WorldWideScience

Sample records for respirable dust concentration

  1. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  2. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  3. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.

    Science.gov (United States)

    Halterman, Andrew; Sousan, Sinan; Peters, Thomas M

    2017-12-15

    In 2016, the Mine Safety and Health Administration required the use of continuous monitors to measure respirable dust in mines and better protect miner health. The Personal Dust Monitor, PDM3700, has met stringent performance criteria for this purpose. In a laboratory study, respirable mass concentrations measured with the PDM3700 and a photometer (personal DataRam, pDR-1500) were compared to those measured gravimetrically for five aerosols of varying refractive index and density (diesel exhaust fume, welding fume, coal dust, Arizona road dust (ARD), and salt [NaCl] aerosol) at target concentrations of 0.38, 0.75, and 1.5 mg m-3. For all aerosols except coal dust, strong, near-one-to-one, linear relationships were observed between mass concentrations measured with the PDM3700 and gravimetrically (diesel fume, slope = 0.99, R2 = 0.99; ARD, slope = 0.98, R2 = 0.99; and NaCl, slope = 0.95, R2 = 0.99). The slope deviated substantially from unity for coal dust (slope = 0.55; R2 = 0.99). Linear relationships were also observed between mass concentrations measured with the pDR-1500 and gravimetrically, but one-to-one behavior was not exhibited (diesel fume, slope = 0.23, R2 = 0.76; coal dust, slope = 0.54, R2 = 0.99; ARD, slope = 0.61, R2 = 0.99; NaCl, slope = 1.14, R2 = 0.98). Unlike the pDR-1500, mass concentrations measured with the PDM3700 appear independent of refractive index and density, suggesting that it could have applications in a variety of occupational settings. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Concentrations and size distribution of inhalable and respirable dust among sugar industry workers: a pilot study in Khon Kaen, Thailand.

    Science.gov (United States)

    Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven

    2011-11-01

    There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.

  5. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  6. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  7. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  8. 30 CFR 71.100 - Respirable dust standard.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  9. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  10. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  11. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  13. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  14. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  15. 30 CFR 71.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... during each shift to which each miner is exposed at or below a concentration of respirable dust computed... per cubic meter of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations...

  16. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 70.206 (Approved sampling devices; equivalent concentrations), computed by...

  17. Respirable dust meter locates super polluters in traffic

    NARCIS (Netherlands)

    Schmidt-Ott's, A.; Kurniawan, A.; Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows

  18. Level and distribution of employee exposures to total and respirable wood dust in two Canadian sawmills.

    Science.gov (United States)

    Teschke, K; Hertzman, C; Morrison, B

    1994-03-01

    Personal respirable (N = 230) and total (N = 237) dust measurements were made in two coastal British Columbia sawmills using a sampling strategy that randomly selected workers from all jobs in the mills over two seasons. Information about job title, department, season, weather conditions, location of the job relative to wood-cutting machines, and control measures also was collected at the time of sampling. Only 16 respirable wood dust samples were above the detection limit of 0.08 mg/m3; all 16 had levels industry, but most sawmill investigations report mean wood dust concentrations lower than those measured in the furniture and cabinetmaking industries, where concerns about wood dust exposures initially were raised.

  19. A Standard Characterization Methodology for Respirable Coal Mine Dust Using SEM-EDX

    Directory of Open Access Journals (Sweden)

    Rachel Sellaro

    2015-12-01

    Full Text Available A key consideration for responsible development of mineral and energy resources is the well-being of workers. Respirable dust in mining environments represents a serious concern for occupational health. In particular, coal miners can be exposed to a variety of dust characteristics depending on their work activities, and some exposures may pose risk for lung diseases like CWP and silicosis. As underscored by common regulatory frameworks, respirable dust exposures are generally characterized on the basis of total mass concentration, and also the silica mass fraction. However, relatively little emphasis has been placed on other dust characteristics that may be important in terms of identifying health risks. Comprehensive particle-level analysis to estimate chemistry, size, and shape distributions of particles is possible. This paper describes a standard methodology for characterization of respirable coal mine dust using scanning electron microscopy (SEM with energy dispersive X-ray (EDX. Preliminary verification of the method is shown based several dust samples collected from an underground mine in Central Appalachia.

  20. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... industries, such as mining, by reducing workplace deaths and improving the health of coal miners. This..., enhanced enforcement, collaborative outreach, and education and training. The initiative will reduce, and... reducing the respirable coal mine dust levels, miners continue to develop black lung. Based on recent data...

  1. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Science.gov (United States)

    2010-07-01

    ... District Manager and posting. 71.301 Section 71.301 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... plan; approval by District Manager and posting. (a) The District Manager will approve respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans, the District Manager...

  2. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  3. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  4. Estimation of respirable dust exposure among coal miners in South Africa.

    Science.gov (United States)

    Naidoo, Rajen; Seixas, Noah; Robins, Thomas

    2006-06-01

    The use of retrospective occupational hygiene data for epidemiologic studies is useful in determining exposure-outcome relationships, but the potential for exposure misclassification is high. Although dust sampling in the South African coal industry has been a legal requirement for several decades, these historical data are not readily adequate for estimating past exposures. This study describes the respirable coal mine dust levels in three South African coal mines over time. Each of the participating mining operations had well-documented dust sampling information that was used to describe historical trends in dust exposure. Investigator-collected personal dust samples were taken using standardized techniques from the face, backbye (underground jobs not at the coal face), and surface from 50 miners at each mine, repeated over three sampling cycles. Job histories and exposure information was obtained from a sample of 684 current miners and 188 ex-miners. Linear models were developed to estimate the exposure levels associated with work in each mine, exposure zone, and over time using a combination of operator-collected historical data and investigator-collected samples. The estimated levels were then combined with work history information to calculate cumulative exposure metrics for the miner cohort. The mean historical and investigator-collected respirable dust levels were within international norms and South African standards. Silica content of the dust samples was also below the 5% regulatory action level. Mean respirable dust concentrations at the face, based on investigator-collected samples, were 0.9 mg/m(3), 1.3 mg/m(3), and 1.9 mg/m(3) at Mines 1, 2, and 3, respectively. The operator-collected samples showed considerable variability across exposure zones, mines, and time, with the annual means at the face ranging from 0.4 mg/m(3) to 2.9 mg/m(3). Statistically significant findings were found between operator- and investigator-collected dust samples. Model

  5. Measurement of Lung Cancer Tumor Markers in a Glass Wool Company Workers Exposed to Respirable Synthetic Vitreous Fiber and Dust

    Directory of Open Access Journals (Sweden)

    Shabnam Abtahi

    2018-01-01

    Full Text Available Background: Occupational exposures to respirable synthetic vitreous fiber (SVF and dust are associated with many lung diseases including lung cancer. Low-dose computed tomography is used for screening patients who are highly suspicious of having lung carcinoma. However, it seems not to be cost-effective. Serum biomarkers could be a useful tool for the surveillance of occupational exposure, by providing the possibility of diagnosing lung cancer in its early stages. Objective: To determine if serum carcinoembryonic antigen (CEA and cytokeratin fragment (CYFRA 21-1 levels in workers exposed more than normal population to respirable SVF and dust may be used as indicators of progression towards lung cancer. Methods: An analytic cross-sectional study, including 145 personnel of a glass wool company, along with 25 age-matched healthy individuals, was conducted to investigate the relationship between occupational exposure to respirable SVFs and dust and serum levels of two lung/pleura serum tumor markers, CEA and CYFRA 21-1, measured by ELISA. Results: Individuals exposed to higher than the recommended levels of respirable SVF had higher serum concentrations of CEA and CYFRA 21-1, compared to controls (p=0.008 and 0.040, respectively, as well as in comparison to those exposed to lower than recommended OSHA levels (p=0.046 and 0.033, respectively. Workers with >9 years work experience, had significantly (p=0.045 higher levels of serum CYFRA 21-1 than those with ≤9 years of experience. Conclusion: It seems that working for >9 years in sites with detectable levels of respirable SVF and dust would increase the levels of known lung cancer serum tumor markers. Transferring these workers to sites with respirable SVF concentrations lower than the limit of detection in the air is recommended.

  6. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips, H

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... Related Projects: Health 607, Sim 02-06-03 Category: Occupational Health Applied Research Occupational Hygiene Summary Project SIM020604 was formulated to determine the Inherent Respirable Dust Generation Potential (IRDGP) of various South...

  7. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air

  8. 77 FR 38323 - Proposed Extension of Existing Information Collection; Respirable Coal Mine Dust Sampling

    Science.gov (United States)

    2012-06-27

    ... Information Collection; Respirable Coal Mine Dust Sampling AGENCY: Mine Safety and Health Administration... Sampling'' to more accurately reflect the type of information that is collected. Chronic exposure to... dust levels since 1970 and, consequently, the prevalence rate of black lung among coal miners, severe...

  9. Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations.

    Science.gov (United States)

    Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels K; Lawson, Joshua; Willson, Philip; Senthilselvan, Ambikaipakan; Marciniuk, Darcy; Classen, Henry L; Crowe, Trever; Just, Natasha; Schneberger, David; Dosman, James A

    2010-10-01

    Individuals engaged in work in intensive animal houses experience some of the highest rates of occupationally related respiratory symptoms. Organic dust and in particular endotoxin has been most closely associated with respiratory symptoms and lung function changes in workers. It has previously been shown that for intensive poultry operations, type of poultry housing [cage-housed (CH) versus floor-housed (FH)] can influence the levels of environmental contaminants. The goal of the study was to determine the differences in endotoxin and dust levels at different size fractions between CH and FH poultry operations. Fifteen CH and 15 FH poultry operations were sampled for stationary measurements (area) of dust and associated endotoxin. Fractioned samples were collected utilizing Marple cascade impactors. Gravimetric and endotoxin analysis were conducted on each of the filters. When assessed by individual Marple stage, there was significantly greater airborne endotoxin concentration (endotoxin units per cubic meter) in the size fraction >9.8 μm for the FH operations whereas at the size fraction 1.6-3.5 μm, the CH operations had significantly greater airborne endotoxin concentration than the FH operations. Endotoxin concentration in the dust mass (endotoxin units per milligram) was significantly greater in the CH operations as compared to the FH operations for all size fractions >1.6 μm. As such, endotoxin in the respirable fraction accounted for 24% of the total endotoxin in the CH operations whereas it accounted for only 11% in the FH operations. There was significantly more dust in all size fractions in the FH operations as compared to the CH poultry operations. There is more endotoxin in the presence of significantly lower dust levels in the respirable particle size fractions in CH poultry operations as compared to the FH poultry operations. This difference in respirable endotoxin may be important in relation to the differential respiratory response experienced by

  10. Building an industry-wide occupational exposure database for respirable mineral dust - experiences from the IMA dust monitoring programme

    International Nuclear Information System (INIS)

    Houba, Remko; Jongen, Richard; Vlaanderen, Jelle; Kromhout, Hans

    2009-01-01

    Building an industry-wide database with exposure measurements of respirable mineral dust is a challenging operation. The Industrial Minerals Association (IMA-Europe) took the initiative to create an exposure database filled with data from a prospective and ongoing dust monitoring programme that was launched in 2000. More than 20 industrial mineral companies have been collecting exposure data following a common protocol since then. Recently in 2007 ArboUnie and IRAS evaluated the quality of the collected exposure data for data collected up to winter 2005/2006. The data evaluated was collected in 11 sampling campaigns by 24 companies at 84 different worksites and considered about 8,500 respirable dust measurements and 7,500 respirable crystalline silica. In the quality assurance exercise four criteria were used to evaluate the existing measurement data: personal exposure measurements, unique worker identity, sampling duration not longer than one shift and availability of a limit of detection. Review of existing exposure data in the IMA dust monitoring programme database showed that 58% of collected respirable dust measurements and 62% of collected respirable quartz could be regarded as 'good quality data' meeting the four criteria mentioned above. Only one third of the measurement data included repeated measurements (within a sampling campaign) that would allow advanced statistical analysis incorporating estimates of within- and between-worker variability in exposure to respirable mineral dust. This data came from 7 companies comprising measurements from 23 sites. Problematic data was collected in some specific countries and to a large extent this was due to local practices and legislation (e.g. allowing 40-h time weighted averages). It was concluded that the potential of this unique industry-wide exposure database is very high, but that considerable improvements can be made. At the end of 2006 relatively small but essential changes were made in the dust monitoring

  11. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  12. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  13. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh

    2010-12-01

    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  14. Electronic design of air dust concentration gauge

    International Nuclear Information System (INIS)

    Machaj, B.; Strzalkowski, J.; Krawczynska, B.

    1993-01-01

    A new version of isotope dust concentration gauge for monitoring airborne dust pollution of air employs a ready made personal computer as the control and processing unit in the gauge instead of specialized electronics. That solution of the gauge reduces the needed specialized electronics to a simple computer interface coupling the computer to the measuring head. This also reduced electronics of the measuring head itself, i.e. GM detector circuit, power supplies and electronic circuits to switch on/off driving motors. The functioning and operation of the gauge is controlled by the computer program that can be easily modified if needed. The computer program for the gauge enables automatic measurements of dust concentration. Up to fifty measuring cycles can be easily programmed for a day. The results of measurements are presented in the form of data collection, diagram of dust concentration distribution during one day, diagram of dust distribution during 30 successive days or diagram of average dust concentration distribution during a day which may be computed by combining data of the selected number of measurements. Recalibration of the gauge and checking up of the gauge are also carried out under the program control. (author). 6 refs, 9 figs

  15. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.

    Science.gov (United States)

    Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand

    2016-05-01

    The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the

  16. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

  17. Filter penetration and breathing resistance evaluation of respirators and dust masks.

    Science.gov (United States)

    Ramirez, Joel; O'Shaughnessy, Patrick

    2017-02-01

    The primary objective of this study was to compare the filter performance of a representative selection of uncertified dust masks relative to the filter performance of a set of NIOSH-approved N95 filtering face-piece respirators (FFRs). Five different models of commercially available dust masks were selected for this study. Filter penetration of new dust masks was evaluated against a sodium chloride aerosol. Breathing resistance (BR) of new dust masks and FFRs was then measured for 120 min while challenging the dust masks and FFRs with Arizona road dust (ARD) at 25°C and 30% relative humidity. Results demonstrated that a wide range of maximum filter penetration was observed among the dust masks tested in this study (3-75% at the most penetrating particle size (p masks did not vary greatly (8-13 mm H 2 O) but were significantly different (p mask. Microscopic analysis of the external layer of each dust mask and FFR suggests that different collection media in the external layer influences the development of the dust layer and therefore affects the increase in BR differently between the tested models. Two of the dust masks had penetration values masks, those with penetration > 15%, had quality factors ranging between 0.04-0.15 primarily because their initial BR remained relatively high. These results indicate that some dust masks analysed during this research did not have an expected very low BR to compensate for their high penetration.

  18. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Science.gov (United States)

    2010-07-01

    ... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.209 Respirable dust samples; transmission by operator. (a) The operator shall transmit within 24 hours after the end of the sampling shift all samples...

  19. 30 CFR 90.210 - Respirable dust samples; report to operator.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.210 Respirable dust samples; report to operator. (a) The Secretary shall... for voiding any samples; and, (7) The Social Security Number of the part 90 miner. (b) Upon receipt...

  20. Assessment of respirable dust and its free silica contents in different Indian coalmines.

    Science.gov (United States)

    Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2005-04-01

    Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.

  1. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  2. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  3. 30 CFR 70.100 - Respirable dust standards.

    Science.gov (United States)

    2010-07-01

    ... mine atmosphere during each shift to which each miner in the active workings of each mine is exposed at... sampling device and in terms of an equivalent concentration determined in accordance with § 70.206 (Approved sampling devices; equivalent concentrations). (b) Each operator shall continuously maintain the...

  4. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  5. The cost of respirable coal mine dust: an analysis based on new black lung claims

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.; Lichtman, K. [US Bureau of Mines, Pittsburgh, PA (United States). Dept. of the Interior

    1997-12-01

    The article provides summation of the monetary costs of new compensation claims associated with levels of unmitigated respirable coal mine dust and the resultant lung disease known as black lung and compares these compensation costs to the cost of dust control technology research by the US Bureau of Mines. It presents an analysis of these expenditures and projects these costs over the period from 1991 to 2010, based on projected future new claims which are assumed to be approved for federal and state benefit payment. Since current and future dust control research efforts cannot change past claim histories, a valid comparison of future research spending with other incurred costs must examine only the cost of future new claims. The bias of old claim costs was eliminated in this analysis by examining only claims since 1980. The results estimate that for an expected 339 new approved claims annually from 1991 to 2010, the Federal Trust Fund costs will be 985 million dollars. During this same period, state black lung compensation is estimated to be 18.2 billion dollars. The Bureau of Mines dust control research expenditures are estimated as 0.44% of the projected future black lung-related costs. 9 refs., 4 figs., 3 tabs.

  6. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry.

    Science.gov (United States)

    Hedmer, Maria; Karlsson, Jan-Eric; Andersson, Ulla; Jacobsson, Helene; Nielsen, Jörn; Tinnerberg, Håkan

    2014-08-01

    Welding fume consists of metal fumes, e.g., manganese (Mn) and gases, e.g., ozone. Particles in the respirable dust (RD) size range dominate. Exposure to welding fume could cause short- and long-term respiratory effects. The prevalence of work-related symptoms among mild steel welders was studied, and the occupational exposure to welding fumes was quantified by repeated measurements of RD, respirable Mn, and ozone. Also the variance components were studied. A questionnaire concerning airway symptoms and occupational history was answered by 79% of a cohort of 484 welders. A group of welders (N = 108) were selected and surveyed by personal exposure measurements of RD and ozone three times during 1 year. The welders had a high frequency of work-related symptoms, e.g., stuffy nose (33%), ocular symptoms (28%), and dry cough (24%). The geometric mean exposure to RD and respirable Mn was 1.3 mg/m(3) (min-max 0.1-38.3 mg/m(3)) and 0.08 mg/m(3) (min-max <0.01-2.13 mg/m(3)), respectively. More than 50% of the Mn concentrations exceeded the Swedish occupational exposure limit (OEL). Mainly, low concentrations of ozone were measured, but 2% of the samples exceeded the OEL. Of the total variance for RD, 30 and 33% can be attributed to within-worker variability and between-company variability, respectively. Welders had a high prevalence of work-related symptom from the airways and eyes. The welders' exposure to Mn was unacceptably high. To reduce the exposure further, control measures in the welding workshops are needed. Correct use of general mechanical ventilation and local exhaust ventilation can, for example, efficiently reduce the exposure.

  7. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  8. 30 CFR 90.301 - Respirable dust control plan; approval by District Manager; copy to part 90 miner.

    Science.gov (United States)

    2010-07-01

    ... District Manager; copy to part 90 miner. 90.301 Section 90.301 Mineral Resources MINE SAFETY AND HEALTH... control plan; approval by District Manager; copy to part 90 miner. (a) The District Manager will approve... District Manager shall consider whether: (1) The respirable dust control measures would be likely to...

  9. A Computer-Controlled SEM-EDX Routine for Characterizing Respirable Coal Mine Dust

    Directory of Open Access Journals (Sweden)

    Victoria Johann-Essex

    2017-01-01

    Full Text Available A recent resurgence in coal workers’ pneumoconiosis (or “black lung” and concerns over other related respiratory illnesses have highlighted the need to elucidate characteristics of airborne particulates in occupational environments. A better understanding of particle size, aspect ratio, or chemical composition may offer new insights regarding causal factors of such illnesses. Scanning electron microscopy analysis using energy dispersive X-ray (SEM-EDX can be used to estimate these particle characteristics. If conducted manually, such work can be very time intensive, limiting the number of particles that can be analyzed. Moreover, potential exists for user bias in interpretation of EDX spectra. A computer-controlled (CC routine, on the other hand, can allow similar analysis at a much faster rate, increasing total particle counts and reproducibility of results. This paper describes a CCSEM-EDX routine specifically developed for analysis of respirable dust samples from coal mines. The routine is verified based on reliability of results obtained on samples of known materials, and reproducibility of results obtained on a set of 10 dust samples collected in the field. The characteristics of the field samples are also discussed with respect to mine occupational environments.

  10. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; MacCalman, L. [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18 000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  11. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Brian G Miller; Laura MacCalman [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18?000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  12. Experimental studies of two-stage centrifugal dust concentrator

    Science.gov (United States)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  13. Dust Concentration and Emission in Protoplanetary Disks Vortices

    Science.gov (United States)

    Sierra, Anibal; Lizano, Susana; Barge, Pierre

    2017-12-01

    We study the dust concentration and emission in protoplanetary disks vortices. We extend the Lyra-Lin solution for the dust concentration of a single grain size to a power-law distribution of grain sizes n(a)\\propto {a}-p. Assuming dust conservation in the disk, we find an analytic dust surface density as a function of the grain radius. We calculate the increase of the dust-to-gas mass ratio ɛ and the slope p of the dust size distribution due to grain segregation within the vortex. We apply this model to a numerical simulation of a disk containing a persistent vortex. Due to the accumulation of large grains toward the vortex center, ɛ increases by a factor of 10 from the background disk value, and p decreases from 3.5 to 3.0. We find the disk emission at millimeter wavelengths corresponding to synthetic observations with ALMA and VLA. The simulated maps at 7 mm and 1 cm show a strong azimuthal asymmetry. This happens because, at these wavelengths, the disk becomes optically thin while the vortex remains optically thick. The large vortex opacity is mainly due to an increase in the dust-to-gas mass ratio. In addition, the change in the slope of the dust size distribution increases the opacity by a factor of two. We also show that the inclusion of the dust scattering opacity substantially changes the disks images.

  14. Evaluation of Airborne MDF Dust Concentration in Furniture Factories

    Directory of Open Access Journals (Sweden)

    Renilson Luiz Teixeira

    2017-10-01

    Full Text Available ABSTRACT High concentrations of airborne dust are observed during the cutting of medium density fiberboard (MDF boards. This dust, at first considered just uncomfortable for workers, may be harmful to their health. The objective of this work was to evaluate the concentration of airborne dust during the cutting of medium density fiberboard (MDF. The experiment was developed in the MDF cutting sector of three furniture factories located in the city of Lavras/MG. The results showed that the mean concentrations of total dust suspended in these three furniture factories were above the tolerance limit set by the American Conference of Governmental Industrial Hygienists (ACGIH, giving evidence of a serious problem in these companies related to this type of risk agent.

  15. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  16. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    Science.gov (United States)

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  18. Method and equipment to determine fine dust concentrations

    International Nuclear Information System (INIS)

    Breuer, H.; Gebhardt, J.; Robock, K.

    1979-01-01

    The measured values for the fine dust concentration are obtained by optical means which where possible agree with the probable deposited quantity of fine dust in the pulmonary alveoli. This is done by receiving the strong radiation produced in dependence of the particle size at an angle of 70 0 to the angle of incidence of the primary beam. The wavelength of the primary radiation is in the region of 1000 to 2000 nm. (RW) [de

  19. [Dust concentration analysis in non-coal mining. Exposure evaluation based on measurements performed by occupational hygiene laboratories in the years 2001-2005 in Poland].

    Science.gov (United States)

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena

    2011-01-01

    Non-coal mining includes the extraction of materials for construction (stone, gravel, sand and clay), chemical industry (salt and sulfur), metallurgy (metal ores, uranium and thorium) and other mining and quarrying. Regardless of the type of mining company one of the most common health hazards in this sector is exposure to high concentrations of dust occurring during the extraction of materials. Such activities as drilling, use of blasting agents, processing of raw material, its transportation and loading are the source of large amounts of dust containing crystalline silica. Data on exposure to dust, collected by industrial hygiene laboratories on the basis of dust concentration measurements in the work environment, were obtained from the sanitary inspection service. The analysis of dust concentrations at workplaces in non-coal mining covered the years 2001-2005. The average concentration of inhalable and respirable dust and the degree of results dispersion at workposts in different branches of non-coal mining (according to NACE rev1.1) were evaluated. Also there was estimated the percentage of surveys indicating dust concentrations above hygiene standards. Almost 5000 measurements of dust concentrations were performed in the years under study. The highest concentration of inhalable dust was noted for the production of salt (5.51 mg/m3), other mining and quarrying (4.30 mg/m3) and quarrying of slate (3.77 mg/m3). For respirable dust the highest concentrations were noted in other mining and quarrying (1.10 mg/m3), quarrying of slate (1.09 mg/m3) and quarrying of stone (0.81 mg/m3). Exposure to high concentrations of dust during the extraction of non-carbon is still an important hazard to human health. Almost for all workposts under study the excess of hygiene standards were observed.

  20. Interlaboratory comparison on 137Cs activity concentration in fume dust

    International Nuclear Information System (INIS)

    Tzika, Faidra; Hult, Mikael; Burda, Oleksiy; Arnold, Dirk; Sibbens, Goedele; Caro Marroyo, Belén; Gómez–Mancebo, Maria Belén; Peyrés, Virginia; Moser, Hannah; Ferreux, Laurent; Šolc, Jaroslav; Dryák, Pavel; Fazio, Aldo; Luca, Aurelian; Vodenik, Branko; Reis, Mario

    2015-01-01

    A comparison was conducted, between 11 European National Metrology Institutes and EC-JRC, on measurement of 137 Cs activity concentration in fume dust. As test material an activity standard produced from real contaminated fume dust was used. The standard material consisted of 13 cylindrical samples of compressed fume dust. The material contained 137 Cs and 60 Co of reference activity concentrations of (9.72±0.10) Bq/g and (0.450±0.018) Bq/g, respectively, for the reference date of 1 June 2013, determined using the comparison results. The organization and results of the intercomparison, as well as the process of obtaining reliable reference values are presented. - Highlights: • A European comparison was conducted on measurement of 137 Cs activity in fume dust. • Participants used high resolution gamma ray spectrometry. • Efficiency calibration included Monte Carlo, numerical and experimental methods. • Reference 137 Cs and 60 Co activity concentrations in the fume dust were determined. • A new traceable activity standard of fume dust matrix is available to end-users.

  1. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector.

    Science.gov (United States)

    Zilaout, Hicham; Vlaanderen, Jelle; Houba, Remko; Kromhout, Hans

    2017-07-01

    In 2000, a prospective Dust Monitoring Program (DMP) was started in which measurements of worker's exposure to respirable dust and quartz are collected in member companies from the European Industrial Minerals Association (IMA-Europe). After 15 years, the resulting IMA-DMP database allows a detailed overview of exposure levels of respirable dust and quartz over time within this industrial sector. Our aim is to describe the IMA-DMP and the current state of the corresponding database which due to continuation of the IMA-DMP is still growing. The future use of the database will also be highlighted including its utility for the industrial minerals producing sector. Exposure data are being obtained following a common protocol including a standardized sampling strategy, standardized sampling and analytical methods and a data management system. Following strict quality control procedures, exposure data are consequently added to a central database. The data comprises personal exposure measurements including auxiliary information on work and other conditions during sampling. Currently, the IMA-DMP database consists of almost 28,000 personal measurements which have been performed from 2000 until 2015 representing 29 half-yearly sampling campaigns. The exposure data have been collected from 160 different worksites owned by 35 industrial mineral companies and comes from 23 European countries and approximately 5000 workers. The IMA-DMP database provides the European minerals sector with reliable data regarding worker personal exposures to respirable dust and quartz. The database can be used as a powerful tool to address outstanding scientific issues on long-term exposure trends and exposure variability, and importantly, as a surveillance tool to evaluate exposure control measures. The database will be valuable for future epidemiological studies on respiratory health effects and will allow for estimation of quantitative exposure response relationships. Copyright © 2017 The

  2. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  3. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  4. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  5. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  6. Total and respirable dust exposures among carpenters and demolition workers during indoor work in Denmark

    DEFF Research Database (Denmark)

    Kirkeskov, Lilli; Hanskov, Dorte Jessing Agerby; Brauer, Charlotte

    2016-01-01

    BACKGROUND: Within the construction industry the risk of lung disorders depends on the specific professions probably due to variations in the levels of dust exposure, and with dust levels depending on the work task and job function. We do not know the extent of exposure in the different professions...... was 3.90 (95 % confidence interval 1.13-13.5) mg/m(3). Dust exposure varied depending on work task for both professions. The dustiest work occurred during demolition, especially when it was done manually. Only few workers used personal respiratory protection and only while performing the dustiest work...... or the variation between the different work tasks. The purpose of this study was therefore to assess if there were differences in dust exposure between carpenters and demolition workers who were expected to have low and high dust exposure, respectively. METHODS: Through interviews of key persons...

  7. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    International Nuclear Information System (INIS)

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  8. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    International Nuclear Information System (INIS)

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-01-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms

  9. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes

    Science.gov (United States)

    A.J. Burton; K.S. Pregitzer; R.W. Ruess; R.L. Hendrick; Mike F. Allen

    2002-01-01

    Root respiration rates have been shown to be correlated with temperature and root N concentration in studies of individual forest types or species, but it is not known how universal these relationships are across forest species adapted to widely different climatic and edaphic conditions. In order to test for broad, cross-species relationships, we measured fine root...

  10. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  11. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  12. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  13. Soil and Root Respiration Under Elevated CO2 Concentrations During Seedling Growth of Pinus sylvestris var. sylvestriformis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris var. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003,from 20.6% to 48.6%.

  14. β Absorption dust concentration monitor system based on the PLC

    International Nuclear Information System (INIS)

    Lian Dexing; Zhou Xiuliang; Liu Liyan; Li Zonglun; Cao Guanghui; Mao Wanchong

    2011-01-01

    To provide an on-line automatic system for dust concentration monitor is the purpose of this design.The system based on β-ray-absorption-method,employing PLC (Programmable Logic Controller) control technology, is presented. The user input parameter setup,the data acquisition and processing, and the communication with computer can be effectively regulated using the advanced PLC control technology. It has the features of high reliability, easy operation and easy maintenance, and the ability to monitor remotely. Measurement range: 0.1-1500 mg/m 3 , Accuracy: ±9%. The structure,working principle, electric circuit and software development of the system are introduced in detail. (authors)

  15. The solubility of thorium and uranium from respirable monazite bearing dust in simulated lung and gut fluids

    International Nuclear Information System (INIS)

    Twining, J.; McGlinn, P.; Hart, K.

    1993-01-01

    The accurate assessment of the radiological dose to workers in the mineral sands industry requires information on the human bio-availability of thorium and uranium from monazite bearing respirable dust. The results of a short-term test to determine some of the solubility characteristics of these radionuclides are presented, together with a discussion on the optimum methods which may be applied to longer term studies. The solubility of thorium and uranium were found to be generally less than that of the parent monazite bearing dust in simulated lung and gut fluids over the one month extraction period. In particular, thorium was up to two orders of magnitude less soluble than its host mineral matrix. Assuming that the conservative nature of these radioactive constituents can be extrapolated to longer term exposures, these results imply that radiological dose estimates to the lung should be increased. Solubility of both elements was proportional to particle size. An exponential increase in solubility with decreasing diameter was observed, which implies a time variable solubility. There was also some indication of preferential solubility of radium progeny in both decay series. These factors may have to be accounted for in model estimates of committed dose. 16 refs., 4 tabs., 2 figs

  16. Research and development in dust and silicosis suppression

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, H

    1975-08-21

    MAK values of 4 mg/m/sup 3/ for respirable dust containing quartz and 0.15 mg/m/sup 3/ for respirable quartz dust have been established for 5 years' exposure in West German hard coal mines. Routine gravimetric measurements were introduced in 1974 and these are supplemented by the digital Tyndallometer which indicates short-term variations. Gravimetric measurements have indicated the main sources of dust and improved dust suppression measures have considerably reduced respirable dust concentrations in some cases, e.g., by seam infusion, by spraying of the face machine path and at crushers, and by dedusters on heading machines.

  17. Effect of gas and dust emissions on respiration and chemical constituents of Parmelia physodes

    Energy Technology Data Exchange (ETDEWEB)

    Klee, R

    1970-01-01

    Pieces of bark covered with Parmelia physodes were punched out and placed into plastic plates. These explants were tested as bioindicators for air pollution in outdoor exposure and under controlled laboratory conditions. The outdoor experiments were carried out at Frankfurt M. For the laboratory experiments, SO/sub 2/ and coke ash (often found as components of air pollution) were chosen. The criteria used to evaluate the effects of emissions were mortality rate, the intensity of respiration, the destruction of chloroplast and an increase in organic and inorganic sulfur.

  18. Utilizing adequate intake line curtain air quantities to maintain respirable dust compliance

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, M.J.; Tomko, D.M.; Rumbaugh, V.E. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technical Center

    2010-07-01

    Mine operators are obligated to ensure the effectiveness of their dust controls and implement practices to minimize the generation of dust in their mines. The 2 main types of face ventilation are blowing and exhaust ventilation. With blowing face ventilation, intake air is directed behind a line curtain or through ventilation tubing and then discharged from the end of the line curtain toward the working face. This paper presented specific information for mine operators regarding where and when exhausting or blowing ventilation will be used. Mine operators should establish the line curtain for directing the face ventilating air as a specific distance from the point of deepest penetration of the face. The location of curtains where roof bolting is being performed should also be specified. The distance from the face is important to the effectiveness of ventilation. 4 refs., 3 tabs., 2 figs.

  19. Sulphur loading of respirable and inhalable dust at a platinum smelter / Swanepoel J.D.

    OpenAIRE

    Swanepoel, Johannes Deon.

    2012-01-01

    The contribution that sulphur, in the form of sulphates, has on ill health is still a focal point of many a study, especially in environmental studies depicting the effects that particulate air pollution has on health. Although the implication of sulphur on particulate matter is not yet well defined, numerous studies do state that the presence of sulphur on particulate matter contributes to poor health. Sulphur adhered to dust has been associated with cardiovascular mortality and the ability ...

  20. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Directory of Open Access Journals (Sweden)

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  1. Effects of low concentrations of sulfur dioxide on net photosynthesis and dark respiration of Vicia faba

    Energy Technology Data Exchange (ETDEWEB)

    Black, V J; Unsworth, M H

    1979-01-01

    Rates of net photosynthesis, P/sub N/, and dark respiration of Vicia faba plants were measured in the laboratory in clean air and in air containing up to 175 parts 10/sup -9/ (500 ..mu..g m/sup -3/) SO/sub 2/. At all SO/sub 2/ concentrations exceeding 35 parts 10/sup -9/, P/sub N/ was inhibited compared with clean air. At light saturation, the magnitude of inhibition depended on SO/sub 2/ concentration but at low irradiances the inhibition was independent of concentration. Dark respiration rates increased substantially, independent of concentration. When exposures continued for up to 3 days, P/sub N/ returned to clean air values about 1 h after fumigation ceased: dark respiration recovered after one photoperiod. There were no visible injuries. Reviewing possible mechanisms responsible for the inhibition of P/sub N/, it is suggested that SO/sub 2/ competes with CO/sub 2/ for binding sites in RuBP carboxylase. Analysis of resistance analogues demonstrates that SO/sub 2/ altered both stomatal and internal (residual) resistances. A model of crop photosynthesis shows the implications of the observed responses for the growth of field crops in which plants are assumed to respond like laboratory plants. Photosynthesis of the crop would be less sensitive than that of individual plants to SO/sub 2/ concentration. Daily dry matter accumulation of hypothetical polluted crops would be substantially less than clean air values but would vary relatively little with SO/sub 2/ concentration. It is concluded that physiological bases exist to account for observed reductions in growth of plants at very low SO/sub 2/ concentrations, and that thresholds for plant responses to SO/sub 2/ require reassessment. 30 references, 5 figures, 1 table.

  2. Mortality over an extended follow-up period in coal workers exposed to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; MacCalman, L.; Hutchison, P.A.

    2009-10-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coalworkers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18,000 men from 10 collieries. External analyses used standardised mortality ratios, comparing observed mortality with reference rates from the regions in which the pits were situated. Causes investigated include lung and stomach cancers, nonmalignant respiratory diseases, and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease, and specifically chronic obstructive pulmonary disease and pneumoconiosis, showed increases with increased exposure to respirable dust. 60 refs.

  3. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Science.gov (United States)

    Long, Xin; Tie, Xuexi; Li, Guohui; Cao, Junji; Feng, Tian; Zhao, Shuyu; Xing, Li; An, Zhisheng

    2018-05-01

    In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15 % in the NCP, with a maximum reduction of -12.4 % (-19.2 µg m-3) in BTH and -7.6 % (-10.1 µg m-3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP

  4. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Directory of Open Access Journals (Sweden)

    X. Long

    2018-05-01

    Full Text Available In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW. Both the grass GGW and forest GGW are located between the dust source region (DSR and the densely populated North China Plain (NCP. To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei. When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from −5 to −15 % in the NCP, with a maximum reduction of −12.4 % (−19.2 µg m−3 in BTH and −7.6 % (−10.1 µg m−3 in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the

  5. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  6. Radioactive dust concentration around the Ranger uranium mine

    International Nuclear Information System (INIS)

    Kavasnicka, Jiri.

    1988-07-01

    Environmental dust sampling and wind direction/velocity monitory were carried out between July and November 1987 at five points around the Ranger Uranium Mines project near Jabiru, Northern Territory. The measured radioactive dust alpha activities in the air were used to calculate the radioactive dust source-term and develop a site-specific air dispersion model which takes the depletion of the dust plume into account. The above model was used to estimate the effective committed dose equivalent as 15 μSv/year to children in Jabiru East. This corresponds to an increase of 2.6 x 10 -4 Bq. m -3 in the annual average dust alpha activity above the natural background. The dose to the children in Jabiru is about 5 μSv/year, so that the critical group of the public is in Jabiru East. 12 refs., 11 tabs., 2 maps

  7. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Elemental Concentration of Harmattan Dust Sample in Iwo and Oyo ...

    African Journals Online (AJOL)

    ADOWIE PERE

    According to Balogun (1979), two sources of dust plumes were identified .... metals. Heavy metals are known to be harmful to human health if they are more than the recommended ... Chemical. Characterization and Source Apportionment of.

  9. Configuration of Air Microfluidic Chip for Separating and Grading Respirable Dust

    Science.gov (United States)

    Zhu, Xiaofeng; Jia, Yiting; Sun, Jianhai; Zhao, Peiyue; Liu, Jinhua; Zhang, Yanni; Ning, Zhanwu

    2018-03-01

    Particulate matter (PM) is a category of airborne pollutants, and fine particles that have a diameter of 2.5 μm (PM2.5) or smaller are especially damaging to human health because of their ability to penetrate deep into our respiratory system, Therefore, Monitoring of PM is very important. In this work, an air micro- fluidic PM sensor based on MEMS was proposed, and numerical model of the sensor was simulated accurately. The sensor was able to separate particles according to their sizes, and then transports and deposits the selected particles using thermophoretic precipitation onto the surface of a microfabricated mass-sensitive film bulk acoustic resonator (FBAR), precisely weighing and providing the concentration of PM. The PM sensor has double stage separation function, and the primary separator can separate the particles with size of less 10 μm from the particles, and the secondary can separate particles with size of less 2.5 μm from the particles.

  10. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    and denitrification, were only partially described. In spite of the importance of aerobic respiration as a key process in the global carbon cycle, the available data are still few, and highly biased with respect to season, latitude and depth. The main aims of this Ph.D were to: i) develop and test a highly...... to pure cultures (Manuscript III), in order to assess the response of three species of NOB (Nitrospira defluvvi, N. moscoviensis and Nitrospina gracilis) to low O2 concentrations, and the oxygen regulation on the expression of the terminal oxidases genes in N.moscoviensis. The oxygen affinities...... of these pure cultures were lower than found for natural communities of NOB (apparent Km values~ 1- 4 µM), but higher than the ones from the well-studied opportunistic NOB Nitrobacter. The expression of high-affinity terminal oxidases in these NOB could, however, not be confirmed. Overall the results of this Ph...

  11. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    Science.gov (United States)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  12. Impact of cement dust on the mineral and energy concentration of Psidium guayava

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Ambasht, R.S.

    1982-12-01

    The impact of cement dust deposition on mineral and energy concentration of leaves of guava Psidium guayava growing in the vicinity of Churk Dement Factory situated at Churk, District-Mirzapur (India) was studied. Concentrations of calcium (Ca), potassium (K), sodium (Na) and phosphorus (P) were increased while energy content (cal g/sup -1/ dry weight) was reduced (12.3%) more in cement-dust-covered leaves than in dust-free leaves of Psidium guayava. Statistically it was found that the difference in the concentration of Ca, K, and P industry and dust-free leaves was highly correlated and significant with the amount of cement dust deposited (gm/sup -2/ leaf surface) on the leaf surface of P. guayava while the difference in the concentration of Na--although positively correlated--is not significant. Maximum values of concentrations of Ca, K, Na, P and energy were 5.20%, 0.48%, 0.025%, 0.15% and 4936.7 cal g/sup -1/ dry weight in dust-covered leaves and 3.50%, 0.30%, 0.018%, 0.12% and 5301.4 cal g/sup -1/ dry weight in dust-free leaves, respectively.

  13. Respirable coal dust exposure and respiratory symptoms in South-African coal miners: A comparison of current and ex-miners

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, R.N.; Robins, T.G.; Seixas, N.; Lalloo, U.G.; Becklake, M. [University of KwaZuluNatal, Congella (South Africa). Nelson R Mandela School of Medicine

    2006-06-15

    Dose-response associations between respirable dust exposure and respiratory symptoms and between symptoms and spirometry outcomes among currently employed and formerly employed South-African coal miners were investigated. Work histories, interviews, and spirometry and cumulative exposure were assessed among 684 current and 212 ex-miners. Results: Lower prevalences of symptoms were found among employed compared with ex-miners. Associations with increasing exposure for symptoms of phlegm and past history of tuberculosis were observed, whereas other symptom prevalences were higher in the higher exposure categories. Symptomatic ex-miners exhibited lower lung-function compared to the nonsymptomatic. Compared with published data, symptoms rates were low in current miners but high in ex-miners. Although explanations could include the low prevalence of smoking and/or reporting/selection bias, a 'Survivor' and/or a 'hire' effect is more likely, resulting in an underestimation of the dust-related effect.

  14. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  15. An analysis of the correlation between dust storms in Korea and 137Cs nuclide concentration

    International Nuclear Information System (INIS)

    Choi, Soo-won; Kim, Jeong-hun; Shin, Sang-hwa; Hwang, Joo-ho

    2008-01-01

    Dust storms occur in Korea during spring time when fine dust is blown in from the far western regions of western China and Mongolia. A fine powdery dust is blown up into the sky and enters the upper reaches of the atmosphere where it is carried easterly across China then slowly falls to the ground on the Korean peninsula and Japan. The dust originates mostly in the Gobi dessert of China, as well as the yellow earth regions in the middle and upper streams of the Yellow river in China. Previous studies on dust storms have been limited to following or estimating their courses, distribution and frequency, or distribution of the heavy metals they transmit. However, since radionuclides exist in the dust, they must also exist in the dust storms. In this study, we analyzed the correlation of :1 37 Cs nuclide concentration based on a count of annual dust storm occurrence in the city of Suwon, South Korea and assessed seasonal differences of 137 Cs nuclide concentration

  16. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  17. Elemental concentrations in deposited dust on leaves along an urbanization gradient

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Baranyai, Edina [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Egyetem tér 1, H-4032 Debrecen (Hungary); Braun, Mihály [Institute of Nuclear Research of the Hungarian Academy of Sciences, Herteleni Laboratory of Environmental Studies, 4026 Debrecen, Bem tér 18/C (Hungary); Cserháti, Csaba [Department of Solid State Physics, University of Debrecen, H-4010 Debrecen, P.O. Box 2 (Hungary); Fábián, István [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tóthmérész, Béla [HAS-UD Biodiversity and Ecosystem Services Research Group, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2014-08-15

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP–OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. - Highlights: • Dust is used as indicators of the accumulation of inorganic pollutants. • Scanning EM was used to explore the morphological structure of leaves. • Amount of dust deposited of leaves correlated with trichomes' density. • A. negundo, C. occidentalis and Q. robur are suitable to indicate air contaminants. • A. negundo and C. occidentalis are suitable to decrease the amount of dust in air.

  18. Elemental concentrations in deposited dust on leaves along an urbanization gradient

    International Nuclear Information System (INIS)

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Cserháti, Csaba; Fábián, István; Tóthmérész, Béla

    2014-01-01

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP–OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. - Highlights: • Dust is used as indicators of the accumulation of inorganic pollutants. • Scanning EM was used to explore the morphological structure of leaves. • Amount of dust deposited of leaves correlated with trichomes' density. • A. negundo, C. occidentalis and Q. robur are suitable to indicate air contaminants. • A. negundo and C. occidentalis are suitable to decrease the amount of dust in air

  19. Elemental concentrations in deposited dust on leaves along an urbanization gradient.

    Science.gov (United States)

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Cserháti, Csaba; Fábián, István; Tóthmérész, Béla

    2014-08-15

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP-OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  1. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

    2007-09-15

    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  2. African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls

    Science.gov (United States)

    Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of

  3. Measuring instrument for the determination of dust concentrations. [air filter with. beta. radiometric gage

    Energy Technology Data Exchange (ETDEWEB)

    Dresia, H; Spohr, F

    1975-05-22

    The measuring instrument enables a continuous determination of the dust concentration or total dust content in gases on the basis of the radiometric mass determination of dusts. The partial current method is employed, with the gas fetched through a filter cell with a topped intake by a suction pump. A filter band to take up the dust deposit is continuously driven through the filter cell. The filter point and the measuring point with a ..beta..-radionuclide and a detector are both inside the filter cell. The filter cell is sealed all around, at the entrance and exit of the filter band. The band itself acts as a seal. The filter band also has borders strengthened with, e.g., plastic strips which engage the drive. The widths of the slits are adjustable in height.

  4. African dust outbreaks over the Mediterranean Basin during 2001-2011: concentrations, phenomenology and trends

    Science.gov (United States)

    Pey, Jorge; Querol, Xavier; Alastuey, Andres; Forastiere, Franceso; Stafoggia, Massimo

    2013-04-01

    Concentrations, phenomenology and trends of African dust outbreaks over the whole Mediterranean Basin werestudied on an 11-year period (2001-2011). This work has been performed in the context of the MED-PARTICLES (LIFE programme, EU) project, devoted to quantify short-term health effects of particulate matter over the Mediterranean region by distinguishing different particle sizes, chemical components and sources, with emphasis in the effects of African dust. In order to evaluate conduct this investigation, PM10 data from 19 regional and suburban background sites West to East in the Mediterranean area were compiled. After identifying the daily occurrence of African dust outbreaks, a methodology for estimating natural dust contributions on daily PM10 concentrations was applied. Our findings point out that African dust outbreaks are sensibly more frequent in southern sitesacross the Mediterranean, from 30 to 37 % of the annual days, whereas they occur less than 20% of the annual days in northern sites. The central Mediterranean emerges as a transitional area, with slightly higher frequency of dust episodes in its lower extreme when compared to similar latitudinal positions in western and eastern sides of the Basin. A decreasing south to north gradient of African dust contribution to PM10, driven by the latitudinal position of the monitoring sites at least 25°E westwards across the Basin,is patent across the Mediterranean. From 25°E eastwards, higher annual dust contributions are encountered due to the elevated annual occurrence of severe episodesof dust but also because of inputs from Middle Eastern deserts. Concerning seasonality patterns and intensity characteristics, a clear summer prevalence is observed in the western part, with low occurrence of severe episodes (daily dust averages over 100 µg m-3 in PM10); no seasonal trend is detected in the central region, with moderate-intensity episodes; and significantly higher contributions are common in autumn

  5. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  6. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  7. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  8. Windows pollution problems of the dust concentration measurement based on scattering method

    International Nuclear Information System (INIS)

    Zhao Yanjun; Zhang Yongtao; Shi Xinyue; Xu Chuanlong; Wang Shimin

    2009-01-01

    The windows are separated the measurement system from the dust space in the light Scattering dust concentration measurement system. The windows are polluted unavoidably by the dust and the measurement error is produced. Based on the Mie Scattering theory, the measurement error is researched in this paper. The numerical simulation results show that the measurement error is related to the particles diameter distribution and the refractive index, but is independent of the particles average diameter. A novel photoelectricity sensor is developed in this paper in order to solve the measurement error by the windows pollution. The calculated method is brought out which can amend the measurement errors by the windows pollution and improve the measurement accuracy.

  9. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Science.gov (United States)

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  10. Heavy Metal Concentrations in Ceiling Fan Dusts Sampled at Schools Around Serdang Area, Selangor

    International Nuclear Information System (INIS)

    Yap, C.K.; Krishnan, T.; Chew, W.

    2011-01-01

    In this study, ceiling fan dust samples were collected from three schools in the district of Serdang Selangor, Malaysia. The sampled dust were analysed for the concentrations of Cd, Cu, Fe, Ni, Pb and Zn. The heavy metal ranges found in all the schools were 2.96-7.74 μg/ g dry weight for Cd, 75-442 μg/ g dry weight for Cu, 3445-3852 μg/ g dry weight for Fe, 24-66 μg/ g dry weight for Ni, 140-734 μg/ g dry weight for Pb and 439-880 μg/ g dry weight for Zn. SMK Seri Serdang School was found to have elevated concentrations of Cd, Cu, Ni, Pb, and Zn which indicated the anthropogenic sources of the study sites. In comparison to other reported studies in the literature, the maximum levels of Cd, Cu, Ni, and Pb were comparable or higher to those cities reported. Therefore, more monitoring studies should be conducted in future since dusts could be related to human health hazards and the dusts can be used as a potential monitoring tool for heavy metal pollution in the atmosphere. (author)

  11. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna.

    Science.gov (United States)

    Simon, Edina; Braun, Mihály; Vidic, Andreas; Bogyó, Dávid; Fábián, István; Tóthmérész, Béla

    2011-05-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature

    International Nuclear Information System (INIS)

    Zha, T.; Ryyppo, A.; Kellomaki, S.; Wang, K-Y.

    2002-01-01

    The effects of needle age, elevated carbon dioxide and temperature on needle respiration in Scots pine was studied during a four-year period. Results showed that respiration rates and specific leaf area decreased in elevated atmospheric carbon dioxide concentration relative to ambient conditions, but increased in elevated temperature and when elevated atmospheric carbon dioxide and elevated temperature were combined. Starch and soluble sugar concentrations for a given needle age increased in elevated carbon dioxide, but decreased slightly under combined elevated temperature and elevated carbon dioxide conditions. Respiration rate and specific leaf area were highest in current year needles in all treatment modes. All treatment modes enhanced the difference in respiration between current year and older needles relative to ambient conditions. Carbohydrate concentration or specific leaf area remained unchanged in response to any treatment. Under ambient conditions the temperature coefficient of respiration increased slightly in elevated carbon dioxide regardless of age, however, there was significant decline at elevated temperature as well as when both carbon dioxide concentration and temperature were elevated, indicating acclimation of respiration to temperature. 48 refs., 2 tabs., 7 figs

  13. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    Science.gov (United States)

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  14. Control of dust hazards in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V

    1981-09-01

    This paper analyzes health hazards associated with air pollution by respirable coal dust which causes pneumoconioses. The following directions in pneumoconioses prevention are discussed: improved protective systems (e.g. respirators), mining schemes optimized from a health hazards point of view, correct determination of the maximum permissible level of respirable dusts, reducing working time. Safety regulations in the USSR on the critical amount of coal dust in the miner respiratory system are insufficient as the 20 g limit is too high and does not guarantee safety. Using regression analysis influence of the factors which cause pneumoconioses is analyzed. This influence is described by an equation which considers the following factors: number of shifts associated with contact of a miner with coal dusts, dust concentration in mine air, amount of air with coal dust being respirated, miner's age, years as miner, coal rank. It is stated that use of the proposed equation (derived by computer calculations) permits the safe working time to be correctly determined considering all factors which cause pneumoconioses.

  15. Lead Concentration in Primary School Soil-Dust in Nigeria, Africa

    Directory of Open Access Journals (Sweden)

    Ekwumemgbo P. A.

    2013-04-01

    Full Text Available Lead in soil has been recognized as a public health problem, particularly among children. In recent years, attention has been directed to cumulative adverse effects of lead at low levels of intake. Leadcontaminated soil and dust have been identified as important contributors to blood lead levels. This work examines the total concentration of lead in primary school soil-dust in Nigeria. Soil-dusts were collected randomly from six geopolitical areas of Nigeria, digested and analysed for total lead concentration by Atomic Absorption Spectrophotometry. The mean lead concentration in the dry season for the North East (NE, North West (NW, North Central (NC, South South (SS, South East (SE, South West (SW were 131.60 ± 70.98 mg/kg, 108.04 ± 47.33 mg/kg, 72.94 ± 55.45 mg/kg, 66.14 ± 43.9 mg/kg, 45.98 ± 34.60 mg/kg and 67.98 ± 34.89 mg/kg respectively. In the raining season the mean lead concentration were 130.78 ± 70.80 mg/kg, 106.24 ± 47.02 mg/kg, 70.96 ± 55.52 mg/kg, 64.12 ± 48.00 mg/kg, 44.58 ± 28.90 mg/kg, and 66.26 ± 41.87 mg/kg respectively. This analysis is necessary to provide scientific data base for the loading of lead in classroom soil-dust in each zone. The authors recommend measurement and surveillance of lead blood level of the primary school children and a clean-up of both classrooms and the school environment.

  16. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007-2014

    Science.gov (United States)

    Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz

    2017-11-01

    Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48

  17. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    International Nuclear Information System (INIS)

    Simon, Edina; Braun, Mihaly; Vidic, Andreas; Bogyo, David; Fabian, Istvan; Tothmeresz, Bela

    2011-01-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: → We studied the elements in dust and leaves along an urbanization gradient, Austria. → We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. → Elemental concentrations were higher in urban area than in the rural area. → Studied areas were separated by CDA based on the elemental concentrations. → Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  18. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Braun, Mihaly [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Vidic, Andreas [Department fuer Naturschutzbiologie, Vegetations- und Landschaftsoekologie, Universitat Wien, Althanstrasse 14, 1090 Wien (Austria); Bogyo, David [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Fabian, Istvan [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tothmeresz, Bela [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2011-05-15

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: > We studied the elements in dust and leaves along an urbanization gradient, Austria. > We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. > Elemental concentrations were higher in urban area than in the rural area. > Studied areas were separated by CDA based on the elemental concentrations. > Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  19. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  20. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  1. Respirable silica dust exposure amongst foundry workers in Gauteng, South Africa: A task-based risk assessment

    CSIR Research Space (South Africa)

    Khoza, NN

    2012-09-01

    Full Text Available /m³ respectively in foundry two. The maximum exposure concentration was 0.835 mg/m³ and minimum exposure was 0.010 mg/m³. Data were analysed by using SPSS version 18. The highest exposed occupations were moulders, sand mixers, furnace operators, shake...

  2. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    Directory of Open Access Journals (Sweden)

    Sai-Chun Tan

    Full Text Available A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the 50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36. These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  3. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Science.gov (United States)

    2012-09-28

    ... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of...

  4. Experimental human exposure to inhaled grain dust and ammonia: towards a model of concentrated animal feeding operations.

    Science.gov (United States)

    Sigurdarson, Sigurdur T; O'Shaughnessy, Patrick T; Watt, Janet A; Kline, Joel N

    2004-10-01

    Ammonia and endotoxin-rich dust are present in high concentrations in swine confinement facilities; exposure to this environment is linked to workers' respiratory problems. We hypothesized that experimental exposure to ammonia and dust would impair pulmonary function, and that these exposures would be synergistic. We exposed six normal subjects and eight subjects with mild asthma to ammonia (16-25 ppm) and/or endotoxin-rich grain dust (4 mg/m3). Pulmonary function and exhaled NOx were measured before and after exposure. There was no significant change in pulmonary function in the normal subjects following any of the exposure conditions. Among asthmatics, a significant transient decrease in FEV1 was induced by grain dust, but was not altered by ammonia; increased bronchial hyperreactivity was also noted in this group. In a vulnerable population, exposure to grain dust results in transient airflow obstruction. Short-term exposure to ammonia does not increase this response.

  5. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  6. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  7. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  8. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  9. Concentrations of polychlorinated biphenyls in soil and indoor dust associated with electricity generation facilities in Lagos, Nigeria.

    Science.gov (United States)

    Folarin, Bilikis Temitope; Abdallah, Mohamed Abou-Elwafa; Oluseyi, Temilola; Olayinka, Kehinde; Harrad, Stuart

    2018-09-01

    Concentrations of 7 indicator polychlorinated biphenyls (PCBs) were measured in dust and soil samples from 12 power stations collected over the two major seasons of the Nigerian climate. Median ƩPCB 7 concentrations in soil ranged from 2 ng/g for power station A to 220 ng/g for power station I; while those in dust ranged from 21 ng/g for power station L to 2200 ng/g for power station I. For individual congeners, median PCB concentrations ranged from 3.8 ng/g for PCB 101 to 52 ng/g for PCB 180 in dust, and  transmission > distribution). Congener patterns in dust and soil samples were compared using principal component analysis (PCA) with those in transformer oil samples from 3 of the power stations studied and with common PCB mixtures (Aroclors). This revealed congener patterns in soil were more closely related to that in the transformer oil than dust. Congener patterns in most samples were similar to Aroclor 1260. Concentrations of PCBs in soil samples close to the transformers significantly exceeded those in soil sampled further away. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  11. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S. Katharine

    2015-01-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57–410) in gasoline buses and 3.97 ± 1.81 (range: 2.01–9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. - Highlights: • Resuspendable fraction of settled dust from microenvironment of buses in Harbin monitored for PAHs exposure assessment. • Higher levels of PAHs pollutants at gasoline-powered buses than at compressed natural gas-powered buses. • Non-occupational and occupational exposures in the microenvironment of buses are assessed. - Occupational and non-occupational exposure to PAHs from the microenvironment of bus

  12. The effects of a newsletter on bedding control on house dust mite allergen concentrations in childcare centers in Korea

    Directory of Open Access Journals (Sweden)

    Jeonghoon Kim

    2015-08-01

    Full Text Available Objectives Bedding in childcare centers (CCCs can hold house dust mite (HDM allergens. This study examined whether HDM allergen levels can be reduced through the distribution of an educational newsletter on bedding control to parents of CCC children in Korea. Methods All 38 CCCs were measured for Der 1 (sum of Der f 1 and Der p 1 concentrations on classroom floors and bedding before the intervention. Educational newsletters on children’s bedding control were sent to 21 CCCs by mail, and teachers were asked to distribute the newsletters to the parents of the children (intervention group. The remaining 17 CCCs were not sent newsletters (control group. The measurement of Der 1 concentrations in 38 CCCs was repeated after the intervention. Dust samples were collected with a vacuum cleaner and analyzed using enzyme-linked immunosorbent assay methods. Results The Der 1 concentrations on the bedding were significantly higher than those on the floors in 38 CCCs at baseline (p<0.05. Although changes of the Der 1 concentrations for the control group (n=17 were not significant, Der 1 concentrations for the intervention group (n=21 decreased significantly from 2077.9 ng/g dust to 963.5 ng/g dust on the floors and from 3683.9 ng/g dust to 610.4 ng/g dust on bedding (p<0.05. Conclusions The distribution of educational newsletters on bedding control to parents may be an effective means of controlling HDMs in CCCs.

  13. Study on the concentration of airbone respirable asbestos fibres in rural areas of the Lublin region in south-east Poland

    Directory of Open Access Journals (Sweden)

    Agnieszka Buczaj

    2014-09-01

    Full Text Available Objective. The objective of the study was measurement of the concentrations of airborne asbestos fibres in the rural environment of the Lublin Region in south-east Poland. Methods. Measurements of concentrations of respirable asbestos fibres were carried out in the rural areas of the Lublin Region (Lublin and Włodawa counties for a period of 24 months. The studies were conducted on 3 farms with various technical conditions of asbestos-containing materials: Farm A – good technical condition of asbestos products, Farm B – poor technical condition, and Farm C – with no asbestos containing products and no such products in its direct vicinity (up to 500 m. On the selected farms, 3 samples on each were simultaneously collected at 3 measuring sites. During the period 2009–2011, a total number of 216 samples were collected on all farms. Sampling was performed using JSH 16,000 stationary aspirators, with air flow velocity of 16 l/min. and sampling time 60–80 minutes. The number of fibres on filters was determined using an optical phase contrast microscope. Results. The study showed that the mean concentration of respirable asbestos fibres on the farms examined was 296 fibres•m [sup]-3[/sup]. The highest concentrations were noted on Farm B was 529 fibres•m [sup]-3[/sup], on average; on farm A the mean concentration of respirable fibres was 328 fibres•m [sup]-3[/sup] , whereas the lowest mean concentration of airborne respirable asbestos fibres was noted on farm C, where there were no asbestos products (30 fibres•m [sup]-3[/sup] .

  14. Dust exposure and pneumoconiosis in a South African pottery. 1. Study objectives and dust exposure.

    Science.gov (United States)

    Rees, D; Cronje, R; du Toit, R S

    1992-07-01

    Dust exposure and pneumoconiosis were investigated in a South African pottery that manufactured wall tiles and bathroom fittings. This paper describes the objectives of the investigation and presents dust measurement data. x Ray diffraction showed that the clays used by the pottery had a high quartz content (range 58%-23%, mean 38%). Exposure to respirable dust was measured for 43 workers and was highest (6.6 mg/m3) in a bathroom fitting fettler. Quartz concentrations in excess of 0.1 mg/m3 were found in all sections of the manufacturing process from slip production to biscuit firing and sorting. The proportion of quartz in the respirable dust of these sections was 24% to 33%. This is higher than is usually reported in English potteries. Four hundred and six (80%) of the 509 workers employed at the pottery were potentially at risk of occupational lung disease. The finding of large numbers of pottery workers exposed to unacceptable dust concentrations is not surprising as poor dust control was found in all six wall tile and sanitary ware factories surveyed by the National Centre for Occupational Health between 1973 and 1989. Dust related occupational disease can be expected in potters for many years to come.

  15. Influence of radon-daughter exposure rate and uranium ore dust concentration on occurrence of lung tumors

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Busch, R.H.

    1980-01-01

    Groups of male SPF Wistar rats were exposed concurrently to several levels of radon daughters and uranium ore dust to study the effect of these variables on pulmonary disease states. Clinical pathology data at 1 yr postexposure indicate no significant differences among exposed animals when compared with controls. Preliminary histopathologic data suggest a trend toward increasing lung tumor risk as the exposure rate is decreased (constant total dose), but the differences are not statistically significant at the 0.05 level. A similar trend occurs with decrease in ore dust concentration (except for the 2560-WLM exposure group), but these differences are also not significant at the 0.05 level. The tumor risk is significantly (0.05 level) increased as the exposure level increases from approximately 320 and 640 WLM to 2560 WLM at the high ore dust concentration

  16. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    Science.gov (United States)

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  17. State of the art in monitoring respirable mine aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Volkwein, J.C.; Mischler, S.E.; Thimons, E.D.; Timko, R.J.; Kissell, F.N.

    2005-07-01

    The Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) has been developing several new tools to help miners monitor respirable coal dust, silica, and diesel particulate matter. This paper discusses three main topics. First, the latest results of the person wearable dust monitor (PDM), developed by Rupprecht and Patashnick under CDC contract. The PDM was tested side by side with conventional samplers at a number of US coal mines and results indicated that the PDM was comparable to conventional samplers. Second, improvements to the Dust Dosimeter monitoring technique that includes a new pump with built in pressure transducer and algorithm to convert differential pressure to dust concentration have shown good precision. Third, advances in the use of the detector tube technique to monitor tailpipe diesel emissions and ambient diesel particulate matter show that strong correlations exist between differential pressure measurement and elemental carbon in the samplers. 3 figs.

  18. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

    Science.gov (United States)

    Markelz, R J Cody; Lai, Lisa X; Vosseler, Lauren N; Leakey, Andrew D B

    2014-04-01

    Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response. © 2013 John Wiley & Sons Ltd.

  19. Effects of elevated CO2 concentrations on photosynthesis, dark res-piration and RuBPcase activity of three species seedlings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis and Fraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L-1, 500 μL·L-1) and ambient CO2 concentrations (350 μL·L-1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species except P. sylvestriformis grown under 500 μL·L-1 CO2 concentration. The dark respiration rates of P. koraiensis and P. sylvestriformis increased under concentration of 700 μL·L-1 CO2, but that of F. mandshurica decreased under both concentrations 700 μL·L-1 and 500 μL·L-1 CO2. The seedlings of F. mandshurica decreased in chlorophyll contents at elevat-ed CO2 concentrations.

  20. Assessment of occupational exposure to wood dust in the Polish furniture industry

    Directory of Open Access Journals (Sweden)

    Małgorzata Szewczyńska

    2017-02-01

    Full Text Available Background: Occupational exposure to wood dust can be responsible for many different harmful health effects, especially in workers employed in the wood industry. The assessment of wood dust adverse effects to humans, as well as the interpretation of its concentration measurements carried out to assess potential occupational exposure are very difficult. First of all, it is due to possible occurrence of different kind of wood dust in the workplace air, namely wood dust from dozens of species of trees belonging to 2 kinds of botanical gymnosperms and angiosperms, as well as to its different chemical composition. Material and Methods: Total dust and respirable wood dust in the workplace air in the furniture industry was determined using the filtration-gravimetric method in accordance with Polish Standards PN-Z-04030-05:1991 and PN-Z-04030-06:1991. Air samples were collected based on the principles of individual dosimetry. Results: Total dust concentrations were 0.84–13.92 mg/m3 and inhalable fraction concentrations, obtained after the conversion of total dust by applying a conversion factor of 1.59, were 1.34–22.13 mg/m3. Respirable fraction concentrations were 0.38–4.04 mg/m3, which makes approx. 25% of the inhalable fraction on average. The highest concentrations occurred in grinding and the lowest during milling processes of materials used in the manufacture of furniture. Conclusions: The results indicate that the share of respirable fraction in the inhalable fraction of wood dust is considerable. Due to the determination of the threshold limit value (TLV for the inhalable fraction of wood dust, it is necessary to replace the previously used samplers for total dust with samplers that provide quantitative separation of wood dust inhalable fractions in accordance with the convention of this fraction as defined in PN-EN 481:1998. Med Pr 2017;68(1:45–60

  1. THE VISUALIZATION METHOD OF THE 3D CONCENTRATION DISTRIBUTION OF ASIAN DUST IN THE GOOGLE EARTH

    Directory of Open Access Journals (Sweden)

    W. Okuda

    2012-07-01

    Full Text Available The Asian dust (called "Kosa" in Japan transported from desert areas in the northern China often covers over East Asia in the late winter and spring seasons. In this study, first of all, for dust events observed at various places in Japan on April 1, 2007 and March 21, 2010, the long-range transport simulation of Asian dust from desert areas in the northern China to Japan is carried out. Next, the method for representing 3D dust clouds by means of the image overlay functionality provided in the Google Earth is described. Since it is very difficult to display 3D dust clouds along the curvature of the Earth on the global scale, the 3D dust cloud distributed at the altitude of about 6300m was divided into many thin layers, each of which is the same thickness. After each of layers was transformed to the image layer, each image layer was displayed at the appropriate altitude in the Google Earth. Thus obtained image layers were displayed every an hour in the Google Earth. Finally, it is shown that 3D Asian dust clouds generated by the method described in this study are represented as smooth 3D cloud objects even if we looked at Asian dust clouds transversely in the Google Earth.

  2. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure.

    Science.gov (United States)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S Katharine

    2015-03-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57-410) in gasoline buses and 3.97 ± 1.81 (range: 2.01-9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    Science.gov (United States)

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  4. Choosing the right respirator

    International Nuclear Information System (INIS)

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  5. Plasma C3d levels of young farmers correlate with respirable dust exposure levels during normal work in swine confinement buildings

    DEFF Research Database (Denmark)

    Hoffmann, Hans Jürgen; Iversen, Martin; Brandslund, Ivan

    2003-01-01

    Work in swine confinement buildings leads to an inflammatory response and may be associated with increased levels of acute phase proteins. We compared the inflammatory response of a control group of young former farm workers with age-matched former farm workers who had previously developed the lo...... in response to respiratory dust, more so amongst cases than in the control group. Acute exposure, with work related levels of organic dust containing endotoxin, leads to a weak systemic inflammatory response....

  6. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  7. A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2008-02-01

    Full Text Available On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10 mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the

  8. Concentration Levels, Pollution Characteristics and Potential Ecological Risk of Dust Heavy Metals in the Metropolitan Area of Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Zhao, Jiayin; Zhao, Wenhui; Jiang, Lei

    2017-09-30

    This study aims to investigate the concentration levels, pollution characteristics and the associated potential ecological risks of the heavy metals found in dust in the metropolitan area of Beijing, China during the winter. Dust samples were collected at 49 different spatial locations of Beijing's metropolitan area from November 2013 to January 2014, in which the concentration levels of Cd, Cr, Pb, Cu, Zn, Ni, Co, V, Bi and Mo were measured by Elan DRC II type inductively coupled plasma mass spectrometry (ICP-MS). Test results showed that the concentrations of dust heavy metals Pb, Cr, Cu and Zn in the urban areas (147.1 mg·kg -1 , 195.9 mg·kg -1 , 239.2 mg·kg -1 and 713.2 mg·kg -1 ) were significantly higher than those in the suburbs (91.6 mg·kg -1 , 125.1 mg·kg -1 , 131.9 mg·kg -1 and 514.5 mg·kg -1 ). Enrichment factors and the geo-accumulation index were used to describe the pollution characteristics of dust heavy metals in urban and suburban areas. Results indicated that Zn and Cu were moderately polluting in both urban and suburban areas, Cd was severely polluting in urban areas and heavily polluting in the suburbs. Furthermore, potential ecological risk assessment revealed that the degrees of ecological harm of dust heavy metals were very strong in both urban and suburban areas, but especially in urban areas. The potential ecological risk of heavy metal Cd, whose single factor of ecological damage was extremely strong, accounted for about 90% of the total ecological risk.

  9. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dustconcentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  10. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  11. The Relationship between Aerosol Composition and Concentration and Visual Range on Barbados, West Indies: The Impact of African Dust

    Science.gov (United States)

    Huang, J.; Prospero, J.; Zhang, C.; Arimoto, R.

    2006-12-01

    Visual Range (VR) measured at Grantley Adams Airport on Barbados shows a very strong annual cycle with the minimum VR values occurring in June or July. This cycle closely matches the annual cycle of African dust concentrations measured in the trade winds at Barbados (13°15'N, 59°30'W) where observations first began in 1965. In winter, monthly mean VR was typically around 30 km or greater while in summer it frequently dipped below 20 km. This same clear signal is observed in the VR records from near-by islands where the same seasonal cycle of dust would be expected: St. Lucia, Martinique and Trinidad and Tobago. We examined the relationship between VR on Barbados and the concentrations of the three major aerosol constituents that we would expect to have the strongest influence on VR: mineral dust, sea salt, and non-sea- salt sulfate (nss-SO4^{=}). We used VR data for the period from 1973, when measurements first began, up to 2006. We found a large discrepancy between the observed VR at the airport and the VR derived from the Koschmieder equation using literature values for the optical properties of the aerosol components; this simple approach would require a much smaller constant than the commonly-used value, 3.912. We further explored the effects of particle size distribution and relative humidity. During boreal summer when VR is lowest, dust is the dominant supramicron aerosol component and it clearly is the major factor in controlling VR. Nonetheless the submicron fraction also has a comparable impact due to its significantly higher light scattering efficiency. During winter, when there is little or no dust, sea salt aerosol and sulfate are dominant. In this report we focus on the various factors that affect visibility on Barbados especially the role of aerosols dominated by supramicrometer particles. We also consider the effects of other factors such as wind speed and precipitation. Finally, we note that the close relationship between summertime VR and dust

  12. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    Science.gov (United States)

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  13. Exposure to dust and its particle size distribution in shoe manufacture and repair workplaces measured with GRIMM laser dust monitor.

    Science.gov (United States)

    Stroszejn-Mrowca, Grazyna; Szadkowska-Stańczyk, Irena

    2003-01-01

    Owing to a diversified technological process and a great variety of products and materials used in shoe manufacture, workers may be exposed to dusts that contain different chemicals and particles of various shapes and sizes. The aim of this study was to assess the dust exposure, taking account of concentration of particular size fractions according to the European Standard Norm, and to analyze particle size distribution in inhalable dust at selected workplaces in a modern shoe manufacture plant and in a small shoe repair workshop in comparison with other industrial branches. In these two workplaces, the concentrations of dust, representing the inhalable, thoracic, and respirable fractions, were measured with the GRIMM 1.105 laser dust monitor. The particle size distribution in inhaled dust in the most characteristic workposts was analyzed. In the shoe manufacture plant, the concentrations ranged from 124 microg/m3 (leather cutting out) to 724 microg/m3 (scouring and milling of soles); concentrations of the thoracic and respirable fractions in the same workposts ranged from 74 microg/m3 to 412 microg/m3 and from 24 microg/m3 to 120 microg/m3, respectively. In the shoe repair workshop, the recorded concentrations were higher: the values ranged from 521 microg/m3 (gluing of shoes and soles, zipper exchange and heel abrasion) to 916 microg/m3 (uppers sewing and heel scouring) for the inhaled fraction; from 335 microg/m3 to 499 microg/m3 for the thoracic fraction; and from 88 microg/m3 to 120 microg/m3 for the respirable fraction. The mass median aerodynamic diameters of inhalable dust particles fell within the limits of 6.2-25.0 mm. Dust with the smallest particles (MMAD = 6.2 mm) was observed in shoe brushing and polishing, and with the largest particles (MMAD = 25.0 mm) in uppers sewing. The modern process of shoe manufacture is characterized by very low concentrations of inhalable dust and its fractions, they are considerably lower than occupational exposure limits

  14. Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-09-01

    This study evaluates mortality risks from all causes, circulatory diseases, and respiratory diseases associated with particulate matter (PM10 and PM2.5) concentrations and Asian dust storms (ADS) from 2000 to 2008 in Metropolitan Taipei. This study uses a distributed lag non-linear model with Poisson distribution to estimate the cumulative 5-day (lags 0-4) relative risks (RRs) and confidence intervals (CIs) of cause-specific mortality associated with daily PM10 and PM2.5 concentrations, as well as ADS, for total (all ages) and elderly (≥65 years) populations based on study periods (ADS frequently inflicted period: 2000-2004; and less inflicted period: 2005-2008). Risks associated with ADS characteristics, including inflicted season (winter and spring), strength (the ratio of stations with Pollutant Standard Index >100 is increase in PM10 from 10 μg/m3 to 50 μg/m3 was associated with increased all-cause mortality risk with cumulative 5-day RR of 1.10 (95% CI: 1.04, 1.17) for the total population and 1.10 (95% CI: 1.02, 1.18) for elders. Mortality from circulatory diseases for the elderly was related to increased PM2.5 from 5 μg/m3 to 30 μg/m3, with cumulative 5-day RR of 1.21 (95% CI: 1.02, 1.44) from 2005 to 2008. Compared with normal days, the mortality from all causes and circulatory diseases for the elderly population was associated with winter ADS with RRs of 1.05 (95% CI: 1.01, 1.08) and 1.08 (95% CI: 1.01, 1.15), respectively. Moreover, all-cause mortality was associated with shorter and less area-affected ADS with an RR of 1.04 for total and elderly populations from 2000 to 2004. Population health risk differed not only with PM concentration but also with ADS characteristics.

  15. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  16. Air Pollution Modelling to Predict Maximum Ground Level Concentration for Dust from a Palm Oil Mill Stack

    Directory of Open Access Journals (Sweden)

    Regina A. A.

    2010-12-01

    Full Text Available The study is to model emission from a stack to estimate ground level concentration from a palm oil mill. The case study is a mill located in Kuala Langat, Selangor. Emission source is from boilers stacks. The exercise determines the estimate the ground level concentrations for dust to the surrounding areas through the utilization of modelling software. The surround area is relatively flat, an industrial area surrounded by factories and with palm oil plantations in the outskirts. The model utilized in the study was to gauge the worst-case scenario. Ambient air concentrations were garnered calculate the increase to localized conditions. Keywords: emission, modelling, palm oil mill, particulate, POME

  17. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  18. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    Science.gov (United States)

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This

  19. Temporal Trends in Airborne Dust Concentrations at a Large Chrysotile Mine and its Asbestos-enrichment Factories in the Russian Federation During 1951-2001

    NARCIS (Netherlands)

    Schonfeld, Sara J; Kovalevskiy, Evgeny V; Feletto, Eleonora; Bukhtiyarov, Igor V; Kashanskiy, Sergey V; Moissonier, Monika; Straif, Kurt; McCormack, Valerie A; Schüz, Joachim; Kromhout, Hans

    2017-01-01

    Objectives: Mining and processing of chrysotile, an established carcinogen, has been undertaken in Asbest, Russian Federation since the late 1800s. Dust concentrations were routinely recorded at the open-pit mine and its asbestos-enrichment factories. We examined the temporal trends in these dust

  20. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure.

    Science.gov (United States)

    McGrath, Thomas J; Morrison, Paul D; Ball, Andrew S; Clarke, Bradley O

    2018-04-01

    Polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFR) have been used in a range of polymers to inhibit the spread of fires but also have a propensity to migrate out of consumer materials and contaminate indoor dust. In this study, a total of 57 dust samples were collected from 12 homes, eight offices and eight vehicles in Melbourne, Australia and analysed for eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) to determine human exposure risks from dust ingestion. Samples were analysed using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Legacy and replacement flame retardants were detected in all samples with overall ∑PBDE concentrations ranging from 120 to 1700,000 ng/g (median 2100 ng/g) and ∑NBFRs ranging from 1.1 to 10,000 ng/g (median 1800 ng/g). BDE-209 and DBDPE were the dominant compounds in dust samples, followed by congeners associated with commercial Penta-BDE formulations (-47, -99, -100, -153 and -154) and then EH-TBB of the FireMaster 550 and BZ-54 products. ∑Penta-BDE concentrations were elevated in office samples compared with homes and vehicles, while EH-TBB and BDE-209 measured higher concentrations in vehicles compared with their respective levels in homes and offices. Risk assessment estimates revealed the majority of exposure to occur in the home for both adults and toddlers in the City of Melbourne. Generally, body weight adjusted exposure to PBDEs and NBFRs was predicted to be 1 to 2 orders of magnitude higher for toddlers than adults. Estimated rates of BDE-47, -99, -153 and -209 ingestion were each 2 orders of magnitude or more below the USEPA's prescribed oral reference dose values (RfDs) for typical exposure scenarios. However, exposure rates for BDE-47 and -99 reached as high as 52 and 95% of RfDs, respectively, for adults and 4.4 and 7

  1. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Science.gov (United States)

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  2. The spatial concentration of dust emissions measured by using 3D scanning lidar in the open storage yards of steel-making company

    Science.gov (United States)

    Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen

    2017-06-01

    The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.

  3. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  4. 42 CFR 84.1130 - Respirators; description.

    Science.gov (United States)

    2010-10-01

    ...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84...., dust clouds produced in mining, quarrying, and tunneling, and in dusts produced during industrial... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying...

  5. Dust deposition and ambient PM10 concentration in northwest China: Spatial and temporal variability

    Science.gov (United States)

    Aeolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable continental deposition data are scarce in central Asia. Located in the eastern part of central Asia, Xinjiang Province of northwestern China has long played a ...

  6. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers

    DEFF Research Database (Denmark)

    Langer, Sarka; Weschler, Charles J.; Fischer, Andreas

    2010-01-01

    (diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP)) and three PAHs (pyrene, benz[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P)). The three PAHs and DEHP were detected in dust samples from all sites, while...... DEP. DnBP, DiBP and BBzP were detected in more than 75% of the bedrooms and more than 90% of the daycare centers. The dust mass-fractions of both phthalates and PAHs were log-normally distributed. With the exception of DEP, the mass-fractions of phthalates in dust were higher in daycare centers than...... homes: PAH mass-fractions in dust were similar in the two locations. There was no correlation among the different phthalates in either homes or daycare centers. In contrast, the PAH were correlated with one another more strongly so in homes (R-2 = 0.80-0.90) than in daycare centers (R-2 = 0...

  7. The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China

    Science.gov (United States)

    Qi, Jianhua; Liu, Xiaohuan; Yao, Xiaohong; Zhang, Ruifeng; Chen, Xiaojing; Lin, Xuehui; Gao, Huiwang; Liu, Ruhai

    2018-01-01

    Asian dust has been reported to carry anthropogenic reactive nitrogen during transport from source areas to the oceans. In this study, we attempted to characterize NH4+ and NO3- in atmospheric particles collected at a coastal site in northern China during spring dust events from 2008 to 2011. Based on the mass concentrations of NH4+ and NO3- in each total suspended particle (TSP) sample, the samples can be classified into increasing or decreasing types. In Category 1, the concentrations of NH4+ and NO3- were 20-440 % higher in dust day samples relative to samples collected immediately before or after a dust event. These concentrations decreased by 10-75 % in the dust day samples in Categories 2 and 3. Back trajectory analysis suggested that multiple factors, such as the transport distance prior to the reception site, the mixing layer depth on the transport route and the residence time across highly polluted regions, might affect the concentrations of NH4+ and NO3-. NH4+ in the dust day samples was likely either in the form of ammonium salts existing separately to dust aerosols or as the residual of incomplete reactions between ammonium salts and carbonate salts. NO3- in the dust day samples was attributed to various formation processes during the long-range transport. The positive matrix factorization (PMF) receptor model results showed that the contribution of soil dust increased from 23 to 36 % on dust days, with decreasing contributions from local anthropogenic inputs and associated secondary aerosols. The estimated deposition flux of NNH4++NO3- varied greatly from event to event; e.g., the dry deposition flux of NNH4++NO3- increased by 9-285 % in Category 1 but decreased by 46-73 % in Category 2. In Category 3, the average dry deposition fluxes of particulate nitrate and ammonium decreased by 46 % and increased by 10 %, respectively, leading to 11-48 % decrease in the fluxes of NNH4++NO3-.

  8. [Occupational exposure to silica dust by selected sectors of national economy in Poland based on electronic database].

    Science.gov (United States)

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena; Stroszejn-Mrowca, Grazyna

    2008-01-01

    To evaluate occupational exposure to dusts, the Nofer Institute of Occupational Medicine in Łódź, in collaboration with the Chief Sanitary Inspectorate, has developed the national database to store the results of routine dust exposure measurements performed by occupational hygiene and environmental protection laboratories in Poland in the years 2001-2005. It was assumed that the collected information will be useful in analyzing workers' exposure to free crystalline silica (WKK)-containing dusts in Poland, identyfing exceeded hygiene standards and showing relevant trends, which illustrate the dynamics of exposure in the years under study. Inhalable and respirable dust measurement using personal dosimetry were done according to polish standard PN-91/Z-04030/05 and PN-91/Z-04030/06. In total, 148 638 measurement records, provided by sanitary inspection services from all over Poland, were entered into the database. The database enables the estimation of occupational exposure to dust by the sectors of national economy, according to the Polish Classification of Activity (PKD) and by kinds of dust. The highest exposure level of inhalable and respirable dusts was found in coal mining. Also in this sector, almost 60% of surveys demonstrated exceeded current hygiene standards. High concentrations of both dust fractions (inhalable and respirable) and a considerable percentage of measurements exceeding hygiene standards were found in the manufacture of transport equipment (except for cars), as well as in the chemical, mining (rock, sand, gravel, clay mines) and construction industries. The highest percentage of surveys (inhalable and respirable dust) showing exceeded hygiene standards were observed for coal dust with different content of crystalline silica, organic dust containing more than 10% of SiO2, and highly fibrosis dust containing more than 50% of SiO2.

  9. Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.; Vallyathan, V.; Green, F.H.Y. [NIOSH, Cincinnati, OH (United States)

    2009-08-15

    Previous studies have shown associations between dust exposure or lung burden and emphysema in coal miners, although the separate contributions of various predictors have not been clearly demonstrated. The objective was to quantitatively evaluate the relationship between cumulative exposure to respirable coal mine dust, cigarette smoking, and other factors on emphysema severity. The study group included 722 autopsied coal miners and nonminers in the United States. Data on work history, smoking, race, and age at death were obtained from medical records and questionnaire completed by next-of-kin. Emphysema was classified and graded using a standardized schema. Job-specific mean concentrations of respirable coal mine dust were matched with work histories to estimate cumulative exposure. Relationships between various metrics of dust exposure (including cumulative exposure and lung dust burden) and emphysema severity were investigated in weighted least squares regression models. Emphysema severity was significantly elevated in coal miners compared with nonminers among ever- and never-smokers (P < 0.0001). Cumulative exposure to respirable coal mine dust or coal dust retained in the lungs were significant predictors of emphysema severity (P < 0.0001) after accounting for cigarette smoking, age at death, and race. The contributions of coal mine dust exposure and cigarette smoking were similar in predicting emphysema severity averaged over this cohort. Coal dust exposure, cigarette smoking, age, and race are significant and additive predictors of emphysema severity in this study.

  10. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    International Nuclear Information System (INIS)

    Walsh, P T; Forth, A R; Clark, R D R; Dowker, K P; Thorpe, A

    2009-01-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  11. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Cow allergen (Bos d2) and endotoxin concentrations are higher in the settled dust of homes proximate to industrial-scale dairy operations.

    Science.gov (United States)

    Williams, D' Ann L; McCormack, Meredith C; Matsui, Elizabeth C; Diette, Gregory B; McKenzie, Shawn E; Geyh, Alison S; Breysse, Patrick N

    2016-01-01

    Airborne contaminants produced by industrial agricultural facilities contain chemical and biological compounds that can impact the health of residents living in close proximity. Settled dust can be a reservoir for these contaminants and can influence long-term exposures. In this study, we sampled the indoor- and outdoor-settled dust from 40 homes that varied in proximity to industrial-scale dairies (ISD; industrial-scale dairy, a term used in this paper to describe a large dairy farm and adjacent waste sprayfields, concentrated animal feeding operation or animal feeding operation, that uses industrial processes) in the Yakima Valley, Washington. We analyzed settled dust samples for cow allergen (Bos d2, a cow allergen associated with dander, hair, sweat and urine, it is a member of the lipocalin family of allergens associated with mammals), mouse allergen (Mus m1; major mouse allergen, a mouse urinary allergen, in the lipocalin family), dust mite allergens (Der p1 (Dermatophagoides pteronissinus 1) and Der f1 (Dermatophagoides farinae 1)), and endotoxin (a component of the cell walls of gram negative bacteria, lipopolysaccharide, which can be found in air and dust and can produce a strong inflammatory response). A concentration gradient was observed for Bos d2 and endotoxin measured in outdoor-settled dust samples based on proximity to ISD. Indoor-settled dust concentrations of Bos d2 and endotoxin were also highest in proximal homes. While the associated health effects of exposure to cow allergen in settled dust is unknown, endotoxin at concentrations observed in these proximal homes (100 EU/mg) has been associated with increased negative respiratory health effects. These findings document that biological contaminants emitted from ISDs are elevated in indoor- and outdoor-settled dust samples at homes close to these facilities and extend to as much as three miles (4.8 km) away.

  13. Human exposure to brominated flame retardants through dust in different indoor environments: Identifying the sources of concentration differences in hair from men and women.

    Science.gov (United States)

    Li, Junqi; Dong, Zheng; Wang, Ying; Bao, Junsong; Yan, Yijun; Liu, Anming; Jin, Jun

    2018-08-01

    Brominated flame retardants (BFRs) can accumulate in humans and are associated with adverse health effects. The study was conducted to determine the differences in Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardant (Alt-BFR) concentrations between men and women. We analyzed hair samples from 14 male and 20 female university students, paired dust samples from their dormitories (10 for males and 8 for females), and six dust samples from university teaching buildings. The total PBDE concentrations in hair from females were significantly (three times) higher (p = 0.012) than that from males (means 372 and 109 ng/g, respectively). The mean total PBDE concentrations in classroom and dormitory dust were 36100 and 2012 ng/g, respectively. The PBDE patterns were different in the male and female hair samples, as were the patterns in the classroom and dormitory dust. There are no reports concerning human exposure to BFRs through dust that was assessed considering academic and residential environments simultaneously. The differences between BFR exposure for males and females and the differences between BFR concentrations in hair samples from males and females were consistent for 71.4% of the compounds. However, using only dormitory dust in the calculations gave consistent differences only for 28.6% of the compounds, suggesting that the BFR concentration differences in hair were mainly because females spent much more time than males in classrooms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  15. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    Science.gov (United States)

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  16. Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?

    DEFF Research Database (Denmark)

    Levin, Marcus; Witschger, Olivier; Bau, Sebastien

    2016-01-01

    A comparison between various methods for real-time measurements of lung deposited surface area (LDSA) using spherical particles and powder dust with specific surface area ranging from 0.03 to 112 m2 g-1 was conducted. LDSA concentrations measured directly using Nanoparticle Surface Area Monitor...... gravimetrical filter measurements and specific surface areas. Measurement of LDSA showed very good correlation in measurements of spherical particles (R2 > 0.97, Ratio 1.0 to 1.04). High surface area nanomaterial powders showed a fairly reliable correlation between NSAM and Aerotrak (R2 0...... present. We conclude that there is currently insufficient reliability and comparability between methods in the measurement of LDSA concentrations. Further development is required to enable use of LDSA for reliable dose metric and regulatory enforcement of exposure....

  17. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  18. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species?

    Science.gov (United States)

    Eller, A. S.; Wright, I.; Cernusak, L. A.

    2013-12-01

    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  19. Radiation dose to workers due to the inhalation of dust during granite fabrication

    International Nuclear Information System (INIS)

    Zwack, L M; Stewart, J H; McCarthy, J F; Allen, J G; McCarthy, W B

    2014-01-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr −1 ) and limits applicable to the general public (1 mSv yr −1 ). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m −3 over a full year had an estimated radiation dose of 0.062 mSv yr −1 . Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr −1 and 0.002 mSv yr −1 , respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr −1 . (paper)

  20. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  1. Contrasting respirable quartz and kaolin retention of lecithin surfactant and expression of membranolytic activity following phospholipase A2 digestion.

    Science.gov (United States)

    Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D

    1992-11-01

    Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.

  2. Evaluation of the concentration of allergens from mites in fur and households dust of dogs with atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Dévaki L. de Assunção

    Full Text Available ABSTRACT: This study evaluated the concentration of Der p 1, Der f 1 and Blo t 5 in the fur and households of 20 dogs with atopic dermatitis (AD and 20 healthy dogs. The diagnosis of AD was clinical based on Favrot’s criteria. Dust samples were collected with a domestic vacuum cleaner. For each site, 1m2 was vacuumed for 2 min. The samples were collected in separate filters, transferred into plastic containers, sealed and kept frozen until ELISA analysis. In the fur of atopic dogs the average concentration of Der p 1 was 0.25μg/g compared to 0.03μg/g in healthy dogs. In households with atopic dogs the highest concentrations of Der p 1 were found in carpets (2.18μg/g, followed by couches (1.53μg/g, beds (1.14μg/g, dogs’ bed linen (0.64μg/g and floors (0.14μg/g. The concentrations of Der p 1 on carpets, couches and beds were significantly higher than in atopic dogs’ fur (p0.05. The concentrations of Der p 1, Der f 1 and Blo t 5 were equivalent in atopic and non-atopic dog’s households. Among the allergens studied, Der p 1 was the most commonly found, predominantly in carpets and couches.

  3. Concentration of the genera Aspergillus, Eurotium and Penicillium in 63-μm house dust fraction as a method to predict hidden moisture damage in homes

    Directory of Open Access Journals (Sweden)

    Assadian Ojan

    2009-07-01

    Full Text Available Abstract Background Quantitative measurements of mould enrichment of indoor air or house dust might be suitable surrogates to evaluate present but hidden moisture damage. Our intent was to develop a house-dust monitoring method to detect hidden moisture damage excluding the influence of outdoor air, accumulated old dust, and dust swirled up from room surfaces. Methods Based on standardized measurement of mould spores in the 63-μm fraction of house dust yielded by carpets, the background concentrations were determined and compared to simultaneously obtained colony numbers and total spore numbers of the indoor air in 80 non-mouldy living areas during summer and winter periods. Additionally, sampling with a vacuum-cleaner or manual sieve was compared to sampling with a filter holder or sieving machine, and the evaluative power of an established two-step assessment model (lower and upper limits was compared to that of a one-step model (one limit in order to derive concentration limits for mould load in house dust. Results Comparison with existing evaluation procedures proved the developed method to be the most reliable means of evaluating hidden moisture damage, yielding the lowest false-positive results (specificity 98.7%. Background measurements and measurements in 14 mouldy rooms show that even by evaluating just the indicator genera in summer and winter, a relatively certain assessment of mould infestation is possible. Conclusion A one-step evaluation is finally possible for house dust. The house-dust evaluation method is based on analysis of the indicator genera Aspergillus, Eurotium and Penicillium spp., which depend on the total fungal count. Inclusion of further moisture indicators currently appears questionable, because of outdoor air influence and the paucity of measurements.

  4. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.; Jin, X.D.; Gu, C.H. [China Medical University, Shenyang (China)

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  5. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    International Nuclear Information System (INIS)

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  6. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia).

    Science.gov (United States)

    Zibret, Gorazd

    2012-05-01

    This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.

  7. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece

    International Nuclear Information System (INIS)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-01-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑ 21 PBDE) in A/C dust ranged between 84 and 4062 ng g −1 with a median value of 1092 ng g −1 , while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day −1 (median 12 ng day −1 ). - Highlights: • PBDEs were investigated in dust of A/C filters in occupational settings in Thessaloniki, Greece. • BDE-209 was found to be the most abundant BDE congener. • High levels of PBDEs were found in a newspaper building, internet cafes and electronic shops. • PBDEs were attributable to the extensive presence and/or usage of electronic devices. • Exposure of employees to PBDEs via indoor dust ingestion was estimated at 12 ng day −1 . - PBDEs were for the first time measured in dust from central A/C filters in workplaces of Greece and their concentrations were used to estimate the non-dietary human exposure

  8. A STUDY OF FISCHER 344 RATS EXPOSED TO SILICA DUST FOR SIX MONTHS AT CONCENTRATIONS OF 0, 2, 10 OR 20 MG / M3.

    Energy Technology Data Exchange (ETDEWEB)

    KUTZMAN,R.S.

    1984-02-01

    The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. Fischer-344 rats were exposed for 6 hours/day, 5 days/week for 6 months to either 0, 2, 10, or 20 mg SiO{sub 2}/m{sup 3}. The general appearance of the exposed rats was not different from that of the controls. Interestingly, female rats exposed to silica dust, at all tested concentrations, gained more weight than the controls. The lung weight and the lung-to-body weight ratio was greater in the male rats exposed to the highest concentration of silica dust.

  9. Concentrations of Semivolatile Organic Compounds Associated with African Dust Air Masses in Mali, Cape Verde, Trinidad and Tobago, and the U.S. Virgin Islands, 2001-2008

    Science.gov (United States)

    Garrison, Virginia H.; Foreman, William T.; Genualdi, Susan A.; Majewski, Michael S.; Mohammed, Azad; Simonich, Staci Massey

    2011-01-01

    Every year, billions of tons of fine particles are eroded from the surface of the Sahara Desert and the Sahel of West Africa, lifted into the atmosphere by convective storms, and transported thousands of kilometers downwind. Most of the dust is carried west to the Americas and the Caribbean in the Saharan Air Layer (SAL). Dust air masses predominately impact northern South America during the Northern Hemisphere winter and the Caribbean and Southeastern United States in summer. Dust concentrations vary considerably temporally and spatially. In a dust source region (Mali), concentrations range from background levels of 575 micrograms per cubic meter (mu/u g per m3) to 13,000 mu/u g per m3 when visibility degrades to a few meters (Gillies and others, 1996). In the Caribbean, concentrations of 200 to 600 mu/u g per m3 in the mid-Atlantic and Barbados (Prospero and others, 1981; Talbot and others, 1986), 3 to 20 mu/u g per m3 in the Caribbean (Prospero and Nees, 1986; Perry and others, 1997); and >100 mu/u g per m3 in the Virgin Islands (this dataset) have been reported during African dust conditions. Mean dust particle size decreases as the SAL traverses from West Africa to the Caribbean and Americas as a result of gravitational settling. Mean particle size reaching the Caribbean is <1 micrometer (mu/u m) (Perry and others, 1997), and even finer particles are carried into Central America, the Southeastern United States, and maritime Canada. Particles less than 2.5 mu/u m diameter (termed PM2.5) can be inhaled deeply into human lungs. A large body of literature has shown that increased PM2.5 concentrations are linked to increased cardiovascular/respiratory morbidity and mortality (for example, Dockery and others, 1993; Penn and others, 2005).

  10. [Assessment of occupational exposure to wood dust in the Polish furniture industry].

    Science.gov (United States)

    Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2017-02-28

    Occupational exposure to wood dust can be responsible for many different harmful health effects, especially in workers employed in the wood industry. The assessment of wood dust adverse effects to humans, as well as the interpretation of its concentration measurements carried out to assess potential occupational exposure are very difficult. First of all, it is due to possible occurrence of different kind of wood dust in the workplace air, namely wood dust from dozens of species of trees belonging to 2 kinds of botanical gymnosperms and angiosperms, as well as to its different chemical composition. Total dust and respirable wood dust in the workplace air in the furniture industry was determined using the filtration-gravimetric method in accordance with Polish Standards PN-Z-04030-05:1991 and PN-Z-04030-06:1991. Air samples were collected based on the principles of individual dosimetry. Total dust concentrations were 0.84-13.92 mg/m3 and inhalable fraction concentrations, obtained after the conversion of total dust by applying a conversion factor of 1.59, were 1.34-22.13 mg/m3. Respirable fraction concentrations were 0.38-4.04 mg/m3, which makes approx. 25% of the inhalable fraction on average. The highest concentrations occurred in grinding and the lowest during milling processes of materials used in the manufacture of furniture. The results indicate that the share of respirable fraction in the inhalable fraction of wood dust is considerable. Due to the determination of the threshold limit value (TLV) for the inhalable fraction of wood dust, it is necessary to replace the previously used samplers for total dust with samplers that provide quantitative separation of wood dust inhalable fractions in accordance with the convention of this fraction as defined in PN-EN 481:1998. Med Pr 2017;68(1):45-60. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust.

    Science.gov (United States)

    He, Ming-Jing; Lu, Jun-Feng; Ma, Jing-Ye; Wang, Huan; Du, Xiao-Fan

    2018-06-01

    Human hair and street dust from rural and urban areas in Chongqing were collected to analyze Organophosphate esters (OPEs) and phthalate esters (PAEs). Concentrations of OPEs in urban hair were significantly higher than those in rural hair, whereas PAEs concentrations in rural hair were significantly higher than those in urban hair. Different composition patterns of OPEs were observed in rural and urban hair, where tris (2-chloroisopropyl) phosphate (TCIPP), tris (butyl) phosphate (TNBP) and triphenyl phosphate (TPHP) were the dominating analogues in rural hair, accounting for 62.1% of the OPEs burden, and tris (methylphenyl) phosphate (TMPP) exhibited a high contribution in urban hair, responsible for 51.3% of total OPEs, which differed from the composition profiles in corresponding street dust. Analogous composition patterns of PAEs were found in hair of both areas. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DNBP), diisobutyl phthalate (DIBP) and diethyl phthalate (DEP) were the most abundant analogues in hair samples, while DEHP was the predominant analogue in dust samples. No clear tendency was obtained between the increasing ages and the concentrations of both compounds. Most OPEs and PAEs congeners showed significantly positive correlation with one another in rural hair. On the contrary, different correlation patterns were observed in urban hair for OPEs and PAEs, indicating multiple or additional sources existed in urban areas. Significant correlations of OPEs and PAEs were found between hair and corresponding street dust samples, but poor correlations of OPEs and PAEs were observed between rural hair and rural indoor dust, suggesting that street dust may be a predominant exogenous source for human exposure to OPEs and PAEs in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  13. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    Science.gov (United States)

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  14. Simulating the meteorology and PM10 concentrations in Arizona dust storms using the Weather Research and Forecasting model with Chemistry (Wrf-Chem).

    Science.gov (United States)

    Hyde, Peter; Mahalov, Alex; Li, Jialun

    2018-03-01

    Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM 10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM 10 ]).Furthermore, the model underestimated [PM 10 ] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model's erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM 10 ] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model's performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM 10 ] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM 10 ] in that region. Both 24-hr and 1-hr measured [PM 10 ] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM 10 ], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and

  15. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    Science.gov (United States)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of Simultaneous Exposure to Flour Dust and Airborne Fungal Spores in Milling Plant

    Directory of Open Access Journals (Sweden)

    Alireza Dehdashti

    2016-01-01

    Full Text Available Background and Objectives: Wheat flour as an organic allergen particle has an extensive respiratory exposure in milling industry and related industries. Simultaneous exposure to flour dust and fungal spores causes infectious disease, cancers, and impaired pulmonary function tests. This research was carried out with the aim of assessing the concentration of respirable flour particles, determining the type, and concentration of fungal spores in breathing air of workers in milling industries. Methods: In this descriptive cross-sectional study, 42 area samples were collected on filter and analyzed gravimetrically. Using a specific sampling pump, sampling of bioaerosols and sabro dextrose agar medium of fungal spores, was performed. Microscopic analysis was applied to detect and quantify microorganisms as colony per cubic meter. Results: The mean and standard deviation of total respirable particles in the breathing air of workers was 6/57±1/69mg/m3, which exceeded occupational exposure limit. The concentration of fungal spores in workers’ breathing air ranged from 42 to 310 colony per cubic meter. The percentage of respirable to total dust particles produced in sieve vibration, bagging, and milling sections, were determined 67.83%, 32%, and 62.2%, respectively. Conclusion: The results of this study revealed that the concentration of respirable particles in wheat milling process exceeded the recommended level and the concentration of fungal spores was at the average level of occupational exposure according to ACGIH recommendation. Therefore, engineering controls are required in flour milling process to reduce the exposure of workers.

  17. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  18. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  19. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    International Nuclear Information System (INIS)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-01-01

    Highlights: ► Flotation concentrate and smelter dust were sampled and combined. ► Copper bioleaching from the combined was investigated. ► Two bio-reactors were investigated and optimized: stirred and airlift. ► STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu 2 S, CuS, and Cu 5 FeS 4 .Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  20. Saharan dust, climate variability, and asthma in Grenada, the Caribbean.

    Science.gov (United States)

    Akpinar-Elci, Muge; Martin, Francis E; Behr, Joshua G; Diaz, Rafael

    2015-11-01

    Saharan dust is transported across the Atlantic and interacts with the Caribbean seasonal climatic conditions, becoming respirable and contributing to asthma presentments at the emergency department. This study investigated the relationships among dust, climatic variables, and asthma-related visits to the emergency room in Grenada. All asthma visits to the emergency room (n = 4411) over 5 years (2001-2005) were compared to the dust cover and climatic variables for the corresponding period. Variation in asthma was associated with change in dust concentration (R(2) = 0.036, p asthma was positively correlated with rainfall (R(2) = 0.055, p asthma visits were inversely related to mean sea level pressure (R(2) = 0.123, p = 0.006) and positively correlated with relative humidity (R(2) = 0.593, p = 0.85). Saharan dust in conjunction with seasonal humidity allows for inhalable particulate matter that exacerbates asthma among residents in the Caribbean island of Grenada. These findings contribute evidence suggesting a broader public health impact from Saharan dust. Thus, this research may inform strategic planning of resource allocation among the Caribbean public health agencies.

  1. Grain elevator workers show work-related pulmonary function changes and dose-effect relationships with dust exposure.

    Science.gov (United States)

    Corey, P; Hutcheon, M; Broder, I; Mintz, S

    1982-01-01

    The purpose of this study was to determine whether grain handlers underwent work-related changes in their pulmonary function and, if so, to examine the dose-effect relationships with dust exposure. The pulmonary function of grain handlers was measured at the beginning and end of work shifts over a period of one week, during which their exposure to dust was measured daily. The results showed changes indicative of a within-day obstructive change, in addition to a small restrictive defect occurring over the course of a week. Civic outside labourers who were examined as a control group showed a similar within-week obstructive change without any associated restriction of lung volume. The data on the grain handlers were also used to examine the dose-effect relationships of dust exposure, both on baseline pulmonary function and on within-day changes in these measurements. The baseline flow rates of workers who did not wear a mask were found to vary inversely with their average exposure to respirable dust. In addition, the flow rates underwent a within-day decrease that varied directly with their corresponding exposure to respirable dust and was unrelated to mask wearing. The median of the slopes for this relationship indicated that 50% of the subjects had a decrease of at least 923 ml/s in the value of their Vmax50%VC for each 1 mg/m3 increase in the concentration of respirable dust. Non-respirable dust did not have a measurable effect either on the baseline or the within-day changes in pulmonary function. The acute changes were unaffected by age, duration of employment, or extent of smoking. PMID:7138793

  2. Toxicity of lunar dust assessed in inhalation-exposed rats.

    Science.gov (United States)

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.

  3. [Analysis and prevention of dust pollution caused by 5 common prosthetic materials].

    Science.gov (United States)

    Yang, Xiang-Wen; Wei, Bin; Zhu, Cao-Yun; Qian, Liang; Li, Yi-Han

    2017-10-01

    To analyze and evaluate dust pollution in prosthodontic clinic and make proposal for reasonable protection. This study analyzed the particle size, element composition and dust concentration of 5 materials which were commonly used in dental restorations (veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin, advanced artificial teeth) by using scanning electron microscopy (SEM), X-ray energy dispersive spectrometer(EDS) and dust concentration laser tester, in order to assess the effects of prosthodontic dust posed on medical staff health and put forward reasonable suggestions for prevention and control of dust pollution. The particle size of veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin and advanced artificial teeth was (2.15±3.00), (33.78±24.33), (7.78±11.86), (31.16±44.35) and (28.45±39.21)μm, respectively. The time weighted average respirable dust concentration of veneering ceramics was 0.393 mg/m 2 which was beyond the scope of national security. Dust pollution is serious in prosthodontic clinic to which we should pay more attention and take appropriate prevention measures.

  4. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  5. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces

    Science.gov (United States)

    Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700

  6. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.

    Science.gov (United States)

    Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.

  7. Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM10 Concentrations and Short-Term Associations with Mortality and Hospital Admissions

    Science.gov (United States)

    Stafoggia, Massimo; Zauli-Sajani, Stefano; Pey, Jorge; Samoli, Evangelia; Alessandrini, Ester; Basagaña, Xavier; Cernigliaro, Achille; Chiusolo, Monica; Demaria, Moreno; Díaz, Julio; Faustini, Annunziata; Katsouyanni, Klea; Kelessis, Apostolos G.; Linares, Cristina; Marchesi, Stefano; Medina, Sylvia; Pandolfi, Paolo; Pérez, Noemí; Querol, Xavier; Randi, Giorgia; Ranzi, Andrea; Tobias, Aurelio; Forastiere, Francesco

    2015-01-01

    Background: Evidence on the association between short-term exposure to desert dust and health outcomes is controversial. Objectives: We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources. Methods: We identified desert dust advection days in multiple Mediterranean areas for 2001–2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis. Results: On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring–summer, with increasing gradient of both frequency and intensity north–south and west–east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0–1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions. Conclusions: PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections. Citation: Stafoggia M, Zauli-Sajani S, Pey J, Samoli E, Alessandrini E, Basagaña X, Cernigliaro A, Chiusolo M, Demaria M, Díaz J, Faustini A

  8. Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM₁₀ Concentrations and Short-Term Associations with Mortality and Hospital Admissions.

    Science.gov (United States)

    Stafoggia, Massimo; Zauli-Sajani, Stefano; Pey, Jorge; Samoli, Evangelia; Alessandrini, Ester; Basagaña, Xavier; Cernigliaro, Achille; Chiusolo, Monica; Demaria, Moreno; Díaz, Julio; Faustini, Annunziata; Katsouyanni, Klea; Kelessis, Apostolos G; Linares, Cristina; Marchesi, Stefano; Medina, Sylvia; Pandolfi, Paolo; Pérez, Noemí; Querol, Xavier; Randi, Giorgia; Ranzi, Andrea; Tobias, Aurelio; Forastiere, Francesco

    2016-04-01

    Evidence on the association between short-term exposure to desert dust and health outcomes is controversial. We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources. We identified desert dust advection days in multiple Mediterranean areas for 2001-2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis. On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring-summer, with increasing gradient of both frequency and intensity north-south and west-east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0-1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions. PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections. Stafoggia M, Zauli-Sajani S, Pey J, Samoli E, Alessandrini E, Basagaña X, Cernigliaro A, Chiusolo M, Demaria M, Díaz J, Faustini A, Katsouyanni K, Kelessis AG, Linares C, Marchesi S, Medina S, Pandolfi P, P

  9. Exposure to dust mixtures containing free crystalline silica and mineral fibers

    International Nuclear Information System (INIS)

    Wozniak, H.; Wiecek, E.; Bielichowska-Cybula, G.

    1996-01-01

    Exposure to dust mixture containing at the same time respirable mineral fibres and free crystalline silica may occur in Poland in mines and in the Lower Silesia plants processing mineral raw materials as well as in all plants which use asbestos products and MMMF. Workposts where thermal insulation is exchange with possible phase transformations during operations under conditions of high temperature, expose particularly complex problems. In the work environment of this kind, dust concentration of free crystalline silica becomes important but not sufficient criterion for evaluating working conditions and it may be misleading. A range of studies indispensable for the proper evaluation of exposure to dust, covering together with measurement of dust and SiO 2 concentrations, determination of the mineral composition of dust, was developed. It was also found that the acceptable level of risk for neoplastic disease, namely 10(-3) can be attained in the work environment only if the concentration ranges from 0.05 to 0.1 f/cm 3 , that is equal to 20% of MAC value which is now binding in Poland. Cancer risk (lung cancer and mesothelioma jointly) during a 20-year exposure to concentrations equal to present MAC values should be estimated as about 10(-2) what indicates that risk is too high and it is necessary to diminish MAC values for asbestos dust. (author). 17 refs, 3 tabs

  10. The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Bornehag, Carl-Gustaf; Naydenov, Kiril Georgiev

    2008-01-01

    . Dust samples from the child's bedroom were collected in 177 homes and analysed for the content of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBzP), di-n-octyl phthalate (DnOP) and DEHP. Information on building characteristics and family...... spectra, and wood flooring. However, in a sub-group of homes with no use of polish, the concentration of DEHP was higher in homes with inspector-observed balatum compared with wood flooring but the difference was not significant may be due to a too small sample size....

  11. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  12. Calculation of risk for workers in dust working site

    Directory of Open Access Journals (Sweden)

    Geldová Erika

    2004-03-01

    Full Text Available The fibrogeneous dust is considered as a specific harmful substance in the mine working site. Such kind of dust cumulates in lungs and this fact usually results in lungs dusting, so - called pneumoconiosis. Thus, dustiness risk poses a probability of lungs damage by pneumoconiosis. For the calculation of dustiness risk it is needed to know the following data: the value of average dustiness kC in the working site per a definite time period, the dispersivity of dust “D” (it determines a portion of dust particles with a diameter under 5 µm, so - called respirable particles and the percentage content of quartz Qr in the respirable grain size fraction.The contribution presents the calculation of dustiness risk “R” according to the equation (1, where “R” is in percentage, “ša” is the analytically specific harmfulness and “KDc” is the total cumulative dust dose received by worker in time of its dust exposure.The total cumulative dust dose is calculated on the basis of the equation (4, where “kc” is the average dust concentration in the assessed time period, t–time of exposure, V –average amount of air inspired by exposed worker per time unit ( standardized on the value of 1,2 m3h-1,10-6-recalculation from mg to kg for “KDc”.If the values of “Qr”, “D” and “kc” during the worker exposure on a definite workplace are constant, the dustiness risk “R” is calculated according to the equation (1 and (5 respectively. In the case of “n” time intervals in that the values “Qr”, “D” and “kc” are known the dustiness risk “R” is calculated according to the equation (7. The total personal risk of worker is given by the equation (8.Conclusively, the influence of parameters change namely “Qr”, “D” and “kc” on the value of dustiness risk per equal time period is reported.

  13. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  14. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Intrapulmonary reactions of workers exposed to dust and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, T; Nakadate, T; Sakurai, M; Sakurai, Y

    1984-01-01

    Forty-one dust-and-ozone-exposed and 37 nonexposed workers, belonging to the Research and Development Division of a photo-copier manufacturing industry, were examined to assess the effect of the exposure to carbon, iron and resin dust and ozone in the air of the work environment by means of questionnaires on their physical condition, smoking habits and exposure history by interview, chest X-rays, testing of ventilatory functions, transcutaneous PO2 (tcPO2) test and H2O2-induced hemolysis test. The following results were obtained. Respirable dust concentrations in the air of the work place were 0.1-1.0 mg/m3, total dust concentrations 0.2-2.0 mg/m3, and ozone concentrations 0.004-0.06 ppm (0.008-0.12 mg/m3). According to the Japanese Classification of Radiographs of Pneumoconioses, the exposed workers showed a higher rate of profusion 0/1 and over, and category 1 and over (1/0 and over) than the nonexposed workers. Ventilatory function testing revealed no difference between exposed workers and nonexposed workers, but small airway narrowing was suspected in smoking workers in comparison with nonsmoking workers. Transcutaneous PO2 showed no difference between exposed and nonexposed workers, between smoking and nonsmoking workers, and between any of the paired six combinations out of the four groups of workers, i.e., nonsmoking and nonexposed, nonsmoking and exposed, smoking and nonexposed, and smoking and exposed. It was estimated by H2O2-induced hemolysis test that smoking and/or dust exposure, especially long-term exposure, gave rise to aggravation of fragility of the erythrocyte membrane by lipid peroxidation with ozone or active oxygen produced by the reaction of dust and alveolar macrophages.

  16. Evaluation of Dust Exposure among the Workers in Agricultural Industries in North-East India.

    Science.gov (United States)

    Dewangan, Krishna N; Patil, Mahesh R

    2015-11-01

    This study aims to quantify dust exposure among the workers in four different industrial settings: rice mills, flour mills, oil mills, and tea factories and to compare the obtained data with the permissible exposure limit (PEL) of Indian Union Ministry of Labour as well as to compare the dust exposure across activities and seasons. RespiCon(TM) particle sampler was used for collecting dust concentration in the breathing zone of the workers. In total, 149 workers participated in the study and 204 samples were collected. Samples were collected in the vicinity of different processing operations. Samples in the rice mills were collected for two consecutive years in two seasons; however samples from other industries were collected for 1 year. The results indicate that geometric mean (GM) of dust exposure was significantly (P workers are exposed to higher level of respirable dust as compared to the PEL, while total dust exposure to all the workers were higher than the PEL; thus, immediate reduction of dust exposure among the workers is necessary for preventing respiratory system impairment. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. [Comparative studies of personal and steady-state sampling for determining dust exposure in different job groups].

    Science.gov (United States)

    Cherneva, P; Lukanova, R

    1994-01-01

    The variability of the dust concentration in time and space, as well as the change of worker's place during the working process, define the necessity of introducing personal sampling in the hygiene control practice. However, the laboratory equipment with personal devices is still not sufficient. The aim of this work is to assess the dust exposure of the basic professional groups from the ore- and coal production in Bulgaria by personal sampling in comparative studies of the static ambient sampling used up to now. 63 full-shift investigations of the dust factor were performed on professional groups of miners of the polymetal and coal pits by static ambient devices-[Hygitest production] and personal [from firms "Casella", "Strolein" and "Gilian"] devices, after standardized methods. The results are data processed-by means of logarithmic normal distribution of the relation of the respirable dust concentrations, determined personally and by static ambient sampling. The limits of variation of this correlation are from 0.5 to 4.1 at average geometric value -0.95 and standard geometric deviation-1.8 i.e. both types of sampling are intersubstitutional for the examined groups and sites, as in the underground ores the professional risk of respirable dust is underestimated up to 4 times at static ambient sampling.

  18. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    Science.gov (United States)

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  19. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  20. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  1. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  2. Trace-element concentrations and water-soluble ions in size-segregated dust-borne and soil samples in Sistan, southeast Iran

    Science.gov (United States)

    Behrooz, Reza Dahmardeh; Esmaili-Sari, Abbas; Bahramifar, Nader; Kaskaoutis, D. G.; Saeb, Keivan; Rajaei, Fatemeh

    2017-04-01

    This study analyzes the chemical composition (water-soluble ions and trace elements) of the total suspended particles (TSP) and particulate matter less than 10 and 2.5 μm (PM10 and PM2.5) in the Sistan basin, southeast Iran during the dusty and windy period June - October 2014. Extreme TSP, PM10 and PM2.5 concentrations, means of 1624.8, 433.4 and 320.8 μgm-3, respectively, were recorded in the Zabol sampling site, while the examined water-soluble ions and trace metals constitute small fractions (∼4.1%-17.7%) of the particulate masses. Intense winds on the dust-storm days result in weathering of soil crust and deflation of evaporate minerals from the dried Hamoun lake beds in the Sistan basin. The soil samples are rich in Ca2+, SO42-, Na+ and Cl- revealing the existence of non-sea salts, as well as in Al, Fe and Mg, while the similarity in the chemical composition between soil and airborne samples indicates that the dust events over Sistan are local in origin. In contrast, low concentrations of secondary ions (i.e., nitrate) and heavy metals (i.e., Pb, Cr, Ni, Cu) indicate less anthropogenic and industrial emissions. Enrichment Factor analysis for TSP, PM10 and PM2.5 reveals that the anthropogenic sources contribute a substantial amount in the heavy metals rather than soil crust, while Al, Fe, Sn, Mg are mostly of crustal origin. The results provide essential knowledge in atmospheric chemistry over Sistan and in establishing mitigation strategies for air pollution control.

  3. Dust exposure in workers from grain storage facilities in Costa Rica.

    Science.gov (United States)

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China

    Science.gov (United States)

    Shi, Guitao; Chen, Zhenlou; Bi, Chunjuan; Wang, Li; Teng, Jiyan; Li, Yuansheng; Xu, Shiyuan

    2011-01-01

    Urban and suburban road dust samples were collected in the most populated city of China, Shanghai. Size fractions of dust particles were analyzed; metal levels of the dust were also measured. Human exposure to individual toxic metals through road dust was assessed for both children and adults. The results showed that dust particles from urban and suburban road were presented similar size distribution pattern, with most particles in the range of 100-400 μm. Urban road dust consisted of higher proportions of inhalable, thoracic and respirable particles with increased risk of adverse effects to human. In general, mean grain sizes of urban road dust were smaller than suburban dust. Total organic carbon contents and levels of Pb, Cd, Cu, Zn, Ni, Cr in urban dust were higher than those of suburban dust. But the concentrations of As and Hg from suburban dust were higher, indicting a different main source. The exposure pathway which resulted in the highest level of risk for human exposed to road dust was ingestion of this material, which was followed by dermal contact. Except for some locations, risk values of both cancer and non-cancer obtained in this study were in the receivable range on the whole. Children had greater health risks than adults. The overall risks of non-cancer in urban area were higher than those in suburban area, but the values of cancer in the two areas were comparable. As for the aggregate noncarcinogenic risk, Pb was of most concern regarding the potential occurrence of health impacts. Of the three carcinogenic metals As, Cr and Cd, the only mean risk higher than 10 -6 was Cr, accounting for a great percentage (95%) of the overall risk of cancer. Hence, potentially adverse health effects arising from Pb and Cr in road dust should arouse wide concern.

  5. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  6. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  7. Radioisotope dust pollution monitor

    International Nuclear Information System (INIS)

    Szepke, R.; Harasimczuk, J.; Dobrowiecki, J.

    1990-01-01

    Measuring principles and specification of two dust monitors: station-type AMIZ and portable-type PIK-10 for ambient air pollution are presented. The first one, a fully automatic instrument is destined for permanent monitoring of air pollution in preset sampling time from .25 to 24 hours. The second one was developed as a portable working model. Both instruments display their results in digital form in dust concentration units. (author)

  8. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  9. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage

  10. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  11. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  12. Effect of fluorine and of beta-indolacetic acid on the respiration of root tissue

    Energy Technology Data Exchange (ETDEWEB)

    Pilet, P E

    1964-01-01

    The auxin, beta-indolacetic acid, (BIAA) inhibited the elongation of Lens culinaris roots at all concentrations. At high concentrations fluoride had an inhibitor effect, but it had a stimulatory effect on root growth at low concentrations. BIAA mildly stimulated respiration at low concentrations and inhibited oxygen absorption at high concentrations. At concentrations stimulating respiration fluoride was found to reduce these stimulating effects caused by BIAA. Therefore, fluoride and BIAA acted as antagonists in their effect on respiration.

  13. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  14. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  15. Quantification of dust generating sources in gold and platinum mines.

    CSIR Research Space (South Africa)

    Biffi, M

    2003-03-01

    Full Text Available of workers from harmful respirable dust as well as projections for future work. Summary of dust levels from test mines Dust Levels [mg/m³] Mine Mine Type Dust Source Min Max Avg Crystalline Silica [%] Intake 0.09 1.57 0.46 Tips 0.23 0.65 0... ? The movement of people and rolling stock along haulages, travelling ways and production areas liberating settled dust, ? Rock crushing. ? Screening, grinding, milling and pulverising of the ore during processing. ? Backfill placement. Good practice...

  16. An analysis of employee exposure to organic dust at large-scale composting facilities

    Science.gov (United States)

    Sykes, P.; Allen, J. A.; Wildsmith, J. D.; Jones, K. P.

    2009-02-01

    The occupational health implications from exposure to dust, endotoxin and 1-3 β Glucan at commercial composting sites are uncertain. This study aims to establish employee exposure levels to inhalable and respirable dust, endotoxin and 1-3 β Glucan during various operational practices in the composting process. Personal samples were collected and the inhalable and respirable dust fractions were determined by gravimetric analysis. Endotoxin concentrations were determined using a Limulus Amebocyte Lysate assay (LAL). 1-3 β Glucan levels were estimated using a specific blocking agent to establish the contribution that these compounds gave to the original endotoxin assay. Employees' exposure to dust was found to be generally lower than the levels stipulated in the Control of Substances Hazardous to Health Regulations (COSHH) 2002 (as amended), (median inhalable fraction 1.08 mg/m3, min 0.25 mg/m3 max 10.80 mg/m3, median respirable fraction 0.05 mg/m3, min 0.02 mg/m3, max 1.49 mg/m3). Determination of the biological component of the dust showed that employees' exposures to endotoxin were elevated (median 31.5 EU/m3, min 2.00 EU/m3, max 1741.78 EU/m3), particularly when waste was agitated (median 175.0 EU/m3, min 2.03 EU/m3, max 1741.78 EU/m3). Eight out of 32 (25%) of the personal exposure data for endotoxin exceeded the 200 EU/m3 temporary legal limit adopted in the Netherlands and thirteen out of 32 (40.6%) exceeded the suggested 50 EU/m3 guidance level suggested to protect workers from respiratory health effects. A significant correlation was observed between employee inhalable dust exposure and personal endotoxin concentration (r = 0.728, phealth risks associated with endotoxin exposure at composting sites. Employee exposure levels and dose-response disease mechanisms are not well understood at this present time. Consequently, in light of this uncertainty, it is recommended that a precautionary approach be adopted in managing the potential health risks associated

  17. Iron mineralogy and bioaccessibility of dust generated from soils as determined by reflectance spectroscopy and magnetic and chemical properties--Nellis Dunes recreational area, Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Reynolds, Richard L.; Morman, Suzette A.; Moskowitz, Bruce; Kokaly, Raymond F.; Goossens, Dirk; Buck, Brenda J.; Flagg, Cody; Till, Jessica; Yauk, Kimberly; Berquó, Thelma S.

    2013-01-01

    Atmospheric mineral dust exerts many important effects on the Earth system, such as atmospheric temperatures, marine productivity, and melting of snow and ice. Mineral dust also can have detrimental effects on human health through respiration of very small particles and the leaching of metals in various organs. These effects can be better understood through characterization of the physical and chemical properties of dust, including certain iron oxide minerals, for their extraordinary radiative properties and possible effects on lung inflammation. Studies of dust from the Nellis Dunes recreation area near Las Vegas, Nevada, focus on characteristics of radiative properties (capacity of dust to absorb solar radiation), iron oxide mineral type and size, chemistry, and bioaccessibility of metals in fluids that simulate human gastric, lung, and phagolysosomal fluids. In samples of dust from the Nellis Dunes recreation area with median grain sizes of 2.4, 3.1, and 4.3 micrometers, the ferric oxide minerals goethite and hematite, at least some of it nanosized, were identified. In one sample, in vitro bioaccessibility experiments revealed high bioaccessibility of arsenic in all three biofluids and higher leachate concentration and bioaccessibility for copper, uranium, and vanadium in the simulated lung fluid than in the phagolysosomal fluid. The combination of methods used here to characterize mineral dust at the Nellis Dunes recreation area can be applied to global dust and broad issues of public health.

  18. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  19. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  20. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  1. Feasibility study of the dissolution rates of uranium ore dust, uranium concentrates and uranium compounds in simulated lung fluid

    International Nuclear Information System (INIS)

    Robertson, R.

    1986-01-01

    A flow-through apparatus has been devised to study the dissolution in simulated lung fluid of aerosol materials associated with the Canadian uranium industry. The apparatus has been experimentally applied over 16 day extraction periods to approximately 2g samples of < 38um and 53-75um particle-size fractions of both Elliot Lake and Mid-Western uranium ores. The extraction of uranium-238 was in the range 24-60% for these samples. The corresponding range for radium-226 was 8-26%. Thorium-230, lead-210, polonium-210, and thorium-232 were not significantly extracted. It was incidentally found that the elemental composition of the ores studied varies significantly with particle size, the radionuclide-containing minerals and several extractable stable elements being concentrated in the smaller size fraction. Samples of the refined compounds uranium dioxide and uranium trioxide were submitted to similar 16 day extraction experiments. Approximately 0.5% of the uranium was extracted from a 0.258g sample of unsintered (fluid bed) uranium dioxide of particle size < 38um. The corresponding figure for a 0.292g sample of uranium trioxide was 97%. Two aerosol samples on filters were also studied. Of the 88ug uranium initially measured on stage 2 of a cascade impactor sample collected from the yellow cake packing area of an Elliot Lake mill, essentially 100% was extracted over a 16 day period. The corresponding figure for an open face filter sample collected in a fuel fabrication plant and initially measured at 288ug uranium was approximately 3%. Recommendations are made with regard to further work of a research nature which would be useful in this area. Recommendations are also made on sampling methods, analytical methods and extraction conditions for various aerosols of interest which are to be studied in a work of broader scope designed to yield meaningful data in connection with lung dosimetry calculations

  2. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    Science.gov (United States)

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  3. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  4. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  5. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  6. Radiation, ventilation and dust studies at Agnew Lake mines

    International Nuclear Information System (INIS)

    Bigu, J.; Gangal, M.; Knight, G.; Regan, R.; Stefanich, W.

    1980-08-01

    Measurements of radon gas, radon and thoron decay products, ventilation, and aerosol (<= 0.13 μm) and respirable dust (<= 10 μm) concentrations were conducted at an underground uranium mine in the Agnew Lake, Ontario, area. Radon gas measurements were carried out with a radon gas continuous monitoring system, whereas the other variables were determined by grab-sampling techniques. Studies were conducted at three mine locations: a working stope, an exhaust area near the stope and a general intake area supplying fresh air to several stopes. Radiation and dust studies were carried out for different mining operations (mainly mucking and drilling) and environmental conditions. Underground barometric pressure did not seem to affect radon gas levels. No obvious effect on radiation and dust levels was readily observed nor could be correlated with underground meteorological data within the relatively narrow range the (meteorological) variables changed. Theoretical calculations for some radiation variables were done and compared with experimental values. Within the limitations of some of the calculations, overall fair agreement between experimental and theoretical data was found

  7. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  8. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  9. Respirators. Does your face fit

    Energy Technology Data Exchange (ETDEWEB)

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  10. Field trials of an electret based passive dust sampler in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Brown, R.C.; Arthur, J. [Health and Safety Laboratory, Sheffield (United Kingdom)

    1997-12-31

    An electret-based passive dust sampler has been developed by the Health and Safety Laboratory, UK. The device consists of a small disc of electret (polymer holding a permanent electric charge) held between earthen plates, and it acts by attaching charged dust particles to itself. The device does not require a pump and its rate of sampling is independent of external air velocity, provided that the velocity exceeds a low limiting value. Experiments have been carried out in two coal mines. In each experiment two passive sampler were mounted alongside an MRE sampler at the statutory sampling point in the return roadway. Both passive samplers were mounted vertically but in one the plane of the electret was parallel to the air flow and in the other it was perpendicular. The result obtained from the first mine showed a good correlation between gravimetric estimates of dust concentration obtained with the passive samplers and respirable dust concentrations obtained with MRE. The correlation between the two sets of results at the second mine was not quite as good as those of the first, but was reasonable. In no instance was any significant difference observed between samples obtained from pairs of passive samples in different orientations. 8 refs., 5 figs., 2 tabs.

  11. Demonstration of a dust control system for boom-type roadheader. Open-file report September 1979-July 1981

    International Nuclear Information System (INIS)

    Burnett, M.; Pokora, R.J.; Muldoon, T.

    1981-09-01

    This program was initiated by the Bureau of Mines to quantify the respirable dust problem caused by the use of roadheaders in underground metal-nonmetal mines with special emphasis on this problem in uranium mines. The objective was to develop methods or equipment to alleviate respirable dust and to implement a solution in a mine. Attempts to quantify the dust problem were made by a survey of MSHA records, a survey of State nine enforcement agencies, a survey of mine records, and dust measurements taken at two mines using roadheaders. The results are not conclusive because of limited and sometimes less than useful data; however, the study does indicate that a serious dust problem could and may exist. The report discusses the available data concerning respirable dust problems and presents a solution that can potentially help to solve the problem. The solution requires the use of blowing ventilation, onboard dust extraction at the source, filtration, and continued continued use of water sprays

  12. Worker exposure to silica dust in South African non-mining industries in Gauteng: An exploratory study

    CSIR Research Space (South Africa)

    Khoza, NN

    2012-06-01

    Full Text Available %, and sandblasting 2.4%. The overall maximum and minimum exposures were 5.772 and 0.009 mg/m?, respectively. Conclusion: Workers are potentially at high risk of contracting silicosis and other diseases associated with respirable silica dust. Dust control... and monitoring were inadequate in the industries visited. It is recommended that an in-depth study be conducted and that airborne dust-control programmes be implemented. Key words: non-mining industries, silica dust, respirable crystalline silica dust...

  13. Dust control for draglines

    Energy Technology Data Exchange (ETDEWEB)

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  14. 41 CFR 50-204.50 - Gases, vapors, fumes, dusts, and mists.

    Science.gov (United States)

    2010-07-01

    ... Soapstone 20 Talc 20 Portland cement 50 Graphite (natural) 15 Coat dust (respirable fraction less than 5% Si...-selector with the following characteristics: Aerodynamic diameter (unit density sphere) Percent passing...

  15. Investigating respirable particulates (PM10) around the world's largest mercury mine, Almaden, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W.; Jones, T. [Cardiff Univ., Cardiff, Wales (United Kingdom). Dept. of Earth Sciences; Moreno, T.; Richards, R. [Cardiff Univ., Cardiff, Wales (United Kingdom). School of Biosciences; Higueras, P. [Almaden Univ. of Castilla-La Mancha, Almaden (Spain). Dept. of Geological Engineering

    2003-07-01

    The Almaden area in Spain has been mined for mercury since pre-Roman days. There is no evidence for significant contamination of the groundwater supply, since the lack of pyrite in the mercury deposits has prevented the formation of acid mine drainage. However, the main recognized environmental problem related to mercury mining has been the progressive poisoning of workers who are in direct contact with mercury vapours. This paper presents results of a study in which dust samples were collected from former mining and urban locations around Almaden. The samples were processed to extract their fine, respirable fraction. Mining activities have left contaminated ground, which under semi-arid conditions has created respirable mercury-bearing dusts. In some places the ground is severely contaminated with mercury as cinnabar and as schuetteite. Some of the contaminated areas are used for livestock grazing and growing plants for human consumption. A higher incidence of mercury-bearing particles is found in the finer fraction. The sizes of the mercury-bearing resuspended particles at all sites varies from inhalable dust, through respirable dust, to fine and ultrafine size capable of reaching the deepest levels of the lung alveoli. The most significant contamination is associated with old processing plants. Dust samples collected from Almaden, a town of 6,500 inhabitants, were found to contain significant amounts of respirable mercury-bearing aerosols.

  16. Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK

    International Nuclear Information System (INIS)

    MacKinnon, G.; MacKenzie, A.B.; Cook, G.T.; Pulford, I.D.; Duncan, H.J.; Scott, E.M.

    2011-01-01

    Results are presented for a study of spatial distributions and temporal trends in concentrations of lead (Pb) from different sources in soil and vegetation of an arable farm in central Scotland in the decade since the use of leaded petrol was terminated. Isotopic analyses revealed that in all of the samples analysed, the Pb conformed to a binary mixture of petrol Pb and Pb from industrial or indigenous geological sources and that locally enhanced levels of petrol Pb were restricted to within 10 m of a motorway and 3 m of a minor road. Overall, the dominant source of Pb was historical emissions from nearby industrial areas. There was no discernible change in concentration or isotopic composition of Pb in surface soil or vegetation over the decade since the ban on the sale of leaded petrol. There was an order of magnitude decrease in Pb concentrations in road dust over the study period, but petrol Pb persisted at up to 43% of the total Pb concentration in 2010. Similar concentrations and spatial distributions of petrol Pb and non petrol Pb in vegetation in both 2001 and 2010, with enhanced concentrations near roads, suggested that redistribution of previously deposited material has operated continuously over that period, maintaining a transfer pathway of Pb into the biosphere. The results for vegetation and soil transects near minor roads provided evidence of a non petrol Pb source associated with roads/traffic, but surface soil samples from the vicinity of a motorway failed to show evidence of such a source. - Highlights: → A 10 year study of Pb concentrations and isotopic compositions in farmland. → Soil and vegetation showed no systematic decrease in Pb concentrations over 10 years. → Road dust Pb concentrations fell from 117 mg kg -1 in 2001 to 14.2 mg kg -1 in 2010. → Enhancement of petrol Pb only within 10m of a motorway and 3m of a minor road.

  17. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  18. Double Compressions of Atmospheric Depth by Geopotential Tendency, Vorticity, and Atmospheric Boundary Layer Affected Abrupt High Particulate Matter Concentrations at a Coastal City for a Yellow Dust Period in October

    Directory of Open Access Journals (Sweden)

    Hyo Choi

    2014-01-01

    Full Text Available Using GRIMM-aerosol sampler, NOAA-HYSPLIT model, and 3D-WRF-3.3 model, the transportation of dusts from Gobi Desert toward Gangneung city, Korea was investigated from 09:00 LST October 27 to 04:00 LST October 28, 2003. Maximum PM10 (PM2.5, PM1 concentration was detected with 3.8 (3.4, 14.1 times higher magnitude than one in non-Yellow Dust period. The combination of dusts transported from the desert under westerly wind with particulate matters and gases from vehicles on the road of the city caused high PM concentrations near the ground surface at 09:00 LST and their maxima at 17:00 LST near sunset with further pollutants from heating boilers in the resident area. Positive geopotential tendency at the 500 hPa level of the city (∂Φ/∂t; m day−1 corresponding to negative vorticity of -4×10-5 sec−1 (-2.5×10-5 sec−1 at 0900 LST (21:00 LST; at night was +83 m day−1 (+30 m day−1 and it caused atmospheric depth between 500 hPa level and the ground surface to be vertically expanded. However, its net reduction to −53 m/12 hrs until 21:00 LST indicated synoptic-scale atmospheric layer to be vertical shrunken, resulting in the increase of PM concentrations at 17:00 LST. Simultaneously, much shallower microscale stable nocturnal surface inversion layer (NSIL than daytime thermal internal boundary layer induced particulate matters to be merged inside the NSIL, resulting in maximum PM concentrations at 17:00 LST.

  19. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  20. [Asthma due to grain dust].

    Science.gov (United States)

    Baur, X; Preisser, A; Wegner, R

    2003-06-01

    The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.

  1. GPK helmets protecting from gas and dusts

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, Eh.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-08-01

    The GPK protective helmet with an integrated respirator system protecting a miner's respiratory system and eyes from gases and dusts is described. The system uses compressed air from the mine compressed air system. Air is supplied to the respirator by an elastic rubber pipe to 30 m long. The air cools the miner's head under the helmet and passes between a protective shield and the miner's face protecting eyes and the respiratory system. Air supply ranges from 100 to 150 l/min. The air supplied to the respirator is cleaned by a filter. The GPK system weighs 1.2 kg. The system has been tested under laboratory conditions and in two coal mines under operational conditions at longwall faces and during mine drivage. Tests showed that the GPK guarantees efficient cooling and protection from dust. Design of the GPK helmet with a respirator is shown in two schemes. Technical specifications of the system are given.

  2. Mortality from non‐malignant respiratory diseases among people with silicosis in Hong Kong: exposure–response analyses for exposure to silica dust

    Science.gov (United States)

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-01-01

    Objectives To examine the exposure–response relationships between various indices of exposure to silica dust and the mortality from non‐malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. Methods The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. Results 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981–99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure–response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. Conclusion This study documented an exposure–response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects. PMID:16973737

  3. Mortality from non-malignant respiratory diseases among people with silicosis in Hong Kong: exposure-response analyses for exposure to silica dust.

    Science.gov (United States)

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-02-01

    To examine the exposure-response relationships between various indices of exposure to silica dust and the mortality from non-malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981-99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure-response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. This study documented an exposure-response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects.

  4. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  5. Hygienic assessment of asbestos containing dust in the air of the working zone at thermal power plants

    Directory of Open Access Journals (Sweden)

    Moshkovskiy V.E.

    2016-09-01

    Full Text Available Asbestos and artificial mineral fibers were used actively at thermal power plants (TPP as heat insulation of pipes, seal plates, electrical insulation, etc. But content of asbestos fibers in the air of working zone at TPP was not registered to date. Therefore, aim of the work was to assess asbestos containing dust in the air of working zone at steam turbine and gas turbine TPP in the east region of the country. It was found that old insulation at TPP is mixture of asbestoses that contains chrysotile asbestos and traces of amphibole asbestoses – crocidolite and anthophyllite. In the majority of investigated workplaces at the steam turbine TPP significant dust generation with exceed of maximum one-time exposure limits (2 mg/m3 was observed. Concentration of respirable fibers in the air of working zone in all workplaces did not exceed actual hygienic standard (1 fiber/cm3.

  6. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  7. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  8. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  9. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  10. Correlation between Yellow Dust and Radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    AIZaabia, Mouza A [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Byoung-Jik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, {sup 137}Cs and {sup 7}Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides.

  11. Correlation between Yellow Dust and Radioactivity

    International Nuclear Information System (INIS)

    AIZaabia, Mouza A; Kim, Byoung-Jik

    2015-01-01

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, 137 Cs and 7 Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides

  12. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  13. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  14. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  15. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  16. Quantitative evaluation of the protective effect of respirators

    International Nuclear Information System (INIS)

    Murata, Mikio

    1983-01-01

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF 6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  17. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  18. The management of house dust mite allergies

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.; Schober, G.; Kniest, F.M.

    1990-01-01

    A safe and practical home sanitation procedure for the removal of house dust mites (Dermatophagoides pteronyssinus) and their allergens is described. The severity of mite infestation was assessed with the use of the Acarex test, which measures the concentration of guanine in house dust, and all

  19. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  20. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  1. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    streams observed by Apollo astronauts and potentially also by the Clementine spacecraft. In addition to the Surveyor images of lunar horizon glow and the high altitude streamer measurements, the Apollo 17 Lunar Ejecta and Meteorite surface package detected signals consistent with the impact of relatively slow-moving dust particles that may have been charged dust electrostatically levitated from the surface. There is renewed interest in this near-surface dust environment with plans to return robotic landers and astronauts to the lunar surface. No Apollo-era instruments were specifically designed to detect or measure dust levitated off the lunar surface. One new experiment under study is the Autonomous Lunar Dust Observer (ALDO). ALDO is a high-sensitivity scanning lidar (laser radar) that autonomously maps and records its 3-D dust environment. Flexibility of programmable scan pattern enables ALDO to characterize the dust context in and around experiment sites. Repeated shallow angle scans in a vertical plane enable high vertical resolution studies of dust levitation near the ground. Single elevation angle sector or full azimuth scans enable large-area statistical surveys of the frequency and size of ejecta plumes from micrometeoroid impacts, and vertical or fixed-angle stares enable very high sensitivity dust profiles to extended ranges. It is estimated that backscatter from dust concentrations as low as 1/cm3 can be measured. The concept is equally applicable to surface and atmospheric studies of other airless bodies.

  2. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  3. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  4. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  5. Effect of organic synthetic food colours on mitochondrial respiration.

    Science.gov (United States)

    Reyes, F G; Valim, M F; Vercesi, A E

    1996-01-01

    Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by alpha-ketoglutarate or succinate. This inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.

  6. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  7. Field evaluation of air-blocking shelf for dust control on blasthole drills

    Energy Technology Data Exchange (ETDEWEB)

    J. Drew Potts; W. Randolph Reed [Office of Mine Safety and Health Research, NIOSH, Pittsburgh, PA (United States). Dust Control, Ventilation, and Toxic Substance Branch

    2011-03-15

    In previous studies, an air-blocking shelf has been shown to be successful in reducing respirable dust leakage from the drill shroud in a laboratory setting. Dust reductions of up to 81% were achieved with the shelf under operating conditions consisting of a 1.9:1 collector-to-bailing airflow ratio and a 5.1-cm gap between the shroud and ground. Recent research focused on evaluating the shelf on two actual operating blasthole drills, in much more severe environments. In the field, the shelf reduced dust levels in the areas surrounding one operating blasthole drill by 70%. Dust reductions measured in the immediate vicinity of the shroud were reduced by 66% at one mine and 81% at the other mine. These field tests confirm that the air-blocking shelf is useful for reducing respirable dust generation from blasthole drills.

  8. 76 FR 12648 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2011-03-08

    ... be appropriate to use on a short-term basis. 13. The proposed rule addresses (1) which occupations... suggested alternative timeframes, particularly in light of the CPDM's limited memory capacity of about 20... the risk that they will suffer material impairment of health or functional capacity over their working...

  9. Determinants of dust exposure in tunnel construction work.

    Science.gov (United States)

    Bakke, Berit; Stewart, Patricia; Eduard, Wijnand

    2002-11-01

    In tunnel construction work, dust is generated from rock drilling, rock bolting, grinding, scaling, and transport operations. Other important dust-generating activities are blasting rock and spraying wet concrete on tunnel walls for strength and finishing work. The aim of this study was to identify determinants of dust exposure in tunnel construction work and to propose control measures. Personal exposures to total dust, respirable dust, and alpha-quartz were measured among 209 construction workers who were divided into 8 job groups performing similar tasks: drill and blast workers, shaft drilling workers, tunnel boring machine workers, shotcreting operators, support workers, concrete workers, outdoor concrete workers, and electricians. Information on determinants was obtained from interviewing the workers, observation by the industrial hygienist responsible for the sampling, and the job site superintendent. Multivariate regression models were used to identify determinants associated with the dust exposures within the job groups. The geometric mean exposure to total dust, respirable dust, and alpha-quartz for all tunnel workers was 3.5 mg/m(3) (GSD = 2.6), 1.2 mg/m(3) (GSD = 2.4), and 0.035 mg/m(3) (GSD = 5.0), respectively. A total of 15 percent of the total dust measurements, 5 percent of the respirable dust, and 21 percent of the alpha-quartz exceeded the Norwegian OELs of 10 mg/m(3), 5 mg/m(3), and 0.1 mg/m(3), respectively. Job groups with highest geometric mean total dust exposure were shotcreting operators (6.8 mg/m(3)), tunnel boring machine workers (6.2 mg/m(3)), and shaft drilling workers (6.1 mg/m(3)). The lowest exposed groups to total dust were outdoor concrete workers (1.0 mg/m(3)), electricians (1.4 mg/m(3)), and support workers (1.9 mg/m(3)). Important determinants of exposure were job group, job site, certain tasks (e.g., drilling and scaling), the presence of a cab, and breakthrough of the tunnel. The use of ventilated, closed cabs appeared to be

  10. Observed spectral features of dust

    International Nuclear Information System (INIS)

    Willner, S.P.

    1984-01-01

    The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)

  11. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  12. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  13. Reducing dust and allergen exposure in bakeries

    Directory of Open Access Journals (Sweden)

    Howard J Mason

    2017-12-01

    Full Text Available Bakers have a continuing high incidence of occupational allergic asthma. In factory bakeries they are exposed not only to flour dust containing allergens, but also improvers whose ingredients enhance the strength and workability of the dough and its speed of rising. Improvers are flour-based but can contain added soya, fungal or bacterial enzymes that are also allergenic, as well as vegetable oil, calcium sulphate/silicate and organic esters. This study investigated the dustiness of the components used in factory bakeries and whether altering improver ingredients could reduce dust and allergen exposure. A standardised rotating drum test was employed on the individual components, as well as a representative improver and three practicable improver modifications by decreasing calcium sulphate, calcium silicate or increasing oil content. Levels of dust, the allergens wheat flour amylase inhibitor (WAAI and soya trypsin inhibitor (STI were measured in the generated inhalable, thoracic and respirable sized fractions. A “scooping and pouring” workplace simulation was also performed. Initial tests showed that dustiness of several wheat flours was relatively low, and even lower for soya flour, but increased in combination with some other improver components. All three improver modifications generally reduced levels of dust, STI and WAAI, but increasing oil content significantly decreased dust and STI in comparison to the standard improver and those improvers with reduced calcium silicate or sulphate. The simulation demonstrated that increased oil content reduced inhalable levels of gravimetric dust, STI and WAAI. Changing improver formulation, such as increasing oil content of flour by a small amount, may represent a simple, practical method of reducing bakery workers’ exposure to dust and allergens where improvers are used. It may be a useful adjunct to engineering control, changes to work practices and appropriate training in reducing the risk to

  14. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  15. Personal exposure versus monitoring station data for respirable particles

    Energy Technology Data Exchange (ETDEWEB)

    Sega, K; Fugas, M

    1982-01-01

    Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = -0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.

  16. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  17. Separation of mycotoxin-containing sources in grain dust and determination of their mycotoxin potential.

    Science.gov (United States)

    Palmgren, M S; Lee, L S

    1986-01-01

    Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472

  18. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... deformed stainless steel flakes is transformed to expanded martensite/austenite during low-temperature carburization. Various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. The most promising procedure...... powders and flakes. The nature of the decomposition products, carbides of the form M23C6 and M7C3, were evaluated by X-ray diffraction, light optical microscopy, scanning electron microscopy and thermodynamic modelling. The decomposition was found to be dependent on several parameters such as thermal...

  19. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  20. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  1. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    Science.gov (United States)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  2. The risk of pulmonary tuberculosis in underground copper miners in Zambia exposed to respirable silica: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kingsley Ngosa

    2016-08-01

    Full Text Available Abstract Background Pulmonary tuberculosis (PTB among underground miners exposed to silica remains a global problem. Although well described in gold and coal mining, risk in other mining entities are not as well documented. This study aims to determine dust-related dose response risk for PTB among underground miners exposed to silica dust in Zambia's copper mines. Methods A cross sectional study of in-service miners (n = 357 was conducted at Occupational Health and Safety Institute (OHSI, Zambia. A systematic review of medical data over a 5-year period from assessments conducted by doctors at OHSI and statutory silica exposure data (n = 16678 from the Mine Safety Department (MSD were analysed. Lifetime cumulative exposure metrics were calculated. Multivariate logistic regression analysis was used to determine the association between PTB and lifetime exposure to silica, while adjusting for various confounders. Results The median respirable silica dust level was 0.3 mg/m3 (range 0.1–1.3. The overall prevalence of PTB was 9.5 % (n = 34. High cumulative respirable silica dust category showed a statistically significant association with PTB (OR = 6.4 (95 % CI 1. 8–23 and a significant trend of increasing disease prevalence with increasing cumulative respirable silica dust categories was observed (ptrend < 0.01. Smoking showed a statistically significant association with PTB with OR = 4.3 (95 % CI 1.9–9.9. Conclusions Our results demonstrate the association of increased risk for certified active TB with cumulative respirable dust in a dose related manner among this sample of copper miners. There is need to intensify dust control measures and incorporate anti-smoking interventions into TB prevention and control programmes in the mines.

  3. Personal exposure to inhalable cement dust among construction workers

    International Nuclear Information System (INIS)

    Peters, Susan; Kromhout, Hans; Thomassen, Yngvar; Fechter-Rink, Edeltraud

    2009-01-01

    A case study was carried out in 2006-2007 to assess the actual cement dust exposure among construction workers involved in a full-scale construction project and as a comparison among workers involved in various stages of cement and concrete production. Full-shift personal exposure measurements were performed for several job types. Inhalable dust and cement dust (based on analysis of elemental calcium) concentrations were determined. Inhalable dust exposures at the construction site ranged from 0.05 to 34 mg/m3, with a mean concentration of 1.0 mg/m3. For inhalable cement dust mean exposure was 0.3 mg/m3 (range 0.02-17 mg/m3). Reinforcement and pouring workers had the lowest average concentrations. Inhalable dust levels in the ready-mix and pre-cast concrete plants were, on average, below 0.5 mg/m3 for inhalable dust and below 0.2 mg/m3 for inhalable cement dust. Highest dust concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM=55 mg/m3; inhalable cement dust GM=33 mg/m3) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages of cement during reinforcement work and pouring.

  4. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  5. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  6. Classification of Dust Days by Satellite Remotely Sensed Aerosol Products

    Science.gov (United States)

    Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.

    2013-01-01

    Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary

  7. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    Science.gov (United States)

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  8. Experimental determination of the unattached radon daughter fraction and dust size distribution in some Canadian uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.; Kirk, J.

    1982-01-01

    The unattached radon daughter fraction has been experimentally determined in some Canadian uranium mines. Two experimental methods have been used, the wire screen method and a diffusion sampler based on Mercer's theory of diffusional deposition on parallel circular plates. Experiments were conducted in 'non-diesel' and 'diesel' areas of the mines, i.e. locations where mining was done with diesel machinery. Unattached fractions ranged from about 2-8 per cent for non-diesel area. For diesel areas the unattached fraction was substantially lower, less than about one per cent. The aerosol concentration in the range 0.0015 - 0.13 μm was measured with a condensation nuclei counter. Dust concentration was determined with conventional samplers. Particle size distribution in the respirable range was determined with a fine particle spectrometer in conjunction with eriometric techniques

  9. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is 'road dust'. The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: (i) How do traction

  10. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    OpenAIRE

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  11. Determination of respirable-sized crystalline silica in different ambient environments in the United Kingdom with a mobile high flow rate sampler utilising porous foams to achieve the required particle size selection

    Science.gov (United States)

    Stacey, Peter; Thorpe, Andrew; Roberts, Paul; Butler, Owen

    2018-06-01

    Inhalation of respirable crystalline silica (RCS) can cause diseases including silicosis and cancer. Levels of RCS close to an emission source are measured but little is known about the wider ambient exposure from industry emissions or natural sources. The aim of this work is to report the RCS concentrations obtained from a variety of ambient environments using a new mobile respirable (PM4) sampler. A mobile battery powered high flow rate (52 L min-1) sampler was developed and evaluated for particulate aerosol sampling employing foams to select the respirable particle size fraction. Sampling was conducted in the United Kingdom at site boundaries surrounding seven urban construction and demolition and five sand quarry sites. These are compared with data from twelve urban aerosol samples and from repeat measurements from a base line study at a single rural site. The 50% particle size penetration (d50) through the foam was 4.3 μm. Over 85% of predict bias values were with ±10% of the respirable convention, which is based on a log normal curve. Results for RCS from all construction and quarry activities are generally low with a 95 th percentile of 11 μg m-3. Eighty percent of results were less than the health benchmark value of 3 μg m-3 used in some states in America for ambient concentrations. The power cutting of brick and the largest demolition activities gave the highest construction levels. Measured urban background RCS levels were typically below 0.3 μg m-3 and the median RCS level, at a rural background location, was 0.02 μg m-3. These reported ambient RCS concentrations may provide useful baseline values to assess the wider impact of fugitive, RCS containing, dust emissions into the wider environment.

  12. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  13. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  14. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  15. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  16. Radionuclides in house dust

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Green, N; Dodd, N J; Hammond, D J

    1985-04-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate authorising Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, although radionuclides originating rom the BNFL site can be detected in house dust, this source of contamination is a negligible route of exposure for members of the public in West Cumbria. This report presents the results of the Board's study of house dust in twenty homes in Cumbria during the spring and summer of 1984. A more intensive investigation is being carried out by Imperial College. (author)

  17. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  18. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  19. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  20. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.

  1. Calibrated cryo-cell UV-LA-ICPMS elemental concentrations from the NGRIP ice core reveal abrupt, sub-annual variability in dust across the GI-21.2 interstadial period

    Directory of Open Access Journals (Sweden)

    D. Della Lunga

    2017-05-01

    Full Text Available Several abrupt shifts from periods of extreme cold (Greenland stadials, GS to relatively warmer conditions (Greenland interstadials, GI called Dansgaard–Oeschger events are recorded in the Greenland ice cores. Using cryo-cell UV-laser-ablation inductively coupled-plasma mass spectrometry (UV-LA-ICPMS, we analysed a 2.85 m NGRIP ice core section (2691.50–2688.65 m depth, age interval 84.86–85.09 ka b2k, thus covering  ∼  230 years across the transitions of GI-21.2, a short-lived interstadial prior to interstadial GI-21.1. GI-21.2 is a  ∼  100-year long period with δ18O values 3–4 ‰ higher than the following  ∼  200 years of stadial conditions (GS-21.2, which precede the major GI-21.1 warming. We report concentrations of major elements indicative of dust and/or sea salt (Na, Fe, Al, Ca, Mg at a spatial resolution of  ∼  200 µm, while maintaining detection limits in the low-ppb range, thereby achieving sub-annual time resolution even in deep NGRIP ice. We present an improved external calibration and quantification procedure using a set of five ice standards made from aqueous (international standard solutions. Our results show that element concentrations decrease drastically (more than 10-fold at the warming onset of GI-21.2 at the scale of a single year, followed by relatively low concentrations characterizing the interstadial part before gradually reaching again typical stadial values.

  2. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  3. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  4. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    International Nuclear Information System (INIS)

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  5. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    Science.gov (United States)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  6. Dust exposure, eye redness, eye cytology and mucous membrane irritation in a tobacco industry

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.; Pedersen, O.F.

    1989-01-01

    In a study of 75 workers employed in a tobacco factory producing cheroots we measured cellular contents of tear fluid, redness of eyes, discomfort, total (0–5.7 mg/m3) and respirable dust in the breathing zone and total ambient dust by stationary sampling (0.08–1.0 mg/m3). A matched group of 50 o...

  7. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  8. Microbes and Microstructure: Dust's Role in the Snowpack Evolution

    Science.gov (United States)

    Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.

    2017-12-01

    Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.

  9. Organic fuels for respiration in tropical river systems

    Science.gov (United States)

    Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.

    2011-12-01

    Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from

  10. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  11. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    Science.gov (United States)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  12. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  13. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  14. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  15. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  16. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  17. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  18. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  19. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  20. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  1. [Effects of antimicrobial drugs on soil microbial respiration].

    Science.gov (United States)

    Liu, Feng; Ying, Guang-Guo; Zhou, Qi-Xing; Tao, Ran; Su, Hao-Chang; Li, Xu

    2009-05-15

    The effects on soil microbial respiration of sulfonamides, tetracyclines, macrolides and so on were studied using the direct absorption method. The results show sulfamethazine, sulfamethoxazole, chlortetracycline, tetracycline, tylosin and trimethoprim inhibit soil respiration 34.33%, 34.43%, 2.71%, 3.08%, 7.13%, 38.08% respectively. Sulfamethoxazole and trimethoprim have the highest inhibition rates among all the antibiotics. In early incubation period (0-2 d), the concentrations above 10 mg x kg(-1) of sulfamethazine, sulfamethoxazole and trimethoprim remarkably decrease soil CO2 emission. The effects of these antibiotics vary with their concentrations too. Sulfamethoxazole and trimethoprim show good dose-response relationships. According to the standard of pesticide safety evaluation protocol, the six antibiotics pose a little risk to soil microbial environment.

  2. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  3. Exposure to grain dust in Great Britain.

    Science.gov (United States)

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  4. THE MEASUREMENT AND DISTRIBUTION OF WOOD DUST

    Directory of Open Access Journals (Sweden)

    Andrea Rosario Proto

    2010-03-01

    Full Text Available In Italy, the woodworking industry presents many issues in terms of occupational health and safety. This study on exposure to wood dust could contribute to the realization of a prevention model in order to limit exposure to carcinogenic agents to the worker. The sampling methodology illustrated the analysis of dust emissions from the woodworking machinery in operation throughout the various processing cycles. The quantitative and qualitative assessment of exposure was performed using two different methodologies. The levels of wood dust were determined according to EN indications and sampling was conducted using IOM and Cyclon personal samplers. The qualitative research of wood dust was performed using an advanced laser air particle counter. This allowed the number of particles present to be counted in real time. The results obtained allowed for an accurate assessment of the quality of the dust emitted inside the workplace during the various processing phases. The study highlighted the distribution of air particles within the different size classes, the exact number of both thin and ultra-thin dusts, and confirmed the high concentration of thin dust particles which can be very harmful to humans.

  5. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  6. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  7. Exposure to respirable crystalline silica in South African farm workers

    International Nuclear Information System (INIS)

    Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans

    2009-01-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  8. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  9. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  10. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  11. Miniaturized test system for soil respiration induced by volatile pollutants

    International Nuclear Information System (INIS)

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  12. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  13. EXPERIMENTAL SUBSTANTIATION OF PERMEABILIZED HEPATOCYTES MODEL FOR INVESTIGATION OF MITOCHONDRIA IN SITU RESPIRATION.

    Science.gov (United States)

    Merlavsky, V M; Manko, B O; Ikkert, O V; Manko, V V

    2015-01-01

    To verify experimentally the model of permeabilized hepatocytes, the degree of cell permeability was assessed using trypan blue and polarographycally determined cell respiration rate upon succinate (0.35 mM) and a-ketoglutarate (1 mM) oxidation. Oxidative phosphorylation was stimulated by ADP (750 μM). Hepatocyte permeabilization depends on digitonin concentraion in medium and on the number of cells in suspension. Thus, the permeabilization of 0.9-1.7 million cells/ml was completed by 25 μg/ml of digitonin, permeabilization of 2.0-3.0 million cells/ml--by 50 μg/ml of digitonin and permeabilization of 4.0-5.6 million cells/ml--by 100 μg/ml. Thus, the higher is the suspension density, the higher digitonin concentration is required. Treatment of hepatocytes with digitonin resulted in a decrease of endogenous respiration rate to a minimum upon 20-22 μg of digitonin per 1 million cells. Supplementation of permeabilized hepatocytes with α-ketoglutarate maintained stable respiration rate, on the level higher than endogenous respiration at the corresponding digitonin concentration, unlike the intact cells. Respiration rate of permeabilized hepatocytes at the simultaneous addition of α-ketoglutarate and ADP increased to the level of intact cell respiration, irrespective of digitonin concentration. Addition of solely succinate and especially succinate plus ADP markedly intensified the respiration of permeabilized hepatocytes to the level higher than that of intact cells. The dependence of succinate-stimulated respiration on digitonin concentration reached maximum at 20-22 αg of digitonin per 1 million cells. Optimal ratio of digitonin amount and the cell number in suspension is expected to be different in various tissues.

  14. Stem respiration of Populus species in the third year of free-air CO2 enrichment

    OpenAIRE

    GIELEN, Birgit; Scarascia-Mugnozza, G.; Ceulemans, R.

    2003-01-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2 ] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-...

  15. Evaluation of respirable particle matter in gold mine tailings on the Witwatersrand

    International Nuclear Information System (INIS)

    Ojelede, M.E.; Annegarn, H.J.

    2007-01-01

    Within the Witwatersrand gold mining area of South Africa, wind-blown dust is a significant contributor to atmospheric air pollution brought to the fore with the reworking of old mine tailings. Approximately 40,000 hectares are covered with tailings in the Witwatersrand. Wind-erosion during late austral winter and early spring causes surfaces of these tailings to be exposed, particularly during higher wind speeds and in the absence of rainfall. Local residents complain as the surrounding areas experience unpleasant dust episodes. As a result of urban PM 10 and PM 2.5 respirable particulate matter, increased respiratory ailments, morbidity and mortality, and concerns about the health impacts of wind-blown mine tailings in South Africa have been reported. Since 1981, significant monitoring of dustfall has taken place on the Witwatersrand, however, characterization of the respirable fraction of gold mine tailings material and dustfall is lacking. This paper presented the results of a study that established the content of respirable particulate matter in exposed mine tailings and wind-blown dust, and their likely contributions to ambient air. The initial results of the particulate size distribution of material samples from tailings and dust deposits collected in ambient dustfall-monitors were provided. Particle size distributions from different deposit types include slimes and sand deposits, surface and core material, and wind-winnowed secondary deposits. Fractions of PM 10 in source and deposited material were also discussed. It was concluded that there was a significant fraction of PM 10 material in the mine tailings, and that further work to quantify the population exposure risk is needed. 11 refs., 1 tab., 6 figs

  16. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  17. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  18. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  19. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  20. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  1. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  2. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  3. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  4. Assessment of elemental contamination in road dust using EDXRF

    International Nuclear Information System (INIS)

    Saradhi, I.V.; Sandeep, P.; Pandit, G.G.

    2014-01-01

    Road dust samples were collected in different locations of heavy traffic, medium traffic, express way and industrial areas of Mumbai. The concentrations of various elements (Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Pb) in road dust samples were analyzed using EDXRF. The average elemental profile of road dust in Mumbai was comparable with studies carried out in other countries with slight variations. The estimated geo accumulation indices and enrichment factors indicated moderate elemental contamination and enrichment of anthropogenic elements in road dust samples. Factor analysis of elemental data resolved four sources namely crustal, tyre wear, vehicular/industrial emissions and break wear. (author)

  5. Continuous dust monitoring in headings in underground coal mines

    Directory of Open Access Journals (Sweden)

    Kazimierz Lebecki

    2016-01-01

    Full Text Available The article presents hazardous conditions of airborne dust based on the results of measurements of dust concentration taken at work-places at a underground rock-coal face drilled by a heading machine with combined ventilation (suction and forced ventilation with dust collector. The measurements were taken using three methods in order to examine and assess the actual conditions within the excavation subject to the study. The measurement results and conclusions show major difficulties in achieving MAC levels. Research conclusions indicate the low efficiency of collective and personal measures applied to protect against dust harmful to health as well as the need to improve them.

  6. Experience with dust suppression in mining a thick, dirty seam

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, D; Kohlhauer, H

    1975-11-20

    Dust suppression measures used when mining a thick, dirty seam are described. Dust sprays inside and outside the shearer drum helped to reduce coarse dust, but the resulting increase in moisture content of the coal limits the extent to which this method can be used. The shields were also fitted with sprays. Because of the dirt in the seam, continuous, remotely controlled deep infusion was used. This reduced the dust concentration from more than 10 mg/m/sup 3/ to between 3.9 and 6.6 mg/m/sup 3/.

  7. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  8. Dust Effect on The Performance of Optical Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Fadel Abdul-Zahra Murad

    2017-11-01

    Full Text Available In this paper wireless optical communication system (FSO is designed through the use of software (Optisystem . The paper also study  the effect of atmospheric dust on the performance of communication system (FSO, the effect of dust concentration on the visibility by taking a different concentrations of dust (9, 20, 40, 60, 80 100, 120 gm / month / m2 . The effect of the visibility on the attenuation of dust concentration on each of these concentrations , and calculate attenuation of dust for the  wavelengths  (784 nm, 1550 nm. The Paper also deals with effect of the transmitted laser  power on the transmitter range (propagation distance where five different values of transmitted laser power (10mw, 20mw, 30mw, 40mw, 50mw are taken  and the study calculates the maximum transmitter range of  each value of the transmitted power under the influence of attenuation atmospheric dust concentrations for each concentration of dust used and also for the two wavelengths (1550nm, 784nm.

  9. Long-term variability of dust events in Iceland (1949-2011)

    Science.gov (United States)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-12-01

    The long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and interpreted together with earlier results obtained from northeastern (NE) Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust observations. However, frequent volcanic eruptions, with the re-suspension of volcanic materials and dust haze, increased the number of dust events fourfold (135 dust days annually). The position of the Icelandic Low determined whether dust events occurred in the NE (16.4 dust days annually) or in the southern (S) part of Iceland (about 18 dust days annually). The decade with the most frequent dust days in S Iceland was the 1960s, but the 2000s in NE Iceland. A total of 32 severe dust storms (visibility typically warm, occurring during summer/autumn (May-September) and during mild southwesterly winds, while the subarctic dust events (S Iceland) were mainly cold, occurring during winter/spring (March-May) and during strong northeasterly winds. About half of the dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between particulate matter (PM10) concentrations and visibility during dust observations at the stations Vík and Stórhöfði. This study shows that Iceland is among the dustiest areas of the world and that dust is emitted year-round.

  10. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  11. Temperature dependence of bulk respiration of crop stands. Measurement and model fitting

    International Nuclear Information System (INIS)

    Tani, Takashi; Arai, Ryuji; Tako, Yasuhiro

    2007-01-01

    The objective of the present study was to examine whether the temperature dependence of respiration at a crop-stand scale could be directly represented by an Arrhenius function that was widely used for representing the temperature dependence of leaf respiration. We determined temperature dependences of bulk respiration of monospecific stands of rice and soybean within a range of the air temperature from 15 to 30degC using large closed chambers. Measured responses of respiration rates of the two stands were well fitted by the Arrhenius function (R 2 =0.99). In the existing model to assess the local radiological impact of the anthropogenic carbon-14, effects of the physical environmental factors on photosynthesis and respiration of crop stands are not taken into account for the calculation of the net amount of carbon per cultivation area in crops at harvest which is the crucial parameter for the estimation of the activity concentration of carbon-14 in crops. Our result indicates that the Arrhenius function is useful for incorporating the effect of the temperature on respiration of crop stands into the model which is expected to contribute to a more realistic estimate of the activity concentration of carbon-14 in crops. (author)

  12. Dust retaining properties of leaves of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, M I

    1960-05-01

    A study was made in Tashkent, Russia of the dust-retaining power of leaves of several tree species. Investigations were made in a park where these tree species were growing in close proximity, exposed to the effects of dust from the main city street and from the highway passing through the park. Observations on the dust-retaining power of leaves were made mostly during the summer and fall months. The dust-retaining power of leaves of different tree species varied with the dust concentration in the air. In the summer and fall when rains are scarce a steady accumulation of dust was observed on the surface of the leaves. 1 table.

  13. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  14. Characteristics of mineral dust impacting the Persian Gulf

    Science.gov (United States)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan

    2018-02-01

    It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.

  15. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  16. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling.

    Science.gov (United States)

    James, John T; Lam, Chiu-Wing; Santana, Patricia A; Scully, Robert R

    2013-04-01

    Brief exposures of Apollo astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure to lunar dust. The United States and other space faring nations intend to return to the moon for extensive exploration within a few decades. In the meantime, habitats for that exploration, whether mobile or fixed, must be designed to limit human exposure to lunar dust to safe levels. Herein we estimate safe exposure limits for lunar dust collected during the Apollo 14 mission. We instilled three respirable-sized (∼2 μ mass median diameter) lunar dusts (two ground and one unground) and two standard dusts of widely different toxicities (quartz and TiO₂) into the respiratory system of rats. Rats in groups of six were given 0, 1, 2.5 or 7.5 mg of the test dust in a saline-Survanta® vehicle, and biochemical and cellular biomarkers of toxicity in lung lavage fluid were assayed 1 week and one month after instillation. By comparing the dose--response curves of sensitive biomarkers, we estimated safe exposure levels for astronauts and concluded that unground lunar dust and dust ground by two different methods were not toxicologically distinguishable. The safe exposure estimates were 1.3 ± 0.4 mg/m³ (jet-milled dust), 1.0 ± 0.5 mg/m³ (ball-milled dust) and 0.9 ± 0.3 mg/m³ (unground, natural dust). We estimate that 0.5-1 mg/m³ of lunar dust is safe for periodic human exposures during long stays in habitats on the lunar surface.

  17. BOREAS TE-5 Soil Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  18. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    Science.gov (United States)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  19. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method

    International Nuclear Information System (INIS)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-01-01

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone > nylon cyclone > IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage.

  20. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  1. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  2. Spirit Feels Dust Gust

    Science.gov (United States)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  3. Regularities of dust formation during stone cutting for construction works

    Directory of Open Access Journals (Sweden)

    V.G. Lebedev

    2016-09-01

    Full Text Available When cutting stone, a large amount of dust release, which is a mixture of small, mostly sharp, mineral particles. Shallow dry dust with inhalation causes the pathological changes in organs that are a consequence of infiltration of acute and solids particles. Despite the importance of this problem, the questions of dust generation during the various working processes and its fractions distribution are practically not considered. This determines the time of dust standing in the air and its negative impact on a person. Aim: The aim of this research is to study the process of dusting during stones cutting and dust distribution on fractions regularities and quantification of dust formation process in order to improve the production equipment, staff individual and collective safety equipment. Materials and Methods: Many types of cutting can be divided into two types - a “dry” cutting and cutting with fluid. During “dry” cutting a dust represents a set of micro-chips which are cut off by the abrasive grains. The size of such chips very small: from a micrometer to a few micrometers fraction. Thus, the size of chips causes the possibility of creating dust slurry with low fall velocity, and which is located in the working space in large concentrations. Results: The following characteristic dependences were obtained as a result of research: dependence of the dust fall from the size of the dust particles, size of dust particles from minute feeding and grain range wheel, the specific amount of dust from the number of grit abrasive wheel and the temperature of the dust particles from the feeding at wheel turnover. It was shown that the distribution of chips (dust by size will request of a normal distribution low. Dimensions of chips during cut are in the range of 0.4...6 μm. Thus, dust slurry is formed with time of particles fall of several hours. This creates considerable minute dust concentration - within 0.28∙10^8...1.68∙10^8 units/m3.

  4. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis

    International Nuclear Information System (INIS)

    Koivisto, Antti J.; Aromaa, Mikko; Koponen, Ismo K.; Fransman, Wouter; Jensen, Keld A.; Mäkelä, Jyrki M.; Hämeri, Kaarle J.

    2015-01-01

    Nanoparticle (particles with diameter ≤100 nm) exposure is recognized as a potentially harmful size fraction for pulmonary particle exposure. During nanoparticle synthesis, the number concentrations in the process room may exceed 10 × 10 6 cm −3 . During such conditions, it is essential that the occupants in the room wear highly reliable high-performance respirators to prevent inhalation exposure. Here we have studied the in-use program protection factor (PPF) of loose-fitting powered air purifying respirators, while workers were coating components with TiO 2 or Cu x O y nanoparticles under a hood using a liquid flame spray process. The PPF was measured using condensation particle counters, an electrical low pressure impactor, and diffusion chargers. The room particle concentrations varied from 4 × 10 6 to 40 × 10 6 cm −3 , and the count median aerodynamic diameter ranged from 32 to 180 nm. Concentrations inside the respirator varied from 0.7 to 7.2 cm −3 . However, on average, tidal breathing was assumed to increase the respirator concentration by 2.3 cm −3 . The derived PPF exceeded 1.1 × 10 6 , which is more than 40 × 10 3 times the respirator assigned protection factor. We were unable to measure clear differences in the PPF of respirators with old and new filters, among two male and one female user, or assess most penetrating particle size. This study shows that the loose-fitting powered air purifying respirator provides very efficient protection against nanoparticle inhalation exposure if used properly

  5. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Antti J., E-mail: jok@nrcwe.dk [National Research Centre for the Working Environment (Denmark); Aromaa, Mikko [Tampere University of Technology, Department of Physics (Finland); Koponen, Ismo K. [National Research Centre for the Working Environment (Denmark); Fransman, Wouter [TNO (Netherlands); Jensen, Keld A. [National Research Centre for the Working Environment (Denmark); Mäkelä, Jyrki M. [Tampere University of Technology, Department of Physics (Finland); Hämeri, Kaarle J. [University of Helsinki, Department of Physics (Finland)

    2015-04-15

    Nanoparticle (particles with diameter ≤100 nm) exposure is recognized as a potentially harmful size fraction for pulmonary particle exposure. During nanoparticle synthesis, the number concentrations in the process room may exceed 10 × 10{sup 6} cm{sup −3}. During such conditions, it is essential that the occupants in the room wear highly reliable high-performance respirators to prevent inhalation exposure. Here we have studied the in-use program protection factor (PPF) of loose-fitting powered air purifying respirators, while workers were coating components with TiO{sub 2} or Cu{sub x}O{sub y} nanoparticles under a hood using a liquid flame spray process. The PPF was measured using condensation particle counters, an electrical low pressure impactor, and diffusion chargers. The room particle concentrations varied from 4 × 10{sup 6} to 40 × 10{sup 6} cm{sup −3}, and the count median aerodynamic diameter ranged from 32 to 180 nm. Concentrations inside the respirator varied from 0.7 to 7.2 cm{sup −3}. However, on average, tidal breathing was assumed to increase the respirator concentration by 2.3 cm{sup −3}. The derived PPF exceeded 1.1 × 10{sup 6}, which is more than 40 × 10{sup 3} times the respirator assigned protection factor. We were unable to measure clear differences in the PPF of respirators with old and new filters, among two male and one female user, or assess most penetrating particle size. This study shows that the loose-fitting powered air purifying respirator provides very efficient protection against nanoparticle inhalation exposure if used properly.

  6. High temperature and dust load in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Bolonova, L N; Donets, I K; Mukhina, K Sh

    1989-02-01

    Presents results of study of combined load on the human system of heat and dust as encountered in deep coal mines in the Donbass. Groups of coal miners were studied to ascertain the state of their lungs, particularly the presence of free silica, dust, collagen, etc. The sickness records for a number of Donbass mining associations for the past 25 years were analyzed. Multiple regression analysis of the data obtained led to curves relating the number of shifts worked to dust levels, pulmonary ventilation (0.01 and 0.04 m/sup 3//min) and maximum admissible dust concentrations (2, 4, 6 and 10 mg/m/sup 3/). In the 25-35 C temperature range a rise of 1 C is accompanied by increases of 9.9% in dust mass, 15.4% in silica content, 10.7% in mineral impurities and 2.3% in pathomorphological changes in the lungs. An adjustment to the maximum admissible concentration correction coefficient of 10% for every 1 C over 26 C is recommended. 1 ref.

  7. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    Science.gov (United States)

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    respiration that was temporarily 4-6 per thousand more depleted in 13C. Up to 50% of the Earth's forests will see elevated concentrations of both CO2 and O3 in the coming decades and these interacting atmospheric trace gases stimulated soil respiration in this study.

  8. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply.

    Science.gov (United States)

    Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M

    2016-05-01

    Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the

  9. Lead in Chinese villager house dust: Geographical variation and influencing factors

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Liu, Jinling; Han, Zhixuan; Yang, Wenlin

    2015-01-01

    House dust has been recognized as an important contributor to Pb exposure of children. Here we conducted a comprehensive study to investigate geographical variation of Pb in Chinese villager house dust. The influences of outdoor soil Pb concentrations, dates of construction, house decoration materials, heating types, and site specific pollution on Pb concentrations in house dust were evaluated. The concentrations of Pb in 477 house dust samples collected from twenty eight areas throughout China varied from 12 to 2510 mg/kg, with a median concentration of 42 mg/kg. The median Pb concentrations in different geographical areas ranged from 16 (Zhangjiakou, Hebei) to 195 mg/kg (Loudi, Hunan). No correlations were found between the house dust Pb concentrations and the age of houses, as well as house decoration materials. Whereas outdoor soil, coal combustion, and site specific pollution may be potential Pb sources. Principal component analysis (PCA) confirmed that elemental compositions of the house dust were controlled by both anthropogenic and geogenic sources. Using scanning electron microscopy (SEM), the Pb bearing particles in the house dust were also studied. - Highlights: • Geographical variation in house dust Pb concentrations were observed. • Dust Pb concentrations were not associated with house age and decoration materials. • Soil, coal combustion, and site specific pollution were potential Pb sources. • Pb bearing particles were identified by SEM-EDX. - The variations of Pb in Chinese villager house dust were controlled by outdoor soil, coal combustion, and site specific pollution sources.

  10. How much work is expended for respiration?

    Science.gov (United States)

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  11. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  12. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  13. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  14. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  15. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  16. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  17. Endotoxin, Coliform, and Dust Levels in Various Types of Rodent Bedding

    OpenAIRE

    Whiteside, Tanya E; Thigpen, Julius E; Kissling, Grace E; Grant, Mary G; Forsythe, Diane B

    2010-01-01

    Endotoxins in grain dust, household dust, and animal bedding may induce respiratory symptoms in rodents and humans. We assayed the endotoxin, coliform, and dust levels in 20 types of rodent bedding. Endotoxin concentrations were measured by using a commercial test kit, coliform counts were determined by using conventional microbiologic procedures, and dust content was evaluated by using a rotating–tapping shaker. Paper bedding types contained significantly less endotoxin than did other beddin...

  18. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  19. From dust to dose: Effects of forest disturbance on increased inhalation exposure.

    Science.gov (United States)

    Whicker, Jeffrey J; Pinder, John E; Breshears, David D; Eberhart, Craig F

    2006-09-15

    Ecosystem disturbances that remove vegetation and disturb surface soils are major causes of excessive soil erosion and can result in accelerated transport of soils contaminated with hazardous materials. Accelerated wind erosion in disturbed lands that are contaminated is of particular concern because of potential increased inhalation exposure, yet measurements regarding these relationships are lacking. The importance of this was highlighted when, in May of 2000, the Cerro Grande fire burned over roughly 30% of Los Alamos National Laboratory (LANL), mostly in ponderosa pine (Pinus ponderosa) forest, and through areas with soils containing contaminants, particularly excess depleted and natural uranium. Additionally, post-fire thinning was performed in burned and unburned forests on about 25% of LANL land. The first goal of this study was to assess the potential for increased inhalation dose from uranium contaminated soils via wind-driven resuspension of soil following the Cerro Grande Fire and subsequent forest thinning. This was done through analysis of post-disturbance measurements of uranium air concentrations and their relationships with wind velocity and seasonal vegetation cover. We found a 14% average increase in uranium air concentrations at LANL perimeter locations after the fire, and the greatest air concentrations occurred during the months of April-June when wind velocities are highest, no snow cover, and low vegetation cover. The second goal was to develop a methodology to assess the relative contribution of each disturbance type towards increasing public and worker exposure to these resuspended soils. Measurements of wind-driven dust flux in severely burned, moderately burned, thinned, and unburned/unthinned forest areas were used to assess horizontal dust flux (HDF) in these areas. Using empirically derived relationships between measurements of HDF and respirible dust, coupled with onsite uranium soil concentrations, we estimate relative increases in

  20. From dust to dose: Effects of forest disturbance on increased inhalation exposure

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Pinder, John E.; Breshears, David D.; Eberhart, Craig F.

    2006-01-01

    Ecosystem disturbances that remove vegetation and disturb surface soils are major causes of excessive soil erosion and can result in accelerated transport of soils contaminated with hazardous materials. Accelerated wind erosion in disturbed lands that are contaminated is of particular concern because of potential increased inhalation exposure, yet measurements regarding these relationships are lacking. The importance of this was highlighted when, in May of 2000, the Cerro Grande fire burned over roughly 30% of Los Alamos National Laboratory (LANL), mostly in ponderosa pine (Pinus ponderosa) forest, and through areas with soils containing contaminants, particularly excess depleted and natural uranium. Additionally, post-fire thinning was performed in burned and unburned forests on about 25% of LANL land. The first goal of this study was to assess the potential for increased inhalation dose from uranium contaminated soils via wind-driven resuspension of soil following the Cerro Grande Fire and subsequent forest thinning. This was done through analysis of post-disturbance measurements of uranium air concentrations and their relationships with wind velocity and seasonal vegetation cover. We found a 14% average increase in uranium air concentrations at LANL perimeter locations after the fire, and the greatest air concentrations occurred during the months of April-June when wind velocities are highest, no snow cover, and low vegetation cover. The second goal was to develop a methodology to assess the relative contribution of each disturbance type towards increasing public and worker exposure to these resuspended soils. Measurements of wind-driven dust flux in severely burned, moderately burned, thinned, and unburned/unthinned forest areas were used to assess horizontal dust flux (HDF) in these areas. Using empirically derived relationships between measurements of HDF and respirible dust, coupled with onsite uranium soil concentrations, we estimate relative increases in

  1. The real limits to marine life: a further critique of the Respiration Index

    Science.gov (United States)

    Seibel, B. A.; Childress, J. J.

    2013-05-01

    The recently proposed "Respiration Index" (RI = log PO2/PCO2) suggests that aerobic metabolism is limited by the ratio of reactants (oxygen) to products (carbon dioxide) according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus, a Respiration Index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  2. The real limits to marine life: a further critique of the Respiration Index

    Directory of Open Access Journals (Sweden)

    B. A. Seibel

    2013-05-01

    Full Text Available The recently proposed "Respiration Index" (RI = log PO2/PCO2 suggests that aerobic metabolism is limited by the ratio of reactants (oxygen to products (carbon dioxide according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = −686 kcal mol−1, carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503, where ΔG = 0. Thus, a Respiration Index of −503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  3. Pinus sylvestris switches respiration substrates under shading but not during drought

    Science.gov (United States)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  4. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The April correlation results are supported by the analysis of vertical distribution of dust concentration, derived from the 24-hour dust prediction system at Tel Aviv University (website: http://earth.nasa.proj.ac.il/dust/current/). For other months the analysis is more complicated because of the essential increasing of humidity along with the northward progress of the ITCZ and the significant impact on the increments.

  5. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Science.gov (United States)

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  6. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  7. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  8. Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.

  9. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  10. Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux

    Directory of Open Access Journals (Sweden)

    J. Q. Chambers

    2012-12-01

    Full Text Available Respiration in tree stems is an important component of forest carbon balance. The rate of CO2 efflux from the stem has often been assumed to be a measure of stem respiration. However, recent work in temperate forests has demonstrated that stem CO2 efflux can either overestimate or underestimate respiration rate because of emission or removal of CO2 by transport in xylem water. Here, we studied gas exchange from stems of tropical forest trees using a new approach to better understand respiration in an ecosystem that plays a key role in the global carbon cycle. Our main questions were (1 is internal CO2 transport important in tropical trees, and, if so, (2 does this transport result in net release of CO2 respired in the roots at the stem, or does it cause the opposite effect of net removal of stem-respired CO2? To answer these questions, we measured the ratio of stem CO2 efflux to O2 influx. This ratio, defined here as apparent respiratory quotient (ARQ, is expected to equal 1.0 if carbohydrates are the substrate for respiration, and the net transport of CO2 in the xylem water is negligible. Using a stem chamber approach to quantifying ARQ, we found values of 0.66 ± 0.18. These low ARQ values indicate that a large portion of respired CO2 (~ 35% is not emitted locally, and is probably transported upward in the stem. ARQ values of 0.21 ± 0.10 were found for the steady-state gas concentration within the stem, sampled by in-stem equilibration probes. These lower values may result from the proximity to the xylem water stream. In contrast, we found ARQ values of 1.00 ± 0.13 for soil respiration. Our results indicate the existence of a considerable internal flux of CO2 in the stems of tropical trees. If the transported CO2 is used in the canopy as a substrate for photosynthesis, it could account for up to 10% of the C fixed by the tree, and perhaps serve as a mechanism that buffers the response of the tree to changing CO2 levels. Our results also

  11. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  12. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  13. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  14. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  15. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  16. Computational algorithm for molybdenite concentrate annealing

    International Nuclear Information System (INIS)

    Alkatseva, V.M.

    1995-01-01

    Computational algorithm is presented for annealing of molybdenite concentrate with granulated return dust and that of granulated molybdenite concentrate. The algorithm differs from the known analogies for sulphide raw material annealing by including the calculation of return dust mass in stationary annealing; the latter quantity varies form the return dust mass value obtained in the first iteration step. Masses of solid products are determined by distribution of concentrate annealing products, including return dust and benthonite. The algorithm is applied to computations for annealing of other sulphide materials. 3 refs

  17. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  20. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  1. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol

    International Nuclear Information System (INIS)

    Hagen, Thilo; D'Amico, Gabriela; Quintero, Marisol; Palacios-Callender, Miriam; Hollis, Veronica; Lam, Francis; Moncada, Salvador

    2004-01-01

    2-Methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol, is known to have antiproliferative, antiangiogenic, and proapoptotic activity. Mechanistically, 2ME2 has been shown to downregulate hypoxia-inducible factor 1α (HIF1α) and to induce apoptosis in tumour cells by generating reactive oxygen species (ROS). In this study we report that 2ME2 inhibits mitochondrial respiration in both intact cells and submitochondrial particles, and that this effect is due to inhibition of complex I of the mitochondrial electron transport chain (ETC). The prevention by 2ME2 of hypoxia-induced stabilisation of HIF1α in HEK293 cells was found not to be due to an effect on HIF1α synthesis but rather to an effect on protein degradation. This is in agreement with our recent observation using other inhibitors of mitochondrial respiration which bring about rapid degradation of HIF1α in hypoxia due to increased availability of oxygen and reactivation of prolyl hydroxylases. The concentrations of 2ME2 that inhibited complex I also induced the generation of ROS. 2ME2 did not, however, cause generation of ROS in 143B rho - cells, which lack a functional mitochondrial ETC. We conclude that inhibition of mitochondrial respiration explains, at least in part, the effect of 2ME2 on hypoxia-dependent HIF1α stabilisation and cellular ROS production. Since these actions of 2ME2 occur at higher concentrations than those known to inhibit cell proliferation, it remains to be established whether they contribute to its therapeutic effect

  2. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    Science.gov (United States)

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P lean subjects only (P lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society

  3. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  4. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    Science.gov (United States)

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the

  5. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  6. Respiratory health effects of occupational exposure to charcoal dust in Namibia

    Science.gov (United States)

    Kgabi, Nnenesi

    2016-01-01

    Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528

  7. Saharan dust levels in Greece and received inhalation doses

    Directory of Open Access Journals (Sweden)

    C. Mitsakou

    2008-12-01

    Full Text Available The desert of Sahara is one of the major sources of mineral dust on Earth, producing around 2×108 tons/yr. Under certain weather conditions, dust particles from Saharan desert get transported over the Mediterranean Sea and most of Europe. The limiting values set by the directive EC/30/1999 of European Union can easily be exceeded by the transport of desert dust particles in the south European Region and especially in urban areas, where there is also significant contribution from anthropogenic sources. In this study, the effects of dust transport on air quality in several Greek urban areas are quantified. PM10 concentration values from stationary monitoring stations are compared to dust concentrations for the 4-year period 2003–2006. The dust concentration values in the Greek areas were estimated by the SKIRON modelling system coupled with embedded algorithms describing the dust cycle. The mean annual dust contribution to daily-averaged PM10 concentration values was found to be around or even greater than 10% in the urban areas throughout the years examined. Natural dust transport may contribute by more than 20% to the annual number of exceedances – PM10 values greater than EU limits – depending on the specific monitoring location. In a second stage of the study, the inhaled lung dose received by the residents in various Greek locations is calculated. The particle deposition efficiency of mineral dust at the different parts of the human respiratory tract is determined by applying a lung dosimetry numerical model, which incorporates inhalation dynamics and aerosol physical processes. The inhalation dose from mineral dust particles was greater in the upper respiratory system (extrathoracic region and less significant in the lungs, especially in the sensitive alveolar region. However, in cases of dust episodes, the amounts of mineral dust deposited along the human lung are comparable to those

  8. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  9. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-03-01

    Full Text Available Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19–23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1 and the other passing over the coastal regions of eastern China (DS2. Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 ∕ PM10 and NO2 ∕ PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42− and NO3− and the ratio of Ca2+ ∕ Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] ∕ [SO42−+NO3−] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ∼ 80–90 % of the total particle extinction from near the ground to ∼ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ∼ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  10. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  11. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  12. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  13. Dust Creation in CNC Drilling of Wood Composites

    Directory of Open Access Journals (Sweden)

    Tomasz Rogoziński

    2015-04-01

    Full Text Available This paper presents the particle-size distribution of dust created by the drilling of selected wood composites, which was carried out using a CNC machine. The particle-size distribution was studied through two methods. Two analyses were performed: the sieve analysis of samples from the whole mass of collected dust and the laser diffraction analysis of the finest fraction isolated by sieving. The results presented general information about the particle-size distribution of the dust, as well as detailed information on the content of the finest particles. This information revealed that the particles might pose a potential risk to the health of workers employed in the woodworking industry. This potential risk is due to the possibility of their dispersion in the atmosphere surrounding the workplace and their size, which allows them to be respirable. The relationship between the fineness of the dust and the type of wood composite was also tested. Most ultrafine particles are formed during the drilling of fibreboards and are especially produced in traditional wet technology.

  14. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  15. From explosions to black lung: a history of efforts to control coal mine dust.

    Science.gov (United States)

    Weeks, J L

    1993-01-01

    Highlights in the history of efforts to prevent occupational lung disease among coal miners in the United States are reviewed. The Federal Coal Mine Health and Safety Act of 1969 is summarized, and the sources and effects of its provisions to prevent coal workers' pneumoconiosis are examined. Descriptions follow of the identification of coal workers' pneumoconiosis as a disease, identification of respirable coal mine dust as its cause, and establishment and enforcement of an exposure limit. The development of prevention efforts focusing on surveillance of both exposure and outcome and of enforcement of dust control methods is examined.

  16. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  17. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NARCIS (Netherlands)

    Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X.

    2013-01-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well

  18. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Science.gov (United States)

    Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja

    2018-01-01

    The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  19. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Directory of Open Access Journals (Sweden)

    Kuskowska Karolina

    2018-01-01

    Full Text Available The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs associated with total suspended particles (TSP and their respirable fraction (PM4 in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  20. Naturally occurring diacetyl and 2,3-pentanedione concentrations associated with roasting and grinding unflavored coffee beans in a commercial setting.

    Science.gov (United States)

    Gaffney, Shannon H; Abelmann, Anders; Pierce, Jennifer S; Glynn, Meghan E; Henshaw, John L; McCarthy, Lauren A; Lotter, Jason T; Liong, Monty; Finley, Brent L

    2015-01-01

    Over the last decade, concerns have been raised about potential respiratory health effects associated with occupational exposure to the flavoring additives diacetyl and 2,3-pentanedione. Both of these diketones are also natural components of many foods and beverages, including roasted coffee. To date, there are no published studies characterizing workplace exposures to these diketones during commercial roasting and grinding of unflavored coffee beans. In this study, we measured naturally occurring diacetyl, 2,3-pentanedione, and respirable dust at a facility that roasts and grinds coffee beans with no added flavoring agents. Sampling was conducted over the course of three roasting batches and three grinding batches at varying distances from a commercial roaster and grinder. The three batches consisted of lightly roasted soft beans, lightly roasted hard beans, and dark roasted hard beans. Roasting occurred for 37 to 41 min, and the grinding process took between 8 and 11 min. Diacetyl, 2,3-pentanedione, and respirable dust concentrations measured during roasting ranged from less than the limit of detection (bean/roast combination and sample location, diketone concentrations during grinding were higher than those measured during roasting. During grinding, concentrations decreased with increased distance from the source. Measured concentrations of both diketones were higher during grinding of soft beans than hard beans. The results indicate that airborne concentrations of naturally occurring diacetyl and 2,3-pentanedione associated with unflavored coffee processing: (1) are similar to the concentrations that have been measured in food flavoring facilities; (2) are likely to exceed some recommended short-term occupational exposure limits, but; (3) based on previous analyses of exposure response relationships in animal studies, are far below the concentrations that are expected to cause even minimal responses in the human respiratory tract.

  1. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    Science.gov (United States)

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  2. Erosion of dust aggregates

    NARCIS (Netherlands)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple

  3. From dust to life

    Science.gov (United States)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  4. Fipronil and its degradates in indoor and outdoor dust

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R.

    2009-01-01

    Fipronil is a potent insecticide used for control of termites, fleas, roaches, ants, and other pests. We measured fipronil, fipronil sulfide, and desulfinyl fipronil concentrations in indoor and outdoor dust from 24 residences in Austin, Texas. At least one of these three fipronil compounds was detected in every sample. Fipronil accounted for most of the total fipronil (T-fipronil; fipronil+desulfinyl fipronil+fipronil sulfide), followed by desulfinyl fipronil and fipronil sulfide. Nineteen of 24 samples of indoor dust had T-fipronil concentrations less than 270 ??g/kg; the remaining five had concentrations from 1320 to 14,200 ??g/kg. All three of the residences with a dog on which a flea-control product containing fipronil was used were among the five residences with elevated fipronil concentrations. In outdoor dust, all concentrations of T-fipronil were less than 70??g/kg with one exception (430??g/kg). For every residence, the concentration of T-fipronil in indoor dust exceeded that in outdoor dust, and the median concentration of T-fipronil was 15 times higher indoors than outdoors.

  5. Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation

    Directory of Open Access Journals (Sweden)

    Krawczyk Janusz

    2017-12-01

    Full Text Available The high efficiency of industrial wet scrubbers is the result of a simultaneous formation of dust particle collectors. Collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of a circulating unit. The efficiency of dust collection process also depends on the ability of dust particles to be absorbed by collectors. The study provides an experimental analysis of the effect of the increasing concentration of a dust collection liquid in the conditions of full liquid recirculation on the efficiency of dust collection process in the examined types of collectors.

  6. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  7. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    Science.gov (United States)

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  8. Estimation of fractional contribution of root respiration to a forest-floor CO2 flux using carbon isotopes

    International Nuclear Information System (INIS)

    Hachiya, Masashi; Moriizumi, Jun; Yamazawa, Hiromi

    2010-01-01

    Efflux of soil respired carbon dioxide(CO 2 ) is very important component for the global carbon cycle and dynamics of 14 C in environment, and to predict the global climate changes caused by increasing CO 2 concentrations in the atmosphere. There are two components that generate CO 2 in soil, soil organic matter decomposition and root respiration. Although the former is relatively well understood, the root-derived CO 2 efflux has not been evaluated sufficiently. The objective of our research is to estimate depth profile of the root respiration rate. Thus we developed a box model which calculates the depth profile. In this paper, we discussed about (1) the adequacy of calculated result by comparing it to the to observed soil respired CO 2 flux with trenching method and (2) sensitivity of the box model to uncertainty in the input data. The result showed that the depth profile of root respiration rate decreased with soil depth. This is attributed to the distribution of fine roots which dominate root respiration. The model results reasonable agreed with the measurement results and characteristics of root respiration. The output of the model was robust to the variation of the input data. (author)

  9. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2018-03-01

    We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots. © 2017 John Wiley & Sons Ltd.

  10. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System.

    Science.gov (United States)

    Peters, Thomas M; Sawvel, Russell A; Park, Jae Hong; Anthony, T Renée

    2015-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a

  11. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  12. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  13. LIMITATION OF SOIL RESPIRATION DURING DRY PERIOD

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor; Acosta, Manuel

    2003-01-01

    Roč. 16, - (2003), s. 47-52. ISBN 80-7157-297-7 R&D Projects: GA MŠk LN00A141; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : moisture * Norway spruce * precipitation * respiration * soil CO2 efflux Subject RIV: EH - Ecology, Behaviour

  14. Internal current generation in respiration chambers

    Science.gov (United States)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  15. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  16. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  17. Quantitative determination of alpha-quartz in airborne dust samples by x-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz In airborne respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube Is employed. NiO is used as Internal standard In order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (Author) 17 refs

  18. Quantitative determination of alpha-quartz in airbone dust samples by X-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz in airbone respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube is employec. NiO is used as internal standard in order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (auth.) [es

  19. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Sustained stimulation of soil respiration after 10 years of experimental warming

    International Nuclear Information System (INIS)

    Reth, S; Graf, W; Reichstein, M; Munch, J C

    2009-01-01

    A number of forest and grassland studies indicated that stimulation of the soil respiration by soil warming ceases after a couple of years (Luo et al 2001 Nature 413 622-5). Here we present results from a long-term soil warming lysimeter experiment in southern Germany showing sustained stimulation of soil respiration after 10 years. Moreover, both warmed and control treatments exhibited a similar temperature response of soil respiration, indicating that adaptation in terms of temperature sensitivity was absent. Carbon dioxide concentration measurements within the profiles are supporting these findings. The increased soil respiration occurred although vegetation productivity in the warmed treatment was not higher than in the control plots. These findings strongly contrast with current soil carbon modeling concepts, where carbon pools decay according to first-order kinetics, and thus a depletion of labile soil carbon pools leads to an apparent down-regulation of microbial respiration (Knorr et al 2005 Nature 433 298-301). Consequently, the potential for positive climate carbon cycle feedback may be larger than represented in current models of soil carbon turnover.

  1. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures

    Directory of Open Access Journals (Sweden)

    Cristiane Fagundes

    2013-03-01

    Full Text Available In this study, the influence of storage temperature and passive modified packaging (PMP on the respiration rate and physicochemical properties of fresh-cut Gala apples (Malus domestica B. was investigated. The samples were packed in flexible multilayer bags and stored at 2 °C, 5 °C, and 7 °C for eleven days. Respiration rate as a function of CO2 and O2 concentrations was determined using gas chromatography. The inhibition parameters were estimated using a mathematical model based on Michaelis-Menten equation. The following physicochemical properties were evaluated: total soluble solids, pH, titratable acidity, and reducing sugars. At 2 °C, the maximum respiration rate was observed after 150 hours. At 5 °C and 7 °C the maximum respiration rates were observed after 100 and 50 hours of storage, respectively. The inhibition model results obtained showed a clear effect of CO2 on O2 consumption. The soluble solids decreased, although not significantly, during storage at the three temperatures studied. Reducing sugars and titratable acidity decreased during storage and the pH increased. These results indicate that the respiration rate influenced the physicochemical properties.

  2. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    2008-01-01

    (s)) or the octanol/air partition coefficient (K-OA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration (C-particle/C-Dust) was calculated, The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite...

  3. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  4. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  5. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  6. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Z.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-07-15

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist.

  7. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    International Nuclear Information System (INIS)

    Rahim, Z.; Qamar, A.; Ali, S.

    2014-01-01

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist

  8. Constraints on backreaction in dust universes

    International Nuclear Information System (INIS)

    Raesaenen, Syksy

    2006-01-01

    We study backreaction in dust universes using exact equations which do not rely on perturbation theory, concentrating on theoretical and observational constraints. In particular, we discuss the recent suggestion (Kolb et al 2005 Preprint hep-th/0503117) that superhorizon perturbations could explain present-day accelerated expansion as a useful example which can be ruled out. We note that a backreaction explanation of late-time acceleration will have to involve spatial curvature and subhorizon perturbations

  9. DUST-BATHING BEHAVIORS OF AFRICAN HERBIVORES AND THE POTENTIAL RISK OF INHALATIONAL ANTHRAX.

    Science.gov (United States)

    Barandongo, Zoe R; Mfune, John K E; Turner, Wendy C

    2018-01-01

    :  Anthrax in herbivorous wildlife and livestock is generally assumed to be transmitted via ingestion or inhalation of Bacillus anthracis spores. Although recent studies have highlighted the importance of the ingestion route for anthrax transmission, little is known about the inhalational route in natural systems. Dust bathing could aerosolize soilborne pathogens such as B. anthracis, exposing dust-bathing individuals to inhalational infections. We investigated the potential role of dust bathing in the transmission of inhalational anthrax to herbivorous wildlife in Etosha National Park, Namibia, an area with endemic seasonal anthrax outbreaks. We 1) cultured soils from dust-bathing sites for the presence and concentration of B. anthracis spores, 2) monitored anthrax carcass sites, the locations with the highest B. anthracis concentrations, for evidence of dust bathing, including a site where a zebra died of anthrax on a large dust bath, and 3) characterized the ecology and seasonality of dust bathing in plains zebra ( Equus quagga), blue wildebeest ( Connochaetes taurinus), and African savanna elephant ( Loxodonta africana) using a combination of motion-sensing camera traps and direct observations. Only two out of 83 dust-bath soils were positive for B. anthracis, both with low spore concentrations (≤20 colony-forming units per gram). We also detected no evidence of dust baths occurring at anthrax carcass sites, perhaps due to carcass-induced changes in soil composition that may deter dust bathing. Finally, despite observing some seasonal variation in dust bathing, preliminary evidence suggests that the seasonality of dust bathing and anthrax mortalities are not correlated. Thus, although dust bathing creates a dramatic cloud of aerosolized soil around an individual, our microbiologic, ecologic, and behavioral results in concert demonstrate that dust bathing is highly unlikely to transmit inhalational anthrax infections.

  10. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    Science.gov (United States)

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively u