratory tract

  2. Acute respiratory syndrome after inhalation of waterproofing sprays: a posteriori exposure-response assessment in 102 cases.

    Vernez, David; Bruzzi, Raffaella; Kupferschmidt, Hugo; De-Batz, Alice; Droz, Pierre; Lazor, Romain

    2006-05-01

    Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of

  3. Short-term population-based and spatiotemporal nonlinear concentration-response associations between fine particulate matter and children's respiratory clinic visits

    Yu, Hwa-Lung; Chien, Lung-Chang

    2014-05-01

    Advert health impacts associated with the PM2.5 exposure have been confirmed in mortality and cardiovascular diseases; however, findings of the influence of PM2.5 on respiratory diseases investigated among previous studies are still inconsistent. We investigated the short-term population-based associations between the respiratory clinic visits of children population and the PM2.5 exposure levels with considering both the spatiotemporal distributions of the ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between daily children's respiratory clinic visits and PM2.5 concentrations. The analysis was performed separately on the four selected respiratory disease categories of the population-based dataset, obtained from Taiwan National Health Insurance database, covering the 41 districts in Taipei area during the period of 2005 to 2007. This study reveals a strong nonlinear C-R pattern that the PM2.5 increment can significantly affect respiratory health at PM2.5 concentration ≤ 18.17µg/m3 for both preschool children and schoolchildren. The elevated risks are especially present in the category of acute respiratory infections. PM2.5 increase is mostly non-significant to the more severe respiratory diseases, e.g., COPD and pneumonia, over the ranges of 8.85-92.45µg/m3. The significantly higher relative rate of respiratory clinic visit most likely concentrated at populated areas. We highlight the nonlinearity of the respiratory health impacts of PM2.5 on children's populations from the first study, to our knowledge, to investigate this population-based association. The strong nonlinearity can possibly cause the inconsistency of PM2.5 health impact assessments with linear assumptions.

  4. Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus.

    Mallika Sastry

    Full Text Available Appropriate adjuvant selection may be essential to optimize the potency and to tailor the immune response of subunit vaccines. To induce protective responses against respiratory syncytial virus (RSV-a highly prevalent childhood pathogen without a licensed vaccine-we previously engineered a pre-fusion-stabilized trimeric RSV F (pre-F "DS-Cav1" immunogen, which induced high titer RSV-neutralizing antibodies, in mice and non-human primates, when formulated with adjuvants Poly (I:C and Poly (IC:LC, respectively. To assess the impact of different adjuvants, here we formulated RSV F DS-Cav1 with multiple adjuvants and assessed immune responses. Very high RSV-neutralizing antibody responses (19,006 EC50 were observed in naïve mice immunized with 2 doses of DS-Cav1 adjuvanted with Sigma adjuvant system (SAS, an oil-in-water adjuvant, plus Carbopol; high responses (3658-7108 were observed with DS-Cav1 adjuvanted with Alum, SAS alone, Adjuplex, Poly (I:C and Poly (IC:LC; and moderate responses (1251-2129 were observed with DS-Cav1 adjuvanted with the TLR4 agonist MPLA, Alum plus MPLA or AddaVax. In contrast, DS-Cav1 without adjuvant induced low-level responses (6. A balanced IgG1 and IgG2a (Th2/Th1 immune response was elicited in most of the high to very high response groups (all but Alum and Adjuplex. We also tested the immune response induced by DS-Cav1 in elderly mice with pre-existing DS-Cav1 immunity; we observed that DS-Cav1 adjuvanted with SAS plus Carbopol boosted the response 2-3-fold, whereas DS-Cav1 adjuvanted with alum boosted the response 5-fold. Finally, we tested whether a mixture of ISA 71 VG and Carbopol would enhanced the antibody response in DS-Cav1 immunized calves. While pre-F-stabilized bovine RSV F induced very high titers in mice when adjuvanted with SAS plus Carbopol, the addition of Carbopol to ISA 71 VG did not enhance immune responses in calves. The vaccine response to pre-F-stabilized RSV F is augmented by adjuvant, but the

  5. [Characteristics of the sympathoadrenal system response to psychoemotional stress under hypoxic conditions in aged people with physiological and accelerated aging of the respiratory system].

    Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A

    2013-01-01

    The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.

  6. Respiratory response of fifth-instar codling moth (Lepidoptera: Tortricidae) to rapidly changing temperatures.

    Neven, L G

    1998-02-01

    Fifth-instar codling moth, Cydia pomonella (L.), larvae were exposed to 10 simulated heat treatments of apples and pears and CO2 levels were monitored as a measure of respiration. Marked increases in respiration rates (microliter CO2/mg/min) were noted during these treatments. Respiration peaked between 3.5 and 4.8 microliters CO2/mg/min; the amount of time to peak respiration depended on the heating rate and was correlated to the LT95. No differences were observed between male and female larvae in the timing of the peaks of CO2 production. In treatments where mortality occurred, CO2 levels dropped to zero, but only after a considerable time after death. Respiratory recovery rates, the time it took for CO2 levels to return to normal, were recorded after treatments at time points where CO2 production reached 3/4 and maximum peak. Respiration rates at constant temperatures were recorded within the range of 10-30 degrees C. Q10 over this range was 1.49, whereas Q10 was the greatest, 2.54, between 10 and 15 degrees C.

  7. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Gradual development of the interferon-γ response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination

    Meier, William A.; Galeota, Judy; Osorio, Fernando A.; Husmann, Robert J.; Schnitzlein, William M.; Zuckermann, Federico A.

    2003-01-01

    Infection of swine with virulent porcine reproductive and respiratory syndrome (PRRS) virus induced a rapid, robust antibody response that comprised predominantly nonneutralizing antibodies and waned after approximately 3 months. In contrast, the initial onset of virus-specific interferon (IFN)-γ-secreting cells (SC) in the pig lymphocyte population remained at a fairly low level during this period and then increased gradually in frequency, plateauing at 6 months postinfection. A similar polarization of the host humoral and cellular immune responses was also observed in pigs immunized with a PRRS-modified live virus (MLV) vaccine. Even coadministration of an adjuvant that enhanced the immune response to a pseudorabies (PR) MLV vaccine failed to alter the induction of PRRS virus-specific IFN-γ SC (comprising predominately CD4/CD8α double positive memory T cells with a minority being typical CD4 - /CD8αβ + T cells) and the generation of neutralizing antibodies. Moreover, unlike inactivated PR virus, nonviable PRRS virus did not elicit virus-neutralizing antibody production. Presumably, an intrinsic property of this pathogen delays the development of the host IFN-γ response and preferentially stimulates the synthesis of antibodies incapable of neutralization

  9. Cardiac and respiratory responses of rainbow trout, bluegills and brown bullhead catfish during rapid hypoxia and recovery under normoxic conditions

    Marvin, Jr, D E; Burton, D T

    1973-01-01

    Heart rate, ventilation rate and routine oxygen consumption were measured in Salmo gairdneri, Lepomis macrochirus and Ictalurus nebulosus during rapid hypoxic stress and recovery under normoxic conditions. Cardiac and respiratory responses during hypoxia were similar to those reported in the literature for teleost fish. Immediate increases in heart rate and ventilation rate occurred in all three species after stress. When the mean heart rate for each species at 1 hr post-stress was compared with its pre-stress rate, differences in recovery patterns were found in all species. During recovery from hypoxia, rapid increases in oxygen consumption, above pre-stress levels, occurred in S. gairdneri and L. macrochirus. No significant differences between pre-stress and post-stress values were found in I. nebulosus.

  10. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV in healthy subjects

    Campoccia Giuseppe

    2010-10-01

    Full Text Available Abstract Respiratory syncytial virus (RSV is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years, have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+ and effector (CD45RA-CCR7- memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+ T cells (Treg in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs, in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα, in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α to a Th2 (IL-10 functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.

  11. 10 CFR 850.28 - Respiratory protection.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Respiratory protection. 850.28 Section 850.28 Energy... Respiratory protection. (a) The responsible employer must establish a respiratory protection program that complies with the respiratory protection program requirements of 29 CFR 1910.134, Respiratory Protection...

  12. Dietary supplementation with Lactobacilli improves emergency granulopoiesis in protein-malnourished mice and enhances respiratory innate immune response.

    Matias Herrera

    Full Text Available This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.

  13. The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.

    Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D

    2015-09-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. Copyright © 2015 The American Physiological Society.

  14. Local and disseminated acute phase response during bacterial respiratory infection in pigs

    Skovgaard, Kerstin; Mortensen, Shila; Heegaard, Peter M. H.

    2010-01-01

    The acute phase response is playing an important role, aiming to restore the healthy state after tissue injury, inflammation and infection. The biological function of this response and its interplay with other parts of innate defense reactions remain somewhat elusive. Expression of acute phase...... locations of the infected lung (necrotic areas, areas bordering on necrotic areas, and from visually unaffected areas). Expression differences was also studied in the liver and in peripheral lymphoid tissue (tracheobronchial lymph nodes, spleen, tonsils) of infected (n=10) and non-infected (n=5) pigs using......-phase proteins was found 14-18h after experimental infection with A. pleuropneumoniae. This firmly establishes that expression of APPs is widely disseminated, involving changes in the expression of APPs at a dynamic scale comparable to the hepatic response. These results suggest that many different cell...

  15. Respiratory Allergy to Trimellitic Anhydride in Rats: Concentration-Response Relationships during Elicitation

    Arts, J.H.E.; Koning, M.W. de; Bloksma, N.; Kuper, C.F.

    2004-01-01

    The present study investigated whether airway responses of sensitized rats to trimellitic anhydride (TMA) were concentration dependent and whether these were related to irritation by TMA. Groups of BN and Wistar rats were sensitized by two dermal applications of TMA (50% w/v, followed by 25% w/v in

  16. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  17. Interferon alpha inhibits viral replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine

    Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...

  18. GH and cortisol responses following an acute session of respiratory muscle endurance training in severely obese patients.

    Sartorio, A; Agosti, F; Patrizi, A; Gattico, A; Tringali, G; Giunta, M; Muller, E E; Rigamonti, A E

    2013-03-01

    It is well established that obese patients are hypo-responsive to classical GH-releasing stimuli, including aerobic exercise. Recently, we have demonstrated that whole body vibration was able to markedly stimulate GH secretion in obese patients, thus suggesting that this refractoriness is not absolute but dependent on the GH-releasing stimulus. Furthermore, we have shown the ability of a respiratory muscle endurance training (RMET) to stimulate GH and cortisol secretion in healthy subjects. The objective of this study was to evaluate the effects of RMET on GH and cortisol responses in severely obese patients. Eight severely obese patients (4 M/4 F, mean age±SEM: 22.8±1.6 years, body mass index, BMI: 39.9±1.1 kg/m2) underwent an incremental progressive RMET protocol of 11 daily sessions, obtained through the use of a specifically designed respiratory device (Spiro Tiger®). The 12th session of RMET (15 min duration: 1 min at a respiration rate of 28 acts/min, 5 min at 32 acts/min, 5 min at 34 acts/min, 4 min at 36 acts/min) was associated with blood samplings for determination of GH, cortisol, and lactate (LA) levels. An age- and sex-matched normal-weighted control group (n=7, 4 M/3 F, age: 26.1±3.1 years, BMI: 22.4±0.6 kg/m2) was also recruited. In both normal-weighted subjects and obese patients, GH secretion significantly increased after a 15-min RMET session. Although serum GH levels at 30 min were higher in normal-weighted subjects than in obese patients, there was no statistically significant difference in either GH peaks or net GH areas under the curve between the 2 groups. RMET significantly increased serum cortisol levels in normal-weighted subjects, but was associated to a progressive cortisol decline in obese patients. RMET stimulated LA production, with no significant differences in normal-weighted subjects and in obese patients. A 15-min RMET session was capable to induce a GH response in severely obese patients, which was comparable to that

  19. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  20. Comportamento dos quimiorreflexos central e periférico na insuficiência cardíaca Comportamiento de los quimiorreflejos central y periférico en la insuficiencia cardíaca Behavior of central and peripheral chemoreflexes in heart failure

    Guilherme Veiga Guimarães

    2011-02-01

    practice of exercises. There is evidence that the autonomic imbalance contributes to the pathogenesis and the progression of heart failure. The chemoreflexes are the main mechanisms of control and regulation of the ventilatory responses to the changes in concentrations of arterial oxygen and carbon dioxide. The chemoreflex activation causes an increase in the sympathetic activity, heart rate, arterial pressure and minute volume. However, the increase in the minute volume and the arterial pressure, due to negative feedback, cause inhibition of the sympathetic response at the chemoreflex activation. In spite of the functional alterations of the reflexes, their behavior in normal and pathological conditions, especially their contribution to the sympathoexcitatory state observed in HF has not been broadly studied. Therefore, this review aims at integrating the knowledge on central and peripheral chemoreflexes in HF syndrome, as well as clarifying the influence of the heart failure drug therapy on the chemoreflexes.

  1. ABO blood group is associated with response to inhaled nitric oxide in neonates with respiratory failure.

    George T El-Ferzli

    Full Text Available Inhaled nitric oxide (iNO reduces death or need for extracorporeal membrane oxygenation (ECMO in infants with persistent pulmonary hypertension of the newborn (PPHN. However, the response to iNO is variable and only 50-60% of infants demonstrate a response to iNO. It is not known why only some infants respond to iNO. Adults and children with blood groups B or AB do not respond as well to iNO as those with blood groups O/A.To determine if blood group was associated with iNO response in newborn infants, a retrospective medical record review was done of infants admitted to a regional NICU from 2002-9 with a diagnosis of PPHN. Data were collected during the first twelve hours post-initiation of treatment. Of 86 infants diagnosed with PPHN, 23 infants had blood group A [18 received iNO], 21 had group B [18 with iNO], 40 had group O [36 with iNO], and 2 had group AB [both received iNO]. Change in PaO(2/FiO(2 was less in infants with blood group A, of whom less than half were responders (ΔPaO(2/FiO(2>20% at 12 h versus 90% of infants with either O or B. Race, sex, birth weight, gestational age, Apgar scores at 1 and 5 minutes, and baseline PaO(2/FiO(2 were similar among groups. Outcomes including need for ECMO, death, length of ventilatory support, length of iNO use, and hospital stay were statistically not different by blood groups.Our results indicate that blood group influences iNO response in neonates. We hypothesize that either there is genetic linkage of the ABO gene locus with vasoregulatory genes, or that blood group antigens directly affect vascular reactivity.

  2. Respiratory dysfunction in swine production facility workers: dose-response relationships of environmental exposures and pulmonary function.

    Donham, K J; Reynolds, S J; Whitten, P; Merchant, J A; Burmeister, L; Popendorf, W J

    1995-03-01

    Human respiratory health hazards for people working in livestock confinement buildings have been recognized since 1974. However, before comprehensive control programs can be implemented, more knowledge is needed of specific hazardous substances present in the air of these buildings, and at what concentrations they are harmful. Therefore, a medical epidemiological and exposure-response study was conducted on 207 swine producers using intensive housing systems (108 farms). Dose-response relationships between pulmonary function and exposures are reported here. Positive correlations were seen between change in pulmonary function over a work period and exposure to total dust, respirable dust, ammonia, respirable endotoxin, and the interactions of age-of-producer and dust exposure and years-of-working-in-the-facility and dust exposure. Relationships between baseline pulmonary function and exposures were not strong and therefore, not pursued in this study. The correlations between exposure and response were stronger after 6 years of exposure. Multiple regression models were used to identify total dust and ammonia as the two primary environmental predictors of pulmonary function decrements over a work period. The regression models were then used to determine exposure concentrations related to pulmonary function decrements suggestive of a health hazard. Total dust concentrations > or = 2.8 mg/m3 were predictive of a work period decrement of > or = 10% in FEV1. Ammonia concentrations of > or = 7.5 ppm were predictive of a > or = 3% work period decrement in FEV1. These predictive concentrations were similar to a previous dose-response study, which suggested 2.5 mg/m3 of total dust and 7 ppm of NH3 were associated with significant work period decrements. Therefore, dust > or = 2.8 mg/m3 and ammonia > or = 7.5 ppm should be considered reasonable evidence for guidelines regarding hazardous exposure concentrations in this work environment.

  3. Inhalation of the nerve gas sarin impairs ventilatory responses to hypercapnia and hypoxia in rats

    Zhuang Jianguo; Xu Fadi; Campen, Matthew J.; Zhang Cancan; Pena-Philippides, Juan C.; Sopori, Mohan L.

    2008-01-01

    Sarin, a highly toxic nerve gas, is believed to cause bronchoconstriction and even death primarily through respiratory failure; however, the mechanism underlying the respiratory failure is not fully understood. The goals of this study were to ascertain whether sarin affects baseline ventilation (V E ) and V E chemoreflexes as well as airway resistance and, if so, whether these changes are reversible. Four groups of F344 rats were exposed to vehicle (VEH) or sarin at 2.5, 3.5, and 4.0 mg h m -3 (SL, SM, and SH, respectively). V E and V E responses to hypercapnia (7% CO 2 ) or hypoxia (10% O 2 ) were measured by plethysmography at 2 h and 1, 2, and 5 days after VEH or sarin exposure. Total pulmonary resistance (R L ) also was measured in anesthetized VEH- and SH-exposed animals 2 h after exposure. Our results showed that within 2 h after exposure 11% of the SM- and 52% of the SH- exposed groups died. Although the SM and SH significantly decreased hypercapnic and hypoxic V E to similar levels (64 and 69%), SH induced greater respiratory impairment, characterized by lower baseline V E (30%; P E impairment recovered within 1-2 days after sarin exposure; interestingly, SH did not significantly affect baseline R L . Moreover, sarin induced body tremors that were unrelated to the changes in the V E responses. Thus, LC 50 sarin causes a reversible impairment of V E that is not dependent on the sarin-induced body tremors and not associated with changes in R L

  4. Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection.

    Pega, J; Di Giacomo, S; Bucafusco, D; Schammas, J M; Malacari, D; Barrionuevo, F; Capozzo, A V; Rodríguez, L L; Borca, M V; Pérez-Filgueira, M

    2015-09-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease-free settings. Very few

  5. Respiratory Failure

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  6. Respiratory system

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  7. Evaluation of the ability of standardized supports to improve public health response to syndromic surveillance for respiratory diseases in Canada

    Laura A. Rivera

    2017-02-01

    Full Text Available Abstract Background Despite widespread implementation of syndromic surveillance systems within public health agencies, previous studies of the implementation and use of these systems have indicated that the functions and responses taken in response to syndromic surveillance data vary widely according to local context and preferences. The objective of the Syndromic Surveillance Evaluation Study was to develop and implement standardized supports in local public health agencies in Ontario, Canada, and evaluate the ability of these supports to affect actions taken as part of public health communicable disease control programs. Methods Local public health agencies (LPHA in Ontario, which used syndromic surveillance based on emergency department visits for respiratory disease, were recruited and randomly allocated to the study intervention or control group. The intervention group health agencies received standardized supports in terms of a standardized aberrant event detection algorithm and a response protocol dictating steps to investigate and assess the public health significance of syndromic surveillance alerts. The control group continued with their pre-existing syndromic surveillance infrastructure and processes. Outcomes were assessed using logbooks, which collected quantitative and qualitative information about alerts received, investigation steps taken, and public health responses. The study was conducted prospectively for 15 months (October 2013 to February 2015. Results Fifteen LPHAs participated in the study (n = 9 intervention group, n = 6 control group. A total of 1,969 syndromic surveillance alerts were received by all LPHAs. Variations in the types and amount of responses varied by LPHA, in particularly differences were noted by the size of the health unit. Smaller health units had more challenges to both detect and mount a response to any alerts. LPHAs in the control group were more likely to declare alerts to have public

  8. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers

    Jespersen, Lillian; Tarnow, Inge; Eskesen, Dorte

    2015-01-01

    BACKGROUND: Probiotics can modulate the immune system in healthy individuals and may help reduce symptoms related to respiratory infections. OBJECTIVE: The objective of the study was to investigate the effect of the probiotic strain Lactobacillus paracasei subsp. paracasei, L. casei 431 (Chr...... inhibition) 21 d after vaccination. Other outcomes were seroconversion rate and mean titers, influenza A-specific antibodies and incidence, and duration and severity of upper respiratory symptoms. Antibiotic use and use of health care resources were recorded. RESULTS: There was no effect of L. casei 431...... on immune responses to influenza vaccination. Generalized linear mixed modeling showed a shorter duration of upper respiratory symptoms in the probiotic group compared with placebo (mean ± SD: 6.4 ± 6.1 d vs. 7.3 ± 9.7 d, P = 0.0059) in the last 3 wk of the intervention period. No statistically significant...

  9. Immune sensitization to methylene diphenyl diisocyanate (MDI resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    Redlich Carrie A

    2011-03-01

    Full Text Available Abstract Background Methylene diphenyl diisocyanate (MDI, a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA, while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL. Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary respiratory tract inflammation and eosinophilia depended upon the (primary skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI. The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma

  10. Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community.

    Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K

    2016-12-01

    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.

  11. Cardio-respiratory response of young adult Indian male subjects to stress: Effects of progressive muscle relaxation

    Arunima Chaudhuri

    2014-01-01

    Full Text Available Background: Stress and anxiety have become an integral part of our lives. Of late, this has resulted in the increase in incidence of hypertension and coronary heart disease. Objectives: To assess the effect of progressive muscle relaxation (PMR on young adult males and its role in the modulation of cardio-respiratory response on exposure to stress. Materials and Methods: This prospective cross-sectional study was conducted in a tertiary care referral hospital. Undergraduate male students under stress were chosen for the study. Fasting blood samples were drawn to analyze sugar and lipid profile, followed by anthropometric measurements and ECG. In the resting condition, blood pressure, pulse rate, and spirometric parameters; forced vital capacities (FVC, and forced expiratory volume in 1 sec (FEV 1 % were measured. Then, they were made to exercise with bicycle ergometer and post exercise, the vital parameters were recorded. All subjects were given a training of Jacobson′s Progressive Muscular Relaxation and asked to practice this technique for 3 months. All parameters were re-evaluated. Results: Significant decreases in resting heart rate, systolic blood pressure and diastolic blood pressure, total cholesterol, triglyceride, and low density lipoprotein (LDL cholesterol levels of subjects were seen after PMR training. Exercise-induced rise in heart rate and blood pressure were also significantly less in subjects following PMR training. Conclusion: Progressive muscle relaxation helps in modulation of heart rate, blood pressure, and lipid profile in healthy normal adult male individuals.

  12. Analysis of the influence of respiratory disorders observed in preoperative spirometry on the dynamics of early inflammatory response in patients undergoing isolated coronary artery bypass grafting.

    Szylińska, Aleksandra; Listewnik, Mariusz J; Rotter, Iwona; Rył, Aleksandra; Biskupski, Andrzej; Brykczyński, Mirosław

    2017-01-01

    Preoperative spirometry provides measurable information about the occurrence of respiratory disorders. The aim of this study was to assess the association between preoperative spirometry abnormalities and the intensification of early inflammatory responses in patients following coronary artery bypass graft in extracorporeal circulation. The study involved 810 patients (625 men and 185 women) aged 65.4±7.9 years who were awaiting isolated coronary artery bypass surgery. On the basis of spirometry performed on the day of admittance to the hospital, the patients were divided into three groups. Patients without respiratory problems constituted 78.8% of the entire group. Restricted breathing was revealed by spirometry in 14.9% and obstructive breathing in 6.3% of patients. Inter-group analysis showed statistically significant differences in C-reactive protein (CRP) between patients with restrictive spirometry abnormalities and patients without any pulmonary dysfunction. CRP concentrations differed before surgery ( P =0.006) and on the second ( P spirometry results from restrictive respiratory disorders have an elevated level of generalized inflammatory response both before and after the isolated coronary artery bypass surgery. Therefore, this group of patients should be given special postoperative monitoring and, in particular, intensive respiratory rehabilitation immediately after reconstitution.

  13. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection.

    Tomoki Yoshikawa

    2010-01-01

    Full Text Available Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV. Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NFkappaB, activator protein (AP-1, and interferon regulatory factor (IRF-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i., resulting in the activation of many antiviral genes, including interferon (IFN-beta, -lambdas, inflammatory mediators, and many IFN-stimulated genes (ISGs. We also showed, for the first time, that IFN-beta and IFN-lambdas were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.

  14. Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2.

    Harding, John C S; Ladinig, Andrea; Novakovic, Predrag; Detmer, Susan E; Wilkinson, Jamie M; Yang, Tianfu; Lunney, Joan K; Plastow, Graham S

    2017-09-01

    A large challenge experiment using North American porcine reproductive and respiratory virus (PRRSV-2) provided new insights into the pathophysiology of reproductive PRRS. Deep phenotyping of dams and fetuses identified maternal and fetal predictors of PRRS severity and resilience. PRRSV infection resulted in dramatic decreases in all leukocyte subsets by 2days post inoculation. Apoptosis in the interface region was positively related to endometrial vasculitis, viral load in endometrium and fetal thymus, and odds of meconium staining. Viral load at the maternal-fetal interface was a strong predictor of viral load in fetal thymus and odds of fetal death. However, interferon-alpha suppression, a consequence of PRRSV infection, was protective against fetal death. Although the prevalence of fetal lesions was low, their presence in fetal organs and umbilical cord was strongly associated with fetal compromise. Fetal death and viral load clustered in litters suggesting inter-fetal transmission starting from a limited number of index fetuses. Factors associated with index fetal infection are unclear, but large fetuses appear at greater risk. Disease progression in fetuses was associated with an up-regulation of genes associated with inflammation, innate immunity, and cell death signaling, and down-regulation of genes associated with cell cycle and lymphocyte quality. A number of maternal transcriptomic responses were associated with PRRS resilience including higher basal gene expression correlated with platelet function, interferon and pro-inflammatory responses. Twenty-one genomic regions across 10 chromosomes were associated with important traits including fetal viral load, fetal death and viability suggesting that selection for reproductive PRRS resilience may be possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Respiratory medicine of reptiles.

    Schumacher, Juergen

    2011-05-01

    Noninfectious and infectious causes have been implicated in the development of respiratory tract disease in reptiles. Treatment modalities in reptiles have to account for species differences in response to therapeutic agents as well as interpretation of diagnostic findings. Data on effective drugs and dosages for the treatment of respiratory diseases are often lacking in reptiles. Recently, advances have been made on the application of advanced imaging modalities, especially computed tomography for the diagnosis and treatment monitoring of reptiles. This article describes common infectious and noninfectious causes of respiratory disease in reptiles, including diagnostic and therapeutic regimen. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Exposure to field vs. storage wheat dust: different consequences on respiratory symptoms and immune response among grain workers.

    Barrera, Coralie; Wild, Pascal; Dorribo, Victor; Savova-Bianchi, Dessislava; Laboissière, Audrey; Pralong, Jacques A; Danuser, Brigitta; Krief, Peggy; Millon, Laurence; Reboux, Gabriel; Niculita-Hirzel, Hélène

    2018-05-26

    The aim of this study was to understand the differential acute effects of two distinct wheat-related dusts, such as field or stored wheat dust handling, on workers' health and how those effects evolved at 6 month intervals. Exposure, work-related symptoms, changes in lung function, and blood samples of 81 workers handling wheat and 61 controls were collected during the high exposure season and 6 months after. Specific IgG, IgE, and precipitins against 12 fungi isolated from wheat dust were titrated by enzyme-linked immunosorbent assay, dissociation-enhanced lanthanide fluorescence immunoassay, and electrosyneresis. The level of fungi was determined in the workers' environment. Levels of exhaled fraction of nitrogen monoxide (F E NO) and total IgE were obtained. Exposure response associations were investigated by mixed logistic and linear regression models. The recent exposure to field wheat dust was associated with a higher prevalence for five of six self-reported airway symptoms and with a lower F E NO than those in the control population. Exposure to stored wheat dust was only associated with cough. No acute impact of exposure on respiratory function was observed. Exposure to field wheat dust led to workers' sensitization against the three field fungi Aureobasidum, Cryptococcus, and Phoma, although exposure to storage wheat dust was associated with tolerance. The level of Ig remained stable 6 months after exposure. The clinical picture of workers exposed to field or storage wheat dust differed. The systematic characterization of the aerosol microbial profile may help to understand the reasons for those differences.

  17. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  18. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure.

    Colombo, Davide; Cammarota, Gianmaria; Bergamaschi, Valentina; De Lucia, Marta; Corte, Francesco Della; Navalesi, Paolo

    2008-11-01

    Neurally adjusted ventilatory assist (NAVA) is a new mode wherein the assistance is provided in proportion to diaphragm electrical activity (EAdi). We assessed the physiologic response to varying levels of NAVA and pressure support ventilation (PSV). ICU of a University Hospital. Fourteen intubated and mechanically ventilated patients. DESIGN AND PROTOCOL: Cross-over, prospective, randomized controlled trial. PSV was set to obtain a VT/kg of 6-8 ml/kg with an active inspiration. NAVA was matched with a dedicated software. The assistance was decreased and increased by 50% with both modes. The six assist levels were randomly applied. Arterial blood gases (ABGs), tidal volume (VT/kg), peak EAdi, airway pressure (Paw), neural and flow-based timing. Asynchrony was calculated using the asynchrony index (AI). There was no difference in ABGs regardless of mode and assist level. The differences in breathing pattern, ventilator assistance, and respiratory drive and timing between PSV and NAVA were overall small at the two lower assist levels. At the highest assist level, however, we found greater VT/kg (9.1 +/- 2.2 vs. 7.1 +/- 2 ml/kg, P < 0.001), and lower breathing frequency (12 +/- 6 vs. 18 +/- 8.2, P < 0.001) and peak EAdi (8.6 +/- 10.5 vs. 12.3 +/- 9.0, P < 0.002) in PSV than in NAVA; we found mismatch between neural and flow-based timing in PSV, but not in NAVA. AI exceeded 10% in five (36%) and no (0%) patients with PSV and NAVA, respectively (P < 0.05). Compared to PSV, NAVA averted the risk of over-assistance, avoided patient-ventilator asynchrony, and improved patient-ventilator interaction.

  19. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis.

    Silva, Pedro Henrique Imenez; Girardi, Adriana Castello Costa; Neri, Elida Adalgisa; Rebouças, Nancy Amaral

    2012-04-01

    The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

  20. The progestin etonogestrel enhances the respiratory response to metabolic acidosis in newborn rats. Evidence for a mechanism involving supramedullary structures.

    Loiseau, Camille; Osinski, Diane; Joubert, Fanny; Straus, Christian; Similowski, Thomas; Bodineau, Laurence

    2014-05-01

    Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Response localization of the pharmacological agents histamine and salbutamol along the respiratory system by forced oscillations in asthmatic subjects.

    Wouters, E F; Polko, A H; Visser, B F

    1989-01-01

    The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.

  2. Changes in neurochemicals within the ventrolateral medullary respiratory column in awake goats after carotid body denervation

    Miller, Justin Robert; Neumueller, Suzanne; Muere, Clarissa; Olesiak, Samantha; Pan, Lawrence; Hodges, Matthew R.

    2013-01-01

    A current and major unanswered question is why the highly sensitive central CO2/H+ chemoreceptors do not prevent hypoventilation-induced hypercapnia following carotid body denervation (CBD). Because perturbations involving the carotid bodies affect central neuromodulator and/or neurotransmitter levels within the respiratory network, we tested the hypothesis that after CBD there is an increase in inhibitory and/or a decrease in excitatory neurochemicals within the ventrolateral medullary column (VMC) in awake goats. Microtubules for chronic use were implanted bilaterally in the VMC within or near the pre-Bötzinger Complex (preBötC) through which mock cerebrospinal fluid (mCSF) was dialyzed. Effluent mCSF was collected and analyzed for neurochemical content. The goats hypoventilated (peak +22.3 ± 3.4 mmHg PaCO2) and exhibited a reduced CO2 chemoreflex (nadir, 34.8 ± 7.4% of control ΔV̇E/ΔPaCO2) after CBD with significant but limited recovery over 30 days post-CBD. After CBD, GABA and glycine were above pre-CBD levels (266 ± 29% and 189 ± 25% of pre-CBD; P 0.05) different from control after CBD. Analyses of brainstem tissues collected 30 days after CBD exhibited 1) a midline raphe-specific reduction (P < 0.05) in the percentage of tryptophan hydroxylase–expressing neurons, and 2) a reduction (P < 0.05) in serotonin transporter density in five medullary respiratory nuclei. We conclude that after CBD, an increase in inhibitory neurotransmitters and a decrease in excitatory neuromodulation within the VMC/preBötC likely contribute to the hypoventilation and attenuated ventilatory CO2 chemoreflex. PMID:23869058

  3. Respiratory mechanics

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  4. Ocular Tropism of Respiratory Viruses

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  5. Exaggerated compensatory response to acute respiratory alkalosis in panic disorder is induced by increased lactic acid production.

    Ueda, Yoshiyasu; Aizawa, Masayo; Takahashi, Atsushi; Fujii, Masamitsu; Isaka, Yoshitaka

    2009-03-01

    In acute respiratory alkalosis, the severity of alkalaemia is ameliorated by a decrease in plasma [HCO(3)(-)] of 0.2 mEq/L for each 1 mmHg decrease in PaCO(2). Although hyperventilation in panic disorder patients is frequently encountered in outpatients, the drop in plasma [HCO(3)(-)] sometimes surpasses the expectation calculated from the above formula. The quantitative relationship between reduced PaCO(2) and plasma [HCO(3)(-)] in acute respiratory alkalosis has not been studied in panic disorder patients. Our objective was to provide reference data for the compensatory metabolic changes in acute respiratory alkalosis in panic disorder patients. In 34 panic disorder patients with hyperventilation attacks, we measured arterial pH, PaCO(2), plasma [HCO(3)(-)] and lactate on arrival at the emergency room. For each decrease of 1 mmHg in PaCO(2), plasma [HCO(3)(-)] decreased by 0.41 mEq/L. During hypocapnia, panic disorder patients exhibited larger increases in serum lactate levels (mean +/- SD; 2.59 +/- 1.50 mmol/L, range; 0.78-7.78 mmol/L) than previously reported in non-panic disorder subjects. Plasma lactate accumulation was correlated with PaCO(2) (P respiratory alkalosis is exaggerated by increased lactic acid production in panic disorder patients. Here, we call attention to the diagnosis of acid-base derangements by means of plasma [HCO(3)(-)] and lactate concentration in panic disorder patients.

  6. Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance

    Morgan, S.B.; Graham, S.P.; Salguero, F.J.; Sánchez Cordón, P.J.; Mokhtar, H.; Rebel, J.M.J.; Weesendorp, E.; Bodman-Smith, K.B.; Steinbach, F.; Frossard, J.P.

    2013-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine worldwide. Since its first emergence in 1987 the PRRS virus (PRRSV) has become particularly divergent with highly pathogenic strains appearing in both Europe and Asia. However, the

  7. Effect of the pacing strategy during half-duration resistance test on the mechanic, metabolic and cardio-respiratory response

    A. Pérez-Guerra

    2017-12-01

    Full Text Available Objective: Changes in pacing rhythm are translated into functional and metabolic changes that can be significantly reflected in the final results of an athlete. Method: Ten male subjects, with moderate performance level (age: 25.2 ± 2.2 years; VO2max: 56.9 ± 5.7 ml kg−1 min−1, performed four 5-min races with different pacing strategies: constant-pace (CP, record-pace (RP, kicker-pace (KP, incremental-pace (IP. Results: The cardio-respiratory response did not show statistically significant. There were statistically significant differences (p ≤ 0.05 in the energetic efficiency among the protocols CP vs. RP, CP vs. KP and RP vs. IP. When results were analyzed by partials (1-min duration phases, significant differences were observed in the energetic efficiency during the 3rd-min among CP vs. KP, RP vs. KP and KP vs. IP. These significant differences were extended to the 4th-min when comparing CP vs. IP, CP vs. KP, KP vs. RP and KP vs. IP. In the last minute of the test, there were significant differences among CP vs. KP. No significant differences were found in any of the variables assessing anaerobic metabolism (accumulated oxygen deficit, oxygen debt, oxygen uptake kinetics and blood lactate between both protocols. Conclusions: Results suggest that the main functional systems response are significantly affected by the pacing strategy used by middle-level subjects during middle-distance running. Resumen: Objetivo: Los cambios en el ritmo de carrera se traducen en cambios funcionales y metabólicos que pueden reflejarse significativamente en los resultados finales de un atleta. Método: Diez sujetos varones, con un nivel medio (edad: 25.2 ± 2.2 años; VO2max: 56.9 ± 5.7 mlkg−1min−1, llevaron a cabo carreras de 5 minutos con diferentes estrategias: ritmo constante (RC, ritmo récord (RR, ritmo kicker (RK y ritmo incremental (RI. Resultados: La respuesta

  8. The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus

    Heegaard, Peter M. H.; Godson, D.L.; Toussaint, M.J.M.

    2000-01-01

    respiratory syncytial virus (BRSV), analysing the induction of the two most dominant bovine acute phase proteins haptoglobin and serum amyloid A (SAA). Strong and reproducible acute phase responses were detected for both proteins, peaking at around 7-8 days after inoculation of BRSV, while no response...... was seen in mock-inoculated control animals. The serum concentrations reached for SAA and haptoglobin during the BRSV-induced acute phase response were generally the same or higher than previously reported for bacterial infections in calves. The magnitude and the duration of the haptoglobin response...... was found to correlate well with the severity of clinical signs (fever) and with the extent of lung consolidation while SAA responded most rapidly to infection....

  9. SIgA response and incidence of upper respiratory tract infections during intensified training in youth basketball players.

    Moraes, H; Aoki, M S; Freitas, C G; Arruda, Afs; Drago, G; Moreira, A

    2017-03-01

    The aim of the present study was to examine the effect of an intensified training phase followed by a tapering phase on the salivary immunoglobulin A concentration and on the upper respiratory tract infection (URTI) symptoms in young male basketball players. The session rating of perceived exertion method was used to quantify the internal training load, and the Wisconsin Upper Respiratory Symptom Survey-21 questionnaire was used to assess URTI symptoms. The Yo-Yo IR1 test and saliva collection were carried out at the beginning of the study (T1), after the intensified phase (T2), and after tapering (T3). A higher internal training load was observed for the intensified phase compared with the tapering phase (t=19.10; ptraining load followed by a tapering period negatively affects the mucosal immune function with no significant change in severity of URTI in young basketball players.

  10. Daily and seasonal rhythms in the respiratory sensitivity of red-eared sliders (Trachemys scripta elegans).

    Reyes, Catalina; Milsom, William K

    2009-10-01

    The purpose of the present study was to determine whether the daily and seasonal changes in ventilation and breathing pattern previously documented in red-eared sliders resulted solely from daily and seasonal oscillations in metabolism or also from changes in chemoreflex sensitivity. Turtles were exposed to natural environmental conditions over a one year period. In each season, oxygen consumption, ventilation and breathing pattern were measured continuously for 24 h while turtles were breathing air and for 24 h while they were breathing a hypoxic-hypercapnic gas mixture (H-H). We found that oxygen consumption was reduced equally during the day and night under H-H in all seasons except spring. Ventilation was stimulated by H-H but the magnitude of the response was always less at night. On average, it was also less in the winter and greater in the reproductive season. The data indicate that the day-night differences in ventilation and breathing pattern seen previously resulted from daily changes in chemoreflex sensitivity whereas the seasonal changes were strictly due to changes in metabolism. Regardless of mechanism, the changes resulted in longer apneas at night and in the winter at any given level of total ventilation, facilitating longer submergence at times of the day and year when turtles are most vulnerable.

  11. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014.

    Tsiodras, S; Baka, A; Mentis, A; Iliopoulos, D; Dedoukou, X; Papamavrou, G; Karadima, S; Emmanouil, M; Kossyvakis, A; Spanakis, N; Pavli, A; Maltezou, H; Karageorgou, A; Spala, G; Pitiriga, V; Kosmas, E; Tsiagklis, S; Gkatzias, S; Koulouris, Ng; Koutsoukou, A; Bakakos, P; Markozanhs, E; Dionellis, G; Pontikis, K; Rovina, N; Kyriakopoulou, M; Efstathiou, P; Papadimitriou, T; Kremastinou, J; Tsakris, A; Saroglou, G

    2014-04-24

    On 18 April 2014, a case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection was laboratory confirmed in Athens, Greece in a patient returning from Jeddah, Saudi Arabia. Main symptoms upon initial presentation were protracted fever and diarrhoea, during hospitalisation he developed bilateral pneumonia and his condition worsened. During 14 days prior to onset of illness, he had extensive contact with the healthcare environment in Jeddah. Contact tracing revealed 73 contacts, no secondary cases had occurred by 22 April.

  12. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization.

    Merchan, L Marcela; Hassan, Hazem E; Terrin, Michael L; Waites, Ken B; Kaufman, David A; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J; Schelonka, Robert; Magder, Laurence S; Shukla, Sagar; Eddington, Natalie D; Viscardi, Rose M

    2015-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg(0.75), 1.88 liters · kg, 1.79 liters/h · kg(0.75), and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼ 4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating

  13. Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    Lukens, Michael V.; Claassen, Erwin A.W.; Graaff, Patricia M.A. de; Dijk, Mariska E.A. van; Hoogerhout, Peter; Toebes, Mireille; Schumacher, Ton N.; Most, Robbert G. van der; Kimpen, Jan L.L.; Bleek, Grada M. van

    2006-01-01

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4 + and CD8 + T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8 + T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes were recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8 + T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice

  14. Prescriber and Patient Responsibilities in Treatment of Acute Respiratory Tract Infections — Essential for Conservation of Antibiotics

    Antonio C. Pignatari

    2013-06-01

    Full Text Available Inappropriate antibiotic use in normally self-limiting acute respiratory tract infections (RTIs, such as sore throat and the common cold, is a global problem and an important factor for increasing levels of antibiotic resistance. A new group of international experts—the Global Respiratory Infection Partnership (GRIP—is committed to addressing this issue, with the interface between primary care practitioners and their patients as their core focus. To combat the overuse of antibiotics in the community, and facilitate a change from prescribing empiric antibiotic treatment towards cautious deferment combined with symptomatic relief, there is a need to introduce and enhance evidence-based dialogue between primary care practitioners and their patients. Communication with patients should focus on the de-medicalisation of self-limiting viral infections, which can be achieved via a coherent globally endorsed framework outlining the rationale for appropriate antibiotic use in acute RTIs in the context of antibiotic stewardship and conservancy. The planned framework is intended to be adaptable at a country level to reflect local behaviours, cultures and healthcare systems, and has the potential to serve as a model for change in other therapeutic areas.

  15. Characterization of the antibody response to a Haemophilus influenzae type b conjugate vaccine in children with recurrent lower respiratory tract infection

    Kristensen, K; Barington, T; Pressler, T

    1995-01-01

    single total IgG subclass, but total IgG measured as the sum of all four subclasses was significantly lower in the children with RLRI than in the controls (P = 0.036). Before vaccination, the children with RLRI had significantly less IgG antipolysaccharide Hib antibody than the controls (P = 0......M response to Hib conjugate vaccine in these children, since this isotype predominates in the primary immune response, i.e., in the absence of immunologic memory.(ABSTRACT TRUNCATED AT 250 WORDS)......Children with recurrent lower respiratory tract infection (RLRI) may respond poorly to polysaccharide antigens. To examine how such children respond to a polysaccharide coupled to a protein carrier, we immunized 15 children with RLRI aged 8-69 months and 15 carefully age-matched healthy controls...

  16. Antigen-specific H1N1 influenza antibody responses in acute respiratory tract infections and their relation to influenza infection and disease course.

    Haran, John Patrick; Hoaglin, David C; Chen, Huaiqing; Boyer, Edward W; Lu, Shan

    2014-08-01

    Early antibody responses to influenza infection are important in both clearance of virus and fighting the disease. Acute influenza antibody titers directed toward H1-antigens and their relation to infection type and patient outcomes have not been well investigated. Using hemagglutination inhibition (HI) assays, we aimed to characterize the H1-specific antibody titers in patients with influenza infection or another respiratory infection before and after the H1N1-pandemic influenza outbreak. Among patients with acute influenza infection we related duration of illness, severity of symptoms, and need for hospitalization to antibody titers. There were 134 adult patients (average age 34.7) who presented to an urban academic emergency department (ED) from October through March during the 2008-2011 influenza seasons with symptoms of fever and a cough. Nasal aspirates were tested by viral culture, and peripheral blood serum was run in seven H1-subtype HI assays. Acutely infected influenza patients had markedly lower antibody titers for six of the seven pseudotype viruses. For the average over the seven titers (log units, base 2) their mean was 7.24 (95% CI 6.88, 7.61) compared with 8.60 (95% CI 8.27, 8.92) among patients who had a non-influenza respiratory illness, pinfection, titers of some antibodies correlated with severity of symptoms and with total duration of illness (pacute respiratory infections, lower concentrations of H1-influenza-specific antibodies were associated with influenza infection. Among influenza-infected patients, higher antibody titers were present in patients with a longer duration of illness and with higher severity-of-symptom scores. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Employee guide to respiratory protection

    Wright, E.M.

    1982-01-01

    This employee guide discusses use of respiratory protective equipment for particulates, gases, vapors, supplied air, and self-contained breathing apparatus. It also covers equipment selection medical factors, fitting criteria; care; and employee responsibilities

  18. The oxygen effect and adaptive response of cells. Report 3. Simulation of respiratory oxygenation and oxygen permeability of cells

    Ehpshtejn, I.M.

    1978-01-01

    Variations in the oxygen concentration in extracellural [O 2 ] 0 and intracellular [Osub(2)]sub(i) media of cells small in size (d = 2 ] 0 - t-curves). It is shown that the Value of [Osub(2)]sub(i) may be expressed by four variants of its functional dependence: (a) on enzymic reaction of oxygen consumption, (b) on the order of reaction with respect to oxygen, (c) on physiological parameters of cells, and (d) on characteristic oxygen concentrations in the system. Items (c) and (d) are based on the postulated diffusion-kinetic model of oxygen consumption by an idealized cell of small size that consists of a drop of homogenous solution of the respiratory enzyme which is characterized by an equivalent Michaelis constant. The drop is enveloped in a uniform membrane that possesses a definite diffuse resistance to oxygen

  19. Respiratory Home Health Care

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  20. Respiratory sinus arrhythmia as a predictor of eating disorder symptoms in college students: Moderation by responses to stress and parent psychological control.

    Abaied, Jamie L; Wagner, Caitlin; Breslend, Nicole Lafko; Flynn, Megan

    2016-04-01

    This longitudinal study examined the prospective contribution of respiratory sinus arrhythmia (RSA), a key physiological indicator of self-regulation, to eating disorder symptoms in college students, and whether this link was moderated by maladaptive responses to stress and parent psychological control. At Wave 1, college students' RSA was measured at rest. At Waves 1 and 2 (six-month follow-up), students reported on their eating disorder symptoms, coping and involuntary responses to stress, and perceptions of their parents' use of psychological control. Significant three-way interactions indicated that the link between RSA and subsequent eating disorder symptoms was contingent on responses to stress and parent psychological control. In the context of maladaptive responses to stress and high psychological control, RSA predicted increased eating disorder symptoms over time. In the absence of parent psychological control, high RSA was beneficial in most cases, even when individuals reported maladaptive responses to stress. This study presents novel evidence that high RSA contributes to risk for or resilience to eating disorder symptoms over time. RSA can be protective against eating disorder symptoms, but in some contexts, the self-regulation resources that high RSA provides may be inappropriately applied to eating cognitions and behaviors. This research highlights the importance of examining physiological functioning conjointly with other risk factors as precursors to eating disorder symptoms over time. Copyright © 2016. Published by Elsevier Ltd.

  1. Interferon alpha inhibits replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine.

    Brockmeier, Susan L; Loving, Crystal L; Eberle, Kirsten C; Hau, Samantha J; Buckley, Alexandra; Van Geelen, Albert; Montiel, Nestor A; Nicholson, Tracy; Lager, Kelly M

    2017-12-01

    Type I interferons, such as interferon alpha (IFN-α), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and costly viruses to the swine industry world-wide and has been shown to induce a meager IFN-α response. Previously we administered porcine IFN-α using a replication-defective adenovirus vector (Ad5-IFN-α) at the time of challenge with virulent PRRSV and demonstrated an increase in the number of virus-specific IFNγ secreting cells, indicating that the presence of IFN-α at the time of infection can alter the adaptive immune responses to PRRSV. In the current experiment, we explored the use of IFN-α as an adjuvant administered with live-attenuated PRRSV vaccine as a method to enhance immune response to the vaccine. Unlike the previous studies with fully virulent virus, one injection of the Ad5-IFN-α abolished replication of the vaccine virus and as a result there was no detectible adaptive immune response. Although IFN-α did not have the desired adjuvant effect, the results further highlight the use of IFN-α as a treatment for PRRSV infection. Published by Elsevier B.V.

  2. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses.

    Agnihothram, Sudhakar; Gopal, Robin; Yount, Boyd L; Donaldson, Eric F; Menachery, Vineet D; Graham, Rachel L; Scobey, Trevor D; Gralinski, Lisa E; Denison, Mark R; Zambon, Maria; Baric, Ralph S

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs.  Using synthetic genomics and Venezuelan equine encephalitis virus replicons (VRPs) expressing spike and nucleocapsid proteins from MERS-CoV and other human and bat CoVs, we characterize the antigenic responses (using Western blot and enzyme-linked immunosorbent assay) and serologic responses (using neutralization assays) against 2 MERS-CoV isolates in comparison with those of other human and bat CoVs.  Serologic and neutralization responses against the spike glycoprotein were primarily strain specific, with a very low level of cross-reactivity within or across subgroups. CoV N proteins within but not across subgroups share cross-reactive epitopes with MERS-CoV isolates. Our findings were validated using a convalescent-phase serum specimen from a patient infected with MERS-CoV (NA 01) and human antiserum against SARS-CoV, human CoV NL63, and human CoV OC43.  Vaccine design for emerging CoVs should involve chimeric spike protein containing neutralizing epitopes from multiple virus strains across subgroups to reduce immune pathology, and a diagnostic platform should include a panel of nucleocapsid and spike proteins from phylogenetically distinct CoVs.

  3. The acute thermal respiratory response is unique among species in a guild of larval anuran amphibians-Implications for energy economy in a warmer future.

    Rowe, Christopher L; Crandall, Erin A

    2018-03-15

    Climate change is bringing about increased temperatures of amphibian habitats throughout the world, where ectothermic larvae will experience elevated respiratory (metabolic) energy demands. We compared the acute, thermal respiratory response ("TRR") of four species of sympatric larval amphibians (Lithobates sphenocephalus, L. catesbeianus, Scaphiopus holbrookii, and Hyla chrysoscelis) to determine species-specific differences in the rate at which metabolic energy requirements increase with temperature. The TRR, the slope of the relationship between respiration rate and temperature within critical thermal limits, varied significantly among species such that the absolute, per capita change in metabolic energy requirement as temperature increased was greater for L. sphenocephalus and L. catesbeianus than for H. chrysoscelis and S. holbrookii. This was also reflected in the temperature coefficients (Q 10,18.5-25.5 ), which ranged from 1.77 (S. holbrookii) to 2.70 (L. sphenocephalus) for per capita respiration rates. Our results suggest that L. sphenocephalus and L. catesbeianus will experience a more rapid increase in energetic requirements as temperature increases relative to the other species, possibly magnifying their influences on the resource pool. There is a critical paucity of information on the metabolic responses of most larval amphibians across a range of temperatures, despite that this relationship dictates the magnitude of the priority investment of assimilated energy in respiration, thus shaping the energetic economy of the individual. A broader knowledge of species-specific TRRs, combined with research to determine thermal acclimatory or adaptive potentials over chronic time scales, will provide a framework for evaluating whether asymmetric, climate-mediated differences in energetic demands among species could ultimately influence larval amphibian ecology in a warmer future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Respiratory care manpower issues.

    Mathews, Paul; Drumheller, Lois; Carlow, John J

    2006-03-01

    Although respiratory care is a relatively new profession, its practitioners are deeply involved in providing patient care in the critical care. In preparation for writing this article, we sought to explore the respiratory therapy manpower needs and activities designed to fulfill those needs in critical care practice. We began by delineating the historical development of respiratory care as a profession, the development of its education, and the professional credentialing system. We then conducted several literature reviews with few articles generated. We requested and received data from the American Association for Respiratory Care (AARC), The National Board for Respiratory Care (NBRC), and the Committee on Accreditation of Respiratory Care education (CoARC) relative to their membership, number of credentialed individuals, and educational program student and graduate data for 2000 through 2004. We then conducted two electronic surveys. Survey 1 was a six-item survey that examined the use of mandatory overtime in respiratory care departments. We used a convenience sample of 30 hospitals stratified by size (or=500 beds). Survey 2 was a five-item instrument distributed by blast E-mail to the Society of Critical Care Medicine's Respiratory Care Section members and members of the RC_World list serve. This survey elicited 51 usable and non-duplicative responses from geographically and size-varied institutions. We analyzed these data in several ways from distribution analysis to one-way analysis of variance procedure and appropriate post hoc analysis techniques. Where appropriate, a matched-pairs analysis was performed and these were compared across the variables intensive care unit (ICU) beds per actual number of respiratory care practitioners (RCPs) and ICU beds per preferred number of RCPs. The data gathered from the professional organizations indicated a relatively stable attrition rate (35.2%+/-1.7-3.1%), even in the face of varying enrollments (6,231 in 2004 vs. 4

  5. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  6. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.

    Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore

    2014-02-01

    What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits

  7. Peripheral blood leukocyte phagocytosis and respiratory response to certain macromolecular substances in the ABCC-JNIH adult health study, Hiroshima

    Barerras, R F; Finch, S C

    1974-01-01

    The functional integrity of the peripheral blood leukocytes of 10 heavily exposed subjects and 10 matched controls was evaluated by measuring oxygen consumption following the addition of latex particles and E. coli endotoxin, and measuring sensitized and unsensitized starch granule phagocytosis. There was no significant difference in the responses of leukocytes from exposed subjects and controls following the addition of latex particles. The ultimate response of leukocytes from exposed subjects to the stimulus of E. coli endotoxin was comparable to that of the controls. Depressed early response in 5 of 10 exposed and 1 of 10 control subjects was observed. Interpretation is unclear. No evidence of radiation-related impairment of starch granule phagocytosis was observed. Results fail to demonstrate any late radiation-related functional impairment of peripheral blood leukocytes during phagocytosis. The serum-related changes were inconstant and probably were of little significance. (auth)

  8. Dysrhythmias of the respiratory oscillator

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  9. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  10. NEUROTROPHINS OPERATE AT DIFFERENT LEVELS OF THE RESPIRATORY TRACT IN RESPONSES OF ALLERGIC MICE TO DIESEL EXHAUST PARTICLES (DEP)

    Neurotrophins including NGF, NT-3, and BDNF are linked to allergic responses. Treatment with anti-p75 (pan-neurotrophin receptor) prevents the increase in airflow obstruction caused by exposure to DEP in ovalbumin (OVA)-allergic mice (Toxicol Sci 84(S1):91, 2005). Our present goa...

  11. The innate immune response to lower respiratory tract E. Coli infection and the role of the CCL2-CCR2 axis in neonatal mice.

    McGrath-Morrow, Sharon A; Ndeh, Roland; Collaco, Joseph M; Poupore, Amy K; Dikeman, Dustin; Zhong, Qiong; Singer, Benjamin D; D'Alessio, Franco; Scott, Alan

    2017-09-01

    Neonates have greater morbidity/mortality from lower respiratory tract infections (LRTI) compared to older children. Lack of conditioning of the pulmonary immune system due to limited environmental exposures and/or infectious challenges likely contributes to the increase susceptibility in the neonate. In this study, we sought to gain insights into the nature and dynamics of the neonatal pulmonary immune response to LRTI using a murine model. Wildtype (WT) and Ccr2 -/- C57BL/6 neonatal and juvenile mice received E. coli or PBS by direct pharyngeal aspiration. Flow cytometry was used to measure immune cell dynamics and identify cytokine-producing cells. Real-time PCR and ELISA were used to measure cytokine/chemokine expression. Innate immune cell recruitment in response to E. coli-induced LRTI was delayed in the neonatal lung compared to juvenile lung. Lung clearance of bacteria was also significantly delayed in the neonate. Ccr2 -/- neonates, which lack an intact CCL2-CCR2 axis, had higher mortality after E. coli challenged than Ccr2 +/+ neonates. A greater percentage of CD8 + T cells and monocytes from WT neonates challenged with E. coli produced TNF compared to controls. The pulmonary immune response to E. coli-induced LRTI differed significantly between neonatal and juvenile mice. Neonates were more susceptible to increasing doses of E. coli and exhibited greater mortality than juveniles. In the absence of an intact CCL2-CCR2 axis, susceptibility to LRTI-induced mortality was further increased in neonatal mice. Taken together these findings underscore the importance of age-related differences in the innate immune response to LRTI during early stages of postnatal life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improved Cytotoxic T Lymphocyte Responses to Vaccination with Porcine Reproductive and Respiratory Syndrome Virus in 4-1BB Transgenic Pigs

    Guangping Huang

    2017-12-01

    Full Text Available Vaccination is the most reliable measure to prevent infectious diseases in domestic animals. Development of novel vaccines demands extensive studies with new technologies, such as using novel adjuvants and immunomodulatory molecules. The co-stimulatory molecule 4-1BB provides a key signal that directs the fate of T cells during activation, and thus is important to their function in immune protection. To determine whether host immune responses to viral infection could be promoted by enhancing 4-1BB co-stimulation, in this study, we produced transgenic pig clones expressing an extra copy of the 4-1BB gene by clustered regularly interspaced short palindromic repeats/CRISPR-associated gene 9-mediated homologous recombination at the Rosa26 locus. The immune responses of transgenic pigs to porcine reproductive and respiratory syndrome virus (PRRSV vaccine were determined on day 14. We show that peripheral blood lymphocytes of transgenic pigs expressed around twice the level of 4-1BB mRNA than those of control pigs. We also found IL-2, TNF-α, and granzyme B mRNA levels as well as PRRSV-specific IFN-γ response were significantly upregulated in 4-1BB transgenic pigs, leading to more efficient cytotoxic T lymphocyte (CTL killing, whereas the expressions of IL-4, IL-17, and Foxp3 were not affected. These results indicate that higher levels of 4-1BB expression involve in promoting Th1 differentiation and enhancing specific CTL responses to PRRSV, and provide a novel approach to increase the efficacy of current vaccines to control the infectious diseases.

  13. Partnering for optimal respiratory home care: physicians working with respiratory therapists to optimally meet respiratory home care needs.

    Spratt, G; Petty, T L

    2001-05-01

    The need for respiratory care services continues to increase, reimbursement for those services has decreased, and cost-containment measures have increased the frequency of home health care. Respiratory therapists are well qualified to provide home respiratory care, reduce misallocation of respiratory services, assess patient respiratory status, identify problems and needs, evaluate the effect of the home setting, educate the patient on proper equipment use, monitor patient response to and complications of therapy, monitor equipment functioning, monitor for appropriate infection control procedures, make recommendations for changes to therapy regimen, and adjust therapy under the direction of the physician. Teamwork benefits all parties and offers cost and time savings, improved data collection and communication, higher job satisfaction, and better patient monitoring, education, and quality of life. Respiratory therapists are positioned to optimize treatment efficacy, maximize patient compliance, and minimize hospitalizations among patients receiving respiratory home care.

  14. Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route.

    Hielpos, Maria Soledad; Ferrero, Mariana C; Fernández, Andrea G; Falivene, Juliana; Vanzulli, Silvia; Comerci, Diego J; Baldi, Pablo C

    2017-01-01

    Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 10 6  CFU of B. abortus , the pulmonary bacterial burden at 7 days post-infection (p.i.) was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortus is caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS)/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS). We speculated that the Brucella TIR-containing proteins (Btps) A and B, which impair TLR signaling in vitro , may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB -infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune modulation

  15. Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route

    Maria Soledad Hielpos

    2017-08-01

    Full Text Available Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 106 CFU of B. abortus, the pulmonary bacterial burden at 7 days post-infection (p.i. was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortusis caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS. We speculated that the Brucella TIR-containing proteins (Btps A and B, which impair TLR signaling in vitro, may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB-infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune

  16. Lungs and Respiratory System

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  17. Neonatal respiratory distress syndrome

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  18. Acute Responses to Diuretic Therapy in Extremely Low Gestational Age Newborns: Results from the Prematurity and Respiratory Outcomes Program Cohort Study.

    Blaisdell, Carol J; Troendle, James; Zajicek, Anne

    2018-06-01

    To determine if daily respiratory status improved more in extremely low gestational age (GA) premature infants after diuretic exposure compared with those not exposed in modern neonatal intensive care units. The Prematurity and Respiratory Outcomes Program (PROP) was a multicenter observational cohort study of 835 extremely premature infants, GAs of 23 0/7 -28 6/7 weeks, enrolled in the first week of life from 13 US tertiary neonatal intensive care units. We analyzed the PROP study daily medication and respiratory support records of infants ≤34 weeks postmenstrual age. We determined whether there was a temporal association between the administration of diuretics and an acute change in respiratory status in premature infants in the neonatal intensive care unit, using an ordered categorical ranking of respiratory status. Infants in the diuretic exposed group of PROP were of lower mean GA and lower mean birth weight (P respiratory status before receiving diuretics) that the exposed infants were on a higher level of respiratory support was significantly greater (OR, >1) for each day after the initial day of diuretic exposure. Our analysis did not support the ability of diuretics to substantially improve the extremely premature infant's respiratory status. Further study of both safety and efficacy of diuretics in this setting are warranted. Clinicaltrials.gov: NCT01435187. Published by Elsevier Inc.

  19. Mortality from non‐malignant respiratory diseases among people with silicosis in Hong Kong: exposure–response analyses for exposure to silica dust

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-01-01

    Objectives To examine the exposure–response relationships between various indices of exposure to silica dust and the mortality from non‐malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. Methods The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. Results 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981–99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure–response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. Conclusion This study documented an exposure–response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects. PMID:16973737

  20. Mortality from non-malignant respiratory diseases among people with silicosis in Hong Kong: exposure-response analyses for exposure to silica dust.

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-02-01

    To examine the exposure-response relationships between various indices of exposure to silica dust and the mortality from non-malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981-99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure-response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. This study documented an exposure-response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects.

  1. Single histidine button in cardiac troponin I sustains heart performance in response to severe hypercapnic respiratory acidosis in vivo.

    Palpant, Nathan J; D'Alecy, Louis G; Metzger, Joseph M

    2009-05-01

    Intracellular acidosis is a profound negative regulator of myocardial performance. We hypothesized that titrating myofilament calcium sensitivity by a single histidine substituted cardiac troponin I (A164H) would protect the whole animal physiological response to acidosis in vivo. To experimentally induce severe hypercapnic acidosis, mice were exposed to a 40% CO(2) challenge. By echocardiography, it was found that systolic function and ventricular geometry were maintained in cTnI A164H transgenic (Tg) mice. By contrast, non-Tg (Ntg) littermates experienced rapid and marked cardiac decompensation during this same challenge. For detailed hemodymanic assessment, Millar pressure-conductance catheterization was performed while animals were treated with a beta-blocker, esmolol, during a severe hypercapnic acidosis challenge. Survival and load-independent measures of contractility were significantly greater in Tg vs. Ntg mice. This assay showed that Ntg mice had 100% mortality within 5 min of acidosis. By contrast, systolic and diastolic function were protected in Tg mice during acidosis, and they had 100% survival. This study shows that, independent of any beta-adrenergic compensation, myofilament-based molecular manipulation of inotropy by histidine-modified troponin I maintains cardiac inotropic and lusitropic performance and markedly improves survival during severe acidosis in vivo.

  2. Structural Factors of the Middle East Respiratory Syndrome Coronavirus Outbreak as a Public Health Crisis in Korea and Future Response Strategies

    Dong-Hyun Kim

    2015-11-01

    Full Text Available The recent Middle East respiratory syndrome coronavirus (MERS-CoV outbreak has originated from a failure in the national quarantine system in the Republic of Korea as most basic role of protecting the safety and lives of its citizens. Furthermore, a number of the Korean healthcare system’s weaknesses seem to have been completely exposed. The MERS-CoV outbreak can be considered a typical public health crisis in that the public was not only greatly terrorized by the actual fear of the disease, but also experienced a great impact to their daily lives, all in a short period of time. Preparedness for and an appropriate response to a public health crisis require comprehensive systematic public healthcare measures to address risks comprehensively with an all-hazards approach. Consequently, discussion regarding establishment of post-MERS-CoV improvement measures must focus on the total reform of the national quarantine system and strengthening of the public health infrastructure. In addition, the Korea Centers for Disease Control and Prevention must implement specific strategies of action including taking on the role of “control tower” in a public health emergency, training of Field Epidemic Intelligence Service officers, establishment of collaborative governance between central and local governments for infection prevention and control, strengthening the roles and capabilities of community-based public hospitals, and development of nationwide crisis communication methods.

  3. On the origins of sex-based differences in respiratory disorders: Lessons and hypotheses from stress neuroendocrinology in developing rats.

    Rousseau, Jean-Philippe; Tenorio-Lopes, Luana; Baldy, Cécile; Janes, Tara Adele; Fournier, Stéphanie; Kinkead, Richard

    2017-11-01

    The environment plays a critical role in shaping development and function of the brain. Stress, especially when experienced early in life, can interfere with these processes. In the context of respiratory control, perinatal stress can therefore alter the ability to achieve the "fine-tuning" necessary for proper detection of chemosensory stimuli and production of an adequate motor (respiratory) command. Depending on the timing, intensity, and duration, the detrimental consequences of perinatal exposure to adverse conditions on the respiratory network become manifest at various life stages and can persist into adulthood. During early life, respiratory diseases commonly associated with dysfunction of neural networks include apnea of prematurity (AOP) and cardio-respiratory failure leading to sudden infant death syndrome (SIDS). Sleep disordered breathing (SDB) can occur at various life stages, including adulthood. Regardless of age, a common element of these disorders is their greater prevalence in males. While this sexual dimorphism points to a potential role of sex hormones, our understanding of the neuroendocrine mechanisms remain poorly understood. In addition to their modulatory influence on breathing, gonadal hormones regulate sexual differentiation of the brain. Stress alters these effects, and over the years our laboratory has used various perinatal stress protocols to gain insight into the origins of sex-based differences in respiratory disorders. This review discusses our recent advances with a focus on the sex-specific impact of early life stress on O 2 -chemoreflex function both in newborn and adult rats. We conclude by discussing the basic principles emerging from this work, potential mechanisms, and clinical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice: effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses.

    Muhammad Shafique

    Full Text Available INTRODUCTION: RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies, capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for intramuscular injection with intrinsic adjuvant properties mediated by an incorporated lipophilic Toll-like receptor 2 (TLR2 ligand. However, it has not been investigated whether this virosomal RSV vaccine candidate would be suitable for use in mucosal immunization strategies and if additional incorporation of other innate receptor ligands, like NOD2-ligand, could further enhance the immunogenicity and protective efficacy of the vaccine. OBJECTIVE: To explore if intranasal (IN immunization with a virosomal RSV vaccine, supplemented with TLR2 and/or NOD2-ligands, is an effective strategy to induce RSV-specific immunity. METHODS: We produced RSV-virosomes carrying TLR2 (Pam3CSK4 and/or NOD2 (L18-MDP ligands. We tested the immunopotentiating properties of these virosomes in vitro, using TLR2- and/or NOD2-ligand-responsive murine and human cell lines, and in vivo by assessing induction of protective antibody and cellular responses upon IN immunization of BALB/c mice. RESULTS: Incorporation of Pam3CSK4 and/or L18-MDP potentiates the capacity of virosomes to activate (antigen-presenting cells in vitro, as demonstrated by NF-κB induction. In vivo, incorporation of Pam3CSK4 in virosomes boosted serum IgG antibody responses and mucosal antibody responses after IN immunization. While L18-MDP alone was ineffective, incorporation of L18-MDP in Pam3CSK4-carrying virosomes further boosted mucosal antibody responses. Finally, IN immunization with adjuvanted virosomes, particularly Pam3CSK4/L18-MDP-adjuvanted-virosomes, protected mice against infection with RSV, without priming for enhanced

  5. Integrated responses of Na+/HCO3- cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis.

    Perry, S F; Furimsky, M; Bayaa, M; Georgalis, T; Shahsavarani, A; Nickerson, J G; Moon, T W

    2003-12-30

    Using degenerate primers, followed by 3' and 5' RACE and "long" PCR, a continuous 4050-bp cDNA was obtained and sequenced from rainbow trout (Oncorhynchus mykiss) gill. The cDNA included an open reading frame encoding a deduced protein of 1088 amino acids. A BLAST search of the GenBank protein database demonstrated that the trout gene shared high sequence similarity with several vertebrate Na(+)/HCO(3)(-) cotransporters (NBCs) and in particular, NBC1. Protein alignment revealed that the trout NBC is >80% identical to vertebrate NBC1s and phylogenetic analysis provided additional evidence that the trout NBC is indeed a homolog of NBC1. Using the same degenerate primers, a partial cDNA (404 bp) for NBC was obtained from eel (Anguilla rostrata) kidney. Analysis of the tissue distribution of trout NBC, as determined by Northern blot analysis and real-time PCR, indicated high transcript levels in several absorptive/secretory epithelia including gill, kidney and intestine and significant levels in liver. NBC mRNA was undetectable in eel gill by real-time PCR. In trout, the levels of gill NBC1 mRNA were increased markedly during respiratory acidosis induced by exposure to hypercarbia; this response was accompanied by a transient increase in branchial V-type H(+)-ATPase mRNA levels. Assuming that the branchial NBC1 is localised to basolateral membranes of gill cells and operates in the influx mode (HCO(3)(-) and Na(+) entry into the cell), it would appear that in trout, the expression of branchial NBC1 is transcriptionally regulated to match the requirements of gill pHi regulation rather than to match trans-epithelial HCO(3)(-) efflux requirements for systemic acid-base balance. By analogy with mammalian systems, NBC1 in the kidney probably plays a role in the tubular reabsorption of both Na(+) and HCO(3)(-). During periods of respiratory acidosis, levels of renal NBC1 mRNA increased (after a transient reduction) in both trout and eel, presumably to increase HCO(3

  6. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses.

    Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N

    2017-01-01

    This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Middle East Respiratory Syndrome

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  9. Climate Change and Respiratory Infections.

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  10. GH responsiveness before and after a 3-week multidisciplinary body weight reduction program associated with an incremental respiratory muscle endurance training in obese adolescents.

    Rigamonti, A E; Agosti, F; Patrizi, A; Tringali, G; Fessehatsion, R; Cella, S G; Sartorio, A

    2014-01-01

    Several studies have demonstrated that the obesity-related hyposomatropism is usually reversible after a consistent weight loss induced by diet and/or bariatric surgery. Recently, a single bout of respiratory muscle endurance training (RMET) by means of a specific commercially available device (Spiro Tiger®) has been reported to induce a marked GH response in obese adults, its GH-releasing effect being significantly lower in obese adolescents. The GH response disappeared in both obese adults and adolescents when RMET was repeated at 2-h intervals in-between. The aim of the present study was to evaluate GH responses to repeated bouts of RMET administered before and after a 3-week in-hospital multidisciplinary body weight reduction program (entailing energy-restricted diet, 90 min/daily aerobic physical activity, psychological counseling, and nutritional education) combined with a progressively increasing RMET (15 daily sessions, 5 sessions per week) in 7 obese male adolescents [age: 12-17 years; body mass index (BMI): 38.5±3.1 kg/m2; percent fat mass (FM): 37.0±2.0%]. Blood samplings for GH determinations were collected during the 1st and 15th sessions, which were composed of 2 consecutive bouts of RMET (of identical intensity and duration) at 2-h interval in-between. At the beginning of the study, baseline GH levels significantly increased after the first bout of RMET in all subjects (pweight (from 115.3±9.2 kg to 111.5±8.7 kg, pweight reduction intervention does not seem useful to positively influence the reduced GH responsiveness to 2 repeated RMET bouts in obese adolescents. More intensive and/or long-term RMET protocols, associated with energy-restricted diets, determining more consistent changes in body composition, are likely needed to restore the impaired GH-IGF-1 function of obese adolescents. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.

    Basting, Tyler M; Burke, Peter G R; Kanbar, Roy; Viar, Kenneth E; Stornetta, Daniel S; Stornetta, Ruth L; Guyenet, Patrice G

    2015-01-14

    In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (Δf(R)) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔV(T)) followed the same trend. The effect of hypoxia on Δf(R) was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). Δf(R) was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN. Copyright © 2015 the authors 0270-6474/15/350527-17$15.00/0.

  12. Respiratory syncytial virus, pneumonia virus of mice, and influenza A virus differently affect respiratory allergy in mice

    Barends, M.; de Rond, L. G. H.; Dormans, J.; van Oosten, M.; Boelen, A.; Neijens, H. J.; Osterhaus, A. D. M. E.; Kimman, T. G.

    2004-01-01

    Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response,

  13. Respiratory disease mortality among uranium miners

    Archer, V.E.; Gillam, J.D.; Wagoner, J.K.

    1976-01-01

    A mortality analysis of a group of white and Indian uranium miners was done by a life-table method. A significant excess of respiratory cancer among both whites and Indians was found. Nonmalignant respiratory disease deaths among the whites are approaching cancer in importance as a cause of death, probably as a result of diffuse parenchymal radiation damage. Exposure-response curves for nonsmokers are linear for both respiratory cancer and ''other respiratory disease''. Cigaret smoking elevates and distorts that curve. Light cigaret smokers appear to be most vulnerable to lung parenchymal damage. The predominant histologic cancer among nonsmokers is small-cell undifferentiated, just as it is among cigaret smokers

  14. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome.

    Avasarala, Sreedevi; Zhang, Fangfang; Liu, Guangliang; Wang, Ruixue; London, Steven D; London, Lucille

    2013-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 10(7)pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.

  15. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity.

    Kubesch, Nadine Janet; de Nazelle, Audrey; Westerdahl, Dane; Martinez, David; Carrasco-Turigas, Gloria; Bouso, Laura; Guerra, Stefano; Nieuwenhuijsen, Mark J

    2015-04-01

    Exposure to traffic-related air pollution (TRAP) has been associated with adverse respiratory and systemic outcomes. Physical activity (PA) in polluted air may increase pollutant uptake and thereby health effects. The authors aimed to determine the short-term health effects of TRAP in healthy participants and any possible modifying effect of PA. Crossover real-world exposure study comparing in 28 healthy participants pulmonary and inflammatory responses to four different exposure scenarios: 2 h exposure in a high and low TRAP environment, each at rest and in combination with intermittent moderate PA, consisting of four 15 min rest and cycling intervals. Data were analysed using mixed effect models for repeated measures. Intermittent PA compared to rest, irrespective of the TRAP exposure status, increased statistically significant (p≤0.05) pulmonary function (forced expiratory volume in 1 s (34 mL), forced vital capacity (29 mL), forced expiratory flow (FEF25-75%) (91 mL)), lung inflammation (fraction of exhaled nitric oxide, FeNO, (0.89 ppb)), and systemic inflammation markers interleukin-6 (52.3%), leucocytes (9.7%) and neutrophils count (18.8%). Interquartile increases in coarse particulate matter were statistically significantly associated with increased FeNO (0.80 ppb) and neutrophil count (5.7%), while PM2.5 and PM10 (particulate matter smaller than 2.5 and 10 µm in diameter, respectively) increased leucocytes (5.1% and 4.0%, respectively). We found no consistent evidence for an interaction between TRAP and PA for any of the outcomes of interest. In a healthy population, intermittent moderate PA has beneficial effects on pulmonary function even when performed in a highly polluted environment. This study also suggests that particulate air pollution is inducing pulmonary and systemic inflammatory responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Respiratory tract infection during Hajj

    Alzeer Abdulaziz

    2009-01-01

    Full Text Available Respiratory tract infection during Hajj (pilgrimage to Mecca is a common illness, and it is responsible for most of the hospital admissions. Influenza virus is the leading cause of upper respiratory tract infection during Hajj, and pneumonia can be serious. Taking into account the close contacts among the pilgrims, as well as the crowding, the potential for transmission of M. tuberculosis is expected to be high. These pilgrims can be a source for spreading infection on their return home. Although vaccination program for influenza is implemented, its efficacy is uncertain in this religious season. Future studies should concentrate on prevention and mitigation of these infections.

  17. Perceived Competence and Comfort in Respiratory Protection

    Burgel, Barbara J.; Novak, Debra; Burns, Candace M.; Byrd, Annette; Carpenter, Holly; Gruden, MaryAnn; Lachat, Ann; Taormina, Deborah

    2015-01-01

    In response to the Institute of Medicine (2011) report Occupational Health Nurses and Respiratory Protection: Improving Education and Training, a nationwide survey was conducted in May 2012 to assess occupational health nurses’ educational preparation, roles, responsibilities, and training needs in respiratory protection. More than 2,000 occupational health nurses responded; 83% perceived themselves as competent, proficient, or expert in respiratory protection, reporting moderate comfort with 12 respiratory program elements. If occupational health nurses had primary responsibility for the respiratory protection program, they were more likely to perceive higher competence and more comfort in respiratory protection, after controlling for occupational health nursing experience, highest education, occupational health nursing certification, industry sector, Association of Occupational Health Professionals in Healthcare membership, taking a National Institute for Occupational Safety and Health spirometry course in the prior 5 years, and perceiving a positive safety culture at work. These survey results document high perceived competence and comfort in respiratory protection. These findings support the development of targeted educational programs and interprofessional competencies for respiratory protection. PMID:23429638

  18. The respiratory microbiome and respiratory infections

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  19. Thresholds in chemical respiratory sensitisation.

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-03

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the

  20. Respiratory Syncytial Virus

    ... with facebook share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Credit: CDC This is the ... the United States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In ...

  1. Respiratory syncytial virus (RSV)

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  2. Respiratory Issues in OI

    Respiratory Issues in Osteogenesis Imperfecta \\ Introduction The respiratory system’s job is to bring oxygen into the body and remove carbon dioxide, the waste product of breathing. Because oxygen is the fuel ...

  3. Acute respiratory distress syndrome

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  4. Upper respiratory tract (image)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  5. Avian respiratory system disorders

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  6. Respiratory Health Effects of Passive Smoking

    This report concludes that exposure to environmental tobacco smoke (ETS), commonly known as secondhand smoke, is responsible for approximately 3,000 lung cancer deaths each year in nonsmoking adults and impairs respiratory health.

  7. Acute Respiratory Distress Syndrome

    Carmen Sílvia Valente Barbas

    2012-01-01

    Full Text Available This paper, based on relevant literature articles and the authors' clinical experience, presents a goal-oriented respiratory management for critically ill patients with acute respiratory distress syndrome (ARDS that can help improve clinicians' ability to care for these patients. Early recognition of ARDS modified risk factors and avoidance of aggravating factors during hospital stay such as nonprotective mechanical ventilation, multiple blood products transfusions, positive fluid balance, ventilator-associated pneumonia, and gastric aspiration can help decrease its incidence. An early extensive clinical, laboratory, and imaging evaluation of “at risk patients” allows a correct diagnosis of ARDS, assessment of comorbidities, and calculation of prognostic indices, so that a careful treatment can be planned. Rapid administration of antibiotics and resuscitative measures in case of sepsis and septic shock associated with protective ventilatory strategies and early short-term paralysis associated with differential ventilatory techniques (recruitment maneuvers with adequate positive end-expiratory pressure titration, prone position, and new extracorporeal membrane oxygenation techniques in severe ARDS can help improve its prognosis. Revaluation of ARDS patients on the third day of evolution (Sequential Organ Failure Assessment (SOFA, biomarkers and response to infection therapy allows changes in the initial treatment plans and can help decrease ARDS mortality.

  8. Effect of change in symptoms, respiratory status, nutritional profile and quality of life on response to treatment for advanced non-small cell lung cancer.

    Mohan, Anant; Singh, P; Kumar, S; Mohan, C; Pathak, A K; Pandey, R M; Guleria, R

    2008-01-01

    Quality of life (QOL), and pulmonary and nutritional parameters are important outcome measures during treatment of lung cancer; however, the effect of chemotherapy on these factors and their relationship with clinical response is unclear. Patients with non-small cell lung cancer (NSCLC) were evaluated for symptom profile, nutritional status (using anthropometry), pulmonary functions by spirometry and six minute walk distance (6 MWD), and QOL using the WHO-QOL Bref 26 questionnaire, before and after chemotherapy. Forty-four patients were studied (mean (SD) age, 55 (10) years, 75% males). The majority (98%) had stage III or IV disease and 72% were current / ex-smokers with median pack-years of 27.0 (range, 0.5-90). Some 61% had a Karnofsky Performance Scale (KPS) 70 or 80. The commonest symptoms were coughing, dyspnea, chest pain, anorexia and fever (79%, 72%, 68%, 57% and 40%, respectively). The mean (SD) 6 MWD was 322.5 (132.6) meters. The mean (SD) percentage forced vital capacity (FVC %), and forced expiratory volume in one second (FEV1 %) were 64.7 (18.8) and 57.8 (19.4), respectively. The mean (SD) QOL scores for the physical, psychological, social, and environmental domains were 52.9 (20.5), 56.1 (17.9), 64.5 (21.8), 57.1 (16.6), respectively. Fourteen patients (32%) responded to chemotherapy. Non-responders had significantly higher baseline occurrence of fever, anorexia, and weight loss, higher pack-years of smoking and poorer KPS compared to responders. Overall, chemotherapy caused significant decline in the frequency of coughing, dyspnea, chest pain, fever, anorexia, weight loss, and improvement in hemoglobin and albumin levels. There was no significant improvement in pulmonary functions, nutritional status, or QOL scores after treatment. Lung cancer patients have a poor QOL. Although chemotherapy provides significant symptomatic benefit, this does not translate into similar benefit in respiratory and nutritional status or QOL. Patients with constitutional

  9. What Is Respiratory Distress Syndrome?

    ... Home / Respiratory Distress Syndrome Respiratory Distress Syndrome Also known as What Is Respiratory ... This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of ...

  10. Severe acute respiratory syndrome (SARS)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  11. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups

    Baldy, Cécile; Chamberland, Simon

    2017-01-01

    Abstract The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14–P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups. PMID:29308430

  12. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  13. Validation of a Novel Molecular Host Response Assay to Diagnose Infection in Hospitalized Patients Admitted to the ICU With Acute Respiratory Failure.

    Koster-Brouwer, Maria E; Verboom, Diana M; Scicluna, Brendon P; van de Groep, Kirsten; Frencken, Jos F; Janssen, Davy; Schuurman, Rob; Schultz, Marcus J; van der Poll, Tom; Bonten, Marc J M; Cremer, Olaf L

    2018-03-01

    Discrimination between infectious and noninfectious causes of acute respiratory failure is difficult in patients admitted to the ICU after a period of hospitalization. Using a novel biomarker test (SeptiCyte LAB), we aimed to distinguish between infection and inflammation in this population. Nested cohort study. Two tertiary mixed ICUs in the Netherlands. Hospitalized patients with acute respiratory failure requiring mechanical ventilation upon ICU admission from 2011 to 2013. Patients having an established infection diagnosis or an evidently noninfectious reason for intubation were excluded. None. Blood samples were collected upon ICU admission. Test results were categorized into four probability bands (higher bands indicating higher infection probability) and compared with the infection plausibility as rated by post hoc assessment using strict definitions. Of 467 included patients, 373 (80%) were treated for a suspected infection at admission. Infection plausibility was classified as ruled out, undetermined, or confirmed in 135 (29%), 135 (29%), and 197 (42%) patients, respectively. Test results correlated with infection plausibility (Spearman's rho 0.332; p < 0.001). After exclusion of undetermined cases, positive predictive values were 29%, 54%, and 76% for probability bands 2, 3, and 4, respectively, whereas the negative predictive value for band 1 was 76%. Diagnostic discrimination of SeptiCyte LAB and C-reactive protein was similar (p = 0.919). Among hospitalized patients admitted to the ICU with clinical uncertainty regarding the etiology of acute respiratory failure, the diagnostic value of SeptiCyte LAB was limited.

  14. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection.

    Bakre, Abhijeet A; Harcourt, Jennifer L; Haynes, Lia M; Anderson, Larry J; Tripp, Ralph A

    2017-07-03

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.

  15. Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies.

    Sasaki, Nobuo; Meyer, Matthew J; Eikermann, Matthias

    2013-04-01

    Postoperative pulmonary complications are responsible for significant increases in hospital cost as well as patient morbidity and mortality; respiratory muscle dysfunction represents a contributing factor. Upper airway dilator muscles functionally resist the upper airway collapsing forces created by the respiratory pump muscles. Standard perioperative medications (anesthetics, sedatives, opioids, and neuromuscular blocking agents), interventions (patient positioning, mechanical ventilation, and surgical trauma), and diseases (lung hyperinflation, obesity, and obstructive sleep apnea) have differential effects on the respiratory muscle subgroups. These effects on the upper airway dilators and respiratory pump muscles impair their coordination and function and can result in respiratory failure. Perioperative management strategies can help decrease the incidence of postoperative respiratory muscle dysfunction. Such strategies include minimally invasive procedures rather than open surgery, early and optimal mobilizing of respiratory muscles while on mechanical ventilation, judicious use of respiratory depressant anesthetics and neuromuscular blocking agents, and noninvasive ventilation when possible.

  16. Differential impact of respiratory syncytial virus and parainfluenza virus on the frequency of acute otitis media is explained by lower adaptive and innate immune responses in otitis-prone children.

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-08-01

    Acute otitis media (AOM) is a leading cause of bacterial pediatric infections associated with viral upper respiratory infections (URIs). We examined the differential impact of respiratory syncytial virus (RSV) and parainfluenza virus URIs on the frequency of AOM caused by Streptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined otitis-prone (sOP) and non-otitis-prone (NOP) children as a potential mechanism to explain increased susceptibility to AOM. Peripheral blood and nasal washes were obtained from sOP and NOP children (n = 309). Colonization events and antiviral responses consisting of total specific immunoglobulin G (IgG) responses, neutralizing antibody responses, and T-cell responses were determined. Isolated neutrophils were infected with varying multiplicities of infection of both viruses, and opsonophagocytosis potential was measured. A significant increase was found in frequency of AOM events caused by Spn and NTHi, with a concurrent RSV infection in sOP children. These results correlated with diminished total RSV-specific IgG, higher viral nasal burdens, and lower IgG neutralizing capacity. The sOP children had diminished T-cell responses to RSV that correlated with lower Toll-like receptor 3/7 transcript and decreased expression of HLA-DR on antigen-presenting cells. RSV interfered with the Spn phagocytic capacity of neutrophils in a dose-dependent manner. Parainfluenza virus infections did not differentially affect AOM events in sOP and NOP children. Lower innate and adaptive immune responses to RSV in sOP children may slow the kinetics of viral clearance from the nasopharynx and allow for viral interference with antibacterial immune responses, thus contributing to increased frequency of AOMs. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Climate change and respiratory health.

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  18. Neurological Respiratory Failure

    Mohan Rudrappa

    2018-01-01

    Full Text Available West Nile virus infection in humans is mostly asymptomatic. Less than 1% of neuro-invasive cases show a fatality rate of around 10%. Acute flaccid paralysis of respiratory muscles leading to respiratory failure is the most common cause of death. Although the peripheral nervous system can be involved, isolated phrenic nerve palsy leading to respiratory failure is rare and described in only two cases in the English literature. We present another case of neurological respiratory failure due to West Nile virus-induced phrenic nerve palsy. Our case reiterates the rare, but lethal, consequences of West Nile virus infection, and the increase of its awareness among physicians.

  19. Controlled cross-over study in normal subjects of naloxone-preceding-lactate infusions; respiratory and subjective responses: relationship to endogenous opioid system, suffocation false alarm theory and childhood parental loss.

    Preter, M; Lee, S H; Petkova, E; Vannucci, M; Kim, S; Klein, D F

    2011-02-01

    The expanded suffocation false alarm theory (SFA) hypothesizes that dysfunction in endogenous opioidergic regulation increases sensitivity to CO2, separation distress and panic attacks. In panic disorder (PD) patients, both spontaneous clinical panics and lactate-induced panics markedly increase tidal volume (TV), whereas normals have a lesser effect, possibly due to their intact endogenous opioid system. We hypothesized that impairing the opioidergic system by naloxone could make normal controls parallel PD patients' response when lactate challenged. Whether actual separations and losses during childhood (childhood parental loss, CPL) affected naloxone-induced respiratory contrasts was explored. Subjective panic-like symptoms were analyzed although pilot work indicated that the subjective aspect of anxious panic was not well modeled by this specific protocol. Randomized cross-over sequences of intravenous naloxone (2 mg/kg) followed by lactate (10 mg/kg), or saline followed by lactate, were given to 25 volunteers. Respiratory physiology was objectively recorded by the LifeShirt. Subjective symptomatology was also recorded. Impairment of the endogenous opioid system by naloxone accentuates TV and symptomatic response to lactate. This interaction is substantially lessened by CPL. Opioidergic dysregulation may underlie respiratory pathophysiology and suffocation sensitivity in PD. Comparing specific anti-panic medications with ineffective anti-panic agents (e.g. propranolol) can test the specificity of the naloxone+lactate model. A screen for putative anti-panic agents and a new pharmacotherapeutic approach are suggested. Heuristically, the experimental unveiling of the endogenous opioid system impairing effects of CPL and separation in normal adults opens a new experimental, investigatory area.

  20. Controlled cross-over study in normal subjects of naloxone-preceding-lactate infusions; respiratory and subjective responses: relationship to endogenous opioid system, suffocation false alarm theory and childhood parental loss

    Preter, M.; Lee, S. H.; Petkova, E.; Vannucci, M.; Kim, S.; Klein, D. F.

    2015-01-01

    Background The expanded suffocation false alarm theory (SFA) hypothesizes that dysfunction in endogenous opioidergic regulation increases sensitivity to CO2, separation distress and panic attacks. In panic disorder (PD) patients, both spontaneous clinical panics and lactate-induced panics markedly increase tidal volume (TV), whereas normals have a lesser effect, possibly due to their intact endogenous opioid system. We hypothesized that impairing the opioidergic system by naloxone could make normal controls parallel PD patients' response when lactate challenged. Whether actual separations and losses during childhood (childhood parental loss, CPL) affected naloxone-induced respiratory contrasts was explored. Subjective panic-like symptoms were analyzed although pilot work indicated that the subjective aspect of anxious panic was not well modeled by this specific protocol. Method Randomized cross-over sequences of intravenous naloxone (2 mg/kg) followed by lactate (10 mg/kg), or saline followed by lactate, were given to 25 volunteers. Respiratory physiology was objectively recorded by the LifeShirt. Subjective symptomatology was also recorded. Results Impairment of the endogenous opioid system by naloxone accentuates TV and symptomatic response to lactate. This interaction is substantially lessened by CPL. Conclusions Opioidergic dysregulation may underlie respiratory pathophysiology and suffocation sensitivity in PD. Comparing specific anti-panic medications with ineffective anti-panic agents (e.g. propranolol) can test the specificity of the naloxone + lactate model. A screen for putative anti-panic agents and a new pharmacotherapeutic approach are suggested. Heuristically, the experimental unveiling of the endogenous opioid system impairing effects of CPL and separation in normal adults opens a new experimental, investigatory area. PMID:20444308

  1. Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia ficus-indica1[OA

    Gomez-Casanovas, Nuria; Blanc-Betes, Elena; Gonzalez-Meler, Miquel A.; Azcon-Bieto, Joaquim

    2007-01-01

    Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested. PMID:17660349

  2. Pathogenesis of porcine reproductive and respiratory syndrome: evaluation of the expression of cytokines and apoptosis phenomena in lymphoid organs and their role in the immune response

    Barranco Cabezudo, Inmaculada

    2011-01-01

    El Síndrome Reproductivo y Respiratorio Porcino (PRRS, del inglés Porcine Reproductive and Respiratory Syndrome) es una enfermedad vírica caracterizada por inducir una respuesta inmune errática en el hospedador y es considerada como una de las enfermedades más importantes en la industria del porcino debido a las importantes pérdidas económicas que provoca. A pesar de que varios estudios se han realizado con el objetivo de elucidar la respuesta inmune provocada frente al virus del PRRS (PRRSV,...

  3. [Immunomodulators in Therapy of Respiratory Infections].

    Isakov, V A; Isakov, D V

    2014-01-01

    Viral infections provoke dysbalance in the interferon system and inhibition of the cellular and phagocytic responses of the host. Long-term persistence of pathogenic viruses and bacteria induce atopy and could aggravate chronic respiratory diseases. The up-to-date classification of immunomodulators is described. High efficacy of interferon inductors, such as cycloferon and some others as auxiliary means in therapy or prophylaxis (immunorehabilitation) of viral respiratory infections in adults and children was shown.

  4. Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats.

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; de Almeida Colombari, Débora Simões; Menani, José V

    2004-10-29

    The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28+/-3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/100 nl) injected into the NTS reduced MAP (-26+/-8 mm Hg) or produced no effect (2+/-7 mm Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to l-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses.

  5. Respiratory physiology during early life.

    Stocks, J

    1999-08-01

    Despite the rapid adaptation to extrauterine life, the respiratory system of an infant is not simply a miniaturized version of that of an adult, since the rapid somatic growth that occurs during the first year of life is accompanied by major developmental changes in respiratory physiology. The highly compliant chest wall of the infant results in relatively low transpulmonary pressures at end expiration with increased tendency of the small peripheral airways to close during tidal breathing. This not only impairs gas exchange and ventilation-perfusion balance, particularly in dependent parts of the lung, but, together with the small absolute size of the airways, renders the infant and young child particularly susceptible to airway obstruction. Premature airways are highly compliant structures compared with those of mature newborns or adults. This increased compliance can cause airway collapse, resulting in increased airways resistance, flow limitation, poor gas exchange and increased work of breathing. Although there is clear evidence that airway reactivity is present from birth, its role in wheezing lower respiratory tract illnesses in young infants may be overshadowed by pre-existing abnormalities of airway geometry and lung mechanics, or by pathological changes such as airway oedema and mucus hypersecretion. Attempts to assess age-related changes in airway reactivity or response to aerosol therapy in the very young is confounded by changes in breathing patterns and the fact that infants are preferential nose breathers. There is increasing evidence that pre-existing abnormalities of respiratory function, associated with adverse events during foetal life (including maternal smoking during pregnancy), and familial predisposition to wheezing are important determinants of wheezing illnesses during the first years of life. This emphasizes the need to identify and minimize any factors that threaten the normal development of the lung during this critical period if

  6. Respiratory symptoms in insect breeders.

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  7. Honeybee (Apis mellifera Venom Reinforces Viral Clearance during the Early Stage of Infection with Porcine Reproductive and Respiratory Syndrome Virus through the Up-Regulation of Th1-Specific Immune Responses

    Jin-A Lee

    2015-05-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is a chronic and immunosuppressive viral disease that is responsible for substantial economic losses for the swine industry. Honeybee venom (HBV is known to possess several beneficial biological properties, particularly, immunomodulatory effects. Therefore, this study aimed at evaluating the effects of HBV on the immune response and viral clearance during the early stage of infection with porcine reproductive and respiratory syndrome virus (PRRSV in pigs. HBV was administered via three routes of nasal, neck, and rectal and then the pigs were inoculated with PRRSV intranasally. The CD4+/CD8+ cell ratio and levels of interferon (IFN-γ and interleukin (IL-12 were significantly increased in the HBV-administered healthy pigs via nasal and rectal administration. In experimentally PRRSV-challenged pigs with virus, the viral genome load in the serum, lung, bronchial lymph nodes and tonsil was significantly decreased, as was the severity of interstitial pneumonia, in the nasal and rectal administration group. Furthermore, the levels of Th1 cytokines (IFN-γ and IL-12 were significantly increased, along with up-regulation of pro-inflammatory cytokines (TNF-α and IL-1β with HBV administration. Thus, HBV administration—especially via the nasal or rectal route—could be a suitable strategy for immune enhancement and prevention of PRRSV infection in pigs.

  8. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  9. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: II. Comparison of responses to diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions.

    Mauderly, J L; Barrett, E G; Day, K C; Gigliotti, A P; McDonald, J D; Harrod, K S; Lund, A K; Reed, M D; Seagrave, J C; Campen, M J; Seilkop, S K

    2014-09-01

    The NERC Program conducted identically designed exposure-response studies of the respiratory and cardiovascular responses of rodents exposed by inhalation for up to 6 months to diesel and gasoline exhausts (DE, GE), wood smoke (WS) and simulated downwind coal emissions (CE). Concentrations of the four combustion-derived mixtures ranged from near upper bound plausible to common occupational and environmental hotspot levels. An "exposure effect" statistic was created to compare the strengths of exposure-response relationships and adjustments were made to minimize false positives among the large number of comparisons. All four exposures caused statistically significant effects. No exposure caused overt illness, neutrophilic lung inflammation, increased circulating micronuclei or histopathology of major organs visible by light microscopy. DE and GE caused the greatest lung cytotoxicity. WS elicited the most responses in lung lavage fluid. All exposures reduced oxidant production by unstimulated alveolar macrophages, but only GE suppressed stimulated macrophages. Only DE retarded clearance of bacteria from the lung. DE before antigen challenge suppressed responses of allergic mice. CE tended to amplify allergic responses regardless of exposure order. GE and DE induced oxidant stress and pro-atherosclerotic responses in aorta; WS and CE had no such effects. No overall ranking of toxicity was plausible. The ranking of exposures by number of significant responses varied among the response models, with each of the four causing the most responses for at least one model. Each exposure could also be deemed most or least toxic depending on the exposure metric used for comparison. The database is available for additional analyses.

  10. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol.

  11. Intensity cut-points for the Respiratory Distress Observation Scale

    Campbell, Margaret L; Templin, Thomas N

    2015-01-01

    Background The Respiratory Distress Observation Scale© is an innovative solution to assessment when a dyspnea report cannot be elicited. The Respiratory Distress Observation Scale has acceptable reliability and validity psychometrics. Aim To identify distress-intensity cut-points of the Respiratory Distress Observation Scale. Design Receiver operating characteristic curve analysis was conducted with inpatients stratified by four levels of respiratory distress—none, mild, moderate, or severe. Patients provided three self-report measures of dyspnea: dichotomous (yes/no); a ranking of none, mild, moderate, or severe; and a numerical rating scale. Respiratory distress was assessed using the Respiratory Distress Observation Scale instrument. Setting/participants Participants were 136 adult inpatients, mean age 61.8 years (standard deviation = 13.18 years), 89.7% African American, and 56.6% female, who were recruited from an urban, tertiary care hospital in the Midwest of the United States. Results In all, 47% (n = 64) self-reported dyspnea (yes/no). Ranking was distributed as follows: none = 36, mild = 35, moderate = 40, and severe = 25. Numerical rating scale scores ranged from 0 to 10, mean = 4.99 (standard deviation = 2.9). Respiratory Distress Observation Scale scores ranged from 0 to 7, median (interquartile range) = 2 (1–3). Receiver operating characteristic curve analysis–determined Respiratory Distress Observation Scale score of 0–2 suggests little or no respiratory distress; score ≥3 signified moderate to severe distress. Conclusion A Respiratory Distress Observation Scale score ≥3 signifies a patient’s need for palliation of respiratory distress. An end-point for identifying responsiveness to treatment, in other words, respiratory comfort, is Respiratory Distress Observation Scale <3. Because patients with imminent respiratory failure, as typified by dying patients, were not represented yielding lower than expected Respiratory Distress

  12. Assessment of the respiratory metabolism in the skin from transcutaneous measurements of pO2 and pCO2: potential for non-invasive monitoring of response to tuberculin skin testing.

    Abbot, N C; Spence, V A; Swanson-Beck, J; Carnochan, F M; Gibbs, J H; Lowe, J G

    1990-03-01

    A method is described for non-invasive transcutaneous (tc) measurement of tissue respiratory gas tensions in the skin on the forearm for study of delayed hypersensitivity reactions in man. Steady state values for tcpO2 and tcpCO2 were measured, and the skin respiratory rate (oxygen consumption) and the tissue pH were estimated from the changes in tcpO2 and tcpCO2 observed after interruption of the arterial circulation by cuff occlusion for 4 minutes. The extent of within-experiment and between subject variation in the steady-state measurements was not great (coefficient of variation 10%): tcpCO2.ss (steady state) was higher in men and tcpO2.ss was higher in women, but the extent of these sex differences was also small. Reference ranges have been established for tc measurements and calculated indices of tissue respiration in the undisturbed forearm skin of normal volunteers, against which the changes induced by tuberculin testing can be assessed. Severe changes, indicative of profound hypoxia and acidosis, are seen in intense delayed hypersensitivity reactions. Similar, but less severe changes were seen at the site of skin tests on BCG-vaccinated subjects who were 'negative' by conventional criteria of measurement of dermal induration and they became greatly exaggerated after successful re-vaccination. Intradermal injection of saline did not induce hypoxia or local acidosis. These new methods are very sensitive indicators of the tissue response in the DHS reaction.

  13. Respiratory Syncytial Virus (RSV)

    2013-02-04

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.  Created: 2/4/2013 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases (DVD).   Date Released: 2/13/2013.

  14. Obesity and respiratory diseases

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ produ...

  15. Acute respiratory distress syndrome

    Confalonieri, Marco; Salton, Francesco; Fabiano, Francesco

    2017-01-01

    Since its first description, the acute respiratory distress syndrome (ARDS) has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foste...

  16. Respiratory Syncytial Virus Vaccines

    Dudas, Robert A.; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  17. Respiratory, cardiovascular and metabolic responses during different modes of overground bionic ambulation in persons with motor-incomplete spinal cord injury: A case series

    Jochen Kressler

    2017-09-01

    Full Text Available Objective: To investigate the effects of overground bionic ambulation with variable assistance on cardiorespiratory and metabolic responses in persons with motor-incomplete spinal cord injury. Design: Case series. Subjects: Four participants with chronic, motor-incomplete spinal cord injury. Methods: Subjects completed a maximal graded exercise test on an arm-ergometer and 3 6-min bouts of overground bionic ambulation using different modes of assistance, i.e. Maximal, Adaptive, Fixed. Cardiorespiratory (oxygen consumption and metabolic (caloric expenditure and substrate utilization measures were taken using a mobile metabolic cart at each overground bionic ambulation assistance. Results: Cardiorespiratory responses ranged from low (24% VO2peak for the least impaired and fittest individual to supramaximal (124% VO2peak for the participant with the largest impairments and the lowest level of fitness. Different overground bionic ambulation assistive modes elicited small (3–8% VO2peak differences in cardiorespiratory responses for 3 participants. One participant had a large (28% VO2peak difference in cardiorespiratory responses to different modes of overground bionic ambulation. Metabolic responses mostly tracked closely with cardiorespiratory responses. Total energy expenditure ranged from 1.39 to 7.17 kcal/min. Fat oxidation ranged from 0.00 to 0.17 g/min across participants and different overground bionic ambulation modes. Conclusion: Overground bionic ambulation with variable assistance can substantially increase cardiorespiratory and metabolic responses; however, these responses vary widely across participants and overground bionic ambulation modes.

  18. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.

    2014-02-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation

  19. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    Wang, Shouyi; Chaovalitwongse, W Art; Bowen, Stephen R; Kinahan, Paul E; Sandison, George A; Grabowski, Thomas J

    2014-01-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV peak ) over lesions of interest. Relative differences in SUV peak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV peak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion

  20. Managing respiratory problems in athletes.

    Hull, James H; Ansley, Les; Robson-Ansley, Paula; Parsons, Jonathan P

    2012-08-01

    Respiratory problems are common in athletes of all abilities and can significantly impact upon their health and performance. In this article, we provide an overview of respiratory physiology in athletes. We also discuss the assessment and management of common clinical respiratory conditions as they pertain to athletes, including airways disease, respiratory tract infection and pneumothorax. We focus on providing a pragmatic approach and highlight important caveats for the physician treating respiratory conditions in this highly specific population.

  1. [Late respiratory function complications following burns].

    Ernesto, S; Marduel, Y; Freymond, N; Pacheco, Y; Devouassoux, G

    2008-03-01

    Twenty five per cent of thermal injuries are associated with secondary respiratory events linked to several mechanisms. In the acute phase of the accident oedema of the airways, the fume inhalation syndrome and ARDS are the most common causes responsible for death in 60% of cases. Late respiratory complications are little known and neglected. They comprise obstructive ventilatory defects due to the inhalation syndrome and restrictive defects secondary to ARDS or to dermal injury. We report the case of a female patient, extensively burnt 2 years previously, admitted to hospital with severe acute respiratory failure complicating COPD. The presence of both restrictive and obstructive defects led to the suggestion of alternative underlying mechanisms such as the pulmonary consequences of ARDS and extensive dermal scars. The latter were responsible for an armour like thickening of the skin of the thorax compatible with the restrictive defect. These functional abnormalities and the potential severity of acute respiratory failure are indications for regular pulmonary follow-up of patients with severe circumferential scarring of the thorax who are at high risk for respiratory complications.

  2. Respiratory manifestations of panic disorder: causes, consequences and therapeutic implications.

    Sardinha, Aline; Freire, Rafael Christophe da Rocha; Zin, Walter Araújo; Nardi, Antonio Egidio

    2009-07-01

    Multiple respiratory abnormalities can be found in anxiety disorders, especially in panic disorder (PD). Individuals with PD experience unexpected panic attacks, characterized by anxiety and fear, resulting in a number of autonomic and respiratory symptoms. Respiratory stimulation is a common event during panic attacks. The respiratory abnormality most often reported in PD patients is increased CO2 sensitivity, which has given rise to the hypothesis of fundamental abnormalities in the physiological mechanisms that control breathing in PD. There is evidence that PD patients with dominant respiratory symptoms are more sensitive to respiratory tests than are those who do not manifest such symptoms, and that the former group constitutes a distinct subtype. Patients with PD tend to hyperventilate and to panic in response to respiratory stimulants such as CO2, triggering the activation of a hypersensitive fear network. Although respiratory physiology seems to remain normal in these subjects, recent evidence supports the idea that they present subclinical abnormalities in respiration and in other functions related to body homeostasis. The fear network, composed of the hippocampus, the medial prefrontal cortex, the amygdala and its brain stem projections, might be oversensitive in PD patients. This theory might explain why medication and cognitive-behavioral therapy are both clearly effective. Our aim was to review the relationship between respiration and PD, addressing the respiratory subtype of PD and the hyperventilation syndrome, with a focus on respiratory challenge tests, as well as on the current mechanistic concepts and the pharmacological implications of this relationship.

  3. Obesity and respiratory diseases

    Christopher Zammit

    2010-10-01

    Full Text Available Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.Keywords: obesity, lung function, obstructive sleep apnea, obesity hypoventilation syndrome, anesthesia

  4. Postperfusion lung syndrome: Respiratory mechanics, respiratory indices and biomarkers

    Shi-Min Yuan

    2015-01-01

    Full Text Available Postperfusion lung syndrome is rare but lethal. Secondary inflammatory response was the popularly accepted theory for the underlying etiology. Respiratory index (RI and arterial oxygen tension/fractional inspired oxygen can be reliable indices for the diagnosis of this syndrome as X-ray appearance is always insignificant at the early stage of the onset. Evaluations of extravascular lung water content and pulmonary compliance are also helpful in the definite diagnosis. Multiorgan failure and triple acid-base disturbances that might develop secondary to postperfusion lung syndrome are responsible for the poor prognosis and increased mortality rather than postperfusion lung syndrome itself. Mechanical ventilation with low tidal volume (TV and proper positive end-expiratory pressure can be an effective treatment strategy. Use of ulinastatin and propofol may benefit the patients through different mechanisms.

  5. Respiratory manifestations of hypothyroidism

    Sorensen, Jesper Roed; Winther, Kristian Hillert; Bonnema, Steen Joop

    2016-01-01

    BACKGROUND: Hypothyroidism has been associated with increased pulmonary morbidity and overall mortality. We conducted a systematic review to identify the prevalence and underlying mechanisms of respiratory problems among patients with thyroid insufficiency. METHODS: PubMed and EMBASE databases were...... searched for relevant literature from January 1950 through January 2015 with study eligibility criteria: English-language publications; Adult subclinical or overt hypothyroid patients; Intervention, observational or retrospective studies; and respiratory manifestations. We followed the PRISMA statement...... and used the Cochrane's risk of bias tool. RESULTS: A total of 1699 papers were screened by two independent authors for relevant titles. Of 109 relevant abstracts, 28 papers underwent full text analyses, of which 22 were included in the review. We identified possible mechanisms explaining respiratory...

  6. Murine respiratory mycoplasmosis (MRM) in C57BL/6N and C3H/HeN mice: strain differences in early host responses and exacerbation by nitrogen dioxide

    Parker, R.F.

    1987-01-01

    The studies reported here used genetic differences in susceptibility of C57BL/6N and C3H/HeN mice and exacerbation of the disease by nitrogen dioxide (NO 2 ) as tools in assessing the role of early host responses in the pathogenesis of MRM. The two strains did not differ in susceptibility to infection, but C3H/HeN mice were more susceptible to and had increased severity of lung lesions 14 days after intranasal inoculation as determined by 50% biological endpoints and morphometric analysis of tissues. Exposure to NO 2 for 4 hours prior to exposure to infectious aerosols exacerbated murine respiratory mycoplasmosis (MRM) by 7 days after exposure in both mouse strains. NO 2 appeared to affect host lung defense mechanisms responsible for limiting mycoplasmal growth in the lungs. The NO 2 exposure concentration required for this effect varied with the genetic background of the host, the dose of mycoplasmas administered, and the endpoint measured. Pulmonary clearance of radiolabeled M. pulmonis was determined in both mouse strains, and in C57BL/6N mice exposed to NO 2

  7. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  8. Surfactant Protein D in Respiratory and Non-Respiratory Diseases

    Sorensen, Grith L.

    2018-01-01

    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  9. Adult respiratory distress syndrome

    Svendsen, J.; Jespersen, J.; Skjoedt, T.

    1986-01-01

    Our present-day knowledge concerning the clinico-chemical and radiological findings in adult respiratory distress syndrome are described. Three typical case histories have been selected to illustrate this condition; they were due to multiple trauma or sepsis. It is stressed that radiology is in a key position for making the diagnosis and for observing the course of the illness. (orig) [de

  10. European Respiratory Society statement

    Miravitlles, Marc; Dirksen, Asger; Ferrarotti, Ilaria

    2017-01-01

    lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has...

  11. Respiratory Syncytial Virus (RSV)

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.

  12. Respiratory problems in foals.

    Beech, J

    1985-04-01

    Despite major advances in our knowledge and ability to treat respiratory diseases in neonatal foals, neonatal respiratory medicine is still in its infancy. It is hoped that this article may serve as a guideline for diagnosis and treatment. Specific antibiotic regimens and emergency procedures are covered in other articles in this symposium. Because management factors play a critical role in the pathogenesis of respiratory disease, education of clients as to their importance would help both prophylactically and therapeutically. The necessity of very careful monitoring of neonates, which is critical to early detection of disease, should be stressed. As respiratory diseases can be fulminant and rapidly fatal, it is imperative not to delay diagnosis and therapy. Thorough examination and implementation of appropriate diagnostic techniques, as well as prompt early referral to a more sophisticated facility when indicated, would prevent many deaths. Although sophisticated support systems are vital for survival of some of these foals, good basic intensive nursing care combined with selection of appropriate drug therapy very early in the course of the disease is all that many foals require and can significantly improve survival rates.

  13. Respiratory Symptoms in Firefighters

    Greven, Frans E.; Rooyackers, Jos M.; Kerstjens, Huib A. M.; Heederik, Dick J.

    Background The aim of the present study was to determine the prevalence and risk factors associated with respiratory symptoms in common firefighters in the Netherlands. Methods A total of 1,330 firefighters from the municipal fire brigades of three provinces of the Netherlands were included in the

  14. Textbook of respiratory medicine

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis

  15. ARDS (Acute Respiratory Distress Syndrome)

    ... Also known as What Is ARDS, or acute respiratory distress syndrome, is a lung condition that leads ... treat ARDS. Other Names Acute lung injury Adult respiratory distress syndrome Increased-permeability pulmonary edema Noncardiac pulmonary ...

  16. Respiratory gating in cardiac PET

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  17. Middle East Respiratory Syndrome (MERS)

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... for Disease Control and Prevention website. Middle East Respiratory Syndrome (MERS): Frequently asked questions and answers. www. ...

  18. Acute respiratory infections at children

    Delyagin, V.

    2009-01-01

    The common signs of virus respiratory diseases, role of pathological inclination to infections, value of immunodeficiency are presented at lecture. Features of most often meeting respiratory virus infections are given.

  19. Respiratory health effects of exposure to crystalline silica epidemiology.

    Hnzido, E

    1999-01-01

    Full Text Available The present report describes two additional studies of exposure-response relationship between respiratory disease and silica dust in gold mines. Section 3 describes a study of pulmonary tuberculosis in relation to silica dust, and section 4...

  20. Effects of preoperative carprofen on cardio-respiratory, hormonal and metabolic stress response in calves during umbilical surgery under isoflurane inhalation anaesthesia.

    Schulze, I; Poos, E M; Meyer, H; List, A K; Kaestner, S B R; Rehage, J

    2016-10-01

    The aim of this study was to examine the effects of preoperative carprofen on the cardiorespiratory, hormonal and metabolic stress response during umbilical surgery under isoflurane anaesthesia combined with local anaesthesia, in calves. A randomised, blinded experimental study was conducted in 24 calves. Carprofen (n = 12; 1.4 mg/kg) or physiological saline solution (controls; n = 12) was administered 1 h prior to surgery. Anaesthesia was induced with xylazine (0.1 mg/kg, IM) and, after the onset of sedation (i.e. after 5-8 min), ketamine was administered (2 mg/kg, IV). Anaesthesia was then maintained with isoflurane (ISO) in oxygen to effect and completed by infiltration of the incision line with 20 mL of 2% procaine. Cardiorespiratory, endocrine and metabolic parameters were examined before, during and after surgery at short intervals. In both groups, anaesthesia appeared adequate for the surgical intervention. Heart rate, stroke index and arterial blood pressure were significantly elevated after the onset of surgery. Oxygen partial pressure and oxygen delivery increased, while the oxygen extraction ratio decreased intraoperatively, ensuring sufficient oxygen supply. In the control group, the mean surge in serum cortisol concentrations tended to be higher (P = 0.089) and systemic vascular resistance (SVR) was significantly greater (P carprofen group during surgery. In conclusion, the anaesthetic protocol used in this study induced reliable analgesia in both groups. The lower serum cortisol levels and SVR may indicate a reduced surgical stress response in calves undergoing umbilical surgery under ISO anaesthesia after administering carprofen preoperatively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Climate change and respiratory disease: European Respiratory Society position statement.

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  2. Motavizumab, A Neutralizing Anti-Respiratory Syncytial Virus (Rsv Monoclonal Antibody Significantly Modifies The Local And Systemic Cytokine Responses Induced By Rsv In The Mouse Model

    Jafri Hasan S

    2007-10-01

    Full Text Available Abstract Motavizumab (MEDI-524 is a monoclonal antibody with enhanced neutralizing activity against RSV. In mice, motavizumab suppressed RSV replication which resulted in significant reduction of clinical parameters of disease severity. We evaluated the effect of motavizumab on the local and systemic immune response induced by RSV in the mouse model. Balb/c mice were intranasally inoculated with 106.5 PFU RSV A2 or medium. Motavizumab was given once intraperitoneally (1.25 mg/mouse as prophylaxis, 24 h before virus inoculation. Bronchoalveolar lavage (BAL and serum samples were obtained at days 1, 5 (acute and 28 (long-term post inoculation and analyzed with a multiplex assay (Beadlyte Upstate, NY for simultaneous quantitation of 18 cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, KC (similar to human IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, TNF-α, MCP-1, RANTES, IFN-γ and GM-CSF. Overall, cytokine concentrations were lower in serum than in BAL samples. By day 28, only KC was detected in BAL specimens at low concentrations in all groups. Administration of motavizumab significantly reduced (p

  3. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  4. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA.

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F; Lu, Xia; Abraham, Paul E; Hettich, Robert L; Gu, Baohua

    2016-10-07

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutants and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the ΔhgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon (C1) metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the acetyl-CoA pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. This observation supports the hypothesis that the function of HgcA and HgcB is linked to C1 metabolism through the folate branch of the acetyl-CoA pathway by providing methyl groups required for Hg methylation.

  5. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  6. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  7. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  8. Highly efficient expression of interleukin-2 under the control of rabbit β-globin intron II gene enhances protective immune responses of porcine reproductive and respiratory syndrome (PRRS DNA vaccine in pigs.

    Yijun Du

    Full Text Available Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV had caused catastrophic losses in swine industry in China. The current inactivated vaccine provided only limited protection, and the attenuated live vaccine could protect piglets against the HP-PRRSV but there was a possibility that the attenuated virus returned to high virulence. In this study, the eukaryotic expression vector pVAX1© was modified under the control of rabbit β-globin intron II gene and the modified vector pMVAX1© was constructed. Porcine interleukin-2 (IL-2 and GP3-GP5 fusion protein of HP-PRRSV strain SD-JN were highly expressed by pMVAX1©. Mice inoculated with pMVAX1©-GP35 developed significantly higher PRRSV-specific antibody responses and T cell proliferation than those vaccinated with pVAX1©-GP35. pMVAX1©-GP35 was selected as PRRS DNA vaccine candidate and co-administrated with pVAX1©-IL-2 or pMVAX1©-IL-2 in pigs. pMVAX1©-IL-2+pMVAX1©-GP35 could provide enhanced PRRSV-specific antibody responses, T cell proliferation, Th1-type and Th2-type cytokine responses and CTL responses than pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35. Following homologous challenge with HP-PRRSV strain SD-JN, similar with attenuated PRRS vaccine group, pigs inoculated with pMVAX1©-IL-2+pMVAX1©-GP35 showed no clinical signs, almost no lung lesions and no viremia, as compared to those in pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35 groups. It indicated that pMVAX1©-IL-2 effectively increases humoral and cell mediated immune responses of pMVAX1©-GP35. Co-administration of pMVAX1©-IL-2 and pMVAX1©-GP35 might be attractive candidate vaccines for preventing HP-PRRSV infections.

  9. Nanotechnology in respiratory medicine.

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  10. Adult respiratory distress syndrome

    Murphy, C.H.; Colvin, R.S.

    1987-01-01

    Due to improved emergency resuscitation procedures, and with advancing medical technology in the field of critical care, an increasing number of patients survive the acute phase of shock and catastrophic trauma. Patients who previously died of massive sepsis, hypovolemic or hypotensive shock, multiple fractures, aspiration, toxic inhalation, and massive embolism are now surviving long enough to develop previously unsuspected and unrecognized secondary effects. With increasing frequency, clinicians are recognizing the clinical and radiographic manifestations of pathologic changes in the lungs occurring secondary to various types of massive insult. This paper gives a list of diseases that have been shown to precipitate or predispose to diffuse lung damage. Various terms have been used to describe the lung damage and respiratory failure secondary to these conditions. The term adult respiratory distress syndrome (ARDS) is applied to several cases of sudden respiratory failure in patients with previously healthy lungs following various types of trauma or shock. Numerous investigations and experiments have studied the pathologic changes in ARDS, and, while there is still no clear indication of why it develops, there is now some correlation of the sequential pathologic developments with the clinical and radiographic changes

  11. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Methyl methacrylate and respiratory sensitization: A Critical review

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  13. Respiratory inflammation and infections in high-performance athletes.

    Gleeson, Maree; Pyne, David B

    2016-02-01

    Upper respiratory illness is the most common reason for non-injury-related presentation to a sports medicine clinic, accounting for 35-65% of illness presentations. Recurrent or persistent respiratory illness can have a negative impact on health and performance of athletes undertaking high levels of strenuous exercise. The cause of upper respiratory symptoms (URS) in athletes can be uncertain but the majority of cases are related to common respiratory viruses, viral reactivation, allergic responses to aeroallergens and exercise-related trauma to the integrity of respiratory epithelial membranes. Bacterial respiratory infections are uncommon in athletes. Undiagnosed or inappropriately treated asthma and/or allergy are common findings in clinical assessments of elite athletes experiencing recurrent URS. High-performance athletes with recurrent episodes of URS should undergo a thorough clinical assessment to exclude underlying treatable conditions of respiratory inflammation. Identifying athletes at risk of recurrent URS is important in order to prescribe preventative clinical, training and lifestyle strategies. Monitoring secretion rates and falling concentrations of salivary IgA can identify athletes at risk of URS. Therapeutic interventions are limited by the uncertainty of the underlying cause of inflammation. Topical anti-inflammatory sprays can be beneficial for some athletes. Dietary supplementation with bovine colostrum, probiotics and selected antioxidants can reduce the incidence or severity of URS in some athletes. Preliminary studies on athletes prone to URS indicate a genetic predisposition to a pro-inflammatory response and a dysregulated anti-inflammatory cytokine response to intense exercise as a possible mechanism of respiratory inflammation. This review focuses on respiratory infections and inflammation in elite/professional athletes.

  14. Submersion and acute respiratory failure

    Yu-Jang Su

    2014-01-01

    Conclusions: Submersion patients who are hypothermic on arrival of emergency department (ED are risky to respiratory failure and older, more hypothermic, longer hospital stay in suicidal submersion patients.

  15. Management of Postoperative Respiratory Failure.

    Mulligan, Michael S; Berfield, Kathleen S; Abbaszadeh, Ryan V

    2015-11-01

    Despite best efforts, postoperative complications such as postoperative respiratory failure may occur and prompt recognition of the process and management is required. Postoperative respiratory failure, such as postoperative pneumonia, postpneumonectomy pulmonary edema, acute respiratory distress-like syndromes, and pulmonary embolism, are associated with high morbidity and mortality. The causes of these complications are multifactorial and depend on preoperative, intraoperative, and postoperative factors, some of which are modifiable. The article identifies some of the risk factors, causes, and treatment strategies for successful management of the patient with postoperative respiratory failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Respiratory mass spectrometer

    Mostert, J.W. (Pretoria Univ. (South Africa). Dept. of Anesthesiology)

    1983-06-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M/sup 2/ body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O/sub 2/ consumption of less than 50 ml O/sub 2//min/M/sup 2/) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery.

  17. The respiratory mass spectrometer

    Mostert, J.W.

    1983-01-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M 2 body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O 2 consumption of less than 50 ml O 2 /min/M 2 ) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery

  18. Respiratory symptoms of megaesophagus

    Fabio Di Stefano

    2013-03-01

    Full Text Available Megaesophagus as the end result of achalasia is the consequence of disordered peristalsis and the slow decompensation of the esophageal muscular layer. The main symptoms of achalasia are dysphagia, regurgitation, chest pain and weight loss, but respiratory symptoms, such as coughing, particularly when patients lie in a horizontal position, may also be common due to microaspiration. A 70-year old woman suffered from a nocturnal cough and shortness of breath with stridor. She reported difficulty in swallowing food over the past ten years, but had adapted by eating a semi-liquid diet. Chest X-ray showed right hemithorax patchy opacities projecting from the posterior mediastinum. Chest computed tomography scan showed a marked dilatation of the esophagus with abundant food residues. Endoscopy confirmed the diagnosis of megaesophagus due to esophageal achalasia, excluding other causes of obstruction, such as secondary esophagitis, polyps, leiomyoma or leiomyosarcoma. In the elderly population, swallowing difficulties due to esophageal achalasia are often underestimated and less troublesome than the respiratory symptoms that are caused by microaspiration. The diagnosis of esophageal achalasia, although uncommon, should be considered in patients with nocturnal chronic coughs and shortness of breath with stridor when concomitant swallowing difficulties are present.

  19. Acute respiratory distress syndrome

    Marco Confalonieri

    2017-04-01

    Full Text Available Since its first description, the acute respiratory distress syndrome (ARDS has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foster geographic variability and contrasting outcome data. A large international multicentre prospective cohort study including 50 countries across five continents reported that ARDS is underdiagnosed, and there is potential for improvement in its management. Furthermore, epidemiological data from low-income countries suggest that a revision of the current definition of ARDS is needed in order to improve its recognition and global clinical outcome. In addition to the well-known risk-factors for ARDS, exposure to high ozone levels and low vitamin D plasma concentrations were found to be predisposing circumstances. Drug-based preventive strategies remain a major challenge, since two recent trials on aspirin and statins failed to reduce the incidence in at-risk patients. A new disease-modifying therapy is awaited: some recent studies promised to improve the prognosis of ARDS, but mortality and disabling complications are still high in survivors in intensive care.

  20. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.

  1. Personalizing mechanical ventilation for acute respiratory distress syndrome

    Berngard, S. Clark; Beitler, Jeremy R.; Malhotra, Atul

    2016-01-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response ...

  2. Respiratory disorders in patients with polymyositis/dermatomyositis

    Olga Alekseyevna Antelava

    2014-01-01

    Full Text Available Idiopathic inflammatory myopathies (IIM are rare disorders characterized by inflammatory lesions in skeletal muscles. These diseases include polymyositis (PM, dermatomyositis (DM, and inclusion body myositis, which exhibit clinicoimmunological heterogeneity and give different response to therapy. The most frequent manifestation in PM/DM patients is respiratory system dysfunction. The developing respiratory disorders are varied and may outpace the presentation of muscle pathology.

  3. Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities.

    Pauluhn, Juergen

    2018-01-05

    This paper reviews the results from past regulatory and mechanistic inhalation studies in rats with the type II pyrethroid Cyfluthrin. Apart from many chemical irritants, Cyfluthrin was shown to be a neuroexcitatory agent without any inherent tissue-destructive or irritant property. Thus, any Cyfluthrin-induced neuroexcitatory afferent sensory stimulus from peripheral nociceptors in the upper respiratory tract is likely to be perceived as a transient stimulus triggering annoyance and/or avoidance by both rats and humans. However, while thermolabile rats respond to such stresses reflexively, homeothermic humans appear to respond psychologically. With this focus in mind, past inhalation studies in rats and human volunteers were reevaluated and assessed to identify common denominators to such neuroexcitatory stimuli upon inhalation exposure. This analysis supports the conclusion that the adaptive physiological response occurring in rats secondary to such chemosensory stimuli requires inhalation exposures above the chemosensory threshold. Rats, a species known to undergo adaptively a hibernation-like physiological state upon environmental stresses, experienced reflexively-induced bradypnea, bradycardia, hypothermia, and changes in acid-base status during inhalation exposure. After cessation of the sensory stimulus, rapid recovery occurred. Physiological data of male and female rats from a 4-week repeated inhalation study (exposure 6-h/day, 5-times/week) were used to select concentration for a 10-day developmental inhalation toxicity study in pregnant rats. Maternal hypothermia and hypoventilation were identified as likely cause of fetal and placental growth retardations because of a maternal adaptation-driven reduced feto-placental transfer of oxygen. In summary, maternal reflex-hypothermia, reduced cardiac output and placental perfusion, and disruption of the gestation-related hyperventilation are believed to be the maternally mediated causes for developmental

  4. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats

    Quagliotto, E. [Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Casali, K.R. [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Dal Lago, P. [Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Rasia-Filho, A.A. [Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2014-11-21

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP{sub 50}) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP{sub 50}, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.

  5. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats

    Quagliotto, E.; Casali, K.R.; Dal Lago, P.; Rasia-Filho, A.A.

    2014-01-01

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP 50 ) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP 50 , and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV

  6. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  7. COPD management as a model for all chronic respiratory conditions: report of the 4th Consensus Conference in Respiratory Medicine.

    Nardini, Stefano; De Benedetto, Fernando; Sanguinetti, Claudio M; Bellofiore, Salvatore; Carlone, Stefano; Privitera, Salvatore; Sagliocca, Luciano; Tupputi, Emmanuele; Baccarani, Claudio; Caiffa, Gennaro; Calabrese, Maria Consiglia; Capuozzo, Antonio; Cauchi, Salvatore; Conio, Valentina; Coratella, Giuseppe; Crismancich, Franco; Dal Negro, Roberto W; Dellarole, Franco; Delucchi, Maurizio; Favaretti, Carlo; Forte, Silvia; Gallo, Franca Matilde; Giuliano, Riccardo; Grandi, Marco; Grillo, Antonino; Gualano, Maria Rosaria; Guffanti, Enrico; Locicero, Salvatore; Lombardo, Francesco Paolo; Mantero, Marco; Marasso, Roberto; Martino, Laura; Mastroberardino, Michele; Mereu, Carlo; Messina, Roberto; Neri, Margherita; Novelletto, Bruno Franco; Parente, Paolo; Pasquinucci, Sergio; Pistolesi, Massimo; Polverino, Mario; Posca, Agnese; Richeldi, Luca; Roccia, Fernando; Giustini, Ettore Saffi; Salemi, Michelangelo; Santacroce, Salvatore; Schisano, Mario; Schisano, Matteo; Selvi, Eleonora; Silenzi, Andrea; Soverina, Patrizio; Taranto, Claudio; Ugolini, Marta; Visaggi, Piero; Zanasi, Alessandro

    2017-01-01

    Non-communicable diseases (NCDs) kill 40 million people each year. The management of chronic respiratory NCDs such as chronic obstructive pulmonary disease (COPD) is particularly critical in Italy, where they are widespread and represent a heavy burden on healthcare resources. It is thus important to redefine the role and responsibility of respiratory specialists and their scientific societies, together with that of the whole healthcare system, in order to create a sustainable management of COPD, which could become a model for other chronic respiratory conditions. These issues were divided into four main topics (Training, Organization, Responsibilities, and Sustainability) and discussed at a Consensus Conference promoted by the Research Center of the Italian Respiratory Society held in Rome, Italy, 3-4 November 2016. Regarding training, important inadequacies emerged regarding specialist training - both the duration of practical training courses and teaching about chronic diseases like COPD. A better integration between university and teaching hospitals would improve the quality of specialization. A better organizational integration between hospital and specialists/general practitioners (GPs) in the local community is essential to improve the diagnostic and therapeutic pathways for chronic respiratory patients. Improving the care pathways is the joint responsibility of respiratory specialists, GPs, patients and their caregivers, and the healthcare system. The sustainability of the entire system depends on a better organization of the diagnostic-therapeutic pathways, in which also other stakeholders such as pharmacists and pharmaceutical companies can play an important role.

  8. Chronic coffee consumption and respiratory disease: A systematic review.

    Alfaro, Tiago M; Monteiro, Rita A; Cunha, Rodrigo A; Cordeiro, Carlos Robalo

    2018-03-01

    The widespread consumption of coffee means that any biological effects from its use can lead to significant public health consequences. Chronic pulmonary diseases are extremely prevalent and responsible for one of every six deaths on a global level. Major medical databases for studies reporting on the effects of coffee or caffeine consumption on a wide range of non-malignant respiratory outcomes, including incidence, prevalence, evolution or severity of respiratory disease in adults were searched. Studies on lung function and respiratory mortality were also considered. Fifteen studies, including seven cohort, six cross-sectional, one case control and one randomized control trial were found. Coffee consumption was generally associated with a reduction in prevalence of asthma. The association of coffee with natural honey was an effective treatment for persistent post-infectious cough. One case-control study found higher risk of chronic obstructive pulmonary disease (COPD) with coffee consumption. No association was found with the evolution of COPD or sarcoidosis. Coffee was associated with a reduction in respiratory mortality, and one study found improved lung function in coffee consumers. Smoking was a significant confounder in most studies. Coffee consumption was associated with some positive effects on the respiratory system. There was however limited available evidence, mostly from cross sectional and retrospective studies. The only prospective cohort studies were those reporting on respiratory mortality. These results suggest that coffee consumption may be a part of a healthy lifestyle leading to reduced respiratory morbidity. © 2017 John Wiley & Sons Ltd.

  9. [Disturbed respiratory cycle accompanying hypoxic-ischemic encephalopathy].

    Saito, Yoshiaki; Masuko, Kaori; Kaneko, Kaori; Saito, Kazuyo; Chikumaru, Yuri; Iwamoto, Hiroko; Matsui, Akira; Kimura, Seiji

    2005-09-01

    We report the case of a 2-year-old boy who experienced total asphyxia at 4 months of age, and suffered abnormalities at specific phases of the respiratory cycle. The patient was bedridden due to severe tetraplegia and showed little response to external stimuli. He has been tube-fed since the initial asphyxia and a tracheotomy was performed after recurrent hypoxic episodes as a result of the respiratory dysfunction. Upon examination, his respiratory pattern was characterized by arrest during the inspiratory phase with a possible over-riding secondary inspiration. The respiratory pause at the inspiratory phase was markedly prolonged during an episode of pulmonary infection, resulting in recurrent cyanosis that necessitated artificial ventilation. The "second" inspiration typically occurred during the mid- or late-inspiratory phases, with this pattern often shown to be variable after epileptic seizures. The characteristic breathing of this patient suggested that difficulty in forming a normal respiratory cycle, other than during periods of hypoventilation or apnoea, could be a significant respiratory dysfunction following asphyxiation. Strategies for the management of such patients should be carefully designed after close observation of breathing patterns within the respiratory cycle, and with consideration for the influence of epileptic seizures and other inputs from somatic afferents.

  10. Doping and respiratory system.

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  11. Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis

    ... Home » Health Info » Voice, Speech, and Language Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis On this page: What ... find additional information about RRP? What is recurrent respiratory papillomatosis? Recurrent respiratory papillomatosis (RRP) is a disease ...

  12. Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia

    Prabhakar, Nanduri R.; Peng, Ying-Jie; Kumar, Ganesh K.; Nanduri, Jayasri

    2015-01-01

    Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension. PMID:25880505

  13. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia.

    Prabhakar, Nanduri R; Peng, Ying-Jie; Kumar, Ganesh K; Nanduri, Jayasri

    2015-04-01

    Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension. © 2015 American Physiological Society.

  14. Is recurrent respiratory infection associated with allergic respiratory disease?

    de Oliveira, Tiago Bittencourt; Klering, Everton Andrei; da Veiga, Ana Beatriz Gorini

    2018-03-13

    Respiratory infections cause high morbidity and mortality worldwide. This study aims to estimate the relationship between allergic respiratory diseases with the occurrence of recurrent respiratory infection (RRI) in children and adolescents. The International Study of Asthma and Allergies in Childhood questionnaire and a questionnaire that provides data on the history of respiratory infections and the use of antibiotics were used to obtain data from patients. The relationship between the presence of asthma or allergic rhinitis and the occurrence of respiratory infections in childhood was analyzed. We interviewed the caregivers of 531 children aged 0 to 15 years. The average age of participants was 7.43 years, with females accounting for 52.2%. This study found significant relationship between: presence of asthma or allergic rhinitis with RRI, with prevalence ratio (PR) of 2.47 (1.51-4.02) and 1.61 (1.34-1.93), respectively; respiratory allergies with use of antibiotics for respiratory problems, with PR of 5.32 (2.17-13.0) for asthma and of 1.64 (1.29-2.09) for allergic rhinitis; asthma and allergic rhinitis with diseases of the lower respiratory airways, with PR of 7.82 (4.63-13.21) and 1.65 (1.38-1.96), respectively. In contrast, no relationship between upper respiratory airway diseases and asthma and allergic rhinitis was observed, with PR of 0.71 (0.35-1.48) and 1.30 (0.87-1.95), respectively. RRI is associated with previous atopic diseases, and these conditions should be considered when treating children.

  15. Cellular defense of the avian respiratory system: effects of Pasteurella multocida on respiratory burst activity of avian respiratory tract phagocytes.

    Ochs, D L; Toth, T E; Pyle, R H; Siegel, P B

    1988-12-01

    The respiratory tract of healthy chickens contain few free-residing phagocytic cells. Intratracheal inoculation with Pasteurella multocida stimulated a significant (P less than 0.05) migration of cells to the lungs and air sacs of White Rock chickens within 2 hours after inoculation. We found the maximal number of avian respiratory tract phagocytes (22.9 +/- 14.0 x 10(6] at 8 hours after inoculation. Flow cytometric analysis of these cells revealed 2 populations on the basis of cell-size and cellular granularity. One of these was similar in size and granularity to those of blood heterophils. Only this population was capable of generating oxidative metabolites in response to phorbol myristate acetate. The ability of the heterophils to produce hydrogen peroxide, measured as the oxidation of intracellularly loaded 2',7'-dichlorofluorescein, decreased with time after inoculation. These results suggest that the migration of heterophils, which are capable of high levels of oxidative metabolism, to the lungs and air sacs may be an important defense mechanism of poultry against bacterial infections of the respiratory tract.

  16. Respiratory muscle involvement in sarcoidosis.

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  17. Respiratory effort from the photoplethysmogram.

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Auscultation of the respiratory system

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  19. Auscultation of the respiratory system

    Malay Sarkar

    2015-01-01

    Full Text Available Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion.

  20. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  1. Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections.

    Nichols, Nicole L; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; pneuron death and provides an opportunity to study compensation for respiratory motor neuron loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Incidence and etiology of hospitalized acute respiratory infections in the Egyptian Delta

    Rowlinson, Emily; Dueger, Erica; Mansour, Adel; Azzazy, Nahed; Mansour, Hoda; Peters, Lisa; Rosenstock, Summer; Hamid, Sarah; Said, Mayar M.; Geneidy, Mohamed; Abd Allah, Monier; Kandeel, Amr

    2016-01-01

    Introduction Acute Respiratory Infections (ARI) are responsible for nearly two million childhood deaths worldwide. A limited number of studies have been published on the epidemiology of viral respiratory pathogens in Egypt. Methods A total of 6113 hospitalized patients >1?month of age with suspected ARI were enrolled between June 23, 2009 and December 31, 2013. Naso? and oropharyngeal specimens were collected and tested for influenza A and B, respiratory syncytial virus, human metapneumovirus...

  3. House Dust Mite Respiratory Allergy

    Calderón, Moisés A; Kleine-Tebbe, Jörg; Linneberg, Allan

    2015-01-01

    Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence on the e......Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence...... not extend beyond the end of treatment. Finally, allergen immunotherapy has a poor but improving evidence base (notably on sublingual tablets) and its benefits last after treatment ends. This review identifies needs for deeper physician knowledge on the extent and impact of HDM allergy in respiratory disease...... and therapy of HDM respiratory allergy in practice....

  4. 33 CFR 142.39 - Respiratory protection.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 142.39... Respiratory protection. (a) Personnel in an atmosphere specified under ANSI Z88.2, requiring the use of respiratory protection equipment shall wear the type of respiratory protection equipment specified in ANSI Z88...

  5. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  6. Respiratory care management information systems.

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  7. Response

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  8. Photodynamic therapy for recurrent respiratory papillomatosis.

    Lieder, Anja; Khan, Muhammad K; Lippert, Burkard M

    2014-06-05

    Recurrent respiratory papillomatosis (RRP) is a benign condition of the mucosa of the upper aerodigestive tract. It is characterised by recurrent papillomatous lesions and is associated with human papillomavirus (HPV). Frequent recurrence and rapid papilloma growth are common and in part responsible for the onset of potentially life-threatening symptoms. Most patients afflicted by the condition will require repeated surgical treatments to maintain their airway, and these may result in scarring and voice problems. Photodynamic therapy introduces a light-sensitising agent, which is administered either orally or by injection. This substance (called a photo-sensitiser) is selectively retained in hyperplastic and neoplastic tissue, including papilloma. It is then activated by light of a specific wavelength and may be used as a sole or adjuvant treatment for RRP. To assess the effects of photodynamic therapy in the management of recurrent respiratory papillomatosis (RRP) in children and adults. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; Cambridge Scientific Abstracts; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 January 2014. Randomised controlled trials utilising photodynamic therapy as sole or adjuvant therapy in participants of any age with proven RRP versus control intervention. Primary outcome measures were symptom improvement (respiratory distress/dyspnoea and voice quality), quality of life improvement and recurrence-free interval. Secondary outcomes included reduction in the frequency of surgical intervention, reduction in disease volume and adverse effects of treatment.   We used the standard methodological procedures expected by The Cochrane Collaboration. Meta-analysis was not possible and results are presented descriptively. We included one trial with a total of 23

  9. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  10. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  11. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  12. Altered Resting and Exercise Respiratory Physiology in Obesity

    Sood, Akshay

    2009-01-01

    Obesity, particularly severe obesity, affects both resting and exercise-related respiratory physiology. Severe obesity classically produces a restrictive ventilatory abnormality, characterized by reduced expiratory reserve volume. However, obstructive ventilatory abnormality may also be associated with abdominal obesity. Decreased peak work rates are usually seen among obese subjects in a setting of normal or decreased ventilatory reserve and normal cardiovascular response to exercise. Weight...

  13. [Respiratory treatments in neuromuscular disease].

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  14. Respiratory correlated cone beam CT

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  15. Stem cells and respiratory diseases

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  16. Stem cells and respiratory diseases

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2008-01-01

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  17. Ventilatory response of the newborn infant to mild hypoxia.

    Cohen, G; Malcolm, G; Henderson-Smart, D

    1997-09-01

    The transition from an immature (biphasic) to a mature (sustained hyperpneic) response to a brief period of sustained hypoxia is believed to be well advanced by postnatal day 10 for newborn infants. However, a review of the supporting evidence convinced us that this issue warranted further, more systematic investigation. Seven healthy term infants aged 2 days to 8 weeks were studied. The ventilatory response (VR) elicited by 5 min breathing of 15% O2 was measured during quiet sleep. Arterial SaO2 (pulse oximeter) and minute ventilation (expressed as a change from control, delta V'i) were measured continuously. Infants were wrapped in their usual bedding and slept in open cots at room temperature (23 degrees-25 degrees). Infants aged 2-3 days exhibited predominantely a sustained hypopnea during the period of hypoxia (delta V'i = -2% at 1 min, -13% at 5 min). At 8 weeks of age, the mean response was typically biphasic (delta V'i = +9% at 1 min, -4% at 5 min). This age-related difference between responses was statistically significant (two-way ANOVA by time and age-group; interaction P < 0.05). These data reveal that term infants studied under ambient conditions during defined quiet sleep may exhibit an immature VR to mild, sustained hypoxia for at least 2 months after birth. This suggests that postnatal development of the O2 chemoreflex is slower than previously thought.

  18. Gold nanorod vaccine for respiratory syncytial virus

    Stone, John W; Thornburg, Natalie J; Blum, David L; Kuhn, Sam J; Crowe Jr, James E; Wright, David W

    2013-01-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response. (paper)

  19. Activation of respiratory muscles during respiratory muscle training.

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Respiratory Infections and Antibiotic Usage in Common Variable Immunodeficiency.

    Sperlich, Johannes M; Grimbacher, Bodo; Workman, Sarita; Haque, Tanzina; Seneviratne, Suranjith L; Burns, Siobhan O; Reiser, Veronika; Vach, Werner; Hurst, John R; Lowe, David M

    Patients with common variable immunodeficiency (CVID) suffer frequent respiratory tract infections despite immunoglobulin replacement and are prescribed significant quantities of antibiotics. The clinical and microbiological nature of these exacerbations, the symptomatic triggers to take antibiotics, and the response to treatment have not been previously investigated. To describe the nature, frequency, treatment, and clinical course of respiratory tract exacerbations in patients with CVID and to describe pathogens isolated during respiratory tract exacerbations. We performed a prospective diary card exercise in 69 patients with CVID recruited from a primary immunodeficiency clinic in the United Kingdom, generating 6210 days of symptom data. We collected microbiology (sputum microscopy and culture, atypical bacterial PCR, and mycobacterial culture) and virology (nasopharyngeal swab multiplex PCR) samples from symptomatic patients with CVID. There were 170 symptomatic exacerbations and 76 exacerbations treated by antibiotics. The strongest symptomatic predictors for commencing antibiotics were cough, shortness of breath, and purulent sputum. There was a median delay of 5 days from the onset of symptoms to commencing antibiotics. Episodes characterized by purulent sputum responded more quickly to antibiotics, whereas sore throat and upper respiratory tract symptoms responded less quickly. A pathogenic virus was isolated in 56% of respiratory exacerbations and a potentially pathogenic bacteria in 33%. Patients with CVID delay and avoid treatment of symptomatic respiratory exacerbations, which could result in structural lung damage. However, viruses are commonly represented and illnesses dominated by upper respiratory tract symptoms respond poorly to antibiotics, suggesting that antibiotic usage could be better targeted. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  1. Update on the "Dutch hypothesis" for chronic respiratory disease

    Vestbo, J; Prescott, E

    1998-01-01

    BACKGROUND: Many patients with chronic obstructive lung disease show increased airways responsiveness to histamine. We investigated the hypothesis that increased airways responsiveness predicts the development and remission of chronic respiratory symptoms. METHODS: We used data from 24-year follow......-up (1965-90) of 2684 participants in a cohort study in Vlagtwedde and Vlaardingen, Netherlands. Increased airways responsiveness was defined as a PC10 value (concentration of histamine for which challenge led to a 10% fall in forced expiratory volume in 1 s) of less than 8 mg/ml. Information on respiratory...... symptoms was collected by means of a standard questionnaire every 3 years. Logistic regression was used to control for age, area of residence, cigarette smoking status, and sex. FINDINGS: Participants with increased airways responsiveness (1281 observations) were more likely than those without increased...

  2. Perinatal respiratory infections and long term consequences

    Luciana Indinnimeo

    2015-10-01

    Full Text Available Respiratory syncytial virus (RSV is the most important pathogen in the etiology of respiratory infections in early life. 50% of children are affected by RSV within the first year of age, and almost all children become infected within two years. Numerous retrospective and prospective studies linking RSV and chronic respiratory morbidity show that RSV bronchiolitis in infancy is followed by recurrent wheezing after the acute episod. According to some authors a greater risk of wheezing in children with a history of RSV bronchiolitis would be limited to childhood, while according to others this risk would be extended into adolescence and adulthood. To explain the relationship between RSV infection and the development of bronchial asthma or the clinical pathogenetic patterns related to a state of bronchial hyperreactivity, it has been suggested that RSV may cause alterations in the response of the immune system (immunogenic hypothesis, activating directly mast cells and basophils and changing the pattern of differentiation of immune cells present in the bronchial tree as receptors and inflammatory cytokines. It was also suggested that RSV infection can cause bronchial hyperreactivity altering nervous airway modulation, acting on nerve fibers present in the airways (neurogenic hypothesis.The benefits of passive immunoprophylaxis with palivizumab, which seems to represent an effective approach in reducing the sequelae of RSV infection in the short- and long-term period, strengthen the implementation of prevention programs with this drug, as recommended by the national guidelines of the Italian Society of Neonatology. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai, China, Dorret I. Boomsma (Amsterdam, the

  3. Prolonged lateral steep position impairs respiratory mechanics during continuous lateral rotation therapy in respiratory failure.

    Schellongowski, Peter; Losert, Heidrun; Locker, Gottfried J; Laczika, Klaus; Frass, Michael; Holzinger, Ulrike; Bojic, Andja; Staudinger, Thomas

    2007-04-01

    To establish whether prolonged lateral steep position during continuous rotation therapy leads to improvement on pulmonary gas exchange, respiratory mechanics and hemodynamics. Prospective observational study. Intensive care unit of a university hospital. Twelve consecutive patients suffering from acute lung injury or adult respiratory distress syndrome undergoing continuous rotation therapy. Blood gas analysis, static lung compliance, blood pressure, cardiac index and pulmonary shunt fraction were measured in supine as well as in left and right lateral steep position at 62 degrees during continuous rotation therapy (phase I). Rotation was then stopped for 30 min with the patients in supine position, left and right lateral steep position, and the same measurements were performed every 10 min (phase II). Phase I and II revealed no significant changes in PaO(2)/FiO(2) ratio, mean arterial blood pressure, pulmonary shunt fraction, or cardiac index. Significantly lower static compliance was observed in lateral steep position than in supine position (pposition than in left and right lateral steep position (ppositioning impairs the compliance of the respiratory system. Prolonged lateral steep position does not lead to benefits with respect to oxygenation or hemodynamics. Individual response to the different positions is unpredictable. The pauses in "extreme" positions should be as short as possible.

  4. Need for a safe vaccine against respiratory syncytial virus infection

    Joo-Young Kim

    2012-09-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

  5. [Aging of the respiratory system: anatomical changes and physiological consequences].

    Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S

    2012-10-01

    The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Seung-Woo Lee

    2011-01-01

    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  7. [Undernutrition in chronic respiratory diseases].

    Zielonka, Tadeusz M; Hadzik-Błaszczyk, Małgorzata

    2015-01-01

    Respiratory diseases such as asthma, COPD, lung cancer, infections, including also tuberculosis constitute the most frequent diseases in the word. Undernutrition frequently accompanies these diseases. Early diagnosis of malnutrition and implementation of appropriate treatment is very important. A nutritional interview and anthropometric examinations, such as body mass index, fat free mass and fat mass are used to diagnose it. Nutritional therapy affects the course and prognosis of these diseases. Diet should be individually adjusted to the calculated caloric intake that increases during exacerbation of disease, because of increased respiratory effort. Too large supply of energy can cause increase metabolism, higher oxygen consumption and PaCO2 increase each dangerous for patients with respiratory insufficiency. Main source of carbohydrates for these patients should be products with low glycemic index and with high dietary fiber contents. Large meals should be avoided since they cause rapid satiety, abdominal discomfort and have negative impact on the work of the respiratory muscles, especially of the diaphragm. Dietary supplements can be used in case of ineffectiveness of diet or for the patients with severe undernutrition.

  8. Respiratory effects of borax dust.

    Garabrant, D H; Bernstein, L; Peters, J M; Smith, T J; Wright, W E

    1985-12-01

    The relation of respiratory symptoms, pulmonary function, and abnormalities of chest radiographs to estimated exposures of borax dust has been investigated in a cross sectional study of 629 actively employed borax workers. Ninety three per cent of the eligible workers participated in the study and exposures ranged from 1.1 mg/m3 to 14.6 mg/m3. Symptoms of acute respiratory irritation such as dryness of the mouth, nose, or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath, and chest tightness were related to exposures of 4.0 mg/m3 or more, and were infrequent at exposures of 1.1 mg/m3. Symptoms of persistent respiratory irritation meeting the definition of chronic simple bronchitis were related to exposure among non-smokers. Decrements in the FEV1 as a percentage of predicted were seen among smokers who had heavy cumulative borax exposures (greater than or equal to 80 mg/m3 years) but were not seen among less exposed smokers or among non-smokers. Radiographic abnormalities were uncommon and were not related to dust exposure. Borax dust appears to act as a simple respiratory irritant and perhaps causes small changes in the FEV1 among smokers who are heavily exposed.

  9. Guide to industrial respiratory protection

    Pritchard, J.A.

    1977-03-01

    The Occupational Safety and Health Act of 1970 has increased the emphasis on proper selection and use of respirators in situations where engineering controls are not feasible or are being implemented. Although a great deal of information on respiratory protection has been published, most of it is more technical than necessary for the average user faced with day-to-day problems of respiratory protection in industrial environments. This Guide is to provide the industrial user a single reference source containing enough information for establishing and maintaining a respirator program that meets the OSHA requirements outlined in 29 CFR Part 1910.134. It includes chapters on respirator selection, use, maintenance, and inspection, a complete description of all types of respirators and their advantages and limitations, and chapters on respirator fitting and wearer training, respiratory physiology, respiratory hazards, and physiological and psychological limitations. Also included are samples of the decision logic used in respirator selection, guidance on setting up an adequate respirator program through formulation of written standard operating procedures, and discussion of the meaning of the approved respirator

  10. Protective roles of free avian respiratory macrophages in captive birds

    Mbuvi P. Mutua

    Full Text Available In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  11. Successful topical respiratory tract immunization of primates against Ebola virus.

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  12. [Respiratory diseases in metallurgy production workers].

    Shliapnikov, D M; Vlasova, E M; Ponomareva, T A

    2012-01-01

    The authors identified features of respiratory diseases in workers of various metallurgy workshops. Cause-effect relationships are defined between occupational risk factors and respiratory diseases, with determining the affection level.

  13. Assessment of respiratory involvement in children with ...

    Background: Mucopolysaccharidosis (MPS) are classified into seven clinical types based on eleven known lysosomal enzyme deficiencies of glycosaminoglycan (GAG) metabolism. Respiratory involvement seen in most MPS types includes recurrent respiratory infections, upper and lower airway obstruction, tracheomalacia ...

  14. Coal Mining-Related Respiratory Diseases

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  15. Dosimetry of the respiratory tract

    Roy, M.

    1996-01-01

    A new dosimetric model of the human respiratory tract has been recently recommended by the International Commission on Radiological Protection, in ICRP Publication 66. This model was intended to update the previous lung model of the Task Group on Lung Dynamics that was adopted by ICRP in Publication 30. With this aim, extensive reviews of the available knowledge were made for anatomy and physiology of the respiratory tract and for deposition, clearance and biological effects of inhaled radionuclides. Finally, expanded dosimetry requirements resulted in a widely different approach from the former model. The main features of the new model are the followings: instead of calculating the average dose to the total mass of blood filled lung, the model takes account of differences in radiosensitivity of the venous respiratory tract tissues. It applies not only to adult workers but also to all members of the population, and provides reference values for children aged 3 months, 1, 5, 10, and 15 years, and adults. Deposition modelling of airborne gases and aerosols associates age dependent breathing rates, airway dimensions and physical activity, to particle size, density and chemical form of inhaled material. Clearance results of competition between mechanical transport clearance and absorption to blood. At each step of the calculation, adjustment guidance is provided to account for use of exact values of particle sizes and specific dissolution rates of inhaled material in order to calculate their own parameter of retention in the airways, and to assess accurately doses to the respiratory tract. Possible influence of smoking, of respiratory tract diseases and of eventual exposure to airborne toxicants is also addressed. (author)

  16. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  17. Risk factors for admission and the role of respiratory syncytial virus ...

    disease and poor outcomes when exposed to the influenza virus. Studies of CTL responses ... (IL)8 and IL2) and human neutrophil elastase play a significant ~ role in the ..... Prophylaxis against respiratory syncytial virus in premature infants.

  18. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude.

    Hoiland, Ryan L; Foster, Glen E; Donnelly, Joseph; Stembridge, Mike; Willie, Chris K; Smith, Kurt J; Lewis, Nia C; Lucas, Samuel J E; Cotter, Jim D; Yeoman, David J; Thomas, Kate N; Day, Trevor A; Tymko, Mike M; Burgess, Keith R; Ainslie, Philip N

    2015-07-01

    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting oxygen saturation as measured by pulse oximetry (Spo₂) at HA would correlate better than HVR at SL with PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min · -%Spo₂⁻¹) and resting PASP using echocardiography. Both resting Spo₂ and PASP measures were repeated on day 2 (n = 10), days 4 to 8 (n = 12), and 2 to 3 weeks (n = 8) after arrival at 5,050 m. These data were also collected at 5,050 m in life-long HA residents (ie, Sherpa [n = 21]). Compared with SL, Spo₂ decreased from 98.6% to 80.5% (P HVR at SL was not related to Spo₂ or PASP at any time point at 5,050 m (all P > .05). Sherpa had lower PASP (P .50), there was a weak relationship in the Sherpa (R² = 0.16, P = .07). We conclude that neither HVR at SL nor resting Spo₂ at HA correlates with elevations in PASP at HA.

  19. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  20. Respiratory symptoms as health status indicators in workers at ceramics manufacturing facilities.

    Rondon, Edilaura Nunes; Silva, Regina Maria Veras Gonçalves da; Botelho, Clovis

    2011-01-01

    To assess the prevalence of respiratory symptoms and their association with sociodemographic variables and with the characteristics of the work environment. A cross-sectional study comprising 464 workers employed at ceramics manufacturing facilities located in the city of Várzea Grande, Brazil. Data were collected by means of a questionnaire comprising questions regarding sociodemographic variables, work environment characteristics, and respiratory symptoms. Data were analyzed by means of prevalence ratios and their respective 95% CIs between the dependent variable (respiratory symptoms) and the other explanatory variables. In the multivariate analysis, two hierarchical models were built, the response variables being "all respiratory symptoms" and "severe respiratory symptoms". In the sample studied, the prevalence of "all respiratory symptoms" was 78%, whereas that of "severe respiratory symptoms" was 35%. The factors associated with "all respiratory symptoms" were gender, age bracket, level of education, type of occupation, exposure to dust, and exposure to chemical products. The factors associated with "severe respiratory symptoms" were level of education, exposure to dust, and exposure to chemical products. Our results indicate the presence of upper and lower airway disease in the population studied.

  1. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with cells treated with heat-treated geogenic dust PM 10 (p respiratory epithelium. The impact on respiratory

  2. Prevention of Respiratory Distress After Laparoscopic Cholecystectomy

    O. A. Dolina

    2005-01-01

    Full Text Available The paper presents the results of a comparative study of different methods for preventing respiratory distress after laparoscopic cholecystectomy. It shows the advantages of use of noninvasive assisted ventilation that ensures excessive positive pressure in the respiratory contour, its impact on external respiratory function, arterial blood gases, oxygen transport and uptake. A scheme for the prevention of respiratory diseases applying noninvasive assisted ventilation is given.

  3. Respiratory mechanics in brain injury: A review.

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  4. Effects of Aging on the Respiratory System.

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  5. 46 CFR 154.1405 - Respiratory protection.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects the...

  6. 46 CFR 197.550 - Respiratory protection.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Respiratory protection. 197.550 Section 197.550 Shipping... GENERAL PROVISIONS Benzene § 197.550 Respiratory protection. (a) General. When the use of respirators in... section that is appropriate for the exposure. Table 197.550(b)—Respiratory Protection for Benzene Airborne...

  7. 29 CFR 1915.154 - Respiratory protection.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered by...

  8. 33 CFR 127.1209 - Respiratory protection.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...

  9. Nasopharyngeal Protein Biomarkers of Acute Respiratory Virus Infection

    Thomas W. Burke

    2017-03-01

    Full Text Available Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host. We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects experimentally challenged with influenza A/H3N2 or human rhinovirus, and to develop targeted assays measuring peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that infection with H3N2 induces significant alterations in protein expression. These include proteins involved in acute inflammatory response, innate immune response, and the complement cascade. These data provide insights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins that are dysregulated by viral infection form the basis of signature that accurately classifies the infected state. Verification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with influenza or rhinovirus demonstrates that it performs with high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR. With further development as a clinical diagnostic, this signature may have utility in rapid screening for emerging infections, avoidance of inappropriate antibacterial therapy, and more rapid implementation of appropriate therapeutic and public health strategies.

  10. Effect of Intermittent Hypercapnia on Respiratory Control in Rat Pups

    Steggerda, Justin A.; Mayer, Catherine A.; Martin, Richard J.; Wilson, Christopher G.

    2010-01-01

    Preterm infants are subject to fluctuations in blood gas status associated with immature respiratory control. Intermittent hypoxia during early postnatal life has been shown to increase chemoreceptor sensitivity and destabilize the breathing pattern; however, intermittent hypercapnia remains poorly studied. Therefore, to test the hypothesis that intermittent hypercapnia results in altered respiratory control, we examined the effects of daily exposure to intermittent hypercapnia on the ventilatory response to subsequent hypercapnic and hypoxic exposure in neonatal rat pups. Exposure cycles consisted of 5 min of intermittent hypercapnia (5% CO2, 21% O2, balance N2) followed by 10 min of normoxia. Rat pups were exposed to 18 exposure cycles each day for 1 week, from postnatal day 7 to 14. We analyzed diaphragm electromyograms (EMGs) from pups exposed to subsequent acute hypercapnic (5% CO2) and hypoxic (12% O2) challenges. In response to a subsequent hypercapnia challenge, there was no significant difference in the ventilatory response between control and intermittent hypercapnia-exposed groups. In contrast, intermittent hypercapnia-exposed rat pups showed an enhanced ventilatory response to hypoxic challenge with an increase in minute EMG to 118 ± 14% of baseline versus 107 ± 13% for control pups (p < 0.05). We speculate that prior hypercapnic exposure may increase peripheral chemoreceptor response to subsequent hypoxic exposures and result in perturbed neonatal respiratory control. PMID:19752577

  11. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens.

    Storisteanu, Daniel M L; Pocock, Joanna M; Cowburn, Andrew S; Juss, Jatinder K; Nadesalingam, Angalee; Nizet, Victor; Chilvers, Edwin R

    2017-04-01

    The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.

  12. Immunoregulation by airway epithelial cells (AECs against respiratory virus infection

    Yan YAN

    2017-11-01

    Full Text Available The respiratory tract is primary contact site of the body and environment, and it is ventilated by 10-20 thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbes, which contain the disease-causing pathogens. Airway epithelial cells (AECs are known to have innate sensor functions, which are similar to the "professional" immune cells, such as alveolar macrophage and sub- or intra-epithelial dendritic cells (DCs. Thus AECs are able to detect invading microbial danger including different types of respiratory viruses, and mount a potent host response, for example, activating type Ⅰ interferon signaling pathway genes. To avoid chronic inflammation and maintain the immunological homeostasis, the pulmonary system has developed intrinsic mechanisms to control local immune responses. Most recently, the role of AECs in control of local immunity has gained much attention, as 1 AECs express the pattern recognition receptors (PRRs, such as Toll-like receptors, retinoic acid inducible gene Ⅰ (RIG-I-like receptor, and so on, thus AECs are equipped to participate in innate detection of microbial encounter; 2 To keep immunological homeostasis in the respiratory tract, AECs behave not only as innate immune sensors but also as immune modulators in parallel, through modulating the sensitivity of innate immune sensing of both AECs per se and sub- or intra-epithelial immune cells; 3 Loss of modularity capacity of AECs might be involved in the development of chronic airway diseases. In present review, how the AECs act will be intensively discussed in response to respiratory viruses and modulate the local immunity through cis- and trans-factors (direct and indirect factors, as well as the consequence of impairment of this control of local immunity, in the development and exacerbation of airway diseases, such as acute and chronic rhinosinusitis. DOI: 10.11855/j.issn.0577-7402.2017.10.02

  13. A Quick Reference on Respiratory Acidosis.

    Johnson, Rebecca A

    2017-03-01

    Respiratory acidosis, or primary hypercapnia, occurs when carbon dioxide production exceeds elimination via the lung and is mainly owing to alveolar hypoventilation. Concurrent increases in Paco 2 , decreases in pH and compensatory increases in blood HCO 3 - concentration are associated with respiratory acidosis. Respiratory acidosis can be acute or chronic, with initial metabolic compensation to increase HCO 3 - concentrations by intracellular buffering. Chronic respiratory acidosis results in longer lasting increases in renal reabsorption of HCO 3 - . Alveolar hypoventilation and resulting respiratory acidosis may also be associated with hypoxemia, especially evident when patients are inspiring room air (20.9% O 2 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans.

    Somers, V K; Mark, A L; Zavala, D C; Abboud, F M

    1989-11-01

    The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.

  15. Respiratory challenge MRI: Practical aspects

    Fiona C. Moreton

    2016-01-01

    Full Text Available Respiratory challenge MRI is the modification of arterial oxygen (PaO2 and/or carbon dioxide (PaCO2 concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques.

  16. Hypnosis in paediatric respiratory medicine.

    McBride, Joshua J; Vlieger, Arine M; Anbar, Ran D

    2014-03-01

    Hypnotherapy is an often misunderstood yet effective therapy. It has been reported to be useful within the field of paediatric respiratory medicine as both a primary and an adjunctive therapy. This article gives a brief overview of how hypnotherapy is performed followed by a review of its applications in paediatric patients with asthma, cystic fibrosis, dyspnea, habit cough, vocal cord dysfunction, and those requiring non-invasive positive pressure ventilation. As the available literature is comprised mostly of case series, retrospective studies, and only a single small randomized study, the field would be strengthened by additional randomized, controlled trials in order to better establish the effectiveness of hypnosis as a treatment, and to identify the processes leading to hypnosis-induced physiologic changes. As examples of the utility of hypnosis and how it can be taught to children with respiratory disease, the article includes videos that demonstrate its use for patients with cystic fibrosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Vitamin D and respiratory disorder

    Mahnaz Hushmand

    2015-09-01

    Full Text Available The active form of vitamin D is synthesized in some body organs following sun exposure and dietary intake. Vitamin D exhibits its major and critical effects not only through regulation of calcium and phosphate metabolism but also by influencing on respiratory and immune system. Serum concentrations of 25-hydroxyvitamin D below the optimum limit lead to vitamin D insufficiency or maybe deficiency. These inappropriate concentrations of vitamin D lead to different types of pulmonary diseases such as viral and bacterial respiratory infection, asthma, chronic obstructive pulmonary disease, and cancer. In this review we described the association between vitamin D deficiency and severe therapy resistant asthma. We also reviewed the underlying molecular mechanism of vitamin D deficiency in children with severe- therapy resistant asthma. Based on current information, future clinical trial are needed to study the role of vitamin D supplementation on different groups of patients with severe asthma including infants, children of school age, and ethnic minorities.

  18. Acute respiratory infections in young Ethiopian children

    Harris RA

    2015-07-01

    Full Text Available Rebecca Arden HarrisDepartment of Family and Social Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USAThe identification of risk factors for acute respiratory infections (ARI is crucial for designing interventions to both minimize transmission and augment the immune response, particularly in Sub-Saharan Africa where poverty-related ARI is still a major cause of preventable death in young children.1 I therefore read with interest Geberetsadik et al’s recent study of the factors associated with ARI in Ethiopian children.2 Their study uses nationally representative data on households and individuals to build a model of the social, demographic, and anthropometric determinants of ARI. A precise understanding of their model, however, requires clarification of several items in their paper.View original paper by Geberetsadik et al.

  19. Extensive upper respiratory tract sarcoidosis

    Soares, Mafalda Trindade; Sousa, Carolina; Garanito, Luísa; Freire, Filipe

    2016-01-01

    Sarcoidosis is a chronic granulomatous disease of unknown aetiology. It can affect any part of the organism, although the lung is the most frequently affected organ. Upper airway involvement is rare, particularly if isolated. Sarcoidosis is a diagnosis of exclusion, established by histological evidence of non-caseating granulomas and the absence of other granulomatous diseases. The authors report a case of a man with sarcoidosis manifesting as a chronic inflammatory stenotic condition of the upper respiratory tract and trachea. PMID:27090537

  20. Recurrent Respiratory Infections in Children

    F. Yurochko

    2012-02-01

    Full Text Available The paper covers a problem of recurrent respiratory infections (RRI in children. Their description, risk factors, diagnostic algorithm have been dwelt. A special attention is paid to the treatment. An optimal antibiotic in RRI of bacterial genesis is a high-dose amoxicillin/clavulanate (registered as Augmentin™ ES in Ukraine, the efficacy of which is 94.6–96.3 % according to different data.

  1. Acute respiratory failure in asthma

    Soubra Said; Guntupalli Kalapalatha

    2005-01-01

    Although asthma is a condition that is managed in the outpatient setting in most patients, the poorly controlled and severe cases pose a major challenge to the health-care team. Recognition of the more common insidious and the less common rapid onset "acute asphyxic" asthma are important. The intensivist needs to be familiar with the factors that denote severity of the exacerbation. The management of respiratory failure in asthma, including pharmacologic and mechanical ventilation, are discus...

  2. Zonography in acute respiratory diseases

    Druzhinina, V.S.; Fetisova, V.M.; Kozorez, A.G.

    1984-01-01

    Radiography was performed in 94 patients whose initial condition was assessed as acute respiratory disease. Radioscopy with x-ray image amplifier, roentgenography and zonography were used. Pulmonary changes were found in 61 persons. In 45 of them acute pneumonia was revealed, in 16 changes in the pulmonary pattern assessed as residual manifestations of pneumonia. Changes in 30 patients with pneumonia and 16 patients with residual manifestations were detected by zonography only

  3. Respiratory failure due to tracheobronchomalacia.

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair. PMID:8711665

  4. Respiratory failure due to tracheobronchomalacia.

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair.

  5. Respiratory manifestations in endocrine diseases

    LENCU, CODRU?A; ALEXESCU, TEODORA; PETRULEA, MIRELA; LENCU, MONICA

    2016-01-01

    The control mechanisms of respiration as a vital function are complex: voluntary ? cortical, and involuntary ? metabolic, neural, emotional and endocrine. Hormones and hypothalamic neuropeptides (that act as neurotrasmitters and neuromodulators in the central nervous system) play a role in the regulation of respiration and in bronchopulmonary morphology. This article presents respiratory manifestations in adult endocrine diseases that evolve with hormone deficit or hypersecretion. In hyperthy...

  6. A Review on Human Respiratory Modeling.

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  7. Sulfur mustard and respiratory diseases.

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  8. Respiratory analysis system and method

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  9. Synchrony - Cyberknife Respiratory Compensation Technology

    Ozhasoglu, Cihat; Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-01-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed

  10. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.

  11. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages

    William A. Cafruny

    2008-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolonecontaining compound Plasmocin™, as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs. Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.

  13. Epidemiologic analysis of respiratory viral infections among Singapore military servicemen in 2016.

    Lau, Yuk-Fai; Koh, Wee-Hong Victor; Kan, Clement; Dua, Poh-Choo Alethea; Lim, Ai-Sim Elizabeth; Liaw, Chin-Wen Jasper; Gao, Qiu-Han; Chng, Jeremiah; Lee, Vernon J; Tan, Boon-Huan; Loh, Jin-Phang

    2018-03-12

    Respiratory illnesses have been identified as a significant factor leading to lost training time and morbidity among Singapore military recruits. A surveillance programme has been put in place to determine etiological agents responsible for febrile, as well as afebrile respiratory illnesses in a military camp. The goal of the study is to better understand the epidemiology of these diseases and identify potential countermeasures to protect military recruits against them. From Jan 2016 - Jan 2017, a total of 2647 respiratory cases were enrolled into the surveillance programme. The cases were further stratified into Febrile Respiratory Illness (FRI, with body temperature > 37.5 °C) or Acute Respiratory Illness (ARI, with body temperature respiratory diseases in military focused largely on FRI cases. With the expanded surveillance to ARI cases, this study allows unbiased evaluation of the impact of respiratory disease pathogens among recruits in a military environment. The results show that several pathogens have a much bigger role in causing respiratory diseases in this cohort.

  14. Asthma and respiratory symptoms in hospital workers related to dampness and biological contaminants.

    Cox-Ganser, J M; Rao, C Y; Park, J-H; Schumpert, J C; Kreiss, K

    2009-08-01

    The National Institute for Occupational Safety and Health investigated respiratory symptoms and asthma in relation to damp indoor environments in employees of two hospitals. A cluster of six work-related asthma cases from one hospital department, whose symptoms arose during a time of significant water incursions, led us to conduct a survey of respiratory health in 1171/1834 employees working in the sentinel cases hospital and a nearby hospital without known indoor environmental concerns. We carried out observational assessment of dampness, air, chair, and floor dust sampling for biological contaminants, and investigation of exposure-response associations for about 500 participants. Many participants with post-hire onset asthma reported diagnosis dates in a period of water incursions and renovations. Post-hire asthma and work-related lower respiratory symptoms were positively associated with the dampness score. Work-related lower respiratory symptoms showed monotonically increasing odds ratios with ergosterol, a marker of fungal biomass. Other fungal and bacterial indices, particle counts, cat allergen and latex allergen were associated with respiratory symptoms. Our data imply new-onset of asthma in relation to water damage, and indicate that work-related respiratory symptoms in hospital workers may be associated with diverse biological contaminants. In healthcare facilities with indoor dampness and microbial contamination, possible associations between such conditions and respiratory health effects should be considered. Good building maintenance and housekeeping procedures should lead to improvements in employee respiratory health.

  15. Air pollution and multiple acute respiratory outcomes.

    Faustini, Annunziata; Stafoggia, Massimo; Colais, Paola; Berti, Giovanna; Bisanti, Luigi; Cadum, Ennio; Cernigliaro, Achille; Mallone, Sandra; Scarnato, Corrado; Forastiere, Francesco

    2013-08-01

    Short-term effects of air pollutants on respiratory mortality and morbidity have been consistently reported but usually studied separately. To more completely assess air pollution effects, we studied hospitalisations for respiratory diseases together with out-of-hospital respiratory deaths. A time-stratified case-crossover study was carried out in six Italian cities from 2001 to 2005. Daily particulate matter (particles with a 50% cut-off aerodynamic diameter of 10 μm (PM10)) and nitrogen dioxide (NO2) associations with hospitalisations for respiratory diseases (n = 100 690), chronic obstructive pulmonary disease (COPD) (n = 38 577), lower respiratory tract infections (LRTI) among COPD patients (n = 9886) and out-of-hospital respiratory deaths (n = 5490) were estimated for residents aged ≥35 years. For an increase of 10 μg·m(-3) in PM10, we found an immediate 0.59% (lag 0-1 days) increase in hospitalisations for respiratory diseases and a 0.67% increase for COPD; the 1.91% increase in LRTI hospitalisations lasted longer (lag 0-3 days) and the 3.95% increase in respiratory mortality lasted 6 days. Effects of NO2 were stronger and lasted longer (lag 0-5 days). Age, sex and previous ischaemic heart disease acted as effect modifiers for different outcomes. Analysing multiple rather than single respiratory events shows stronger air pollution effects. The temporal relationship between the pollutant increases and hospitalisations or mortality for respiratory diseases differs.

  16. Gastroesophageal reflux and respiratory diseases in children

    Fatima, S.; Saeed, M.A.; Jafri, S.R.A.; Raza, M.; Kundi, Z.U.; Hyder, S.W.

    2002-01-01

    The association of gastroesophageal reflux disease and its pulmonary manifestation is well known however the exact underlying mechanism is unclear. The medical literature is deluged with studies on relationship between Gear and its pulmonary manifestations. The aim of this study was to 1) determine prevalence of GER in children with rLRTI, wheezing and asthma. 2) determine prevalence of asymptomatic respiratory anomalies in children with clinical reflux 3) determine effectiveness of anti-reflux therapy in clinical control of asthma, wheezing and rLRTI. Children were included in the study if they presented either with rLRTI, wheezing, Bronchial asthma or Clinical suspicion of GER without any respiratory symptoms. The GER study comprised esophageal transit, gastroesophageal reflux and lung aspiration studies. Acquisition and processing were according to predetermined protocol. Segmental and global esophageal transit times, GER according to duration of episode and volume of refluxed liquid, Reflux severity, Gastric retention at 30 minutes, Gastric emptying time, Presence of lung aspiration were calculated for each study. All children underwent Barium studies on a separate day. Clinical follow-up was done every 3 months and GER study was repeated every 6 months up to one year. The patient's therapy was determined by local protocols at discretion of clinicians. GER scintigraphy was performed in 43 patients (age range 5 months -12 years). Gastroesophageal reflux of varying degrees was observed in 10 children (23.25%) in all groups. The severity of clinical symptoms was directly related to severity of GER. The direct correlation was found between GER and reflux index. The results of GER scintigraphy were compared with Barium studies and results were found to be superior in terms of sensitivity, specificity and accuracy in detecting disease. It was possible to objectively evaluate and monitor response to therapy after medical treatment in few cases with help of follow

  17. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  18. Respiratory health effects of exposure to low levels of airborne endotoxin - a systematic review.

    Farokhi, Azadèh; Heederik, Dick; Smit, Lidwien A M

    2018-02-08

    Elevated endotoxin levels have been measured in ambient air around livestock farms, which is a cause of concern for neighbouring residents. There is clear evidence that occupational exposure to high concentrations of airborne endotoxin causes respiratory inflammation, respiratory symptoms and lung function decline. However, health effects of exposure to low levels of endotoxin are less well described. The aim of this systematic review is to summarize published associations between exposure to relatively low levels of airborne endotoxin and respiratory health endpoints. Studies investigating respiratory effects of measured or modelled exposure to low levels of airborne endotoxin (average effects of exposure to low levels of endotoxin on respiratory symptoms and lung function. However, considerable heterogeneity existed in the outcomes of the included studies and no overall estimate could be provided by meta-analysis to quantify the possible relationship. Instead, a best evidence synthesis was performed among studies examining the exposure-response relationship between endotoxin and respiratory outcomes. Significant exposure-response relationships between endotoxin and symptoms and FEV 1 were shown in several studies, with no conflicting findings in the studies included in the best evidence synthesis. Significantly different effects of endotoxin exposure were also seen in vulnerable subgroups (atopics and patients with broncho-obstructive disease) and smokers. Respiratory health effects of exposure to low levels of airborne endotoxin (health effects, especially in vulnerable subgroups of the population.

  19. Respiratory effects of kynurenic acid microinjected into the ventromedullary surface of the rat

    F.P. Tolentino-Silva

    1998-10-01

    Full Text Available Several studies demonstrate that, within the ventral medullary surface (VMS, excitatory amino acids are necessary components of the neural circuits involved in the tonic and reflex control of respiration and circulation. In the present study we investigated the cardiorespiratory effects of unilateral microinjections of the broad spectrum glutamate antagonist kynurenic acid (2 nmol/200 nl along the VMS of urethane-anesthetized rats. Within the VMS only one region was responsive to this drug. This area includes most of the intermediate respiratory area, partially overlapping the rostral ventrolateral medulla (IA/RVL. When microinjected into the IA/RVL, kynurenic acid produced a respiratory depression, without changes in mean arterial pressure or heart rate. The respiratory depression observed was characterized by a decrease in ventilation, tidal volume and mean inspiratory flow and an increase in respiratory frequency. Therefore, the observed respiratory depression was entirely due to a reduction in the inspiratory drive. Microinjections of vehicle (200 nl of saline into this area produced no significant changes in breathing pattern, blood pressure or heart rate. Respiratory depression in response to the blockade of glutamatergic receptors inside the rostral VMS suggests that neurons at this site have an endogenous glutamatergic input controlling the respiratory cycle duration and the inspiratory drive transmission.

  20. DIETARY VITAMIN E DEFICIENCY AS A MODIFIER OF THE ASSOCIATIONS OF RESPIRATORY OUTCOMES WITH AIR POLLUTION IN ADOLESCENTS

    Introduction: We investigated whether low dietary intake of the lipophilic antioxidant vitamin E may act as a modifier of chronic air pollution's associations with respiratory outcomes among adolescents due to an increased respiratory response to the oxidative effects of air pol...

  1. Visual aided pacing in respiratory maneuvers

    Rambaudi, L R [Laboratorio de Biofisica y Fisiologia ' Antonio Sadi Frumento' (Argentina); Rossi, E [Catedra de Bioingenieria II (Argentina); Mantaras, M C [Catedra de Bioingenieria II (Argentina); Perrone, M S [Laboratorio de Biofisica y Fisiologia ' Antonio Sadi Frumento' (Argentina); Siri, L Nicola [Catedra de Bioingenieria II (Argentina)

    2007-11-15

    A visual aid to pace self-controlled respiratory cycles in humans is presented. Respiratory manoeuvres need to be accomplished in several clinic and research procedures, among others, the studies on Heart Rate Variability. Free running respiration turns to be difficult to correlate with other physiologic variables. Because of this fact, voluntary self-control is asked from the individuals under study. Currently, an acoustic metronome is used to pace respiratory frequency, its main limitation being the impossibility to induce predetermined timing in the stages within the respiratory cycle. In the present work, visual driven self-control was provided, with separate timing for the four stages of a normal respiratory cycle. This visual metronome (ViMet) was based on a microcontroller which power-ON and -OFF an eight-LED bar, in a four-stage respiratory cycle time series handset by the operator. The precise timing is also exhibited on an alphanumeric display.

  2. Visual aided pacing in respiratory maneuvers

    Rambaudi, L R; Rossi, E; Mantaras, M C; Perrone, M S; Siri, L Nicola

    2007-01-01

    A visual aid to pace self-controlled respiratory cycles in humans is presented. Respiratory manoeuvres need to be accomplished in several clinic and research procedures, among others, the studies on Heart Rate Variability. Free running respiration turns to be difficult to correlate with other physiologic variables. Because of this fact, voluntary self-control is asked from the individuals under study. Currently, an acoustic metronome is used to pace respiratory frequency, its main limitation being the impossibility to induce predetermined timing in the stages within the respiratory cycle. In the present work, visual driven self-control was provided, with separate timing for the four stages of a normal respiratory cycle. This visual metronome (ViMet) was based on a microcontroller which power-ON and -OFF an eight-LED bar, in a four-stage respiratory cycle time series handset by the operator. The precise timing is also exhibited on an alphanumeric display

  3. Year in Review 2015: Neonatal Respiratory Care.

    Courtney, Sherry E

    2016-04-01

    Neonatal respiratory care practices have changed with breathtaking speed in the past few years. It is critical for the respiratory therapist and others caring for neonates to be up to date with current recommendations and evolving care practices. The purpose of this article is to review papers of particular note that were published in 2015 and address important aspects of newborn respiratory care. Copyright © 2016 by Daedalus Enterprises.

  4. Measurements of respiratory illness among construction painters.

    White, M C; Baker, E L

    1988-01-01

    The prevalence of different measurements of respiratory illness among construction painters was examined and the relation between respiratory illness and employment as a painter assessed in a cross sectional study of current male members of two local affiliates of a large international union of painters. Respiratory illness was measured by questionnaire and spirometry. Longer employment as a painter was associated with increased prevalence of chronic obstructive disease and an interactive eff...

  5. Effects of respiratory muscle training (RMT) in children with infantile-onset Pompe disease and respiratory muscle weakness.

    Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S

    2014-01-01

    Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.

  6. Bovine respiratory syncytial virus (BRSV): A review

    Larsen, Lars Erik

    2000-01-01

    Bovine respiratory syncytial virus (BRSV) infection is the major cause of respiratory disease in calves during the first year of life. The study of the virus has been difficult because of its lability and very poor growth in cell culture. However, during the last decade, the introduction of new...... complex and unpredictable which makes the diagnosis and subsequent therapy very difficult. BRSV is closely related to human respiratory syncytial virus (HRSV) which is an important cause of respiratory disease in young children. In contrast to BRSV, the recent knowledge of HRSV is regularly extensively...

  7. Respiratory monitoring with an acceleration sensor

    Ono, Tomohiro; Takegawa, Hideki; Ageishi, Tatsuya; Takashina, Masaaki; Numasaki, Hodaka; Matsumoto, Masao; Teshima, Teruki

    2011-01-01

    Respiratory gating radiotherapy is used to irradiate a local area and to reduce normal tissue toxicity. There are certain methods for the detection of tumor motions, for example, using internal markers or an external respiration signal. However, because some of these respiratory monitoring systems require special or expensive equipment, respiratory monitoring can usually be performed only in limited facilities. In this study, the feasibility of using an acceleration sensor for respiratory monitoring was evaluated. The respiratory motion was represented by means of a platform and measured five times with the iPod touch (registered) at 3, 4 and 5 s periods of five breathing cycles. For these three periods of the reference waveform, the absolute means ± standard deviation (SD) of displacement were 0.45 ± 0.34 mm, 0.33 ± 0.24 mm and 0.31 ± 0.23 mm, respectively. On the other hand, the corresponding absolute means ± SD for the periods were 0.04 ± 0.09 s, 0.04 ± 0.02 s and 0.06 ± 0.04 s. The accuracy of respiratory monitoring using the acceleration sensor was satisfactory in terms of the absolute means ± SD. Using the iPod touch (registered) for respiratory monitoring does not need special equipment and makes respiratory monitoring easier. For these reasons, this system is a viable alternative to other respiratory monitoring systems.

  8. A Quick Reference on Respiratory Alkalosis.

    Johnson, Rebecca A

    2017-03-01

    Respiratory alkalosis, or primary hypocapnia, occurs when alveolar ventilation exceeds that required to eliminate the carbon dioxide produced by tissues. Concurrent decreases in Paco 2 , increases in pH, and compensatory decreases in blood HCO 3 - levels are associated with respiratory alkalosis. Respiratory alkalosis can be acute or chronic, with metabolic compensation initially consisting of cellular uptake of HCO 3 - and buffering by intracellular phosphates and proteins. Chronic respiratory alkalosis results in longer-lasting decreases in renal reabsorption of HCO 3 - ; the arterial pH can approach near-normal values. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  10. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients

    Neves,Laura M. T.; Karsten,Marlus; Neves,Victor R.; Beltrame,Thomas; Borghi-Silva,Audrey; Catai,Aparecida M.

    2014-01-01

    Background: Reduced respiratory muscle endurance (RME) contributes to increased dyspnea upon exertion in patients with cardiovascular disease. Objective: The objective was to characterize ventilatory and metabolic responses during RME tests in post-myocardial infarction patients without respiratory muscle weakness. Method: Twenty-nine subjects were allocated into three groups: recent myocardial infarction group (RG, n=9), less-recent myocardial infarction group (LRG, n=10), and contr...

  11. Respiratory disease mortality among uranium miners as related to height, radiation, smoking, and latent period

    Archer, V.E.; Gillam, J.D.; James, L.A.

    1975-11-01

    A prospective mortality study using a life table method was done on 3366 white underground uranium miners, and 1231 surface workers. Observed deaths were found to exceed those expected from respiratory cancer, pneumoconiosis and related diseases, and accidents related to work. Exposure - response relationships with radiation varied with cigarette smoking and with height of workers. Of four factors involved in both malignant and nonmalignant respiratory diseases (height, free silica, cigarette smoking and alpha radiation), radiation was considered to be most important

  12. Maturation Modulates Pharyngeal-Stimulus Provoked Pharyngeal and Respiratory Rhythms in Human Infants.

    Hasenstab, Kathryn A; Sitaram, Swetha; Lang, Ivan M; Shaker, Reza; Jadcherla, Sudarshan R

    2018-02-01

    Pharyngeal-provocation induced aerodigestive symptoms in infants remain an enigma. Sources of pharyngeal provocation can be anterograde as with feeding, and retrograde as in gastroesophageal reflux. We determined maturational and dose-response effects of targeted pharyngeal-stimulus on frequency, stability, and magnitude of pharyngeal and respiratory waveforms during multiple pharyngeal swallowing responses in preterm-born infants when they were of full-term postmenstrual age (PMA). Eighteen infants (11 male) were studied longitudinally at 39.8 ± 4.8 weeks PMA (time-1) and 44.1 ± 5.8 weeks PMA (time-2). Infants underwent concurrent pharyngo-esophageal manometry, respiratory inductance plethysmography, and nasal airflow thermistor methods to test sensory-motor interactions between the pharynx, esophagus, and airway. Linear mixed models were used and data presented as mean ± SEM or %. Overall, responses to 250 stimuli were analyzed. Of the multiple pharyngeal swallowing responses (n = 160), with maturation (a) deglutition apnea duration decreases (p  0.05), and (c) respiratory changes were unaffected (p > 0.05). Initial and subsequent pharyngeal responses and respiratory rhythm interactions become more distinct with maturation. Interval oromotor experiences and volume-dependent increase in adaptive responses may be contributory. These mechanisms may be important in modulating and restoring respiratory rhythm normalcy.

  13. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog.

    Lopez, Ignacio; Rodriguez, Mariano; Felsenfeld, Arnold J; Estepa, Jose Carlos; Aguilera-Tejero, Escolastico

    2003-08-01

    Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. After 60 minutes of a normocalcemic clamp, PTH values were less (p respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH

  14. Occupational lung disease survey of respiratory physicians in Northern Ireland.

    McKeagney, T F P; Addley, K; Asanati, K

    2015-12-01

    Respiratory physicians are likely to encounter occupational lung disease (OLD) in their daily practice. To assess the profile of cases being encountered by general respiratory physicians in Northern Ireland (NI) and determine satisfaction with training, confidence in diagnosis and management of OLD. An online survey of all consultant respiratory physicians currently practising in NI. Questions assessed the numbers of new cases seen over the preceding year, case type, satisfaction with specialist registrar training in OLD and degree of confidence in the diagnosis and management of these conditions. Of the 40 consultants identified, the response rate was 80% (n = 32) with 94% of respondents (n = 30) indicating they had dealt with patients suspected of having occupation-related respiratory symptoms. The most commonly encountered OLDs were pleural plaques (91% of respondents), occupational asthma (88%), asbestosis (84%), non-asbestosis pulmonary fibrosis (76%), hypersensitivity pneumonitis (67%) and mesothelioma (66%). Just over one third of consultants (36%, n = 10) indicated a lack of confidence in diagnosis and management of OLD with almost half (48%) dissatisfied with OLD training as a registrar and a further 78% (n = 25) indicating they would value additional training in OLD as a consultant. The majority of respiratory consultants in NI encountered OLD in their day to day practice and half were dissatisfied with their specialist registrar training in OLD and express a lack of confidence in the diagnosis and management of these conditions. This highlights the need for additional training at both registrar and consultant level. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Human coronavirus and severe acute respiratory infection in Southern Brazil.

    Trombetta, Hygor; Faggion, Heloisa Z; Leotte, Jaqueline; Nogueira, Meri B; Vidal, Luine R R; Raboni, Sonia M

    2016-05-01

    Human coronaviruses (HCoVs) are an important cause of respiratory tract infection and are responsible for causing the common cold in the general population. Thus, adequate surveillance of HCoV is essential. This study aimed to analyze the impact of HCoV infections and their relation to severe acute respiratory infection (SARI) in a hospitalized population in Southern Brazil. A cross-sectional study was conducted at a tertiary care hospital, and assessed inpatients under investigation for SARI by the hospital epidemiology department, and all patients who had nasopharyngeal aspirates collected from January 2012 to December 2013 to detect respiratory viruses (RVs). Viral infection was detected by multiplex reverse transcriptase polymerase chain reaction (RT-PCR), with primers specific to the subtypes HCoV-229E/NL63 and OC43/HKU1. The overall positivity rate was 58.8% (444/755), and HCoVs were detected in 7.6% (n = 34) of positive samples. Children below two years of age were most frequently affected (62%). Comorbidities were more likely to be associated with HCoVs than with other RVs. Immunosuppression was an independent risk factor for HCoV infection (OR = 3.5, 95% CI 1.6-7.6). Dyspnea was less frequently associated with HCoV infection (p infected with HCoV (9%) died from respiratory infection. HCoVs are important respiratory pathogens, especially in hospitalized children under 2 years of age and in immunosuppressed patients. They may account for a small proportion of SARI diagnoses, increased need for mechanical ventilation, intensive care unit admission, and death.

  16. Quantitation of respiratory viruses in relation to clinical course in children with acute respiratory tract infections

    Jansen, Rogier R.; Schinkel, Janke; dek, Irene; Koekkoek, Sylvie M.; Visser, Caroline E.; de Jong, Menno D.; Molenkamp, Richard; Pajkrt, Dasja

    2010-01-01

    Quantitation of respiratory viruses by PCR could potentially aid in clinical interpretation of PCR results. We conducted a study in children admitted with acute respiratory tract infections to study correlations between the clinical course of illness and semiquantitative detection of 14 respiratory

  17. Interaction of metabolic and respiratory acidosis with α and β-adrenoceptor stimulation in rat myocardium.

    Biais, Matthieu; Jouffroy, Romain; Carillion, Aude; Feldman, Sarah; Jobart-Malfait, Aude; Riou, Bruno; Amour, Julien

    2012-12-01

    The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and β-adrenoceptor stimulations. The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and β-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, Prespiratory or metabolic acidosis. The inotropic response to β-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, Pacidosis. The lusitropic response to β-adrenergic stimulation was not modified by respiratory or metabolic acidosis. Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of β-adrenergic stimulation.

  18. Pandemic preparedness - Risk management and infection control for all respiratory infection outbreaks.

    Nori, Annapurna; Williams, Mary-Anne

    2009-11-01

    There has been substantial effort and activity in regards to pandemic planning, preparedness and response, mainly in the realm of public health. However, general practitioners and other primary care providers are important players in the health response to a pandemic. To discuss the importance of general practice preparedness for managing respiratory infection outbreaks and to provide a model for the general practice response. Pandemic planning and preparedness in general practice is ultimately a crucial risk management exercise, the cornerstone of which is sound infection control. As planning will be significantly aided by, and should extend to, other respiratory outbreaks, we propose a framework for managing outbreaks of respiratory infections with a focus on planned, practised and habitual infection control measures, and a stepwise response according to the extent and severity of the outbreak.

  19. DNA repair capacity in the rat respiratory tract

    Bond, J.A.; Gubin, J.M.; Johnson, N.F.

    1988-01-01

    A product of alkylating agents and DNA, O 6 -methylguanine, can mispair with thymine, resulting in initiation of a carcinogenic tissue response. O 6 -alkylguanine-DNA alkyltransferase (AGT) is an acceptor protein responsible for repairing O 6 -methylguanine. The purpose of our experiments was to characterize AGT activity in vitro in tissue and cell extracts of the respiratory tract, a target tissue for inhaled alkylating agents. Removal of [ 3 H]Methyl from O 6 -methylguanine was measured by high-pressure liquid chromatography after incubation of tissue and cell extracts with the [ 3 H]DNA. With the exception of tracheal and bronchial extracts, all tissues and cells analyzed contained AGT activity, which increased in proportion to the amount of protein added to reaction flasks. AGT activity in tracheal and bronchial extracts was only detected at the highest protein concentration used (1.5 mg protein/mL) and ranged from 10-15 fmole/mg protein. AGT activity in the respiratory tract was highest in the lung and a region of the nasal tissue (i.e., ethmoturbinates) and ranged from 45-75 fmole/mg protein. These data suggest that methylated DNA in specific regions of the rat respiratory tract should be readily repaired, albeit to different extents. (author)

  20. Respiratory muscle training in Duchenne muscular dystrophy.

    Rodillo, E; Noble-Jamieson, C M; Aber, V; Heckmatt, J Z; Muntoni, F; Dubowitz, V

    1989-01-01

    Twenty two boys with Duchenne muscular dystrophy were entered into a randomised double blind crossover trial to compare respiratory muscle training with a Triflow II inspirometer and 'placebo' training with a mini peak flow meter. Supine posture was associated with significantly impaired lung function, but respiratory muscle training showed no benefit.

  1. Housing and respiratory health at older ages.

    Webb, E; Blane, D; de Vries, Robert

    2013-03-01

    A large proportion of the population of England live in substandard housing. Previous research has suggested that poor-quality housing, particularly in terms of cold temperatures, mould, and damp, poses a health risk, particularly for older people. The present study aimed to examine the association between housing conditions and objectively measured respiratory health in a large general population sample of older people in England. Data on housing conditions, respiratory health and relevant covariates were obtained from the second wave of the English Longitudinal Study of Ageing. Multivariate regression methods were used to test the association between contemporary housing conditions and respiratory health while accounting for the potential effect of other factors; including social class, previous life-course housing conditions and childhood respiratory health. Older people who were in fuel poverty or who did not live in a home they owned had significantly worse respiratory health as measured by peak expiratory flow rates. After accounting for covariates, these factors had no effect on any other measures of respiratory health. Self-reported housing problems were not consistently associated with respiratory health. The housing conditions of older people in England, particularly those associated with fuel poverty and living in rented accommodation, may be harmful to some aspects of respiratory health. This has implications for upcoming UK government housing and energy policy decisions.

  2. Respiratory difficulties and breathing disorders in achondroplasia.

    Afsharpaiman, S; Saburi, A; Waters, Karen A

    2013-12-01

    Respiratory difficulties and breathing disorders in achondroplasia are thought to underlie the increased risk for sudden infant death and neuropsychological deficits seen in this condition. This review evaluates literature regarding respiratory dysfunctions and their sequelae in patients with achondroplasia. The limited number of prospective studies of respiratory disease in achondroplasia means that observational studies and case series provide a large proportion of the data regarding the spectrum of respiratory diseases in achondroplasia and their treatments. Amongst clinical respiratory problems described, snoring is the commonest observed abnormality, but the reported incidence of obstructive sleep apnoea (OSA) shows wide variance (10% to 75%). Reported treatments of OSA include adenotonsillectomy, the use of CPAP, and surgical improvement of the airway, including mid-face advancement. Otolaryngologic manifestations are also common. Respiratory failure due to small thoracic volumes is reported, but uncommon. Mortality rate at all ages was 2.27 (CI: 1.7-3.0) with age-specific mortality increased at all ages. Sudden death was most common in infants and children. Cardiovascular events are the main cause of mortality in adults. Despite earlier recognition and treatment of respiratory complications of achondroplasia, increased mortality rates and other complications remain high. Future and ongoing evaluation of the prevalence and impact of respiratory disorders, particularly OSA, in achondroplasia is recommended. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Nanotechnology: Advancing the translational respiratory research

    Dua, Kamal; Shukla, Shakti Dhar; de Jesus Andreoli Pinto, Terezinha; Hansbro, Philip Michael

    2017-01-01

    Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can he...

  4. Fabry disease, respiratory symptoms, and airway limitation

    Svensson, Camilla Kara; Feldt-Rasmussen, Ulla; Backer, Vibeke

    2015-01-01

    . The remaining 27 articles were relevant for this review. RESULTS: The current literature concerning lung manifestations describes various respiratory symptoms such as dyspnoea or shortness of breath, wheezing, and dry cough. These symptoms are often related to cardiac involvement in Fabry disease as respiratory...

  5. Respiratory bacterial infections in cystic fibrosis

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  6. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

    Kvisgaard, Lise Kirstine

    This PhD thesis presents the diversity of Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) circulating in the Danish pig population. PRRS is a disease in pigs caused by the PRRS virus resulting in reproductive failures in sows and gilts and respiratory diseases in pigs . Due to genetic...

  7. 29 CFR 1917.92 - Respiratory protection.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1917.92 Section 1917.92 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Personal Protection § 1917.92 Respiratory protection. (See § 1917.1(a)(2)(x...

  8. 29 CFR 1926.103 - Respiratory protection.

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...

  9. 29 CFR 1918.102 - Respiratory protection.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1918.102 Section 1918.102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Respiratory protection. (See § 1918.1(b)(8)). [65 FR 40946, June 30, 2000] ...

  10. Air pollution and respiratory illness

    Indra, G. [DIET, Uttamasolapuram, Salem (India)

    2005-07-01

    This presentation provides an overview of air pollution and impacts on public health. It provides a definition of pollution according to the Oxford English dictionary and categorizes the different types of pollution according to air, water, land and noise. It discusses air pollution and its pollutants (gaseous and particulate pollutants) as well as the diameter of the pollutant (dust, smoke, and gas). The paper also illustrates the formation of acid rain and discusses the amount of pollutants in the atmosphere per year. It presents occupational diseases, discusses radio active pollutants, respiratory illnesses as well as pollution prevention and control. The paper concluded that more research is needed to obtain information on ways to reduce the quantity of pollutants being discharged from special processes. 3 refs., 2 figs., 2 tabs.

  11. Perioperative modifications of respiratory function.

    Duggan, Michelle

    2012-01-31

    Postoperative pulmonary complications contribute considerably to morbidity and mortality, especially after major thoracic or abdominal surgery. Clinically relevant pulmonary complications include the exacerbation of underlying chronic lung disease, bronchospasm, atelectasis, pneumonia and respiratory failure with prolonged mechanical ventilation. Risk factors for postoperative pulmonary complications include patient-related risk factors (e.g., chronic obstructive pulmonary disease (COPD), tobacco smoking and increasing age) as well as procedure-related risk factors (e.g., site of surgery, duration of surgery and general vs. regional anaesthesia). Careful history taking and a thorough physical examination may be the most sensitive ways to identify at-risk patients. Pulmonary function tests are not suitable as a general screen to assess risk of postoperative pulmonary complications. Strategies to reduce the risk of postoperative pulmonary complications include smoking cessation, inspiratory muscle training, optimising nutritional status and intra-operative strategies. Postoperative care should include lung expansion manoeuvres and adequate pain control.

  12. The respiratory system in equations

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  13. The role of the local microbial ecosystem in respiratory health and disease.

    de Steenhuijsen Piters, Wouter A A; Sanders, Elisabeth A M; Bogaert, Debby

    2015-08-19

    Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Prevention of Nosocomial Respiratory Infections

    N. A. Karpun

    2007-01-01

    Full Text Available Objective: to evaluate the efficiency of an extended package of preventive measures on the incidence of nosocomial respiratory infections in surgical patients at an intensive care unit (ICU. Subjects and methods. The study included 809 patients aged 35 to 80 years. A study group comprised 494 patients in whom an extended package of preventive measures was implemented during 7 months (March-September. A control group consisted of 315 patients treated in 2004 in the same period of time (March-September. The groups were stratified by age, gender, underlying diseases, and APACHE-2 and SOFA scores. The extended package of anti-infectious measures involved a high air purification in ICUs («Flow-M» technology, routine use of ventilatory filters, closed aspiration systems with a built-in antibacterial filter under artificial ventilation for over 2 days. Results. The proposed technologies could reduce the frequency of tracheobronchitis and ventilator-associated pneumonias in the groups of patients at high risk for nosocomial infections substantially (by more than twice. Conclusion. The findings have led to the conclusion that the extended package of preventive measures is effective in preventing respiratory infections in ICU patients. Of special note is the proper prevention of upper airway contamination with pathogenic microorganisms, by employing the closed aspiration systems with a built-in antibacterial filter. The routine use of high-tech consumables in the intensive care of surgical patients causes a considerable decrease in the incidence of nosocomial pneumonia, ventilator-associated pneumonia, and purulent tracheobronchitis and a reduction in the number of microbiological studies. Key words: ventilator-associated pneumonia, prevention of nosocomial infections, closed aspiration system.

  15. Stem cells and respiratory diseases

    Soraia Carvalho Abreu

    2008-12-01

    Full Text Available Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

  16. [Clinical studies on flomoxef in respiratory tract infections].

    Kanegae, H; Yamada, H; Yamaguchi, T; Kuroki, S; Katoh, O

    1987-10-01

    Flomoxef (FMOX, 6315-S) is a new oxacephem with a broad spectrum of antimicrobial activity. We used FMOX for treatment of 13 patients with respiratory tract infections including 4 cases of pneumonia, 5 of lung abscess and 4 of exacerbation of the chronic airway diseases. FMOX showed excellent in vitro antimicrobial activities against clinical isolates including 4 strains of Streptococcus pneumoniae, 2 strains of Haemophilus influenzae and each one strain of Escherichia coli and Klebsiella pneumoniae. Clinical responses were excellent in 3 cases, good in 7 and fair or poor in 3. No side effect was observed, but abnormal laboratory findings caused by FMOX administration were found in 2 cases; hypertransaminasemia and eosinophilia. However, neither of them was severe. From the above results, it is considered that FMOX will be useful for treatment of patients with respiratory tract infections.

  17. [A study on flomoxef against respiratory infections in the aged].

    Tanimoto, H; Chonabayashi, N; Nakamori, Y; Nakatani, T; Yoshimura, K; Noguchi, M; Nakata, K

    1987-10-01

    Flomoxef (FMOX, 6315-S) was used in the treatment of 10 patients (male 8, female 2) with respiratory infections, and clinical responses and side effects of FMOX were evaluated. The mean age of the patients was 68.2 years, and the mean body weight was 45.8 kg; this background of the patients indicates that most of them were elderly, and light in body weight. FMOX was administrated by drip infusion in 1 g doses twice daily in all the cases. The mean duration of FMOX therapy was 14 days, and the mean total dose administered was 28 g. Efficacy rate was 80% in the 10 cases. Adverse reactions were not observed and no abnormalities in laboratory tests were detected. In conclusion, FMOX is an effective antibiotic in the treatment of aged patients with respiratory infections.

  18. Respiratory compensation to a primary metabolic alkalosis in humans.

    Feldman, Mark; Alvarez, Naiara M; Trevino, Michael; Weinstein, Gary L

    2012-11-01

    There is limited and disparate information about the extent of the respiratory compensation (hypoventilation) that occurs in response to a primary metabolic alkalosis in humans. Our aim was to examine the influence of the plasma bicarbonate concentration, the plasma base excess, and the arterial pH on the arterial carbon dioxide tension in 52 adult patients with primary metabolic alkalosis, mostly due to diuretic use or vomiting. Linear regression analysis was used to correlate degrees of alkalosis with arterial carbon dioxide tensions. In this alkalotic cohort, whose arterial plasma bicarbonate averaged 31.6 mEq/l, plasma base excess averaged 7.8 mEq/l, and pH averaged 7.48, both plasma bicarbonate and base excess correlated closely with arterial carbon dioxide tensions (r = 0.97 and 0.96, respectively; p respiratory compensation (hypoventilation) to primary metabolic alkalosis than has been reported in prior smaller studies.

  19. Respiratory neuroplasticity - Overview, significance and future directions.

    Fuller, David D; Mitchell, Gordon S

    2017-01-01

    Neuroplasticity is an important property of the neural system controlling breathing. However, our appreciation for its importance is still relatively new, and we have much to learn concerning different forms of plasticity, their underlying mechanisms, and their biological and clinical significance. In this brief review, we discuss several well-studied models of respiratory plasticity, including plasticity initiated by inactivity in the respiratory system, intermittent and sustained hypoxia, and traumatic injury to the spinal cord. Other aspects of respiratory plasticity are considered in other contributions to this special edition of Experimental Neurology on respiratory plasticity. Finally, we conclude with discussions concerning the biological and clinical significance of respiratory motor plasticity, and areas in need of future research effort. Copyright © 2016. Published by Elsevier Inc.

  20. The French Infectious Diseases Society's readiness and response to epidemic or biological risk-the current situation following the Middle East respiratory syndrome coronavirus and Ebola virus disease alerts.

    Coignard-Biehler, H; Rapp, C; Chapplain, J M; Hoen, B; Che, D; Berthelot, P; Cazenave-Roblot, F; Rabaud, C; Brouqui, P; Leport, C

    2018-03-01

    In 2012, the French Infectious Diseases Society (French acronym SPILF) initiated the "Coordination of epidemic and biological risk" (SPILF-COREB - Emergences [SCE]) group to support the readiness and response of healthcare workers (HCWs) to new alerts. To present the SCE group, its functioning, and the main support it provided for frontline HCWs. A multidisciplinary group of heads of infectious disease departments from reference hospitals was created to build a network of clinical expertise for care, training, and research in the field of epidemic and biological risk (EBR). The network developed a set of standardized operational procedures (SOPs) to guide interventions to manage EBR-suspect patients. A working group created the SOP aimed at frontline HCWs taking care of patients. Priority was given to the development of a generic procedure, which was then adapted according to the current alert. Five key steps were identified and hierarchized: detecting, protecting, caring for, alerting, and referring the EBR patient. The interaction between clinicians and those responsible for the protection of the community was crucial. The SOPs validated by the SPILF and its affiliates were disseminated to a wide range of key stakeholders through various media including workshops and the SPILF's website. SPILF can easily adapt and timely mobilize the EBR expertise in case of an alert. The present work suggests that sharing and discussing this experience, initiated at the European level, can generate a new collective expertise and needs to be further developed and strengthened. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Comparative Effectiveness of Proactive Tobacco Treatment among Smokers with and without Chronic Lower Respiratory Disease.

    Melzer, Anne C; Clothier, Barbara A; Japuntich, Sandra J; Noorbaloochi, Siamak; Hammett, Patrick; Burgess, Diana J; Joseph, Anne M; Fu, Steven S

    2018-03-01

    Adults with chronic lower respiratory disease differ in their barriers to smoking cessation but also suffer from tobacco-related health concerns, which may motivate quit attempts. Few studies have examined differences in tobacco treatment response between smokers with and without chronic lower respiratory disease. We examined the effectiveness of a proactive outreach program for cessation among smokers with and without chronic lower respiratory disease. Subgroup analysis of the Veterans Victory over Tobacco Study, a pragmatic randomized controlled trial that demonstrated the effectiveness of proactive outreach and the choice of tobacco treatments compared with usual care. Smokers identified via the electronic medical record were proactively offered phone-based counseling and care coordination to receive medication from their Veterans Affairs providers or in-person care. We compared the response among those with and without an International Classification of Diseases, 9th Revision diagnosis of a chronic lower respiratory disease (chronic obstructive pulmonary disease, chronic bronchitis, emphysema, asthma). We used stratification by propensity scores to adjust for imbalanced covariates between groups with and without chronic lower respiratory disease within each treatment arm, using complete case analysis accounting for the stratified sampling by site. The study participants were predominantly older, white, male smokers. Overall, 19.6% had chronic lower respiratory disease. A total of 3,307 had outcome data with the following assignments to the intervention: proactive care: n = 1,272 without chronic lower respiratory disease, n = 301 with chronic lower respiratory disease; usual care: n = 1,387 without chronic lower respiratory disease, n = 347 with chronic lower respiratory disease. A total of 1,888 had both complete baseline and outcome data and were included in the primary analysis. In unadjusted analyses (n = 3,307), among individuals with

  2. A cross-sectional study of lung function and respiratory symptoms among chemical workers producing diacetyl for food flavourings.

    van Rooy, F.G.; Smit, L.A.; Houba, R.; Zaat, V.A.; Rooijackers, J.M.; Heederik, D.J.J.

    2009-01-01

    OBJECTIVES: Four diacetyl workers were found to have bronchiolitis obliterans syndrome. Exposures, respiratory symptoms, lung function and exposure-response relationships were investigated. METHODS: 175 workers from a plant producing diacetyl between 1960 and 2003 were investigated. Exposure data

  3. Viral Etiologies of Acute Respiratory Infections among Hospitalized Vietnamese Children in Ho Chi Minh City, 2004-2008

    Anh, Ha Do Lien; van Doorn, H. Rogier; Nghiem, My Ngoc; Bryant, Juliet E.; Hoang, Thanh Hang Thi; Do, Quang Ha; Le van, Tan; Tran, Tan Thanh; Wills, Bridget; van Nguyen, Vinh Chau; Vo, Minh Hien; Vo, Cong Khanh; Nguyen, Minh Dung; Farrar, Jeremy; Tran, Tinh Hien; de Jong, Menno D.

    2011-01-01

    Background: The dominant viral etiologies responsible for acute respiratory infections (ARIs) are poorly understood, particularly among hospitalized children in resource-limited tropical countries where morbidity and mortality caused by ARIs are highest. Improved etiological insight is needed to

  4. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  5. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations.

    Mateika, Jason H; Syed, Ziauddin

    2013-09-15

    This review examines the role that respiratory plasticity has in the maintenance of breathing stability during sleep in individuals with sleep apnea. The initial portion of the review considers the manner in which repetitive breathing events may be initiated in individuals with sleep apnea. Thereafter, the role that two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of upper airway and respiratory muscle activity, might have in modifying breathing events in humans is examined. In this context, present knowledge regarding the initiation of respiratory plasticity in humans during wakefulness and sleep is addressed. Also, published findings which reveal that exposure to intermittent hypoxia promotes breathing instability, at least in part, because of progressive augmentation of the hypoxic ventilatory response and the absence of long-term facilitation, are considered. Next, future directions are presented and are focused on the manner in which forms of plasticity that stabilize breathing might be promoted while diminishing destabilizing forms, concurrently. These future directions will consider the potential role of circadian rhythms in the promotion of respiratory plasticity and the role of respiratory plasticity in enhancing established treatments for sleep apnea. Published by Elsevier B.V.

  6. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans; present knowledge and future investigations

    Mateika, Jason H.; Syed, Ziauddin

    2013-01-01

    This review examines the role that respiratory plasticity has in the maintenance of breathing stability during sleep in individuals with sleep apnea. The initial portion of the review considers the manner in which repetitive breathing events may be initiated in individuals with sleep apnea. Thereafter, the role that two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of upper airway and respiratory muscle activity, might have in modifying breathing events in humans is examined. In this context, present knowledge regarding the initiation of respiratory plasticity in humans during wakefulness and sleep is addressed. Also, published findings which reveal that exposure to intermittent hypoxia promotes breathing instability, at least in part, because of progressive augmentation of the hypoxic ventilatory response and the absence of long-term facilitation, are considered. Next, future directions are presented and are focused on the manner in which forms of plasticity that stabilize breathing might be promoted while diminishing destabilizing forms, concurrently. These future directions will consider the potential role of circadian rhythms in the promotion of respiratory plasticity and the role of respiratory plasticity in enhancing established treatments for sleep apnea. PMID:23587570

  7. Infectious respiratory disease outbreaks and pregnancy: occupational health and safety concerns of Canadian nurses.

    Phillips, Karen P; O'Sullivan, Tracey L; Dow, Darcie; Amaratunga, Carol A

    2011-04-01

    This paper is a report of a qualitative study of emergency and critical care nurses' perceptions of occupational response and preparedness during infectious respiratory disease outbreaks including severe acute respiratory syndrome (SARS) and influenza. Healthcare workers, predominantly female, face occupational and personal challenges in their roles as first responders/first receivers. Exposure to SARS or other respiratory pathogens during pregnancy represents additional occupational risk for healthcare workers. Perceptions of occupational reproductive risk during response to infectious respiratory disease outbreaks were assessed qualitatively by five focus groups comprised of 100 Canadian nurses conducted between 2005 and 2006. Occupational health and safety issues anticipated by Canadian nurses for future infectious respiratory disease outbreaks were grouped into four major themes: (1) apprehension about occupational risks to pregnant nurses; (2) unknown pregnancy risks of anti-infective therapy/prophylaxis; (3) occupational risk communication for pregnant nurses; and (4) human resource strategies required for pregnant nurses during outbreaks. The reproductive risk perceptions voiced by Canadian nurses generally were consistent with reported case reports of pregnant women infected with SARS or emerging influenza strains. Nurses' fears of fertility risks posed by exposure to infectious agents or anti-infective therapy and prophylaxis are not well supported by the literature, with the former not biologically plausible and the latter lacking sufficient data. Reproductive risk assessments should be performed for each infectious respiratory disease outbreak to provide female healthcare workers and in particular pregnant women with guidelines regarding infection control and use of anti-infective therapy and prophylaxis.

  8. Outcome of gastro-oesophageal reflux-related respiratory manifestations after laparoscopic fundoplication.

    Adaba, Franklin; Ang, Chin W; Perry, Anthony; Wadley, Martin S; Robertson, Charles S

    2014-01-01

    Patients with refractory respiratory symptoms related to gastro-oesophageal reflux disease (GORD) such as asthma and cough are being referred for laparoscopic fundoplication (LFP), as recommended by the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). However there are limited data regarding symptomatic response to fundoplication in this group of patients. A 7 year retrospective review was performed to study the efficacy of LFP in the treatment of patients with respiratory manifestations of GORD. Patients were followed up from 4 to 6 weeks (short-term) to 6-12 months (long-term) post-operatively. Of 208 patients who underwent LFP, 73 (35%) patients were eligible for inclusion into the study. 55 (75%) patients had improved respiratory symptoms at short-term follow-up. At long-term follow-up, 7 of these patients had recurrence of respiratory symptoms, while 4 patients had improvement not initially apparent. No significant predictive factor for the success or failure of surgery was identified. 190 (91%) of 208 patients had symptomatic improvement in GORD at short-term follow-up. LFP is effective with the response rates over 75% in the control of respiratory manifestation of GORD, compared to over 91% response rate in the control GOR symptoms alone. More research is needed to identify factors to aid patient selection to improve response rate. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  9. The capsaicin cough reflex in eczema patients with respiratory symptoms elicited by perfume.

    Elberling, Jesper; Dirksen, Asger; Johansen, Jeanne Duus; Mosbech, Holger

    2006-03-01

    Respiratory symptoms elicited by perfume are common in the population but have unclear pathophysiology. Increased capsaicin cough responsiveness has been associated with the symptoms, but it is unknown whether the site of the symptoms in the airways influences this association. The aim of this study was to investigate the association between the site of airway symptoms elicited by perfume and cough responsiveness to bronchial challenge with capsaicin. 21 eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case control study. The participants completed a symptom questionnaire and underwent a bronchial challenge with capsaicin. Lower, but not upper, respiratory symptoms elicited by perfume were associated with increased capsaicin cough responsiveness. Having severe symptoms to perfume (n=11) did not relate to the site of the symptoms in the airways and was not associated with increased capsaicin cough responsiveness. In conclusion, respiratory symptoms elicited by perfume may reflect local hyperreactivity related to defensive reflexes in the airways, and measurements of the capsaicin cough reflex are relevant when patients with lower respiratory symptoms related to environmental perfume exposures are investigated.

  10. Management of respiratory symptoms in ALS.

    Hardiman, Orla

    2012-02-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  11. Management of respiratory symptoms in ALS.

    Hardiman, Orla

    2011-03-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  12. SMART phones and the acute respiratory patient.

    Gleeson, L

    2012-05-01

    Definition of Respiratory Failure using PaO2 alone is confounded when patients are commenced on oxygen therapy prior to arterial blood gas (ABG) measurement. Furthermore, classification of Respiratory Failure as Type 1 or Type 2 using PaCO2 alone can give an inaccurate account of events as both types can co-exist. 100 consecutive presentations of acute respiratory distress were assessed initially using PaO2, and subsequently PaO2\\/FiO2 ratio, to diagnose Respiratory Failure. Respiratory Failure cases were classified as Type 1 or Type 2 initially using PaCO2, and subsequently alveolar-arterial (A-a) gradient. Any resultant change in management was documented. Of 100 presentations, an additional 16 cases were diagnosed as Respiratory Failure using PaO2\\/FiO2 ratio in place of PaO2 alone (p = 0.0338). Of 57 cases of Respiratory Failure, 22 cases classified as Type 2 using PaCO2 alone were reclassified as Type 1 using A-a gradient (p < 0.001). Of these 22 cases, management changed in 18.

  13. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  14. Identification of contact and respiratory sensitizers using flow cytometry

    Goutet, Michele; Pepin, Elsa; Langonne, Isabelle; Huguet, Nelly; Ban, Masarin

    2005-01-01

    Identification of the chemicals responsible for respiratory and contact allergies in the industrial area is an important occupational safety issue. This study was conducted in mice to determine whether flow cytometry is an appropriate method to analyze and differentiate the specific immune responses to the respiratory sensitizer trimellitic anhydride (TMA) and to the contact sensitizer dinitrochlorobenzene (DNCB) used at concentrations with comparable immunogenic potential. Mice were exposed twice on the flanks (days 0, 5) to 10% TMA or 1% DNCB and challenged three times on the ears (days 10, 11, 12) with 2.5% TMA or 0.25% DNCB. Flow cytometry analyses were conducted on draining lymph node cells harvested on days 13 and 18. Comparing TMA and DNCB immune responses on day 13, we found obvious differences that persisted for most of them on day 18. An increased proportion of IgE+ cells correlated to total serum IgE level and an enhancement of MHC II molecule expression were observed in the lymph node B lymphocytes from TMA-treated mice. The percentage of IL-4-producing CD4+ lymphocytes and the IL-4 receptor expression were clearly higher following TMA exposure. In contrast, higher proportions of IL-2-producing cells were detected in CD4+ and CD8+ cells from DNCB-treated mice. Both chemicals induced a significant increase in the percentage of IFN-γ-producing cells among CD8+ lymphocytes but to a greater proportion following TMA treatment. In conclusion, this study encourages the use of flow cytometry to discriminate between contact and respiratory sensitizers by identifying divergent expression of immune response parameters

  15. Respiratory Depression Caused by Heroin Use

    Kadir Hakan Cansiz

    2012-04-01

    Full Text Available Summary Heroin is a semisynthetic narcotic analgesic and heroin abuse is common due to its pleasure-inducing effect. For the last 30 years heroin abuse has become an important worldwide public health problem. Heroin can be administered in many different ways as preferred. Heroin affects many systems including respiratory system, cardiovascular system and particulary the central nervous system. Overdose use of heroin intravenously can be fatal due to respiratory depression. In this letter, we wanted to engage attention to respiratory depression caused by heroin abuse and potential benefits of using naloxone. [TAF Prev Med Bull 2012; 11(2.000: 248-250

  16. Evaluation and treatment of respiratory alkalosis.

    Palmer, Biff F

    2012-11-01

    Respiratory alkalosis is the most frequent acid-base disturbance encountered in clinical practice. This is particularly true in critically ill patients, for whom the degree of hypocapnia directly correlates with adverse outcomes. Although this acid-base disturbance often is considered benign, evidence suggests that the alkalemia of primary hypocapnia can cause clinically significant decreases in tissue oxygen delivery. Mild respiratory alkalosis often serves as a marker of an underlying disease and may not require therapeutic intervention. In contrast, severe respiratory alkalosis should be approached with a sense of urgency and be aggressively corrected. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. Chaotic dynamics of respiratory sounds

    Ahlstrom, C.; Johansson, A.; Hult, P.; Ask, P.

    2006-01-01

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D 2 ) and the Kaplan-Yorke dimension (D KY ) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data

  18. Chaotic dynamics of respiratory sounds

    Ahlstrom, C. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden) and Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)]. E-mail: christer@imt.liu.se; Johansson, A. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Hult, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden); Ask, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)

    2006-09-15

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D {sub 2}) and the Kaplan-Yorke dimension (D {sub KY}) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data.

  19. Metformin-associated respiratory alkalosis.

    Bryant, Sean M; Cumpston, Kirk; Lipsky, Martin S; Patel, Nirali; Leikin, Jerrold B

    2004-01-01

    We present an 84-year-old man with a history of chronic obstructive pulmonary disease, type 2 diabetes, hypertension, glaucoma, and bladder cancer who presented to the emergency department after the police found him disoriented and confused. Metformin therapy began 3 days before, and he denied any overdose or suicidal ideation. Other daily medications included glipizide, fluticasone, prednisone, aspirin, furosemide, insulin, and potassium supplements. In the emergency department, his vital signs were significant for hypertension (168/90), tachycardia (120 bpm), and Kussmaul respirations at 24 breaths per minute. Oxygen saturation was 99% on room air, and a fingerstick glucose was 307 mg/dL. He was disoriented to time and answered questions slowly. Metformin was discontinued, and by day 3, the patient's vital signs and laboratory test results normalized. He has been asymptomatic at subsequent follow-up visits. Metformin-associated lactic acidosis is a well-known phenomenon. Respiratory alkalosis may be an early adverse event induced by metformin prior to the development of lactic acidosis.

  20. Exhaled nitric oxide in diagnosis and management of respiratory diseases

    Abba Abdullah

    2009-01-01

    Full Text Available The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  1.  Methods of detection of selected respiratory viruses

    Ilona Stefańska

    2012-06-01

    Full Text Available  Respiratory viruses contribute to significant morbidity and mortality in healthy and immunocompromised individuals and are considered as a significant economic burden in the healthcare system. The similar clinical symptoms in the course of different viral and bacterial respiratory infections make the proper diagnosis difficult. An accurate and prompt diagnostics is crucial for infection control and patient management decisions, especially regarding the use of antibacterial or antiviral therapy and hospitalization. Moreover, the identification of the causative agent eliminates inappropriate use of antibiotics and may reduce the cost of healthcare.A wide variety of diagnostic procedures is applied for the detection of viral agents responsible for respiratory tract infections. For many years, the viral antigen detection and standard isolation technique in cell culture was the main method used in routine diagnostics. However, in recent years the nucleic acid amplification techniques have become widely used and have significantly improved the sensitivity of viral detection in clinical specimens. Molecular diagnostic assays have contributed to revealing high rates of co-infection (multiplex reactions and allow identification of agents that are difficult to culture.This paper discusses a number of technical aspects of the current most commonly used techniques, their general principles, main benefits and diagnostic value, but also some of their limitations.

  2. Respiratory Support for Pharmacologically Induced Hypoxia in Neonatal Calves

    C. G. Donnelly

    2016-01-01

    Full Text Available Practical methods to provide respiratory support to bovine neonates in a field setting are poorly characterised. This study evaluated the response of healthy neonatal calves with pharmacologically induced respiratory suppression to nasal oxygen insufflation and to continuous positive airway pressure (CPAP delivered via an off-the-shelf device. Ten calves were randomised to receive either nasal oxygen insufflation (Group 1, n=5 or CPAP (Group 2, n=5 as a first treatment after induction of respiratory depression by intravenous administration of xylazine, fentanyl, and diazepam. Calves received the alternate treatment after 10 minutes of breathing ambient air. Arterial blood gas samples were obtained prior to sedation, following sedation, following the first and second treatment, and after breathing ambient air before and after the second treatment. Oxygen insufflation significantly increased arterial oxygen partial pressure (PaO2 but was also associated with significant hypercapnia. When used as the first treatment, CPAP was associated with significantly decreased arterial partial pressure of carbon dioxide but did not increase PaO2. These results suggest that the use of CPAP may represent a practical method for correction of hypercapnia associated with inadequate ventilation in a field setting, and further research is required to characterise the use of CPAP with increased inspired oxygen concentrations.

  3. Respiratory repercussions of gastroesophageal reflux and Cine-esophagogastroscintigraphy

    Guillemeteau, C.; Saudubray, F. (Hopital des Enfants, 33 - Bordeaux (France)); Guillet, J. (Hopital Pellegrin, 33 - Bordeaux (France))

    1985-04-01

    Asthma and recurrent bronchopneumopathies in children are often associated with gastroesophageal reflux. Cine-esogastroscintigraphy is proposed for demonstrating reflux and establishing its direct or indirect responsibility in respiratory disease. 133 patients aged 5 months to 16 years were studied. Reflux was found in 65.5% of cases, either severe (44.4% of cases) or minor (21.1%). Episodes of reflux produced respiratory manifestations in 7% of patients. Inhalation of refluxed material was proved in 3% by demonstration of pulmonary contamination. Sensitivity of cine-esophagogastroscintigraphy is comparable to that of esophageal pH measurement for detection of reflux. It does not require positioning of a probe in the esophageal lumen. It provides quantitative parameters on esophageal transit, reflux and gastric voiding, and demonstrates pulmonary contamination. It is easy to perform and can be readily included in an outpatient clinic workup. Its sensitivity and reliability make it a useful tool for evaluation of therapeutic efficiency. The interlocking of various physiopathologic factors contributes to the polymorphism of respiratory manifestations of reflux.

  4. Respiratory repercussions of gastroesophageal reflux and cine-esophagogastroscintigraphy

    Guillemeteau, C.; Saudubray, F. (Hopital des Enfants, 33 - Bordeaux (France)); Guillet, J. (Hopital Pellegrin, 33 - Bordeaux (France))

    1984-10-01

    Asthma and recurrent bronchopneumopathies in children are often associated with gastroesophageal reflux. Cine-esophagogastroscintigraphy is proposed for demonstrating reflux and establishing its direct or indirect responsibility in respiratory disease. 133 patients aged 5 months to 16 years were studied. Reflux was found in 65.5% of cases, either severe (44.4% of cases) or minor (21.1%). Episodes of reflux produced respiratory manifestations in 7% of patients. Inhalation of refluxed material was proved in 3% by demonstration of pulmonary contamination. Sensitivity of cine-esophagogastroscintigraphy is comparable to that of esophageal pH measurement for detection of reflux. It does not require positioning of a probe in the esophageal lumen. It provides quantitative parameters on esophageal transit, reflux and gastric voiding, and demonstrates pulmonary contamination. It is easy to perform and can be readily included in an outpatient clinic workup. Its sensitivity and reliability make it a useful tool for evaluation of therapeutic efficiency. The interlocking of various physiopathologic factors contributes to the polymorphism of respiratory manifestations of reflux.

  5. Respiratory repercussions of gastroesophageal reflux and cine-esophagogastroscintigraphy

    Guillemeteau, C.; Saudubray, F.; Guillet, J.

    1984-01-01

    Asthma and recurrent bronchopneumopathies in children are often associated with gastroesophageal reflux. Cine-esogastroscintigraphy is proposed for demonstrating reflux and establishing its direct or indirect responsibility in respiratory disease. 133 patients aged 5 months to 16 years were studied. Reflux was found in 65.5% of cases, either severe (44.4% of cases) or minor (21.1%). Episodes of reflux produced respiratory manifestations in 7% of patients. Inhalation of refluxed material was proved in 3% by demonstration of pulmonary contamination. Sensitivity of cine-esophagogastroscintigraphy is comparable to that of esophageal pH measurement for detection of reflux. It does not require positioning of a probe in the esophageal lumen. It provides quantitative parameters on esophageal transit, reflux and gastric voiding, and demonstrates pulmonary contamination. It is easy to perform and can be readily included in an outpatient clinic workup. Its sensitivity and reliability make it a useful tool for evaluation of therapeutic efficiency. The interlocking of various physiopathologic factors contributes to the polymorphism of respiratory manifestations of reflux [fr

  6. Respiratory repercussions of gastroesophageal reflux and cine-esophagogastroscintigraphy

    Guillemeteau, C.; Saudubray, F.; Guillet, J.

    1985-01-01

    Asthma and recurrent bronchopneumopathies in children are often associated with gastroesophageal reflux. Cine-esogastroscintigraphy is proposed for demonstrating reflux and establishing its direct or indirect responsibility in respiratory disease. 133 patients aged 5 months to 16 years were studied. Reflux was found in 65.5% of cases, either severe (44.4% of cases) or minor (21.1%). Episodes of reflux produced respiratory manifestations in 7% of patients. Inhalation of refluxed material was proved in 3% by demonstration of pulmonary contamination. Sensitivity of cine-esophagogastroscintigraphy is comparable to that of esophageal pH measurement for detection of reflux. It does not require positioning of a probe in the esophageal lumen. It provides quantitative parameters on esophageal transit, reflux and gastric voiding, and demonstrates pulmonary contamination. It is easy to perform and can be readily included in an outpatient clinic workup. Its sensitivity and reliability make it a useful tool for evaluation of therapeutic efficiency. The interlocking of various physiopathologic factors contributes to the polymorphism of respiratory manifestations of reflux [fr

  7. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  8. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging

    Liu Chi; Pierce II, Larry A; Alessio, Adam M; Kinahan, Paul E

    2009-01-01

    is highly dependent upon motion amplitude, lesion location and size, attenuation map and respiratory pattern. To overcome the motion effect, motion compensation techniques may be necessary in clinical practice to improve the tumor quantification for determining the response to therapy or for radiation treatment planning.

  9. Effect of transoral tracheal wash on respiratory mechanics in dogs with respiratory disease.

    Vaught, Meghan E; Rozanski, Elizabeth A; deLaforcade, Armelle M

    2018-01-01

    The purpose of this study was to determine the impact of a transoral tracheal wash (TOTW) on respiratory mechanics in dogs and to describe the use of a critical care ventilator (CCV) to determine respiratory mechanics. Fourteen client-owned dogs with respiratory diseases were enrolled. Respiratory mechanics, including static compliance (C stat ) and static resistance (R stat ), were determined before and after TOTW. Pre- and post-wash results were compared, with a P -value of mechanics, as observed by a reduction in C stat , presumably due to airway flooding and collapse. While no long-lasting effects were noted in these clinical patients, this effect should be considered when performing TOTW on dogs with respiratory diseases. Respiratory mechanics testing using a CCV was feasible and may be a useful clinical testing approach.

  10. Successful Treatment of Fibrosing Organising Pneumonia Causing Respiratory Failure with Mycophenolic Acid.

    Paul, Christina; Lin-Shaw, Ammy; Joseph, Mariamma; Kwan, Keith; Sergiacomi, Gianluigi; Mura, Marco

    2016-01-01

    Organising pneumonia (OP) is usually promptly responsive to corticosteroid treatment. We describe a series of 3 cases of severe, progressive, biopsy-proven fibrosing OP causing respiratory failure. All cases presented with peribronchial and subpleural consolidations, had a fibro-inflammatory infiltrative component in the alveolar septa, and only had a partial and unsatisfactory response to corticosteroids. However, they responded to mycophenolic acid (MPA) treatment with resolution of respiratory failure as well as clinical and functional improvement. MPA as an additional treatment option for aggressive forms of fibrosing OP and interstitial lung disease needs to be further explored. © 2016 S. Karger AG, Basel.

  11. The pragmatics of feeding the pediatric patient with acute respiratory distress syndrome.

    Verger, Judy T; Bradshaw, Darla J; Henry, Elizabeth; Roberts, Kathryn E

    2004-09-01

    Acute respiratory distress syndrome (ARDS) represents the ultimate pulmonary response to a wide range of injuries, from septicemia to trauma. Optimal nutrition is vital to enhancing oxygen delivery, supporting adequate cardiac contractility and respiratory musculature, eliminating fluid and electrolyte imbalances, and supporting the proinflammatory response. Research is providing a better understanding of nutrients that specifically address the complex physiologic changes in ARDS. This article highlights the pathophysiology of ARDS as it relates to nutrition, relevant nutritional assessment, and important enteral and parenteral considerations for the pediatric patient who has ARDS.

  12. Interferon therapy of acute respiratory viral infections in children

    A.E. Abaturov

    2017-04-01

    within the age limit and corresponded to the temperature response. Analyzing the dynamics of clinical symptoms of acute respiratory viral infection in both groups, it should be noted that there was a persistent tendency to lower body temperature in patients, both in the main and control groups. However, in the group of patients receiving Laferobionum®, the decrease in the temperature curve occurred faster, its normalization was noted already on the 4th day of therapy in 100 % of patients, whereas in the control group on the 4th day of the disease the body temperature remained subfebrile in 12 (28.6 %, on the 5th day — in 2 (4.8 % children. Complete blood count in children of the main and control groups at the beginning of the disease showed leukopenia of varying severity, relative lymphocytosis, and accelerated erythrocyte sedimentation rate (ESR. On the 5th day of therapy in patients of the main group, the number of leukocytes was normalized, the relative lymphocytosis persisted against the background of a decrease in ESR. While in the control group, the number of leukocytes in peripheral blood remained lower with an elevated level of ESR. During the whole period of observation, the presence and nature of possible complications of acute respiratory viral infection was assessed. The total duration of the observation period was 14 days. During the observation period, no complications were detected in any of the patients in the main or control groups. During the time of the clinical trial, no adverse reactions were recorded that could be associated with the administration of Laferobionum®. There were no cases of exacerbation of existing chronic diseases in the children of the main group, while 1 (2.4 % person from the control group had exacerbation of chronic tonsillitis. Evaluation of the effectiveness of therapy with the drug was carried out on the 5th day of treatment. Since one of the effectiveness criteria was the absence of clinical signs of the disease at the

  13. Effects of global warming on respiratory diseases

    Abe Olugbenga

    and tuberculosis), parasitic lung diseases, chronic obstructive pulmonary disease ... Methods: A literature search on global warming and respiratory diseases was carried out through the internet .... (COPD) The main factor to consider here is.

  14. Respiratory muscle training for multiple sclerosis

    Rietberg, Marc B.; Veerbeek, Janne M.; Gosselink, Rik; Kwakkel, Gert; van Wegen, Erwin E.H.

    2017-01-01

    Background: Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting approximately 2.5 million people worldwide. People with MS may experience limitations in muscular strength and endurance - including the respiratory muscles, affecting functional performance and

  15. Severe acute respiratory syndrome: lessons and uncertainties.

    Kullberg, B.J.; Voss, A.

    2003-01-01

    The outbreak of severe acute respiratory syndrome (SARS) has produced scientific and epidemiological discoveries with unprecedented speed, and this information has been spread instantaneously to the global health community through the internet. Within a few weeks, the coronavirus associated with

  16. Respiratory function in facioscapulohumeral muscular dystrophy 1

    Wohlgemuth, M.; Horlings, G.C.; Kooi, E.L. van der; Gilhuis, H.J.; Hendriks, J.C.M.; Maarel, S.M. van der; Engelen, B.G.M. van; Heijdra, Y.F.; Padberg, G.W.A.M.

    2017-01-01

    To test the hypothesis that wheelchair dependency and (kypho-)scoliosis are risk factors for developing respiratory insufficiency in facioscapulohumeral muscular dystrophy, we examined 81 patients with facioscapulohumeral muscular dystrophy 1 of varying degrees of severity ranging from ambulatory

  17. Investigations of respiratory control systems simulation

    Gallagher, R. R.

    1973-01-01

    The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.

  18. Automated respiratory support in newborn infants.

    Claure, Nelson; Bancalari, Eduardo

    2009-02-01

    A considerable proportion of premature infants requires mechanical ventilatory support and supplemental oxygen. Due to their immaturity, exposure to these forms of respiratory support contributes to the development of lung injury, oxidative stress and abnormal retinal development. These conditions are associated with poor long-term respiratory and neurological outcome. Mechanically ventilated preterm infants present with frequent fluctuations in ventilation and gas exchange. Currently available ventilatory modes and manual adjustment to the ventilator or supplemental oxygen cannot effectively adapt to these recurrent fluctuations. Moreover, the respiratory support often exceeds the infant's real needs. Techniques that adapt the mechanical ventilatory support and supplemental oxygen to the changing needs of preterm infants are being developed in order to improve stability of gas exchange, to minimise respiratory support and to reduce personnel workload. This article describes the preliminary evidence on the application of these new techniques in preterm infants and animal models.

  19. Respiratory Disorders Among Workers in Slaughterhouses

    Abbasali Kasaeinasab

    2017-03-01

    Conclusion: The prevalence of respiratory disorders was significantly higher among workers in slaughterhouses. Thus, the significant reduction in the percentage predicted lung function among workers in slaughterhouses might be associated with exposure to bioaerosols in their work environment.

  20. CAUSES OF RESPIRATORY DISTRESS IN CHILDREN

    M M Karambin

    2008-11-01

    Full Text Available "nThere is a lack of large, prospective epidemiologic studies concerning acute lung injury (ALI and acute respiratory distress syndrome (ARDS in pediatric population. To determine the different causes of respiratory distress in children, we prepared a retrospective study and included the whole 567 children with respiratory distress referred to 17-Shahrivar Hospital, Rasht, Guilan. Using their medical files, data including age, sex, and causes of respiratory distress were collected. SPSS 13.0 (statistical software applied for statistical analysis. Pneumonia, asthma, and croup were the major causes of ARDS in children with a rate of 38.4, 19.04, and 16.5 percent, respectively. It seems that infectious factors are at the top of the list of ARDS causing factors which can be helpful to approach and manage such patients. We suggest vaccinating these at risk groups against common infectious factors such as H. Influenza and RSV which can cause either pneumonia or inducing asthma.