WorldWideScience

Sample records for respective substrate specificity

  1. RESPECT

    Teyeb, Oumer; Boussif, Malek; Sørensen, Troels Bundgaard

    2005-01-01

    the performance from an end-2-end (E2E), user-perceived Quality Of Service (QoS) point of view. In this paper, the design and implementation of RESPECT, an easily configurable network emulator is described. RESPECT was originally geared towards Universal Mobile Communications System (UMTS) networks, but thanks...... to its modular and scalable design, it is being extended for generic heterogeneous networks. Using RESPECT, QoS studies can be carried out to study the behavior of different services in different network conditions, identify generalized service dependent performance metrics for already existing services...

  2. Characterizing Protease Specificity: How Many Substrates Do We Need?

    Michael Schauperl

    Full Text Available Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points. Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4' with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  3. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  4. Crystal Structure and Substrate Specificity of PTPN12

    Hui Li

    2016-05-01

    Full Text Available PTPN12 is an important tumor suppressor that plays critical roles in various physiological processes. However, the molecular basis underlying the substrate specificity of PTPN12 remains uncertain. Here, enzymological and crystallographic studies have enabled us to identify two distinct structural features that are crucial determinants of PTPN12 substrate specificity: the pY+1 site binding pocket and specific basic charged residues along its surface loops. Key structurally plastic regions and specific residues in PTPN12 enabled recognition of different HER2 phosphorylation sites and regulated specific PTPN12 functions. In addition, the structure of PTPN12 revealed a CDK2 phosphorylation site in a specific PTPN12 loop. Taken together, our results not only provide the working mechanisms of PTPN12 for desphosphorylation of its substrates but will also help in designing specific inhibitors of PTPN12.

  5. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.

    2001-01-01

    Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine ki......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  6. Substrate Specificity of Na+,Cl-(HCO3-)-ATPase.

    Yurkiv, V A; Melikhov, V I; Shubin, V S

    2016-09-01

    We studied substrate specificity of Na + ,Cl - (HCO 3 - )-ATPase. In most cases, replacement of ATP for other phosphate-containing substances resulted in not only pronounced suppression of phosphohydrolase reactions, but also dramatic changes of their responsiveness to the stimulating effect of monovalent ions. The data showed that Na + ,Cl - (HCO 3 - )-ATPase is a highly specific enzyme for ATP.

  7. Specific binding of large aggregates of amphiphilic molecules to the respective antibodies.

    Nabok, Alexei; Tsargorodskaya, Anna; Holloway, Alan; Starodub, Nikolay F; Demchenko, Anna

    2007-07-31

    The Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.3 microg/cm2 at saturation. The obtained responses of both TIRE and QCM methods are substantially higher than anticipated for the immune binding of single molecules of nonylphenol. The mechanism of binding of large aggregates of nonylphenol was suggested instead. Modeling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The mechanism of binding of large molecular aggregates to respective antibodies can be extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin molecules on the surface was proved by the AFM study.

  8. Substrate specificity determinants of class III nucleotidyl cyclases.

    Bharambe, Nikhil G; Barathy, Deivanayaga V; Syed, Wajeed; Visweswariah, Sandhya S; Colaςo, Melwin; Misquith, Sandra; Suguna, Kaza

    2016-10-01

    The two second messengers in signalling, cyclic AMP and cyclic GMP, are produced by adenylyl and guanylyl cyclases respectively. Recognition and discrimination of the substrates ATP and GTP by the nucleotidyl cyclases are vital in these reactions. Various apo-, substrate- or inhibitor-bound forms of adenylyl cyclase (AC) structures from transmembrane and soluble ACs have revealed the catalytic mechanism of ATP cyclization reaction. Previously reported structures of guanylyl cyclases represent ligand-free forms and inactive open states of the enzymes and thus do not provide information regarding the exact mode of substrate binding. The structures we present here of the cyclase homology domain of a class III AC from Mycobacterium avium (Ma1120) and its mutant in complex with ATP and GTP in the presence of calcium ion, provide the structural basis for substrate selection by the nucleotidyl cyclases at the atomic level. Precise nature of the enzyme-substrate interactions, novel modes of substrate binding and the ability of the binding pocket to accommodate diverse conformations of the substrates have been revealed by the present crystallographic analysis. This is the first report to provide structures of both the nucleotide substrates bound to a nucleotidyl cyclase. Coordinates and structure factors have been deposited in the Protein Data Bank with accession numbers: 5D15 (Ma1120 CHD +ATP.Ca 2+ ), 5D0E (Ma1120 CHD +GTP.Ca 2+ ), 5D0H (Ma1120 CHD (KDA→EGY)+ATP.Ca 2+ ), 5D0G (Ma1120 CHD (KDA→EGY)+GTP.Ca 2+ ). Adenylyl cyclase (EC number: 4.6.1.1). © 2016 Federation of European Biochemical Societies.

  9. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases

    Blacklock, Brenda J.; Jaworski, Jan G.

    2006-01-01

    The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence database revealed 20 genes with homology to seed-specific FAE1 KCS. Eight of the 20 putative KCSs were cloned, expressed in yeast, and isolated as (His) 6 fusion proteins. Five of the eight (At1g71160, At1g19440, At1g07720, At5g04530, and At4g34250) had little or no activity with C16 to C20 substrates while three demonstrated activity with C16, C18, and C20 saturated acyl-CoA substrates. At1g01120 KCS (KCS1) and At2g26640 KCS had broad substrate specificities when assayed with saturated and mono-unsaturated C16 to C24 acyl-CoAs while At4g34510 KCS was specific for saturated fatty acyl-CoA substrates

  10. Probing ADAMTS13 Substrate Specificity using Phage Display

    Desch, Karl C.; Kretz, Colin; Yee, Andrew; Gildersleeve, Robert; Metzger, Kristin; Agrawal, Nidhi; Cheng, Jane; Ginsburg, David

    2015-01-01

    Von Willebrand factor (VWF) is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2’ and P11’, for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13–VWF exosite interactions outside of VWF73. PMID:25849793

  11. Probing ADAMTS13 substrate specificity using phage display.

    Karl C Desch

    Full Text Available Von Willebrand factor (VWF is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2' and P11', for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13-VWF exosite interactions outside of VWF73.

  12. Substrate specificity within a family of outer membrane carboxylate channels.

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  13. Surprisingly high substrate specificities observed in complex biofilms

    Nierychlo, Marta; Kindaichi, Tomonori; Kragelund, Caroline

    The behavior of microorganisms in natural ecosystems (e.g. biofilms) differs significantly from laboratory studies. In nature microorganisms experience alternating periods of surplus nutrients, nutrient-limitation, and starvation. Literature data suggests that to survive and compete successfully......, microorganisms can regulate their metabolism expressing wide range of uptake and catabolic systems. However, ecophysiological studies of natural biofilms indicate that bacteria are very specialized in their choice of substrate, so even minor changes in substrate composition can affect the community composition...... by selection for different specialized species. We hypothesized that bacteria growing in natural environment express strongly conserved substrate specificity which is independent on short-term (few hours) variations in growth conditions. In this study, biofilm from Aalborg wastewater treatment plant was used...

  14. Arabidopsis ATG4 cysteine proteases specificity toward ATG8 substrates

    Park, Eunsook; Woo, Jongchan; Dinesh-Kumar, SP

    2014-01-01

    Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes. PMID:24658121

  15. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.

    Ang, Ee L; Obbard, Jeffrey P; Zhao, Huimin

    2007-02-01

    Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.

  16. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation.

    Wecksler, Aaron T; Kenyon, Victor; Deschamps, Joshua D; Holman, Theodore R

    2008-07-15

    Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.

  17. Substrate Specificity and Enzyme Recycling Using Chitosan Immobilized Laccase

    Everton Skoronski

    2014-10-01

    Full Text Available The immobilization of laccase (Aspergillus sp. on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme’s catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  18. Purification and substrate specificity of Staphylococcus hyicus lipase.

    van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F

    1989-11-28

    The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.

  19. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  20. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display.

    Zhang, Keya; Nelson, Kathryn M; Bhuripanyo, Karan; Grimes, Kimberly D; Zhao, Bo; Aldrich, Courtney C; Yin, Jun

    2013-01-24

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Certification of ERDA contractors' packaging with respect to compliance with DOT specification 7A performance requirements

    Edling, D.A.; Griffin, J.F.

    1975-01-01

    The purpose of this study was to have one ERDA contractor: (1) compile a list of specification packagings, proposed by ERDA contractors, for shipping Type A quantities of radioactive material, and (2) analyze these packages for conformance to Specification 7A requirements. This study was divided into two phases. Phase I provides a report on those packages which could be shown, based on existing test data and engineering analyses, to conform to DOT Specification 7A packaging requirements. The results of Phase I are discussed in detail in the publication, ''Certification of AEC Contractor's Packagings With Respect to Compliance with DOT Specification 7A Performance Requirements -- Phase I Summary Report,'' D. A. Edling, H. E. Meyer and G. L. Phillabaum (Schedule 189C, May 26, 1974). The objectives of Phase II were: (1) identification of packages from Phase I for which available information was not adequate for certification. (Those specification containers used by ERDA contractors and those containers for which adequate information was available for certification are listed in the Phase I summary report.); (2) identification of specific test/engineering analysis data required; (3) generation/procurement of these data; and (4) documentation of study results for use by all ERDA contractors and private industry. The results of Phase II of the study are presented. (U.S.)

  2. Specification of safety requirements for waste packages with respect to practicable quality control measures

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  3. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    Kino, Kuniki; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-01

    Glutathione (GSH) is synthesized by γ-glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed γ-GCS-GS catalyzing both γ-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the γ-GCS activity, S. agalactiae γ-GCS-GS had different substrate specificities from those of Escherichia coli γ-GCS. Furthermore, S. agalactiae γ-GCS-GS synthesized several kinds of γ-glutamyltripeptide, γ-Glu-X aa -Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding γ-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae γ-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed γ-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of γ-glutamyltripeptide, γ-Glu-Cys-X aa . Whereas the substrate specificities of γ-GCS domain protein and GS domain protein of S. agalactiae γ-GCS-GS were the same as those of S. agalactiae γ-GCS-GS

  4. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  5. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  6. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.

    Qian Han

    2010-01-01

    Full Text Available 3,4-Dihydroxyphenylalanine decarboxylase (DDC, also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  7. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  8. Interactions between Casein kinase Iepsilon (CKIepsilon and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity.

    Caroline Lund Dahlberg

    Full Text Available Members of the Casein Kinase I (CKI family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways.CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding.The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation.

  9. In silico design, synthesis, and assays of specific substrates for proteinase 3: influence of fluorogenic and charged groups.

    Narawane, Shailesh; Budnjo, Adnan; Grauffel, Cédric; Haug, Bengt Erik; Reuter, Nathalie

    2014-02-13

    Neutrophil serine proteases are specific regulators of the immune response, and proteinase 3 is a major target antigen in antineutrophil cytoplasmic antibody-associated vasculitis. FRET peptides containing 2-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as fluorophore and quencher groups, respectively, have been widely used to probe proteases specificity. Using in silico design followed by enzymatic assays, we show that Abz and EDDnp significantly contribute to substrate hydrolysis by PR3. We also propose a new substrate specific for PR3.

  10. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  11. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Stříšovský, Kvido

    2014-01-01

    Roč. 33, č. 20 (2014), s. 2408-2421 ISSN 0261-4189 R&D Projects: GA ČR GAP305/11/1886; GA MŠk(CZ) LK11206; GA MŠk LO1302; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : intramembrane protease * rhomboid family * rhomboid protease * structure * substrate recognition Subject RIV: CE - Biochemistry Impact factor: 10.434, year: 2014

  12. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  13. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  14. Engineering the substrate and inhibitor specificities of human coagulation Factor VIIa

    Larsen, Katrine S; Østergaard, Henrik; Bjelke, Jais R

    2007-01-01

    The remarkably high specificity of the coagulation proteases towards macromolecular substrates is provided by numerous interactions involving the catalytic groove and remote exosites. For FVIIa [activated FVII (Factor VII)], the principal initiator of coagulation via the extrinsic pathway, several...... for FVIIa by marked changes in primary substrate specificity and decreased rates of antithrombin III inhibition. Interestingly, these changes do not necessarily coincide with an altered ability to activate Factor X, demonstrating that inhibitor and macromolecular substrate selectivity may be engineered...

  15. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.

    Phillips, Robert S; Anderson, Andrew D; Gentry, Harvey G; Güner, Osman F; Bowen, J Phillip

    2017-04-15

    Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of k cat and k cat /K m comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with K I values lower than the K m for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a K I value of 1.5μM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The K I for this compound was found to be 34μM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    Daniel Decker

    2017-09-01

    Full Text Available UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes UDP-glucose pyrophosphorylases (UGPase, Arabidopsis UDP-sugar pyrophosphorylase (USPase and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2 were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM. Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM, β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM, but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM and, to some extent, D-Glc-1-P (Km of 3.2 mM. Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  17. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity.

    Yang, Chunsheng; Wang, Xuedong; Wei, Dongzhi

    2011-12-01

    The characteristics of the new nitrilase-producing strain Rhodobacter sphaeroides LHS-305 were investigated. By investigating several parameters influencing nitrilase production, the specific cell activity was ultimately increased from 24.5 to 75.0 μmol g(-1) min(-1), and hereinto, the choice of inducer proved the most important factor. The aromatic nitriles (such as 3-cyanopyridine and benzonitrile) were found to be the most favorable substrates of the nitrilase by analyzing the substrate spectrum. It was speculated that the unsaturated carbon atom attached to the cyano group was crucial for this type of nitrilase. The value of apparent K (m), substrate inhibition constant, and product inhibition constant of the nitrilase against 3-cyanopyridine were 4.5 × 10(-2), 29.2, and 8.6 × 10(-3) mol L(-1), respectively. When applied in nicotinic acid preparation, the nitrilase is able to hydrolyze 200 mmol L(-1) 3-cyanopyridine with 93% conversion rate in 13 h by 6.1 g L(-1) cells (dry cell weight).

  18. The sensitivity and specificity of the social communication questionnaire for autism spectrum with respect to age.

    Barnard-Brak, Lucy; Brewer, Adam; Chesnut, Steven; Richman, David; Schaeffer, Anna Marie

    2016-08-01

    The age neutrality of the Social Communication Questionnaire (SCQ) was examined as a common screener for ASD. Mixed findings have been reported regarding the recommended cutoff score's ability to accurately classify an individual as at-risk for autism spectrum disorder (ASD) (sensitivity) versus accurately classifying an individual as not at-risk for ASD (specificity). With a sample from the National Database for Autism Research, this study examined the SCQ's sensitivity versus specificity. Analyses indicated that the actual sensitivity and specificity scores were lower than initially reported by the creators of the SCQ. Autism Res 2016, 9: 838-845. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Two nucleoside transporters in Lactococcus lactis with different substrate specificities

    Martinussen, Jan; Sørensen, Claus; Jendresen, Christian Bille

    2010-01-01

    , and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of Lactococcus lactis to transport different nucleosides across the cell membrane was characterized...

  20. Organ-specific autoimmunity in type 1 diabetes mellitus: Screening with respect to glycemic control

    Mohamed Ghada A

    2016-01-01

    Full Text Available Type 1 diabetes (T1D is a tissue-specific autoimmune disease and often associated with other autoimmune diseases; so our study aimed to define the occurrence of thyroid peroxidase antibody (TPOAb and thyroglobulin antibody (TGAb in autoimmune thyroid disease (AIT, tissue transglutaminase antibody (TTGAb in celiac disease, And to evaluate the relationship between the presence of these antibodies and glycemic control. Our retrospective study included 60 Kuwaiti patients with T1D who attended and follow in Diabetes outpatient clinics of Kuwait primary health care centers during the period of 2014-2015. For them, recorded data for age, sex, duration of diabetes, Body Mass Index (BMI, HbA1c was reviewed. Patients were screened for the presence of Specific antibodies to islet antigens (ICAb, glutamic acid decarboxylase autoantibodies (GADAb, insulin autoantibodies (IAA, TPOAb, TGAb, TTGAb and also thyroid stimulating hormone (TSH were measured by ELISA. Of the total 60 patients (20 men, 40women, mean age was17.95 ± (5.44 y; the mean duration of diabetes was 6.63 ± (4.27 y; mean HbA1c was 10.41± (1.96 %. Only 58 (96.7% wer e positive for GADAb, 32 (53.3% were positive for ICAb, and 48 (80% were positive for IAA, 14 (23.3% patients were positive for TPOAb, 11 (18.3% were positive for TGAb, 10 (16.7 % were positive for both TPOAb and TGAb; furthermore 8 (13.3% patients were positive for TTGAb. Neither organ-specific autoimmune disease (AIT and celiac disease nor pancreatic β cells autoantibodies had a significant association with the glycemic control. In our study, we confirmed the high prevalence of a second organ-specific autoimmune disease in individuals with type 1 diabetes. Also Subclinical forms of these disorders have no influence on diabetes control. Further research will be necessary to test these relationships in a prospective follow-up study

  1. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  2. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    Rachel S. Lee

    2011-01-01

    Full Text Available The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ.

  3. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  4. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  5. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  6. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Nitish K Mishra

    Full Text Available Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task.Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset.Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide accurate predictions

  7. Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase

    Yuzawa, S; Eng, CH; Katz, L; Keasling, JD

    2013-06-04

    LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic alpha-lipomycin in Streptomyces aureofaciens Tu117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics.

  8. Investigation of the cofactor controlled substrate specificity of yeast inorganic pyrophosphatase

    Dunaway-Mariano, D.; Barry, R.J.; Brush, T.; Ting, S.J.

    1986-01-01

    The PPase reaction requires the participation of three metal ion cofactors. One metal ion binds to PP activating it for reaction and the other two bind to the enzyme activating it for catalysis. Of the metal ions tested only Mg 2+ , Zn 2+ , Co 2+ , Mn 2+ can perform all these roles. Most trivalent metal ions can function to activate the PP for reaction but cannot activate the enzyme for catalysis. The Mg 2+ activated enzyme is specific for M-PP and M-PPS complexes while the Zn 2+ activated enzyme also acts on metal complexes of PPP, PPPOR, PPOR and PPF. 18 O-Incorporation studies show that the substituted phosphoryl group of the unsymmetrical PP complexes always serves as the leaving group. To gain insight into the mechanism of the cofactor control over the substrate specificity the order of substrate/cofactor binding to the enzyme was examined. Dead end inhibition studies in which Cr(III)PP served as substrate and Mg 2+ as cofactor indicate that the mechanism is rapid equilibrium ordered (CrPP binds first) while dead end inhibitor induced activator inhibition studies with Mg 2+ and MgPP indicate that the kinetic mechanism is steady state preferred order. Cofactor-enzyme binding was studied as a function of substrate structure and the results obtained rule out interference of Mg 2+ binding by substrate analogs as an explanation for the different substrate specificities of the Zn 2+ and Mg 2+ activated enzymes

  9. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes

    Yin, Si-Tao; Huang, Hao; Zhang, Yu-Hang; Zhou, Zi-Ren; Song, Ai-Xin; Hong, Fa-Shui; Hu, Hong-Yu

    2011-01-01

    Highlights: ► A deubiquitinating enzyme has its unique substrate specificity for deubiquitination. ► We have established an activity assay for ubiquitin C-terminal hydrolases. ► This assay can be applicable to other deubiquitinating enzymes. -- Abstract: Ubiquitin C-terminal hydrolases (UCHs) are a representative family of deubiquitinating enzymes (DUBs), which specifically cleave ubiquitin (Ub) chains or extensions. Here we present a convenient method for characterizing the substrate specificities of various UCHs by fluorescently mutated Ub-fusion proteins (Ub F45W -Xaa) and di-ubiquitin chains (Ub F45W -diUb). After removal of the intact substrate by Ni 2+ -NTA affinity, the enzymatic activities of UCHs were quantitatively determined by recording fluorescence of the Ub F45W product. The results show that three UCHs, i.e. UCH-L1, UCH-L3 and UCH37/UCH-L5, are distinct in their substrate specificities for the Ub-fusions and diUb chains. This assay method may also be applied to study the enzymatic activities and substrate specificities of other DUBs.

  10. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    Sobhy, M.; Joudeh, L.; Huang, X.; Takahashi, Masateru; Hamdan, S.

    2013-01-01

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5' nuclease mechanisms. This is achieved by coordinating threading of the 5' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  11. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    Sobhy, M.

    2013-06-06

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5\\' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5\\' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5\\' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5\\' nuclease mechanisms. This is achieved by coordinating threading of the 5\\' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5\\' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  12. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased

  13. The effect of substrate composition and storage time on urine specific gravity in dogs.

    Steinberg, E; Drobatz, K; Aronson, L

    2009-10-01

    The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.

  14. Studies on morphology of Langmuir-Blodgett films of stearic acid deposited with different orientation of substrates with respect to compression

    Choudhary, Keerti; Manjuladevi, V.; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in [Department of physics, Birla Institute of Technology & Science, Pilani-333031, Rajasthan (India)

    2016-05-06

    The Langmuir monolayer at an air-water interface shows remarkably different surface pressure – area isotherm, when measured with the surface normal of a Wilhemly plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir-Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid was studied using an atomic force microscope (AFM). The morphology of the LB films was found to be different due to difference in the stress in different directions.

  15. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  16. Mammalian folylpoly-γ-glutamate synthetase. 2. Substrate specificity and kinetic properties

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-[ 14 C]glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and β,γ-methylene-ATP, β,γ-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P 1 ,P 5 -di(adenosine-5') pentaphosphate, and free ATP 4- are potent inhibitors of the reaction

  17. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases

    Zoldak, G.; Aumuller, T.; Lucke, C.; Hritz, J.; Oostenbrink, C.; Fischer, G.; Schmid, F.X.

    2009-01-01

    To fully explore the substrate specificities of prolyl isomerases, we synthesized a library of 20 tetrapeptides that are labeled with a 2-aminobenzoyl (Abz) group at the amino terminus and a p-nitroanilide (pNA) group at the carboxy terminus. In this peptide library of the general formula

  18. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  19. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  20. Studies on peptide amidase-catalysed C-terminal peptide amidation in organic media with respect to its substrate specificity

    Čeřovský, Václav; Kula, M. R.

    2001-01-01

    Roč. 33, - (2001), s. 183-187 ISSN 0885-4513 R&D Projects: GA ČR GA203/99/1458 Keywords : enzymic amidation * peptide amides * peptide synthesis Subject RIV: CC - Organic Chemistry Impact factor: 1.408, year: 2001

  1. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative sub...

  2. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  3. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Tomasz Wlodarski

    Full Text Available Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity. Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  4. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-01-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases

  5. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  6. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  7. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  8. Using directed evolution to probe the substrate specificity of mandelamide hydrolase.

    Wang, Pan-Fen; Yep, Alejandra; Kenyon, George L; McLeish, Michael J

    2009-02-01

    Mandelamide hydrolase (MAH), a member of the amidase signature family, catalyzes the hydrolysis of mandelamide to mandelate and ammonia. X-ray structures of several members of this family, but not that of MAH, have been reported. These reveal nearly superimposable conformations of the unusual Ser-cisSer-Lys catalytic triad. Conversely, the residues involved in substrate recognition are not conserved, implying that the binding pocket could be modified to change the substrate specificity, perhaps by directed evolution. Here we show that MAH is able to hydrolyze small aliphatic substrates such as lactamide, albeit with low efficiency. A selection method to monitor changes in mandelamide/lactamide preference was developed and used to identify several mutations affecting substrate binding. A homology model places some of these mutations close to the catalytic triad, presumably in the MAH active site. In particular, Gly202 appears to control the preference for aromatic substrates as the G202A variant showed three orders of magnitude decrease in k(cat)/K(m) for (R)- and (S)-mandelamide. This reduction in activity increased to six orders of magnitude for the G202V variant.

  9. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  10. Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison

    Lalida Shank

    2010-09-01

    Full Text Available Peroxidases (POD and polyphenol oxidase (PPO are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX, whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X. Molecular docking of common substrates of these two enzymes was subsequently studied. It was found that epicatechin and catechin exhibited high affinity with both enzymes, even though POD and PPO have different binding pockets regarding the size and the key amino acids involved in binding. Predicted binding modes of substrates with both enzymes were also compared. The calculated docking interaction energy of trihydroxybenzoic acid related compounds shows high affinity, suggesting specificity and potential use as common inhibitor to grape ascorbate peroxidase and polyphenol oxidase.

  11. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  12. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  13. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  14. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.

    Martin Mahro

    Full Text Available In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3. The sequence alignment of different aldehyde oxidase (AOX isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR. Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.

  15. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.

    Yi-Ju Chen

    Full Text Available S-glutathionylation, the covalent attachment of a glutathione (GSH to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA. TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN and human protein tyrosine phosphatase 1b (PTP1B. Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/, for identifying uncharacterized GSH substrate sites on the protein sequences.

  16. The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction

    Abdelkafi Slim

    2011-11-01

    Full Text Available Abstract Background Phospholipase D (PLD belongs to a lipolytic enzyme subclass which catalyzes the hydrolysis and transesterification of glycerophospholipids at the terminal phosphodiester bond. Results In this work, we have studied the substrate specificity of PLDs from germinating sunflower seeds and cultured-soybean cells, using their capacity of transphosphatidylation. In the presence of a nucleophilic acceptor, such as [14C]ethanol, PLD catalyzes the production of phosphatidyl-[14C]-ethanol. The resulting product is easily identified since it is well separated from the other lipids by thin-layer chromatography. The main advantage of this assay is that the phospholipid used as substrate does not need to be radiolabelled and thus allow us a large choice of polar heads and fatty acids. In vitro, we observed that sunflower and soybean cell PLD show the following decreasing order of specificity: phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol; while phosphatidylserine and phosphatidylinositol are utilized much less efficiently. Conclusions The substrate specificity is modulated by the fatty acid composition of the phosphatidylcholine used as well as by the presence of other charged phospholipids.

  17. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease.

    McEachern, Kerry Anne; Fung, John; Komarnitsky, Svetlana; Siegel, Craig S; Chuang, Wei-Lien; Hutto, Elizabeth; Shayman, James A; Grabowski, Gregory A; Aerts, Johannes M F G; Cheng, Seng H; Copeland, Diane P; Marshall, John

    2007-07-01

    An approach to treating Gaucher disease is substrate inhibition therapy which seeks to abate the aberrant lysosomal accumulation of glucosylceramide. We have identified a novel inhibitor of glucosylceramide synthase (Genz-112638) and assessed its activity in a murine model of Gaucher disease (D409V/null). Biochemical characterization of Genz-112638 showed good potency (IC(50) approximately 24nM) and specificity against the target enzyme. Mice that received drug prior to significant accumulation of substrate (10 weeks of age) showed reduced levels of glucosylceramide and number of Gaucher cells in the spleen, lung and liver when compared to age-matched control animals. Treatment of older mice that already displayed significant amounts of tissue glucosylceramide (7 months old) resulted in arrest of further accumulation of the substrate and appearance of additional Gaucher cells in affected organs. These data indicate that substrate inhibition therapy with Genz-112638 represents a viable alternate approach to enzyme therapy to treat the visceral pathology in Gaucher disease.

  18. Furaldehyde substrate specificity and kinetics of Saccharomyces cerevisiae alcohol dehydrogenase 1 variants.

    Laadan, Boaz; Wallace-Salinas, Valeria; Carlsson, Åsa Janfalk; Almeida, João Rm; Rådström, Peter; Gorwa-Grauslund, Marie F

    2014-08-09

    A previously discovered mutant of Saccharomyces cerevisiae alcohol dehydrogenase 1 (Adh1p) was shown to enable a unique NADH-dependent reduction of 5-hydroxymethylfurfural (HMF), a well-known inhibitor of yeast fermentation. In the present study, site-directed mutagenesis of both native and mutated ADH1 genes was performed in order to identify the key amino acids involved in this substrate shift, resulting in Adh1p-variants with different substrate specificities. In vitro activities of the Adh1p-variants using two furaldehydes, HMF and furfural, revealed that HMF reduction ability could be acquired after a single amino acid substitution (Y295C). The highest activity, however, was reached with the double mutation S110P Y295C. Kinetic characterization with both aldehydes and the in vivo primary substrate acetaldehyde also enabled to correlate the alterations in substrate affinity with the different amino acid substitutions. We demonstrated the key role of Y295C mutation in HMF reduction by Adh1p. We generated and kinetically characterized a group of protein variants using two furaldehyde compounds of industrial relevance. Also, we showed that there is a threshold after which higher in vitro HMF reduction activities do not correlate any more with faster in vivo rates of HMF conversion, indicating other cell limitations in the conversion of HMF.

  19. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Crystal structure of inulosucrase from Lactobacillus: insights into the substrate specificity and product specificity of GH68 fructansucrases.

    Pijning, Tjaard; Anwar, Munir A; Böger, Markus; Dobruchowska, Justyna M; Leemhuis, Hans; Kralj, Slavko; Dijkhuizen, Lubbert; Dijkstra, Bauke W

    2011-09-09

    Fructansucrases (FSs) catalyze a transfructosylation reaction with sucrose as substrate to produce fructo-oligosaccharides and fructan polymers that contain either β-2,1 glycosidic linkages (inulin) or β-2,6 linkages (levan). Levan-synthesizing FSs (levansucrases) have been most extensively investigated, while detailed information on inulosucrases is limited. Importantly, the molecular basis of the different product specificities of levansucrases and inulosucrases is poorly understood. We have elucidated the three-dimensional structure of a truncated active bacterial GH68 inulosucrase, InuJ of Lactobacillus johnsonii NCC533 (residues 145-708), in its apo form, with a bound substrate (sucrose), and with a transfructosylation product. The sucrose binding pocket and the sucrose binding mode are virtually identical with those of GH68 levansucrases, confirming that both enzyme types use the same fully conserved structural framework for the binding and cleavage of the donor substrate sucrose in the active site. The binding mode of the first transfructosylation product 1-kestose (Fru-β(2-1)-Fru-α(2-1)-Glc, where Fru=fructose and Glc=glucose) in subsites -1 to +2 shows for the first time how inulin-type fructo-oligosaccharide bind in GH68 FS and how an inulin-type linkage can be formed. Surprisingly, observed interactions with the sugar in subsites +1 and +2 are provided by residues that are also present in levansucrases. The binding mode of 1-kestose and the presence of a more distant sucrose binding site suggest that residues beyond the +2 subsite, in particular residues from the nonconserved 1B-1C loop, determine product linkage type specificity in GH68 FSs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  2. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro; Yamaguchi, Kazuo; Garcia, Andres J

    2011-01-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG 7 ). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni 2+ -ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG 7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII 7-10 ) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII 7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  3. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  4. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro [World Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science - NIMS (Japan); Yamaguchi, Kazuo [Department of Chemistry, Faculty of Science and Research Institute for Photofunctionalized Materials, Kanagawa University (Japan); Garcia, Andres J, E-mail: NAKANISHI.Jun@nims.go.jp [Institute for Bioengineering and Bioscience, Woodruff School of Mechanical Engineering, Georgia Institute of Technology (United States)

    2011-08-15

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG{sub 7}). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni{sup 2+}-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG{sub 7} underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII{sub 7-10}) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII{sub 7-10} was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  5. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Jun Nakanishi, Hidekazu Nakayama, Kazuo Yamaguchi, Andres J Garcia and Yasuhiro Horiike

    2011-01-01

    Full Text Available The development of methods for the off–on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs of three disulfide compounds containing (i a photocleavable poly(ethylene glycol (PEG, (ii nitrilotriacetic acid (NTA and (iii hepta(ethylene glycol (EG7. Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7–10 to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  6. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  7. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. [Haemophilus influenzae, Escherichia coli, Paramecium aurelia

    Lacks, S.; Greenberg, B.

    1977-01-01

    Restriction endonucleases Dpn I and Dpn II are produced by two distinct strains of Diplococcus pneumoniae. The two enzymes show complementary specificity with respect to methylation of sites in DNA. From the identity of its cleavage site with that of Mbo I, it appears that Dpn II cleaves at the unmodified sequence 5'-G-A-T-C-3'. Dpn I cleaves at the same sequence when the adenine residue is methylated. Both enzymes produce only double-strand breaks in susceptible DNA. Their susceptibility to Dpn I and not Dpn II shows that essentially all the G-A-T-C sequences are methylated in DNA from the pneumococcal strain that produces Dpn II as well as in DNA from Hemophilus influenzae and Escherichia coli. In the dam-3 mutant of E. coli none of these sequences appear to be methylated. Residual adenine methylation in the dam-3 mutant DNA most likely occurs at different sites. Different but characteristic degrees of methylation at G-A-T-C sites are found in the DNA of bacterial viruses grown in E. coli. DNAs from mammalian cells and viruses are not methylated at this sequence. Mitochondrial DNA from Paramecium aurelia is not methylated, but a small proportion of G-A-T-C sequences in the macronuclear DNA of this eukaryote appear to be methylated. Possible roles of sequence-specific methylation in the accommodation of plasmids, in the replication of DNA, in the regulation of gene function and in the restriction of viral infection are discussed.

  8. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.

    Keisuke Sugimoto

    Full Text Available DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4 of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3 of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5 of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.

  9. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  10. Species specific substrates and products choices of 4-O-acetyltransferase from Trichoderma brevicompactum.

    Sharma, Shikha; Kumari, Indu; Hussain, Razak; Ahmed, Mushtaq; Akhter, Yusuf

    2017-09-01

    Antagonistic species of Trichoderma such as T. harzianum, T. viride, T. virens and T. koningii are well-known biocontrol agents that have been reported to suppress pathogenic soil microbes and enhance the growth of crop plants. Secondary metabolites (SMs) including trichothecenes are responsible for its biocontrol activities. The trichothecenes, trichodermin and harzianum A (HA) are produced in species dependent manner respectively, by Trichoderma brevicompactum (TB) and Trichoderma arundinaceum (TA). The last step in the pathway involves the conversion of trichodermol into trichodermin or HA alternatively, which is catalyzed by 4-O-acetyltransferase (encoded by tri3 gene). Comparative sequence analysis of acetyltransferase enzyme of TB with other chloramphenicol acetyltransferase (CAT) family proteins revealed the conserved motif involved in the catalysis. Multiple substrate binding studies were carried out to explore the mechanism behind the two different outcomes. His188 was found to have a role in initial substrate binding. In the case of trichodermin synthesis, represented by ternary complex 1, the trichodermol and acetic anhydride (AAn), the two substrates come very close to each other during molecular simulation analysis so that interactions become possible between them and acetyl group may get transferred from AAn to trichodermol, and Tyr476 residue mediates this phenomenon resulting in the formation of trichodermin. However, in case of the HA biosynthesis using the TB version of enzyme, represented by ternary complex 2, the two substrates, trichodermol and octa-2Z,4E,6E-trienedioic acid (OCTA) did not show any such interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

    Deuerling, Elke; Patzelt, Holger; Vorderwülbecke, Sonja; Rauch, Thomas; Kramer, Günter; Schaffitzel, Elke; Mogk, Axel; Schulze-Specking, Agnes; Langen, Hanno; Bukau, Bernd

    2003-03-01

    Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.

  12. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P 1 . In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys 55 and Lys 268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys 55 and Lys 268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27

    Bruno, Mark

    2016-03-05

    Main conclusion: The β-carotene isomerase OsDWARF27 is stereo- and double bond-specific. It converts bicyclic carotenoids with at least one unsubstituted β-ionone ring. OsDWARF27 may contribute to the formation of α-carotene-based strigolactone-like compounds.Strigolactones (SLs) are synthesized from all-trans-β-carotene via a pathway involving the β-carotene isomerase DWARF27, the carotenoid cleavage dioxygenases 7 and 8 (CCD7, CCD8), and cytochrome P450 enzymes from the 711 clade (MAX1 in Arabidopsis). The rice enzyme DWARF27 was shown to catalyze the reversible isomerization of all-trans- into 9-cis-β-carotene in vitro. β-carotene occurs in different cis-isomeric forms, and plants accumulate other carotenoids, which may be substrates of DWARF27. Here, we investigated the stereo and substrate specificity of the rice enzyme DWARF27 in carotenoid-accumulating E. coli strains and in in vitro assays performed with heterologously expressed and purified enzyme. Our results suggest that OsDWARF27 is strictly double bond-specific, solely targeting the C9–C10 double bond. OsDWARF27 did not introduce a 9-cis-double bond in 13-cis- or 15-cis-β-carotene. Substrates isomerized by OsDWARF27 are bicyclic carotenoids, including β-, α-carotene and β,β-cryptoxanthin, that contain at least one unsubstituted β-ionone ring. Accordingly, OsDWARF27 did not produce the abscisic acid precursors 9-cis-violaxanthin or -neoxanthin from the corresponding all-trans-isomers, excluding a direct role in the formation of this carotenoid derived hormone. The conversion of all-trans-α-carotene yielded two different isomers, including 9′-cis-α-carotene that might be the precursor of strigolactones with an ε-ionone ring, such as the recently identified heliolactone. © 2016 Springer-Verlag Berlin Heidelberg

  14. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E. (Cornell); (Sassari); (Pisa)

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  15. An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Vermeulen Michiel

    2004-01-01

    Full Text Available Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted.

  16. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific

  17. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  18. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Lee, Young Keun; Murugesan, Senthilkumar

    2009-01-01

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg -1 protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg -1 protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg -1 protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg -1 protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg -1 protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions

  19. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  20. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases

    Tom A. Ewing

    2018-01-01

    Full Text Available Vanillyl alcohol oxidase (VAO and eugenol oxidase (EUGO are flavin-dependent enzymes that catalyse the oxidation of para-substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para-phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol and a EUGO variant (V436I with increased activity towards chavicol (4-allylphenol and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para-phenol oxidases, facilitating the enzyme engineering of known para-phenol oxidases and the evaluation of the substrate specificity of novel para-phenol oxidases.

  1. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  2. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  3. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis

    Kong, Yun; Joshi, Hiren J; Schjoldager, Katrine Ter-Borch Gram

    2015-01-01

    N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr...... and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual...... isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide...

  4. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  5. A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity.

    Kamenarska, Zornitsa; Taniguchi, Tomokazu; Ohsawa, Noboru; Hiraoka, Masanori; Itoh, Nobuya

    2007-05-01

    Bromoperoxidase activity was initially detected in marine macroalgae belonging to the Solieriaceae family (Gigartinales, Rhodophyta), including Solieria robusta (Greville) Kylin, Eucheuma serra J. Agardh and Kappaphycus alvarezii (Doty) Doty, which are important industrial sources of the polysaccharide carrageenan. Notably, the purification of bromoperoxidase was difficult because due to the coexistence of viscoid polysaccharides. The activity of the partially purified enzyme was dependent on the vanadate ion, and displayed a distinct substrate spectrum from that of previously reported vanadium-dependent bromoperoxidases of marine macroalgae. The enzyme was specific for Br- and I- ions and inactive toward F- and Cl-. The K(m) values for Br- and H2O2 were 2.5x10(-3) M and 8.5x10(-5) M, respectively. The halogenated product, dibromoacetaldehyde, that accumulated in K. alvarezii was additionally determined.

  6. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria

    Hansen, Lars Hestbjerg; Jensen, Lars Bogø; Sørensen, Heidi Iskou

    2007-01-01

    Objectives: A plasmid-encoded multidrug eff lux pump, OqxAB, identified in Escherichia coli of porcine origin, was tested for substrate specificity against selected antibiotics, detergents and disinfectants. The ability of horizontal transfer to food-borne pathogens of the Enterobacteriaceae family......: The plasmid-encoded OqxAB pump has a wide substrate specificity and can be transferred between Enterobacteriaceae conferring reduced susceptibility to a multitude of substrates. These results could indicate some dependence on the outer membrane proteins present in the different species....

  7. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides

    Xueran Geng

    2015-07-01

    Full Text Available An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS, indicating the importance of tryptophan residue(s at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  8. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides.

    Geng, Xueran; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2015-07-24

    An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS), indicating the importance of tryptophan residue(s) at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  9. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  10. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  11. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    Adhikary, Suraj; Eichman, Brandt F. (Vanderbilt)

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  12. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-01-01

    Pestivirus N pro is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N pro blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N pro' s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N pro -GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N pro proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N pro' s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N pro does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N pro' s autoproteolysis is studied using N pro -GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N pro prefers small amino acids with non-branched beta carbons at the P1 position

  13. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.

    Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L

    2018-01-01

    Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono

  14. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro.

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H

    2014-03-01

    Pestivirus N(pro) is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N(pro) blocks the host׳s interferon response by inducing degradation of interferon regulatory factor-3. N(pro׳)s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N(pro)-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N(pro) proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N(pro׳)s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N(pro) does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  16. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    Gottipati, Keerthi; Acholi, Sudheer [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States); Ruggli, Nicolas [Institute of Virology and Immunology, CH-3147 Mittelhäusern (Switzerland); Choi, Kyung H., E-mail: kychoi@utmb.edu [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States)

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  17. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.

    Komiya, Dai; Hori, Akane; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Koseki, Takuya; Fushinobu, Shinya

    2017-10-15

    Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis ( Al AXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. Al AXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that Al AXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of A lAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan. IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of

  18. Elucidation of substrate specificity in Aspergillus nidulans UDP-galactose-4-epimerase.

    Sean A Dalrymple

    Full Text Available The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD(+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the K m and k cat for the enzyme were determined to be 0.11 mM and 12.8 s(-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results.

  19. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  20. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms

    Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander; Rosas-Lemus, Mónica; Chakravarthy, Srinivas; Tuz, Karina; Juárez, Oscar; Permyakov, Eugene A.

    2017-10-24

    ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP and potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.

  1. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    Erica Bree Rosenblum

    Full Text Available Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd, the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin. A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases, adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  2. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1.

    Majiduddin, Fahd K; Palzkill, Timothy

    2005-08-01

    Carbapenem antibiotics are used as antibiotics of last resort because they possess a broad spectrum of antimicrobial activity and are not easily hydrolyzed by beta-lactamases. Recently, class A enzymes, such as the SME-1, NMC-A, and IMI-1 beta-lactamases, have been identified with the capacity to hydrolyze carbapenem antibiotics. Traditional class A beta-lactamases, such as TEM-1 and SHV-1, are unable to hydrolyze carbapenem antibiotics and exhibit some differences in sequence from those that are able to hydrolyze carbapenem antibiotics. The positions that differ may contribute to the unique substrate specificity of the class A carbapenemase SME-1. Codons in the SME-1 gene representing residues 104, 105, 132, 167, 237, and 241 were randomized by site-directed mutagenesis, and functional mutants were selected for the ability to hydrolyze imipenem, ampicillin, or cefotaxime. Although several positions are important for hydrolysis of beta-lactam antibiotics, no single position was found to uniquely contribute to carbapenem hydrolysis. The results of this study support a model whereby the carbapenemase activity of SME-1 is due to a highly distributed set of interactions that subtly alter the structure of the active-site pocket.

  3. Amino Acid Residues That Contribute to Substrate Specificity of Class A β-Lactamase SME-1

    Majiduddin, Fahd K.; Palzkill, Timothy

    2005-01-01

    Carbapenem antibiotics are used as antibiotics of last resort because they possess a broad spectrum of antimicrobial activity and are not easily hydrolyzed by β-lactamases. Recently, class A enzymes, such as the SME-1, NMC-A, and IMI-1 β-lactamases, have been identified with the capacity to hydrolyze carbapenem antibiotics. Traditional class A β-lactamases, such as TEM-1 and SHV-1, are unable to hydrolyze carbapenem antibiotics and exhibit some differences in sequence from those that are able to hydrolyze carbapenem antibiotics. The positions that differ may contribute to the unique substrate specificity of the class A carbapenemase SME-1. Codons in the SME-1 gene representing residues 104, 105, 132, 167, 237, and 241 were randomized by site-directed mutagenesis, and functional mutants were selected for the ability to hydrolyze imipenem, ampicillin, or cefotaxime. Although several positions are important for hydrolysis of β-lactam antibiotics, no single position was found to uniquely contribute to carbapenem hydrolysis. The results of this study support a model whereby the carbapenemase activity of SME-1 is due to a highly distributed set of interactions that subtly alter the structure of the active-site pocket. PMID:16048956

  4. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass.

    Eichorst, Stephanie A; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2014-12-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  6. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    Cédric Grauffel

    Full Text Available Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs. In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p. To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG, hNaa10p/AcCoA/substrate (substrate=MLG, EEE. Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic, hNaa20p (hydrophobic/basic, hNaa30p (basic and hNaa50p (hydrophobic. We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide

  7. Structure based protein engineering of Bacillus stearothermophilus {alpha}-amylase: toward a new substrate specificity

    Rasera, Ana Claudia [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas; Iulek, Jorge [Universidade Estadual de Ponta Grossa, PR (Brazil). Inst. de Quimica; Delboni, Luis Fernando; Barbosa, Valma Martins Barbosa [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1997-12-31

    {alpha}-amylase (using Bacillus licheniformis crystal structure as initial model) it seems that Bacillus stearothermophilus {alpha}-amylase binding site is more complex with and insertion of 40 residues. Therefore the three dimensional structure is crucial to understand the specificity of the substrate of this enzyme which will be used to drive the design of mutation to introduce new properties for industrial purpose. (author)

  8. Structure based protein engineering of Bacillus stearothermophilus α-amylase: toward a new substrate specificity

    Rasera, Ana Claudia; Iulek, Jorge; Delboni, Luis Fernando; Barbosa, Valma Martins Barbosa

    1997-01-01

    licheniformis crystal structure as initial model) it seems that Bacillus stearothermophilus α-amylase binding site is more complex with and insertion of 40 residues. Therefore the three dimensional structure is crucial to understand the specificity of the substrate of this enzyme which will be used to drive the design of mutation to introduce new properties for industrial purpose. (author)

  9. Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase by a Dual Site Mutation

    Musa, Musa M.; Bsharat, Odey; Karume, Ibrahim; Vieille, Claire; Takahashi, Masateru; Hamdan, Samir

    2017-01-01

    Here, we report the asymmetric reduction of selected phenyl-ring-containing ketones by various single and dual site mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Further expanding the size of the substrate binding pocket in the mutant W110A/I86A not only allowed substrates of the single mutants W110A and I86A to be accommodated within the expanded active site, but also expanded the enzyme's substrate range to ketones bearing two sterically demanding groups (bulky-bulky ketones), which are not substrates for TeSADH single mutants. We also report the regio- and enantioselective reduction of diketones using W110A/I86A TeSADH and single TeSADH mutants. The double mutant exhibited dual stereopreference generating the Prelog products most of the time and the anti-Prelog products in a few cases.

  10. Animal deoxyribonucleoside kinases: 'forward' and 'retrograde' evolution of their substrate specificity

    Piskur, Jure; Sandrini, Michael P; Knecht, Wolfgang

    2004-01-01

    Deoxyribonucleoside kinases, which catalyse the phosphorylation of deoxyribonucleosides, are present in several copies in most multicellular organisms and therefore represent an excellent model to study gene duplication and specialisation of the duplicated copies through partitioning of substrate...

  11. Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase by a Dual Site Mutation

    Musa, Musa M.

    2017-12-14

    Here, we report the asymmetric reduction of selected phenyl-ring-containing ketones by various single and dual site mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Further expanding the size of the substrate binding pocket in the mutant W110A/I86A not only allowed substrates of the single mutants W110A and I86A to be accommodated within the expanded active site, but also expanded the enzyme\\'s substrate range to ketones bearing two sterically demanding groups (bulky-bulky ketones), which are not substrates for TeSADH single mutants. We also report the regio- and enantioselective reduction of diketones using W110A/I86A TeSADH and single TeSADH mutants. The double mutant exhibited dual stereopreference generating the Prelog products most of the time and the anti-Prelog products in a few cases.

  12. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.

    Tzong-Yi Lee

    Full Text Available S-nitrosylation, the covalent attachment of a nitric oxide to (NO the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as the flanking amino acids composition, the accessible surface area (ASA and physicochemical properties, i.e. positive charge and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis, maximal dependence decomposition (MDD has been applied to obtain statistically significant conserved motifs. Support vector machine (SVM is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1 and human hemoglobin subunit beta (HBB. Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/, for identifying S-nitrosylation sites on the uncharacterized protein sequences.

  15. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  16. Read-across of ready biodegradability based on the substrate specificity of N-alkyl polypropylene polyamine-degrading microorganisms.

    Geerts, R; van Ginkel, C G; Plugge, C M

    2017-04-01

    The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.

  17. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis

    Cronin, C.N.; Kirsch, J.F.

    1988-01-01

    X-ray crystallographic data have implicated Arg-292 as the residue responsible for the preferred side-chain substrate specificity of asparate aminotransferase. It forms a salt bridge with the β or γ carboxylate group of the substrate. In order to test this proposal and, in addition, to attempt to reverse the substrate charge specificity of this enzyme, Arg-292 has been converted to Asp-292 by site-directed mutagenesis. The activity k/sub cat//K/sub M/) of the mutant enzyme, R292D, toward the natural anionic substrates L-aspartate, L-glutamate, and α-ketoglutarate is depressed by over 5 orders of magnitude, whereas the activity toward the keto acid pyruvate and a number of aromatic and other neutral amino acids is reduced by only 2-9-fold. These results confirm the proposal that Arg-292 is critical for the rapid turnover of substrates bearing anionic side chains and show further that, apart from the desired alteration no major perturbations of the remainder of the molecule have been made. The activity of R292D toward the cationic amino acids L-arginine, L-lysine, and L-ornithine is increased by 9-16-fold over that of wild type and the ratio (k/sub cat//K/sub M/)/sub cationic//(k/sub cat//K/sub M/)/sub anionic/ is in the range 2-40-fold for R292D, whereas this ratio has a range of [(0.3-6) x 10 -6 ]-fold for wild type. Thus, the mutation has produced an inversion of the substrate charge specificity. Possible explanations for the less-than-expected reactivity of R292D with arginine are discussed

  18. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  19. Ferrochelatase from Rhodopseudomonas sphaeroides: substrate specificity and role of sulfhydryl and arginyl residues

    Dailey, H.A.; Fleming, J.E.; Harbin, B.M.

    1986-01-01

    Purified ferrochelatase from the bacterium Rhodopseudomonas sphaeroides was examined to determine the roles of cationic and sulfhydryl residues in substrate binding. Reaction of the enzyme sulfhydryl residues with N-ethylmaleimide or monobromobimane resulted in a rapid loss of enzyme activity. Ferrous iron, but not porphyrin substrate, had a protective effect against inactivation by these two reagents. Quantitation with 3 H-labeled N-ethylmaleimide revealed that inactivation required one to two sulfhydryl groups to be modified. Modification of arginyl residues with either 2,3-butanedione or camphorquinone 10-sulfonate resulted in a loss of ferrochelatase activity. A kinetic analysis of the modified enzyme showed that the K/sub m/ for ferrous iron was not altered but that the K/sub m/ for the prophyrin substrate was increased. These data suggested that arginyl residues may be involved in porphyrin binding, possibly via charge pair interactions between the arginyl residue and the anionic porphyrin propionate side chain. Modification of lysyl residues had no effect on enzyme activity. The authors also examined the ability of bacterial ferrochelatase to use various 2,4-disubstituted porphyrins as substrates. The authors found that 2,4-bis-acetal- and 2,4-disulfonate deuteroporphyrins were effective substrates for the purified bacterial enzyme and that N-methylprotoporphyrin was an effective inhibitor of the enzyme. Data for the ferrochelatase of R. sphaeroides are compared with previously published data for the eucaryotic enzyme

  20. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii.

    Leus, Inga V; Weeks, Jon W; Bonifay, Vincent; Smith, Lauren; Richardson, Sophie; Zgurskaya, Helen I

    2018-04-16

    Antibiotic resistant Acinetobacter baumannii causes infections that are extremely difficult to treat. A significant role in these resistance profiles is attributed to multidrug efflux pumps, especially those belonging to Resistance-Nodulation-cell Division (RND) superfamily of transporters. In this study, we analyzed functions and properties of RND efflux pumps in A. baumannii ATCC 17978. This strain is susceptible to antibiotics and does not contain mutations that are commonly selected upon exposure to high concentrations of antibiotics. We constructed derivatives of ATCC 17978 lacking chromosomally encoded RND pumps and complemented these strains by the plasmid-borne genes. We analyzed the substrate selectivities and efficiencies of the individual pumps in the context of native outer membranes and their hyperporinated variants. Our results show that inactivation of AdeIJK provides the strongest potentiation of antibiotic activities, whereas inactivation of AdeFGH triggers the overexpression of AdeAB. The plasmid-borne overproduction complements the hypersusceptible phenotypes of the efflux deletion mutants to the levels of the parental ATCC 17978. Only a few antibiotics strongly benefitted from the overproduction of efflux pumps and antibacterial activities of some of those depended on the synergistic interaction with the low permeability barrier of the outer membrane. Either overproduction or inactivation of efflux pumps change dramatically the lipidome of ATCC 17978. We conclude that efflux pumps of A. baumannii are tightly integrated into physiology of this bacterium and that clinical levels of antibiotic resistance in A. baumannii isolates are unlikely to be reached solely due to overproduction of RND efflux pumps. Importance RND-type efflux pumps are important contributors in development of clinical antibiotic resistance in A. baumannii However, their specific roles and the extent of contribution to antibiotic resistance remain unclear. We analyzed

  1. Reconstructed ancestral enzymes reveal that negative selection drove the evolution of substrate specificity in ADP-dependent kinases.

    Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria

    2017-09-22

    One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gapsys, Vytautas; Ucurum, Zöhre; de Groot, Bert L; Fotiadis, Dimitrios

    2016-09-13

    Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli.

  3. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D

    Welin, M.; Skovgaard, T.; Knecht, Wolfgang

    2005-01-01

    The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3...

  4. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  5. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D. (Case Western)

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  6. TMG-chitotriomycin as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases.

    Shiota, Hiroto; Kanzaki, Hiroshi; Hatanaka, Tadashi; Nitoda, Teruhiko

    2013-06-28

    TMG-chitotriomycin (1) produced by the actinomycete Streptomyces annulatus NBRC13369 was examined as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases (HexNAcases). According to the results of inhibition assays, 14 GH20 HexNAcases from various organisms were divided into 1-sensitive and 1-insensitive enzymes. Three representatives of each group were investigated for their substrate specificity. The 1-sensitive HexNAcases hydrolyzed N-acetylchitooligosaccharides but not N-glycan-type oligosaccharides, whereas the 1-insensitive enzymes hydrolyzed N-glycan-type oligosaccharides but not N-acetylchitooligosaccharides, indicating that TMG-chitotriomycin can be used as a molecular probe to distinguish between chitin-degrading HexNAcases and glycoconjugate-processing HexNAcases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Indentification of amino - acid residues important for the substrate specificity range of yeast plasma membrane Na+/H+-antiporters

    Zimmermannová, Olga; Zavřel, Martin; Sychrová, Hana

    2005-01-01

    Roč. 22, č. S1 (2005), S178-S178 ISSN 0749-503X. [International Conference on Yeast Genetics and Molecular Biology /22./. 07.08.2005-12.08.2005, Bratislava] R&D Projects: GA ČR(CZ) GP204/02/D092; GA AV ČR(CZ) IAA5011407 Institutional research plan: CEZ:AV0Z50110509 Keywords : yeast * Na+/H+ antiporter * K+ transport * substrate specificity Subject RIV: CE - Biochemistry

  8. Specific fluorogenic substrates for neprilysin (neutral endopeptidase, EC 3.4.24.11 which are highly resistant to serine- and metalloproteases

    M.A.S. Medeiros

    1997-10-01

    Full Text Available Two intramolecularly quenched fluorogenic peptides containing o-aminobenzoyl (Abz and ethylenediamine 2,4-dinitrophenyl (EDDnp groups at amino- and carboxyl-terminal amino acid residues, Abz-DArg-Arg-Leu-EDDnp (Abz-DRRL-EDDnp and Abz-DArg-Arg-Phe-EDDnp (Abz-DRRF-EDDnp, were selectively hydrolyzed by neutral endopeptidase (NEP, enkephalinase, neprilysin, EC 3.4.24.11 at the Arg-Leu and Arg-Phe bonds, respectively. The kinetic parameters for the NEP-catalyzed hydrolysis of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp were Km = 2.8 µM, kcat = 5.3 min-1, kcat/Km = 2 min-1 µM-1 and Km = 5.0 µM, kcat = 7.0 min-1, kcat/Km = 1.4 min-1 µM-1, respectively. The high specificity of these substrates was demonstrated by their resistance to hydrolysis by metalloproteases [thermolysin (EC 3.4.24.2, angiotensin-converting enzyme (ACE; EC 3.4.24.15], serineproteases [trypsin (EC 3.4.21.4, a-chymotrypsin (EC 3.4.21.1] and proteases present in tissue homogenates from kidney, lung, brain and testis. The blocked amino- and carboxyl-terminal amino acids protected these substrates against the action of aminopeptidases, carboxypeptidases and ACE. Furthermore, DR amino acids ensured total protection of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp against the action of thermolysin and trypsin. Leu-EDDnp and Phe-EDDnp were resistant to hydrolysis by a-chymotrypsin. The high specifity of these substrates suggests their use for specific NEP assays in crude enzyme preparations

  9. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  10. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Seetha V Balasingham

    Full Text Available XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB, a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+/Mn(2+. Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  11. Substrate specificity of Micrococcus luteus uv endonuclease and its overlap with DNA photolyase activity

    Patrick, M.H.

    1975-01-01

    The action of an endonuclease from Micrococcus luteus that operates on uv damage in DNA overlaps with that of DNA photolyase from yeast: homo- and heterocyclobutane dipyrimidines in DNA are substrates for both enzymes, but pyrimidine adducts or the spore photoproduct in DNA are not. As expected from this overlap, the action of the two enzymes is mutually interfering: single-strand nicks introduced by the endonuclease effectively preclude photoreactivation; conversely, formation of a photolyase-cyclobutane dipyrimidine complex can prevent nicking by the endonuclease

  12. Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L

    Ileana Corvo

    2018-04-01

    Full Text Available Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature. Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.

  13. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity

    Henriksen, R.A.; Mann, K.G. (Univ. of Vermont, Burlington (USA))

    1989-03-07

    Thrombin Quick II is one of two dysfunctional forms of thrombin derived from the previously described congenital dysprothrombin prothrombin Quick. Thrombin Quick II does not clot fibrinogen, hydrolyze p-nitroanilide substrates of thrombin, or bind N{sup 2}-(5-(dimethylamino)naphthalene-1-sulfonyl)arginine N,N-(3-ethyl-1,5-pentanediyl)amide, a high-affinity competitive inhibitor of thrombin. To determine the structural alteration in thrombin Quick II, the reduced, carboxymethylated protein was hydrolyzed by a lysyl endopeptidase. A peptide not present in a parallel thrombin hydrolysate was identified by reverse-phase chromatography. This Gly residue, which is highly conserved in the chymotrypsin family of serine proteases, forms part of the substrate binding pocket for bulky aromatic and basic side chains in chymotrypsin and trypsin, respectively. However, in porcine elastase 1, the corresponding residue is threonine. Consistent with the identified structural alteration, thrombin Quick II incorporates ({sup 3}H)diisopropyl fluorophosphate stoichiometrically and hydrolyzes the elastase substrate succinyl-Ala-Ala-Pro-Leu-p-nitroanilide with a relative k{sub cat}/K{sub M} of 0.14 when compared to thrombin. This results from a 3-fold increase in K{sub M} and a 2.5-fold decrease in k{sub cat} for thrombin Quick II when compared to thrombin acting on the same substrate. These results and those of other investigators studying mutant trypsins support the conclusion that the catalytic activity of serine proteases is very sensitive to structural alterations in the primary substrate binding pocket.

  14. Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus

    Torres, Leticia L.; Cantero, Ángel; del Valle, Mercedes; Marina, Anabel; López-Gallego, Fernando; Guisán, José M.

    2013-01-01

    A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site. PMID:23263966

  15. Mechanistic Studies of the Yeast Polyamine Oxidase Fms1: Kinetic Mechanism, Substrate Specificity, and pH Dependence†

    Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138

  16. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity

    Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki

    1990-01-01

    The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs

  17. Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations.

    Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A

    2010-03-01

    The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the

  18. PCOGR: Phylogenetic COG ranking as an online tool to judge the specificity of COGs with respect to freely definable groups of organisms

    Kaufmann Michael

    2004-10-01

    Full Text Available Abstract Background The rapidly increasing number of completely sequenced genomes led to the establishment of the COG-database which, based on sequence homologies, assigns similar proteins from different organisms to clusters of orthologous groups (COGs. There are several bioinformatic studies that made use of this database to determine (hyperthermophile-specific proteins by searching for COGs containing (almost exclusively proteins from (hyperthermophilic genomes. However, public software to perform individually definable group-specific searches is not available. Results The tool described here exactly fills this gap. The software is accessible at http://www.uni-wh.de/pcogr and is linked to the COG-database. The user can freely define two groups of organisms by selecting for each of the (current 66 organisms to belong either to groupA, to the reference groupB or to be ignored by the algorithm. Then, for all COGs a specificity index is calculated with respect to the specificity to groupA, i. e. high scoring COGs contain proteins from the most of groupA organisms while proteins from the most organisms assigned to groupB are absent. In addition to ranking all COGs according to the user defined specificity criteria, a graphical visualization shows the distribution of all COGs by displaying their abundance as a function of their specificity indexes. Conclusions This software allows detecting COGs specific to a predefined group of organisms. All COGs are ranked in the order of their specificity and a graphical visualization allows recognizing (i the presence and abundance of such COGs and (ii the phylogenetic relationship between groupA- and groupB-organisms. The software also allows detecting putative protein-protein interactions, novel enzymes involved in only partially known biochemical pathways, and alternate enzymes originated by convergent evolution.

  19. PCOGR: phylogenetic COG ranking as an online tool to judge the specificity of COGs with respect to freely definable groups of organisms.

    Meereis, Florian; Kaufmann, Michael

    2004-10-15

    The rapidly increasing number of completely sequenced genomes led to the establishment of the COG-database which, based on sequence homologies, assigns similar proteins from different organisms to clusters of orthologous groups (COGs). There are several bioinformatic studies that made use of this database to determine (hyper)thermophile-specific proteins by searching for COGs containing (almost) exclusively proteins from (hyper)thermophilic genomes. However, public software to perform individually definable group-specific searches is not available. The tool described here exactly fills this gap. The software is accessible at http://www.uni-wh.de/pcogr and is linked to the COG-database. The user can freely define two groups of organisms by selecting for each of the (current) 66 organisms to belong either to groupA, to the reference groupB or to be ignored by the algorithm. Then, for all COGs a specificity index is calculated with respect to the specificity to groupA, i. e. high scoring COGs contain proteins from the most of groupA organisms while proteins from the most organisms assigned to groupB are absent. In addition to ranking all COGs according to the user defined specificity criteria, a graphical visualization shows the distribution of all COGs by displaying their abundance as a function of their specificity indexes. This software allows detecting COGs specific to a predefined group of organisms. All COGs are ranked in the order of their specificity and a graphical visualization allows recognizing (i) the presence and abundance of such COGs and (ii) the phylogenetic relationship between groupA- and groupB-organisms. The software also allows detecting putative protein-protein interactions, novel enzymes involved in only partially known biochemical pathways, and alternate enzymes originated by convergent evolution.

  20. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols.

    Fraaije, M W; Veeger, C; van Berkel, W J

    1995-11-15

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of 4-(methoxymethyl)phenols. During the conversion of vanillylamine to vanillin, a transient intermediate, most probably vanillylimine, is observed. Vanillyl-alcohol oxidase weakly interacts with 4-hydroxyphenylglycols and a series of catecholamines. These compounds are converted to the corresponding ketones. Both enantiomers of (nor)epinephrine are substrates for vanillyl-alcohol oxidase, but the R isomer is preferred. Vanillyl-alcohol oxidase is most active with chavicol and eugenol. These 4-allylphenols are converted to coumaryl alcohol and coniferyl alcohol, respectively. Isotopic labeling experiments show that the oxygen atom inserted at the C gamma atom of the side chain is derived from water. The 4-hydroxycinnamyl alcohol products and the substrate analog isoeugenol are competitive inhibitors of vanillyl alcohol oxidation. The binding of isoeugenol to the oxidized enzyme perturbs the optical spectrum of protein-bound FAD. pH-dependent binding studies suggest that vanillyl-alcohol oxidase preferentially binds the phenolate form of isoeugenol (pKa < 6, 25 degrees C). From this and the high pH optimum for turnover, a hydride transfer mechanism involving a p-quinone methide intermediate is proposed for the vanillyl-alcohol-oxidase-catalyzed conversion of 4-allylphenols.

  1. The nonstructural proteins of Pneumoviruses are remarkably distinct in substrate diversity and specificity.

    Ribaudo, Michael; Barik, Sailen

    2017-11-06

    Interferon (IFN) inhibits viruses by inducing several hundred cellular genes, aptly named 'interferon (IFN)-stimulated genes' (ISGs). The only two RNA viruses of the Pneumovirus genus of the Paramyxoviridae family, namely Respiratory Syncytial Virus (RSV) and Pneumonia Virus of Mice (PVM), each encode two nonstructural (NS) proteins that share no sequence similarity but yet suppress IFN. Since suppression of IFN underlies the ability of these viruses to replicate in the host cells, the mechanism of such suppression has become an important area of research. This Short Report is an important extension of our previous efforts in defining this mechanism. We show that, like their PVM counterparts, the RSV NS proteins also target multiple members of the ISG family. While significantly extending the substrate repertoire of the RSV NS proteins, these results, unexpectedly, also reveal that the target preferences of the NS proteins of the two viruses are entirely different. This is surprising since the two Pneumoviruses are phylogenetically close with similar genome organization and gene function, and the NS proteins of both also serve as suppressors of host IFN response. The finding that the NS proteins of the two highly similar viruses suppress entirely different members of the ISG family raises intriguing questions of pneumoviral NS evolution and mechanism of action.

  2. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Substrate specificity and catalysis by the editing active site of alanyl-tRNA synthetase from Escherichia coli†

    Pasman, Zvi; Robey-Bond, Susan; Mirando, Adam C.; Smith, Gregory J.; Lague, Astrid; Francklyn, Christopher S.

    2011-01-01

    Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free standing P. horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNAAla and Ala-tRNAAla as substrates, the deacylation activities of the wild type and five different E. coli AlaRS editing site substitution mutants were characterized. The wild type AlaRS editing domain deacylated Ser-tRNAAla with a kcat/KM of 6.6 × 105 M−1 s−1, equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation, but only 12.2-fold greater than the rate with Ala-tRNAAla. While the E664A and T567G substitutions only minimally decreased kcat/KM, Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in kcat/KM in the range of 6-, 7.3-, and 15-fold. C666A AlaRS was 1.4-fold more active on Ala-tRNAAla relative to Ser-tRNAAla, providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine mis-incorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNAAla. PMID:21241052

  4. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes

    Zur, Amit; Brandeis, Michael

    2002-01-01

    The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G1. We studied how d-boxes determine APC/Cfzy/APC/Cfzr specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/Cfzy and APC/Cfzr; fzy has a KEN box and is degraded by APC/Cfzr only. We characterized th...

  5. Divergence of substrate specificity and function in the Escherichia coli hotdog-fold thioesterase paralogs YdiI and YbdB.

    Latham, John A; Chen, Danqi; Allen, Karen N; Dunaway-Mariano, Debra

    2014-07-29

    The work described in this paper, and its companion paper (Wu, R., Latham, J. A., Chen, D., Farelli, J., Zhao, H., Matthews, K. Allen, K. N., and Dunaway-Mariano, D. (2014) Structure and Catalysis in the Escherichia coli Hotdog-fold Thioesterase Paralogs YdiI and YbdB. Biochemistry, DOI: 10.1021/bi500334v), focuses on the evolution of a pair of paralogous hotdog-fold superfamily thioesterases of E. coli, YbdB and YdiI, which share a high level of sequence identity but perform different biological functions (viz., proofreader of 2,3-dihydroxybenzoyl-holoEntB in the enterobactin biosynthetic pathway and catalyst of the 1,4-dihydoxynapthoyl-CoA hydrolysis step in the menaquinone biosynthetic pathway, respectively). In vitro substrate activity screening of a library of thioester metabolites showed that YbdB displays high activity with benzoyl-holoEntB and benzoyl-CoA substrates, marginal activity with acyl-CoA thioesters, and no activity with 1,4-dihydoxynapthoyl-CoA. YdiI, on the other hand, showed a high level of activity with its physiological substrate, significant activity toward a wide range of acyl-CoA thioesters, and minimal activity toward benzoyl-holoEntB. These results were interpreted as evidence for substrate promiscuity that facilitates YbdB and YdiI evolvability, and divergence in substrate preference, which correlates with their assumed biological function. YdiI support of the menaquinone biosynthetic pathway was confirmed by demonstrating reduced anaerobic growth of the E. coli ydiI-knockout mutant (vs wild-type E. coli) on glucose in the presence of the electron acceptor fumarate. Bioinformatic analysis revealed that a small biological range exists for YbdB orthologs (i.e., limited to Enterobacteriales) relative to that of YdiI orthologs. The divergence in YbdB and YdiI substrate specificity detailed in this paper set the stage for their structural analyses reported in the companion paper.

  6. Dual substrate feedback control of specific growth-rate in vaccine production

    Neeleman, R.; Beuvery, E.C.; Vries, D.; Straten, van G.; Boxtel, van A.J.B.

    2004-01-01

    Abstract: Unexpectedly, primary concern of bio-pharmaceutical industry is not optimisation of product yield or cost reduction, but consistency in production and product quality. This paper describes the methodology and experimental results of specific growth-rate control for vaccine production. The

  7. Optimization of the fermentation conditions and substrate specifity of mycelium-bound ester hydrolases of Aspergillus oryzae Cs007

    de Hong Yan

    2015-01-01

    Full Text Available In order to improve mycelium-bound ester hydrolases activities of Aspergillus oryzae Cs007, the main production conditions were investigated. The ester hydrolases activities were simultaneously determined by titration assay and spectrophotometric assay methods, using olive oil and p-nitrophenyl esters as substrates, respectively. The optimum carbon source and nitrogen source were olive oil and peptone, with the concentrations of 1% and 2.2%, respectively. The effects of carbon source, nitrogen source and their concentrations on the production of enzymes were identical when the enzymes activities were assayed by the two methods. The mycelium-bound enzymes showed hydrolytic activity toward all the tested p-nitrophenyl esters, triglycerides and fatty acid ethyl esters. But it showed greater preference for long-chain triglycerides and short-chain p-nitrophenyl esters.

  8. Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues

    Wang, Yen-Chih; Dozier, Jonathan K.; Beese, Lorena S.; Distefano, Mark D.

    2014-01-01

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequen...

  9. Person- and place-selective neural substrates for entity-specific semantic access.

    Fairhall, Scott L; Anzellotti, Stefano; Ubaldi, Silvia; Caramazza, Alfonso

    2014-07-01

    Object-category has a pronounced effect on the representation of objects in higher level visual cortex. However, the influence of category on semantic/conceptual processes is less well characterized. In the present study, we conduct 2 fMRI experiments to investigate the semantic processing of information specific to individual people and places (entities). First, during picture presentation, we determined which brain regions show category-selective increases during access to entity-specific semantic information (i.e., nationality) in comparison to general-category discrimination (person vs. place). In the second experiment, we presented either words or pictures to assess the independence of entity-specific category-selective semantic representations from the processes used to access those representations. Convergent results from these 2 experiments show that brain regions exhibiting a category-selective increase during entity-specific semantic access are the same as those that show a supramodal (word/picture) category-selective response during the same task. These responses were different from classical "perceptual" category-selective responses and were evident in the medial precuneus for people and in the retrosplenial complex as well as anterior/superior sections of the transverse occipital sulcus and parahippocampal gyrus for places. These results reveal the pervasive influence of object-category in cortical organization, which extends to aspects of semantic knowledge arbitrarily related to physical/perceptual properties. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity

    Knecht, Wolfgang; Petersen, G.E.; Sandrini, Michael

    2003-01-01

    In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities......, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine...

  11. Stereoselectivity and substrate specificity in the kinetic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase

    Weijers, C.A.G.M.; Meeuwse, P.; Herpers, R.L.J.M.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2005-01-01

    [GRAPHICS] The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the

  12. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4.

    Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-08-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities

    Navrátil, Michal; Tykvart, Jan; Schimer, Jiří; Pachl, Petr; Navrátil, Václav; Rokob, T. A.; Hlouchová, Klára; Rulíšek, Lubomír; Konvalinka, Jan

    2016-01-01

    Roč. 283, č. 13 (2016), s. 2528-2545 ISSN 1742-464X R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA14-31419S; GA MŠk LO1302; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : arene-binding site * GCPIII * prostate -specific membrane antigen * QM/MM calculations * beta-citryl-L-glutamate Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2016

  14. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases

    Ntokou, Eleni; Hansen, Lykke Haastrup; Kongsted, Jacob

    2015-01-01

    -ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore......Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence...... interchangeability between Cfr and RlmN we constructed various combinations of their genes. The function of the mixed genes was investigated by RNA primer extension analysis to reveal methylation at 23S rRNA position A2503 and by MIC analysis to reveal antibiotic resistance. The catalytic site is expected...

  15. Functional and structural analysis of yeast trx system reveals structural elements of substrate specificity

    Oliveira, Marcos Antonio; Discola, Karen Fulan; Alves, Simone Vidigal; Netto, Luis Eduardo Soares; Amorim, Gisele Cardoso; Pinheiro, Anderson Sa; Valente, Ana Paula; Almeida, Fabio Ceneviva Lacerda; Medrano, Francisco Javier; Guimaraes, Beatriz Gomes

    2006-01-01

    Thioredoxin reductases (Trr) are members of the nucleotide pyridine disulfide oxide reductase family, which includes glutathione reductase (Gr), alkyl hydroperoxide reductase F (AhpF) and lipoamide dehydrogenase (Lpd). Constituents of this family are homodimeric flavoproteins containing one redoxactive disulfide and one tightly bound flavin adenine dinucleotide (FAD) per subunit. Trr catalyzes the disulfide reduction of oxidized Thioredoxin (Trx) using nicotinamide adenine dinucleotide phosphate (NADPH) via a FAD molecule and a redox-active cysteine motif. In this context, FAD transfers the reducing equivalents from NADPH molecule to the reactive cysteines and then to the Trx. Trx, Trr and NADPH comprise the Trx system. Trx are low molecular weight proteins (∼12 KDa) which are involved in several thiol-dependent cellular reactions such as synthesis of deoxyribonucleotides, sulphur metabolism, regulation of the gene expression and oxidative stress defenses. Remarkably, Trr - Trx interactions presents high species and organelle specificities. (author)

  16. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum.Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols

    Fraaije, Marco W.; Veeger, Cees; Berkel, Willem J.H. van

    1995-01-01

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of

  17. Polymer Concentration-Controlled Substrate Specificity in Solvolysis of p-Nitrophenyl Alkanoates Catalyzed by 4-(Dialkylamino)pyridine- Functionalized Polymer in Aqueous Methanol Solution

    Wang, Guang-Jia

    1996-01-01

    The substrate specificity in solvolysis reactions of p-nitrophenyl alkanoates 2 (n=2-18) catalyzed by 4-(dialkylamino)pyridine-functionalized polymer 1 can be controlled by the concentration of 1 in 1...

  18. Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching.

    Paul J Holland

    Full Text Available BACKGROUND: In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG iron(II dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA and 3-methylcytosine (3-meC lesions, but it also repairs 1-methylguanine (1-meG and 3-methylthymine (3-meT at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. METHODOLOGY/PRINCIPAL FINDINGS: We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. CONCLUSIONS/SIGNIFICANCE: A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a "searching" mode and "repair" mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.

  19. Membrane topology and identification of key residues of EaDAcT, a plant MBOAT with unusual substrate specificity.

    Tran, Tam N T; Shelton, Jennifer; Brown, Susan; Durrett, Timothy P

    2017-10-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  1. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Dinca, V., E-mail: dincavalentina@yahoo.com [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Alloncle, P.; Delaporte, P. [Aix-Marseille University, CNRS, LP3 Laboratory, Campus de Luminy, 13288 Marseille (France); Ion, V. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Faculty of Physics, University of Bucharest, 077125 Magurele (Romania); Rusen, L.; Filipescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, Magurele, Bucharest (Romania); Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania)

    2015-10-15

    Highlights: • Roughness gradients are obtained in one step by applying single laser pulses and sample tilting. • BSA protein and cell dependence behavior onto gradient characteristics was studied. • The degradation of the samples by lysozyme was correlated to its ability to access the textured area. - Abstract: Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan–collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  2. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, François M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  3. Germline-specific MATH-BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize.

    Juranič, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanic, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-12-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

  4. Germline-Specific MATH-BTB Substrate Adaptor MAB1 Regulates Spindle Length and Nuclei Identity in Maize[W

    Juranić, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanić, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-01-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s). PMID:23250449

  5. Investigation of the substrate specificity of the proton coupled peptide transporter PepTSo from Shewanella oneidensis

    Prabhala, Bala Krishna; Aduri, Nanda Gowtham; Hald, Helle

    2015-01-01

    a strikingly high sequence identity, can be used to rationalize its mechanism and substrate preference. However, very little is known about the substrate specificity of PepTSo. To elaborate on this, the natural peptide specificity of PepTSo was investigated. Di and tri-peptides were found to be substrates...... for PepTSo in contrast to mono- and tetrapeptides as was indicated by previous competition studies. Interestingly, a negatively charged side chain was better accommodated on the dipeptide N- than the C-terminus position. Inversely, a positive charged side chain appeared to be tolerated better...

  6. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Dynamic changes in the secondary structure of ECE-1 and XCE account for their different substrate specificities

    Ul-Haq Zaheer

    2012-11-01

    Full Text Available Abstract Background X-converting enzyme (XCE involved in nervous control of respiration, is a member of the M13 family of zinc peptidases, for which no natural substrate has been identified yet. In contrast, it’s well characterized homologue endothelin-converting enzyme-1 (ECE-1 showed broad substrate specificity and acts as endopeptidase as well as dipeptidase. To explore the structural differences between XCE and ECE-1, homology model of XCE was built using the complex structure of ECE-1 with phosphoramidon (pdb-id: 3DWB as template. Phosphoramidon was docked into the binding site of XCE whereas phosphate oxygen of the inhibitor was used as water molecule to design the apo forms of both enzymes. Molecular dynamics simulation of both enzymes was performed to analyze the dynamic nature of their active site residues in the absence and presence of the inhibitor. Results Homology model of XCE explained the role of non-conserved residues of its S2’ subsite. Molecular dynamics (MD simulations identified the flexible transitions of F149/I150, N566/N571, W714/W719, and R145/R723 residues of ECE-1/XCE for the strong binding of the inhibitor. Secondary structure calculations using DSSP method reveals the folding of R145/R723 residue of ECE-1/XCE into β-sheet structure while unfolding of the S2’ subsite residues in aECE-1 and sustained compact folding of that of aXCE. The results evaluated are in good agreement with available experimental data, thus providing detailed molecular models which can explain the structural and specificities differences between both zinc peptidases. Conclusions Secondary structure changes of both enzymes during the simulation time revealed the importance of β-sheet structure of R145/R723 for its binding with the terminal carboxylate group of the inhibitor. Unfolding of the α-helix comprising the S2’ subsite residues in aECE-1 correlate well with its endopeptidase activity while their compact folding in aXCE may

  9. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones.

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-12-20

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.

  10. Nodule-Enriched GRETCHEN HAGEN 3 Enzymes Have Distinct Substrate Specificities and Are Important for Proper Soybean Nodule Development

    Suresh Damodaran

    2017-11-01

    Full Text Available Legume root nodules develop as a result of a symbiotic relationship between the plant and nitrogen-fixing rhizobia bacteria in soil. Auxin activity is detected in different cell types at different stages of nodule development; as well as an enhanced sensitivity to auxin inhibits, which could affect nodule development. While some transport and signaling mechanisms that achieve precise spatiotemporal auxin output are known, the role of auxin metabolism during nodule development is unclear. Using a soybean root lateral organ transcriptome data set, we identified distinct nodule enrichment of three genes encoding auxin-deactivating GRETCHEN HAGEN 3 (GH3 indole-3-acetic acid (IAA amido transferase enzymes: GmGH3-11/12, GmGH3-14 and GmGH3-15. In vitro enzymatic assays showed that each of these GH3 proteins preferred IAA and aspartate as acyl and amino acid substrates, respectively. GmGH3-15 showed a broad substrate preference, especially with different forms of auxin. Promoter:GUS expression analysis indicated that GmGH3-14 acts primarily in the root epidermis and the nodule primordium where as GmGH3-15 might act in the vasculature. Silencing the expression of these GH3 genes in soybean composite plants led to altered nodule numbers, maturity, and size. Our results indicate that these GH3s are needed for proper nodule maturation in soybean, but the precise mechanism by which they regulate nodule development remains to be explained.

  11. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  12. Development of [11C]-α-aminoisobutyric acid and [18F]-haloperidol as substrate-specific radiotracers

    Zanzonico, P.B.

    1982-01-01

    In light of the emergence of positron emission tomography (PET), two new substrate-specific radiotracers have been synthesized and evaluated as potential agents for the study of specific physiological processes: [1- 11 C]-α-aminoisobutyric acid ([1- 11 C]-AIB), a transport system-specific radiotracer for tumor localization and for the assessment of amino acid transport in vivo; and [ 18 F]-haloperidoll, a receptor-binding radiotracer for the assessment of brain dopamine receptors in vivo. AIB, a non-metabolized amino acid, accumulates in cells, particularly malignant cells, via the A type, or ''alanine-preferring'', amino acid transport system [1- 11 C]-AIB in normal and in treated and untreated tumor-bearing rats, in tumor-bearing dogs, and in a tumor-bearing patient indicate rapid blood clearance and, concomitantly, rapid tissue localization, with slow net redistribution. Generally, there was selective localization in the kidney, in the liver, and in the pancreas, as well as in various tumors. The canine tumors and the human tumor were well visualized by external scintigraphy, especially when utilizing PET. [ 18 F]-Haloperidol, a dopamine receptor-binding neuroleptic of the butyrophenone series widely used in the management of schizophrenia was prepared via the Balz-Schiemann reaction. As the haloperdol dose administered to mice was increased from 0.01 to 1000 μg/kg, the relative concentration (μCi found per gm tisue sample/μCi injected per gm body mass) of [ 18 F]-haloperidol at 1 hr decreased from 30 to 1.0 in the striatum and from 8.0 to 1.0 in the cerebellum. The decrease in striatum radioactivity reflects competition between labeled and unlabeled haloperidol for dopamine receptors

  13. Milestone Report for High NA Optics Development International Sematech Project L1TH 112 Milestone4a: Specification Package for the Polished Mirror Substrate M1

    Taylor, J.S.; Hale, L.

    1999-01-01

    The key task in initiating the fabrication of mirror substrates for the new High NA Camera is in preparing the specification package that details the substrate geometry and the specifications for the optical surface. This specification package has been completed for substrate M1, and the vendor has begun optical fabrication. In addition, mounting hardware has been designed and fabricated, and substrates have been bonded to the kinematic mounts. The design of the secondary substrate, M2, is underway, but will depend upon details of the PO Box actuation system and space constraints. Sufficient details of the M2 design to enable the vendor to procure material will be determined during October, while the final details of the mounting surfaces will be completed prior to the end of Q4 1999. The geometry of the Ml substrate is compatible with our planned approach for fixturing the optic within the PO Box and within metrology tools. The completion of this specification package required detailed consideration of: the mounting approach within the PO Box, degrees of actuation required for PO Box alignment, space constraints imposed by the vendor's metrology, requirements for LLNL metrology, and datum definitions needed for mechanical assembly of the PO Box. In addition, each of the degrees of freedom of the substrate has been properly constrained, and shown to be sufficiently insensitive to disturbance forces for minimizing deformation. An approach to fixturing has been adopted that extends beyond the approach taken for the Engineering Test Stand (ETS). For the ETS, each substrate, including spares, has dedicated mounting hardware that is used exclusively for each element. In exchange for a reduced risk of mounting-induced deformation, this incurred substantial expense and precluded optics from using interchangeable tooling. For the current High NA camera, we have adopted an approach that employs interchangeable mounting hardware that can be used for any of the substrates

  14. Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I.3 substrate specificity and activity.

    Panizza, Paola; Cesarini, Silvia; Diaz, Pilar; Rodríguez Giordano, Sonia

    2015-01-25

    Several Pseudomonas sp. CR611 Lip I.3 mutants with overall increased activity and a shift towards longer chain substrates were constructed. Substitution of residues Y29 and W310 by smaller amino acids provided increased activity on C18-substrates. Residues G152 and S154, modified to study their influence on interfacial activation, displayed a five and eleven fold increased activity.

  15. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors

    Bode, W.; Meyer, E. Jr.; Powers, J.C.

    1989-01-01

    The serine protease family of enzymes is one of the most widely studied group of enzymes, as evidenced by the fact that more crystal structures are available for individuals of this superfamily than for any other homologous group of enzymes. These enzymes contain a conserved triad of catalytic residues including Ser-195, His-57, and Asp-102. The active-site serine is very nucleophilic, and serine proteases are inhibited by specific serine protease reagents such as diisopropyl phosphorofluoridate (DFP), phenylmethanesulfonyl fluoride, and 3,4-dichloroisocoumarin. Elastases are a group of proteases that possess the ability to cleave the important connective tissue protein elastin. Elastin has the unique property of elastic recoil, is widely distributed in vertebrate tissue, and is particularly abundant in the lungs, arteries, skin, and ligaments. Human neutrophil elastase and pancreatic elastase are two major serine proteases that cleave elastin. Neutrophil elastase is found in the dense granules of polymorphonuclear leukycytes and is essential for phagocytosis and defense against infection by invading microorganisms. Pancreatic elastase is stored as an inactive zymogen in the pancreas and is secreted into the intestines where it becomes activated by trypsin and then participates in digestion. Both elastases cleave substrates at peptide bonds where the P 1 residue is an amino acid residue with a small alkyl side chain

  16. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata.

    Feng, Bing; Hu, Wei; Ma, Bai-ping; Wang, Yong-ze; Huang, Hong-ze; Wang, Sheng-qi; Qian, Xiao-hong

    2007-10-01

    It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50 degrees C, pH 4, and specific activity of 12.34 U mg of total protein(-1) under the conditions, using diosgenin-3-O-alpha-L-rhamnopyranosyl(1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin.

  17. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    Bansal, Sunil; Durrett, Timothy P.

    2016-01-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773

  18. A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears

    Hammoudi Abderazek

    2015-09-01

    Full Text Available Profile shift has an immense effect on the sliding, load capacity, and stability of involute cylindrical gears. Available standards such as ISO/DIS 6336 and BS 436 DIN/3990 currently give the recommendation for the selection of profile shift coefficients. It is, however, very approximate and usually given in the form of implicit graphs or charts. In this article, the optimal selection values of profile shift coefficients for cylindrical involute spur and helical gears are described, using a differential evolution algorithm. The optimization procedure is developed specifically for exact balancing specific sliding coefficients at extremes of contact path and account for gear design constraints. The obtained results are compared with those of standards and research of other authors. They demonstrate the effectiveness and robustness of the applied method. A substantial improvement in balancing specific sliding coefficients is found in this work.

  19. Study of the specific activity concentrations of 40K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in vegetables and their respective covering tissues (peels)

    Lopes, J.M.; Garcêz, R.W.D., E-mail: marqueslopez@yahoo.com.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, A.X. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola Politécnica

    2017-07-01

    This work presents an analysis of specific concentrations of {sup 40}K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of {sup 40}K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of {sup 137}Cs both saves and in the skin. (author)

  20. Study of the specific activity concentrations of 40K, 226Ra, 228Ra and 232Th in vegetables and their respective covering tissues (peels)

    Lopes, J.M.; Garcêz, R.W.D.; Silva, A.X.

    2017-01-01

    This work presents an analysis of specific concentrations of 40 K, 226 Ra, 228 Ra and 232 Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of 40 K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of 137 Cs both saves and in the skin. (author)

  1. Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer.

    Yang, Ying; Zhang, Lujia; Guo, Mingrong; Sun, Jiaqi; Matsukawa, Shingo; Xie, Jingli; Wei, Dongzhi

    2015-04-15

    In the process of gene mining for novel α-L-arabinofuranosidases (AFs), the gene Celf_3321 from Cellulomonas fimi ATCC 484 encodes an AF, termed as AbfCelf, with potent activity, 19.4 U/mg under the optimum condition, pH 6.0 and 40 °C. AbfCelf can hydrolyze α-1,5-linked oligosaccharides, sugar beet arabinan, linear 1,5-α-arabinan, and wheat flour arabinoxylan, which is partly different from some previously well-characterized GH 51 AFs. The traditional substrate-specificity analysis for AFs is labor-consuming and money costing, because the substrates include over 30 kinds of various 4-nitrophenol (PNP)-glycosides, oligosaccharides, and polysaccharides. Hence, a preliminary structure and mechanism based method was applied for substrate-specificity analysis. The binding energy (ΔG, kcal/mol) obtained by docking suggested the reaction possibility and coincided with the experimental results. AbfA crystal 1QW9 was used to test the rationality of docking method in simulating the interaction between enzyme and substrate, as well the credibility of the substrate-specificity analysis method in silico.

  2. PCOGR: Phylogenetic COG ranking as an online tool to judge the specificity of COGs with respect to freely definable groups of organisms

    Meereis, Florian; Kaufmann, Michael

    2004-01-01

    Abstract Background The rapidly increasing number of completely sequenced genomes led to the establishment of the COG-database which, based on sequence homologies, assigns similar proteins from different organisms to clusters of orthologous groups (COGs). There are several bioinformatic studies that made use of this database to determine (hyper)thermophile-specific proteins by searching for COGs containing (almost) exclusively proteins from (hyper)thermophilic genomes. However, public softwar...

  3. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera through molecular dynamics simulations.

    Pratchaya Pramoj Na Ayutthaya

    Full Text Available Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT preferred sucrose to maltose as a substrate, while the Y227H mutant (MT preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This

  4. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.

    Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da

    2013-01-01

    Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.

  5. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na(+)/H(+) antiporters

    Zimmermannová, Olga; Zavřel, Martin; Sychrová, Hana

    2005-01-01

    Roč. 280, č. 34 (2005), s. 30638-30647 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GP204/02/D092 Institutional research plan: CEZ:AV0Z5011922 Keywords : yeast * Na+/H+ antiporter * substrate specificity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  6. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  7. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Xu, Qin [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK); Guo, Hong [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoate in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.

  8. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Detection of West Nile virus-specific antibodies and nucleic acid in horses and mosquitoes, respectively, in Nuevo Leon State, northern Mexico, 2006-2007.

    Ibarra-Juarez, L; Eisen, L; Bolling, B G; Beaty, B J; Blitvich, B J; Sanchez-Casas, R M; Ayala-Sulca, Y O; Fernandez-Salas, I

    2012-09-01

    In the last 5 years, there has been only one reported human case of West Nile virus (WNV) disease in northern Mexico. To determine if the virus was still circulating in this region, equine and entomological surveillance for WNV was conducted in the state of Nuevo Leon in northern Mexico in 2006 and 2007. A total of 203 horses were serologically assayed for antibodies to WNV using an epitope-blocking enzyme-linked immunosorbent assay (bELISA). Seroprevalences for WNV in horses sampled in 2006 and 2007 were 26% and 45%, respectively. Mosquito collections in 2007 produced 7365 specimens representing 15 species. Culex mosquitoes were screened for WNV RNA and other genera (Mansonia, Anopheles, Aedes, Psorophora and Uranotaenia) were screened for flaviviruses using reverse-transcription (RT)-PCR. Two pools consisting of Culex spp. mosquitoes contained WNV RNA. Molecular species identification revealed that neither pool included Culex quinquefasciatus (Say) (Diptera:Culicidae) complex mosquitoes. No evidence of flaviviruses was found in the other mosquito genera examined. These data provide evidence that WNV is currently circulating in northern Mexico and that non-Cx. quinquefasciatus spp. mosquitoes may be participating in the WNV transmission cycle in this region. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  10. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David

    2011-01-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC 50 values in the nanomolar range

  11. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David, E-mail: dave@scripps.edu [The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2011-06-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.

  12. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity?

    Shuguang Yuan

    Full Text Available Glycoside hydrolases of families 32 (GH32 and 68 (GH68 belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates and fructosyltransferases (sucrose/fructans as donor and acceptor substrates. In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif rather than the previously proposed Tyr motif (not conserved provides the proton to increase the pKa of the acid-base catalyst.

  13. Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa

    Masuda, Nobuhisa; Sakagawa, Eiko; Ohya, Satoshi; Gotoh, Naomasa; Tsujimoto, Hideto; Nishino, Takeshi

    2000-01-01

    To find the exact substrate specificities of three species of tripartite efflux systems of Pseudomonas aeruginosa, MexAB-OprM, MexCD-OprJ, and MexXY-OprM, we constructed a series of isogenic mutants, each of which constitutively overproduced one of the three efflux systems and lacked the other two, and their isogenic mutants, which lacked all these systems. Comparison of the susceptibilities of the constructed mutants to 52 antimicrobial agents belonging to various groups suggested the following substrate specificities. All of the efflux systems extrude a wide variety of antimicrobial agent groups, i.e., quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, most penicillins (all but carbenicillin and sulbenicillin), most cephems (all but cefsulodin and ceftazidime), meropenem, and S-4661, but none of them extrude polymyxin B or imipenem. Extrusion of aminoglycosides is specific to MexXY-OprM, and extrusion of a group of the β-lactams, i.e., carbenicillin, sulbenicillin, ceftazidime, moxalactam, and aztreonam, is specific to MexAB-OprM. Moreover, MexAB-OprM and MexCD-OprJ extrude novobiocin, cefsulodin, and flomoxef, while MexXY-OprM does not. These substrate specificities are distinct from those reported previously. PMID:11083635

  14. Dynamic substrate enhancement for the identification of specific, second-site-binding fragments targeting a set of protein tyrosine phosphatases

    Schmidt, Marco F; Groves, Matthew R; Rademann, Jörg

    2011-01-01

    Protein tyrosine phosphatases (PTPs) are key regulators in living systems and thus are attractive drug targets. The development of potent, selective PTP inhibitors has been a difficult challenge mainly due to the high homology of the phosphotyrosine substrate pockets. Here, a strategy of dynamic

  15. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  16. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.

    2004-01-01

    and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr105 is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/ T212(Y/W)] AMY1 double mutants synergistically enhanced......The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved...... in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and 1% activity (k(cat)/K-m) on starch, amylose DP17, and 2-chloro-4-nitrophenyl β-D-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90...

  17. pH Dependence of a Mammalian Polyamine Oxidase: Insights into Substrate Specificity and the Role of Lysine 315†

    Pozzi, Michelle Henderson; Gawandi, Vijay; Fitzpatrick, Paul F.

    2009-01-01

    Mammalian polyamine oxidases (PAO) catalyze the oxidation of N1-acetylspermine and N1-acetylspermidine to produce N-acetyl-3-aminopropanaldehyde and spermidine or putrescine. Structurally, PAO is a member of the monoamine oxidase family of flavoproteins. The effects of pH on kinetic parameters of mouse PAO have been determined to provide insight into the protonation state of the polyamine required for catalysis and the roles of ionizable residues in the active site in amine oxidation. For N1-acetylspermine, N1-acetylspermidine, and spermine, the kcat/Kamine-pH profiles are bell-shaped. In each case the profile agrees with that expected if the productive form of the substrate has a single positively charged nitrogen. The pKi-pH profiles for a series of polyamine analogs are most consistent with the nitrogen at the site of oxidation being neutral and one other nitrogen being positively charged in the reactive form of the substrate. With N1-acetylspermine as substrate, the value of kred, the limiting rate constant for flavin reduction, is pH dependent, decreasing below a pKa value of 7.3, again consistent with the requirement for an uncharged nitrogen for substrate oxidation. Lys315 in PAO corresponds to a conserved active site residue found throughout the monoamine oxidase family. Mutation of Lys315 to methionine has no effect on the kcat/Kamine profile for spermine, the kred value with N1-acetylspermine is only 1.8-fold lower in the mutant protein, and the pKa in the kred-pH profile with N1-acetylspermine shifts to 7.8. These results rule out Lys315 as a source of a pKa in the kcat/Kamine or kcat/kred profiles. They also establish that this residue does not play a critical role in amine oxidation by PAO. PMID:19199575

  18. Amino acid residues important for substrate specificity of the amino acid permeases Can I p and Gnp I p in Saccharomyces cerevisiae

    Regenberg, Birgitte; Kielland-Brandt, M.C.

    2001-01-01

    Deletion of the general amino acid permease gene GAP1 abolishes uptake of L-citrulline in Saccharomyces cerevisiae, resulting in the inability to grow on L-citrulline as sole nitrogen source. Selection for suppressor mutants that restored growth on L-citrulline led to isolation of 21 mutations...... in the arginine permease gene CAN1. One similar mutation was found in the glutamine-asparagine permease gene GNP1. L-[C-14]citrulline uptake measurements confirmed that suppressor mutations in CAN1 conferred uptake of this amino acid, while none of the mutant permeases had lost the ability to transport L-[C-14......]arginine. Substrate specificity seemed to remain narrow in most cases, and broad substrate specificity was only observed in the cases where mutations affect two proline residues (P148 and P313) that are both conserved in the amino acid-polyamine-choline (APC) transporter superfamily. We found mutations...

  19. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum.Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols

    Fraaije, Marco W.; Veeger, Cees; Berkel, Willem J.H. van

    1995-01-01

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of 4-(methoxymethyl)phenols. During the conversion of vanillylamine to vanillin, a transient intermediate, most probably vanillylimine, is observed. Vanillyl-alcohol oxidase weakly interacts with 4-hydroxyph...

  20. Toward a Molecular Understanding of the Interaction of Dual Specificity Phosphatases with Substrates: Insights from Structure-Based Modeling and High Throughput Screening

    Bakan, Ahmet; Lazo, John S; Wipf, Peter; Brummond, Kay M; Bahar, Ivet

    2008-01-01

    Dual-specificity phosphatases (DSPs) are important, but poorly understood, cell signaling enzymes that remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Deregulation of DSPs has been implicated in cancer, obesity, diabetes, inflammation, and Alzheimer’s disease. Due to their biological and biomedical significance, DSPs have increasingly become the subject of drug discovery high-throughput screening (HTS) and focused compound library development efforts. P...

  1. Importance of the seryl and threonyl residues of the fifth transmembrane domain to the substrate specificity of yeast plasma membrane Na+/H+ antiporters

    Zimmermannová, Olga; Zavřel, Martin; Sychrová, Hana

    2006-01-01

    Roč. 23, č. 4 (2006), s. 349-361 ISSN 0968-7688 R&D Projects: GA MŠk(CZ) LC531; GA ČR(CZ) GP204/02/D092 Institutional research plan: CEZ:AV0Z50110509 Keywords : Na+/H+ antiporter * substrate specificity * hydroxyl groups Subject RIV: CE - Biochemistry Impact factor: 3.250, year: 2006

  2. Yeast plasma membrane Na/H antiporter - importance of OH groups in the 5th tms for activity and substrate specificity

    Zimmermannová, Olga; Sychrová, Hana

    2007-01-01

    Roč. 274, Suppl.1 (2007), s. 127-127 ISSN 1742-464X. [FEBS Congress Molecular Machines /32./. 07.07.2007-12.07.2007, Vienna] R&D Projects: GA MŠk(CZ) LC531; GA AV ČR(CZ) IAA5011407 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * Na/H antiporter * yeast * substrate specificity Subject RIV: EE - Microbiology, Virology

  3. The v-Src and c-Src tyrosine kinases immunoprecipitated from Rous sarcoma virus-transformed cells display different peptide substrate specificities

    Vojtěchová, Martina; Tuháčková, Zdena; Hlaváček, Jan; Velek, Jiří; Sovová, Vlasta

    2004-01-01

    Roč. 421, č. 2 (2004), s. 277-282 ISSN 0003-9861 R&D Projects: GA ČR GV312/96/K205; GA ČR GA301/00/0269 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z1003909 Keywords : Src kinase, in vitro phosphorylation, peptide substrate specificity Subject RIV: CE - Biochemistry Impact factor: 2.657, year: 2004

  4. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    Prokofev, I. I.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Mironov, A. S. [State Research Institute of Genetics and Selection of Industrial Microorganisms (Russian Federation); Betzel, C. [University of Hamburg (Germany); Mikhailov, A. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2016-11-15

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2′-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation.

  5. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  6. Differences in substrate specificity of C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages.

    Sawai, Hiroaki; Nagashima, Junichi; Kuwahara, Msayasu; Kitagata, Rina; Tamura, Takehiro; Matsui, Ikuo

    2007-09-01

    The pyrimidine bases of RNA are uracil (U) and cytosine (C), while thymine (T) and C are used for DNA. The C(5) position of C and U is unsubstituted, whereas the C(5) of T is substituted with a Me group. Miller et al. hypothesized that various C(5)-substituted uracil derivatives were formed during chemical evolution, and that C(5)-substituted U derivatives may have played important roles in the transition from an 'RNA world' to a 'DNA-RNA-protein world'. Hyperthermophilic bacteria and archaea are considered to be primitive organisms that are evolutionarily close to the universal ancestor of all life on earth. Thus, we examined the substrate specificity of several C(5)-substituted or C(5)-unsubstituted dUTP and dCTP analogs for several DNA polymerases from hyperthermophilic bacteria, hyperthermophilic archaea, and viruses during PCR or primer extension reaction. The substrate specificity of the C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides varied greatly depending on the type of DNA polymerase. The significance of this difference in substrate specificity in terms of the origin and evolution of the DNA replication system is discussed briefly.

  7. Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture.

    Dirk, Lynnette M A; Schmidt, Jack J; Cai, Yiying; Barnes, Jonathan C; Hanger, Katherine M; Nayak, Nihar R; Williams, Mark A; Grossman, Robert B; Houtz, Robert L; Rodgers, David W

    2008-08-01

    The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 A (1 A=0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr(178) as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr(2) in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr(178) to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr(178) can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.

  8. Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases

    Spencer, James; Murphy, Loretta M.; Conners, Rebecca; Sessions, Richard B.; Gamblin, Steven J. (Wales); (Bristol Med Sci); (NIMR)

    2010-09-21

    Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.

  9. The Post-polyketide Synthase Steps in iso-Migrastatin Biosynthesis Featuring Tailoring Enzymes with Broad Substrate Specificity

    Ma, Ming; Kwong, Thomas; Lim, Si-Kyu; Ju, Jianhua; Lohman, Jeremy R.; Shen, Ben

    2013-01-01

    The iso-migrastatin (iso-MGS) biosynthetic gene cluster from Streptomyces platensis NRRL 18993 consists of 11 genes, featuring an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes MgsIJK. Systematic inactivation of mgsIJK in S. platensis enabled us to (i) identify two nascent products (10 and 13) of the iso-MGS AT-less type I PKS, establishing an unprecedented novel feature for AT-less type I PKSs, and (ii) account for the formation of all known post-PKS biosynthetic intermediates (10-17) generated by the three tailoring enzymes MgsIJK, which possessed significant substrate promiscuities. PMID:23394593

  10. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity.

    Miyazaki, Takatsugu; Ichikawa, Megumi; Yokoi, Gaku; Kitaoka, Motomitsu; Mori, Haruhide; Kitano, Yoshikazu; Nishikawa, Atsushi; Tonozuka, Takashi

    2013-09-01

    Proteins belonging to glycoside hydrolase family 63 (GH63) are found in bacteria, archaea and eukaryotes. Although the eukaryotic GH63 proteins have been identified as processing α-glucosidase I, the substrate specificities of the bacterial and archaeal GH63 proteins are not clear. Here, we converted a bacterial GH63 enzyme, Escherichia coli YgjK, to a glycosynthase to probe its substrate specificity. Two mutants of YgjK (E727A and D324N) were constructed, and both mutants showed glycosynthase activity. The reactions of E727A with β-D-glucosyl fluoride and monosaccharides showed that the largest amount of glycosynthase product accumulated when galactose was employed as an acceptor molecule. The crystal structure of E727A complexed with the reaction product indicated that the disaccharide bound at the active site was 2-O-α-D-glucopyranosyl-α-D-galactopyranose (Glc12Gal). A comparison of the structures of E727A-Glc12Gal and D324N-melibiose showed that there were two main types of conformation: the open and closed forms. The structure of YgjK adopted the closed form when subsite -1 was occupied by glucose. These results suggest that sugars containing the Glc12Gal structure are the most likely candidates for natural substrates of YgjK. © 2013 FEBS.

  12. A New Assay for Measurement of Acetylcholinesterase and Butyrylcholinesterase in Canine Whole Blood Combining Specific Substrates and Ethopropazine Hydrochloride as a Selective Butyrylcholinesterase Inhibitor

    F Tecles, A Tvarijonaviciute and JJ Cerón*

    2013-11-01

    Full Text Available In the present report, a new assay combining specific substrates and a selective BChE inhibitor (ethopropazine hydrochloride was used to measure both AChE and BChE in canine whole blood samples. Acetylthiocholine iodide (ATCI and butyrylthiocholine iodide (BTCI were used as substrates, whereas 2,2’-dithiodipiridine was used as chromophore. Ethopropazine concentration inhibiting over 95% BChE with minimum AChE inhibition was fixed at 0.3mM. The results confirmed that whole blood cholinesterase activity measured with BTCI in absence of ethopropazine corresponded with serum BChE, whereas whole blood cholinesterase analysed with ATCI in presence of ethopropazine reflected mainly erythrocytes and plasma AChE activity. This procedure showed good repeatability, it was easy and fast, and can be routinely used in veterinary laboratories.

  13. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.

    Inna Biela

    Full Text Available Bacterial tRNA-guanine transglycosylase (Tgt catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds. Since mammalian Tgt is known to be indirectly essential to the conversion of phenylalanine to tyrosine, it is necessary to create substances which only inhibit bacterial but not eucaryotic Tgt. Therefore, it seems of utmost importance to study selectivity-determining features within both types of proteins. Homology models of Caenorhabditis elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis Tgt numbering by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. In the present study we have created mutated variants of Z. mobilis Tgt in order to investigate the impact of a Cys158Val and a Val233Gly exchange on catalytic activity and substrate specificity. Using enzyme kinetics and X-ray crystallography, we gained evidence that the Cys158Val mutation reduces the affinity to preQ1 while leaving the affinity to guanine unaffected. The Val233Gly exchange leads to an enlarged substrate binding pocket, that is necessary to accommodate queuine in a conformation compatible with the intermediately covalently bound tRNA molecule. Contrary to our expectations, we found that a priori queuine is recognised by the binding pocket of bacterial Tgt without, however, being used as a substrate.

  14. α--AMYLASES OF Aspergillus flavus var. oryzae AND Bacillus subtilis: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    K. V. Avdiyuk

    2013-06-01

    Full Text Available The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 α-amylases to split different carbohydrate-containing substrates, such as maltose, sucrose, trehalose, dextrin, α- and β-cyclodextrin, amylose, amylopectin, glycogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. α-Amylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato and wheat starch, while the α-amylase of B. subtilis 147 — only wheat starch. Both enzymes don’t cleave maltose, α-cyclodextrin and dextran 500. A. flavus var. oryzae 80428 α-amylase display very small ability to hydrolyze pullulan, while α-amylase of B. subtilis 147 it does not act in general. The lowest values of Michaelis constant for both enzymes at splitting of glycogen have been obtained, indicating that enzymes have the greatest affinity to this substrate. The studies of influence of chemically active substances on activity of A. flavus var. oryzae 80428 and B. subtilis 147 ?-amylases show there are resistant to urea, deoxycholic acid, Tween-80, Triton X-100 and hydrogen peroxide. It’s indicate the enzymes tested may be competitive in compare with earlier described in literature enzymes. The obtained results give a possibility to propose in future usage these enzymes in different fields of industry, foremost in detergent industry.

  15. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria.

    Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T

    2017-08-25

    Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  17. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).

    Beharry, Seelochan; Zhong, Ming; Molday, Robert S

    2004-12-24

    ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.

  18. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  19. Respect changes your life!

    Alizée Dauvergne

    2010-01-01

    CERN has recently joined the Geneva-based association "Le respect, ça change la vie" (Respect can change our lives). As its name suggests, the association promotes respect, in all its forms. This decision will enable CERN to share some of its values, those it has in common with the association, with the community at large.   The new bilingual logo of the "Le respect ça change la vie" association. "CERN has been a member of the Geneva-based association "Le respect, ça change la vie" since March," says Friedemann Eder, Head of the Relations with the Host States Service. Mutual respect, respecting the differences and the work of others, respect on the road, in the family, at school, etc. The association, which was founded in 2003 and now has a large number of members, promotes this universal value and encourages discussion on it. "CERN's history shows the importance and success o...

  20. Respect in Education

    Giesinger, Johannes

    2012-01-01

    This article discusses the educational significance of the moral demand for respect. In "Ethics and Education," Richard Peters presents a conception of educational respect that was recently taken up by Krassimir Stojanov. This article responds to both Peters' and Stojanov's contributions and proposes another understanding of educational respect:…

  1. Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group

    Olivares Hernandez, Roberto; Sunner, Hampus; Frisvad, Jens Christian

    2010-01-01

    Background Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able...

  2. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697

    Viborg, Alexander Holm; Katayama, Takane; Abou Hachem, Maher

    2014-01-01

    resembling various milk and plant galactooligosaccharides distinguishes the three GH42 members, Bga42A, Bga42B and Bga42C, encoded by the probiotic B. longum subsp. infantis ATCC 15697 and revealed the glycosyl residue at subsite +1 and its linkage to the terminal Gal at subsite −1 to be key specificity...

  3. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.

    Li, Jing-Ya; Cui, Yong-Mei; Chen, Ling-Ling; Gu, Min; Li, Jia; Nan, Fa-Jun; Ye, Qi-Zhuang

    2004-05-14

    Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.

  4. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Spectra-Physics Vienna, Fernkorngasse 10, 1100 Wien (Austria); Kavatzikidou, P.; Ranella, A. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Szoszkiewicz, R. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland (Poland); Husinsky, W. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Fotakis, C. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece)

    2016-09-30

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  5. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Daskalova, A.; Nathala, Chandra S.R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-01-01

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  6. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modificati...

  7. Crystal Structure of the Homo sapiens Kynureninase-3-Hydroxyhippuric Acid Inhibitor Complex: Insights into the Molecular Basis Of Kynureninase Substrate Specificity

    Lima,Santiago; Kumar,Sunil; Gawandi,Vijay; Momany,Cory; Phillips,Robert S.; (Georgia)

    2009-02-23

    Homo sapiens kynureninase is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the hydrolytic cleavage of 3-hydroxykynurenine to yield 3-hydroxyanthranilate and L-alanine as part of the tryptophan catabolic pathway leading to the de novo biosynthesis of NAD{sup +}. This pathway results in quinolinate, an excitotoxin that is an NMDA receptor agonist. High levels of quinolinate have been correlated with the etiology of neurodegenerative disorders such as AIDS-related dementia and Alzheimer's disease. We have synthesized a novel kynureninase inhibitor, 3-hydroxyhippurate, cocrystallized it with human kynureninase, and solved the atomic structure. On the basis of an analysis of the complex, we designed a series of His-102, Ser-332, and Asn-333 mutants. The H102W/N333T and H102W/S332G/N333T mutants showed complete reversal of substrate specificity between 3-hydroxykynurenine and L-kynurenine, thus defining the primary residues contributing to substrate specificity in kynureninases.

  8. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Hong Wa Yung

    2011-03-01

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  9. Regulation of AKT Phosphorylation at Ser473 and Thr308 by Endoplasmic Reticulum Stress Modulates Substrate Specificity in a Severity Dependent Manner

    Yung, Hong Wa

    2011-01-01

    Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling. PMID:21445305

  10. Valuation of the light intensity from curing lamps of the students of odontology of the Universidad de Costa Rica during 2011, with respect to the manufacturer's specifications

    Solano Badilla, Lucrecia

    2011-01-01

    The behavior of the light intensity from halogens curing lamps used by students at the Facultad de Odontologia of the Universidad de Costa Rica (UCR) is studied with respect to the manufacturer's specifications of the lamp and the resin. The distribution of the type of curing lamp per student is described, as well as some characteristics of them. The light intensity mW/cm 2 of the curing lamps operated by students at the Facultad de Odontologia is compared with the manufacturer's specifications of the lamp. The light intensity mW/cm 2 is compared with the manufacturer's specifications of the resin utilized, by brand, by students of the Facultad de Odontologia of the UCR for their photopolymerization [es

  11. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.

    Manas, Nor Hasmaliana Abdul; Bakar, Farah Diba Abu; Illias, Rosli Md

    2016-06-01

    Maltogenic amylase (MAG1) from Bacillus lehensis G1 displayed the highest hydrolysis activity on β-cyclodextrin (β-CD) to produce maltose as a main product and exhibited high transglycosylation activity on malto-oligosaccharides with polymerization degree of three and above. These substrate and product specificities of MAG1 were elucidated from structural point of view in this study. A three-dimensional structure of MAG1 was constructed using homology modeling. Docking of β-CD and malto-oligosaccharides was then performed in the MAG1 active site. An aromatic platform in the active site was identified which is responsible in substrate recognition especially in determining the enzyme's preference toward β-CD. Molecular dynamics (MD) simulation showed MAG1 structure is most stable when docked with β-CD and least stable when docked with maltose. The docking analysis and MD simulation showed that the main subsites for substrate stabilization in the active site are -2, -1, +1 and +2. A bulky residue, Trp359 at the +2 subsite was identified to cause steric interference to the bound linear malto-oligosaccharides thus prevented it to occupy subsite +3, which can only be reached by a highly bent glucose molecule such as β-CD. The resulted modes of binding from docking simulation show a good correlation with the experimentally determined hydrolysis pattern. The subsite structure generated from this study led to a possible mode of action that revealed how maltose was mainly produced during hydrolysis. Furthermore, maltose only occupies subsite +1 and +2, therefore could not be hydrolyzed or transglycosylated by the enzyme. This important knowledge has paved the way for a novel structure-based molecular design for modulation of its catalytic activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes.

    Rucká, Lenka; Volkova, Olga; Pavlík, Adam; Kaplan, Ondřej; Kracík, Martin; Nešvera, Jan; Martínková, Ludmila; Pátek, Miroslav

    2014-06-01

    Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.

  13. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  14. Respect for rational autonomy.

    Walker, Rebecca L

    2009-12-01

    The standard notion of autonomy in medical ethics does not require that autonomous choices not be irrational. The paper gives three examples of seemingly irrational patient choices and discusses how a rational autonomy analysis differs from the standard view. It then considers whether a switch to the rational autonomy view would lead to overriding more patient decisions but concludes that this should not be the case. Rather, a determination of whether individual patient decisions are autonomous is much less relevant than usually considered in determining whether health care providers must abide by these decisions. Furthermore, respect for rational autonomy entails strong positive requirements of respect for the autonomy of the person as a rational decision maker. The rationality view of autonomy is conceptually stronger than the standard view, allows for a more nuanced understanding of the practical moral calculus involved in respecting patient autonomy, and promotes positive respect for patient autonomy.

  15. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins

    Zhong Guangming

    2011-02-01

    Full Text Available Abstract Background Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species. Results Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions. Conclusions The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.

  16. Detection of extracellular neutrophil elastase in hamster lungs after intratracheal instillation of E. coli lipopolysaccharide using a fluorogenic, elastase-specific, synthetic substrate.

    Rudolphus, A.; Stolk, J.; van Twisk, C.; van Noorden, C. J.; Dijkman, J. H.; Kramps, J. A.

    1992-01-01

    Repeated intratracheal instillations of E. coli lipopolysaccharide (LPS) in hamster lungs cause an influx of polymorphonuclear leukocytes (PMNs) into the alveolar walls, with concomitant development of severe emphysema. It has been suggested that elastase, released by these PMNs, is involved in the development of emphysema. This study demonstrates the release of elastase from recruited PMNs in cryostat sections of hamster lungs, after being treated once, twice, or thrice with LPS, intratracheally. Elastase activity was visualized using two elastase-specific synthetic substrates, to which a methoxynaphthylamine (MNA) group had been bound covalently. Liberated MNA, when made insoluble by coupling with 5-nitrosalicylaldehyde, fluoresces strongly. The authors observed that the interval between start of incubation and appearance of fluorescence and the intensity of fluorescence correlated with the number of LPS administrations. Fluorescence was observed to be located in or in close vicinity to alveolar walls. No fluorescence was observed in sections of untreated hamsters. Liberation of MNA from synthetic substrates was delayed strongly by the addition of a recombinant secretory leukocyte proteinase inhibitor or a substituted cephalosporin neutrophil elastase inhibitor. The authors conclude that LPS-mediated PMN influx into the lung is accompanied by release of elastase from these cells and speculate that this PMN-elastase is involved in the development of LPS-mediated emphysema. Images Figure 1 Figure 2 Figure 3 PMID:1632460

  17. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

    Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo

    2016-03-12

    The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The

  18. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-01-01

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  19. Toleration out of respect?

    Lægaard, Sune

    2013-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...... that avoids various so-called ‘paradoxes of toleration’. The paper first examines whether Forst’s respect conception can be applied descriptively to distinguish between actual patterns of behaviour and classify different acts of toleration. Then the focus is shifted to toleration out of respect as a normative...

  20. Ombud's Corner: Respect @ CERN

    Sudeshna Datta-Cockerill

    2014-01-01

    Since 2010 CERN has been a member of the Geneva-based association "Le respect, ça change la vie". Four years later and in conjunction with CERN’s celebration of its 60 years of ‘science for peace’, it is time to launch a new respectful workplace awareness campaign under the auspices of the Ombud.   Mutual respect is a basic pillar of peace. At CERN, we pride ourselves on our history, which started when a handful of Europe’s visionary scientists saw the opportunity that an international laboratory for fundamental research would present in bringing nations together. That idea has worked very well and, today, our success can be measured not only in terms of unprecedented scientific achievements but also in terms of training and education, and exemplary collaboration across borders, cultures and an extensive range of differences. In order for history to continue along these positive lines, and coming back to the awareness campai...

  1. Respect as an Incentive

    Eriksson, Tor Viking; Villeval, Marie-Claire

    Assuming that people care not only about what others do but also on what others think, we study respect as a non-monetary source of motivation in a context where the length of the employment relationship is endogenous.  In our three-stage gift-exchange experiment, the employer can express respect...... by giving the employee costly symbolic rewards after observing his level of effort. This experiment sheds light on the extent to which symbolic rewards are used, how they affect employees' further effort, the duration of relationships, and the profits of employers. Furthermore, we study whether employers...

  2. Respect or resignation?

    Liveng, Anne

    2005-01-01

    Students in the social- and health care worker education must learn to show "understanding" and "respect" for the seniors they help. How difficult it is to go from theory to practise becomes painfully obvious the forst time a student empties a bed pan.......Students in the social- and health care worker education must learn to show "understanding" and "respect" for the seniors they help. How difficult it is to go from theory to practise becomes painfully obvious the forst time a student empties a bed pan....

  3. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

    Hoff, Kevin G; Ta, Dennis T; Tapley, Tim L; Silberg, Jonathan J; Vickery, Larry E

    2002-07-26

    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

  4. Toleration out of respect?

    Lægaard, Sune

    2014-01-01

    be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...

  5. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization

    Klimacek Mario

    2010-03-01

    Full Text Available Abstract Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h of 0.08. The study presented herein was performed with the aim of analysing (external factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05. The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g as compared

  6. Respect as an Incentive

    Eriksson, Tor Viking; Villeval, Marie-Claire

    whether employers’ decisions to give symbolic rewards are driven by strategic considerations. We find that employers do make use of symbolic rewards and chiefly to express their satisfaction with the employee. Symbolic rewards are associated with higher profits and increased probability of continuing......In this paper we examine respect as a non-monetary source of motivation. Our experiment sheds light on the extent to which symbolic rewards are used, how they are valued by the employees, and how they affect employee effort, the duration of relationships, and profits of employers. We also study...

  7. 2-Nitrobenzoate 2-Nitroreductase (NbaA) Switches Its Substrate Specificity from 2-Nitrobenzoic Acid to 2,4-Dinitrobenzoic Acid under Oxidizing Conditions

    Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C. K.

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions. PMID:23123905

  8. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  9. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum.

    Soares, Ana Sofia; Driscoll, Simon P; Olmos, Enrique; Harbinson, Jeremy; Arrabaça, Maria Celeste; Foyer, Christine H

    2008-01-01

    Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 microl l(-1) CO(2). Plant biomass was doubled as a result of growth at high CO(2) and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO(2)-grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf.

  10. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity

    El Qaidi, Samir; Chen, Kangming; Halim, Adnan

    2017-01-01

    proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three Nle......B orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities...... of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1...

  11. X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase

    Harel, M.; Silman, I. [Weizmann Inst. of Science, Rehovot (Israel); Quinn, D.M.; Nair, H.K. [Univ. of Iowa, Iowa City, IA (United States); Sussman, J.L. [Weizmann Inst. of Science, Rehovot (Israel)]|[Brookhaven National Lab., Upton, NY (United States)

    1996-03-13

    The structure of a complex of Torpedo californica acetylcholinesterase with the transition state analog inhibitor m-(N, N,N-trimethylammonio)-2,2,2-trifluoroacetophenone has been solved by X-ray crystallographic methods to 2.8 A resolution. Since the inhibitor binds to the enzyme about 10{sup 10}-fold more tightly than the substrate acetylcholine, this complex provides a visual accounting of the enzyme-ligand interactions that provide the molecular basis for the catalytic power of acetylcholinesterase. The acetyl ester hydrolytic specificity of the enzyme is revealed by the interaction of the CF{sub 3} function of the transition state analog with a concave binding site comprised of the residues G119, W233, F288, F290, and F331. The highly geometrically convergent array of enzyme-ligand interactions visualized in the complex described herein envelopes the acylation transition state and sequesters it from solvent, this being consistent with the location of the active site at the bottom of a deep and narrow gorge. 82 refs., 5 figs.

  12. Moving college students to a better understanding of substrate specificity of enzymes through utilizing multimedia pre-training and an interactive enzyme model

    Saleh, Mounir R.

    Scientists' progress in understanding enzyme specificity uncovered a complex natural phenomenon. However, not all of the currently available biology textbooks seem to be up to date on this progress. Students' understanding of how enzymes work is a core requirement in biochemistry and biology tertiary education. Nevertheless, current pre-college science education does not provide students with enough biochemical background to enable them to understand complex material such as this. To bridge this gap, a multimedia pre-training presentation was prepared to fuel the learner's prior knowledge with discrete facts necessary to understand the presented concept. This treatment is also known to manage intrinsic cognitive load during the learning process. An interactive instructional enzyme model was also built to motivate students to learn about substrate specificity of enzymes. Upon testing the effect of this combined treatment on 111 college students, desirable learning outcomes were found in terms of cognitive load, motivation, and achievement. The multimedia pre-training group reported significantly less intrinsic cognitive load, higher motivation, and demonstrated higher transfer performance than the control and post-training groups. In this study, a statistical mediation model is also proposed to explain how cognitive load and motivation work in concert to foster learning from multimedia pre-training. This type of research goes beyond simple forms of "what works" to a deeper understanding of "how it works", thus enabling informed decisions for multimedia instructional design. Multimedia learning plays multiple roles in science education. Therefore, science learners would be some of the first to benefit from improving multimedia instructional design. Accordingly, complex scientific phenomena can be introduced to college students in a motivating, informative, and cognitively efficient learning environment.

  13. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M. Joanne; Mö hlmann, Torsten

    2014-01-01

    . Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz

  14. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  15. International science conference RESpect report

    Radim Rybár

    2010-07-01

    Full Text Available Report is dedicated to aspects of conceiving the number of scientific magazine Acta Montanistica Slovaca, which purpose wasto publish specific key reports from the sixth year of international science conference RESpect 2011. The main aspect in the decisionprocess was to cover the conference agenda, complexity of the global problematic understanding, the subject of examination actualityand the results achievement level. The choice at the same time points on the technological, evaluative, environmental, economicaland application aspects of the RES usage, with accent on the Middle Europe region conditions.

  16. Germacrene A Synthase in Yarrow (Achillea millefolium Is an Enzyme with Mixed Substrate Specificity: Gene Cloning, Functional Characterization and Expression Analysis

    Leila ePazouki

    2015-03-01

    Full Text Available Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5 residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS. The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3, functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP, while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP. Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

  17. Offshore Substrate

    California Natural Resource Agency — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  18. Substrate specificity, metal binding properties, and spectroscopic characterization of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.

    Bienvenue, David L; Gilner, Danuta M; Davis, Ryan S; Bennett, Brian; Holz, Richard C

    2003-09-16

    The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to approximately 20% of the Zn(II)-loaded enzyme. The order of the observed k(cat) values are Co(II) > Zn(II) > Cd(II) > Mn(II) >Ni(II) approximately equal Cu(II) approximately equal Mg(II). DapE was shown to only hydrolyze L,L-N-succinyl-diaminopimelic acid (L,L-SDAP) and was inactive toward D,L-, L,D-, and D,D-SDAP. DapE was also inactive toward several acetylated amino acids as well as D,L-succinyl aminopimelate, which differs from the natural substrate, L,L-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 x 10(3) times (K(d1) = 0.14 microM vs K(d2) = 300 microM). In addition, an Arrhenius plot was constructed from k(cat) values measured between 16 and 35 degrees C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 degrees C being DeltaG(++) = 64 kJ/mol, DeltaH(++) = 28.5 kJ/mol, and DeltaS(++) = -119 J mol(-1) K(-1). Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin-spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and

  19. Friction and Shear Strength at the Nanowire–Substrate Interfaces

    Gu Yi

    2009-01-01

    Full Text Available Abstract The friction and shear strength of nanowire (NW–substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09–0.12 and 0.10–0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134–139 MPa and 78.9–95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW–substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  20. Friction and shear strength at the nanowire-substrate interfaces.

    Zhu, Yong; Qin, Qingquan; Gu, Yi; Wang, Zhonglin

    2009-11-28

    The friction and shear strength of nanowire (NW)-substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09-0.12 and 0.10-0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134-139 MPa and 78.9-95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW-substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  1. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.

    Tien Chye Tan

    Full Text Available Pyranose dehydrogenases (PDHs are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O activates oxygen by a mechanism that proceeds via a covalent flavin C(4a-hydroperoxide intermediate. Although the flavin C(4a adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2

  2. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization

    Shiro Kato

    2018-03-01

    addition, Tyr123 was a catalytic residue in the amino acid racemase reaction but strongly affected β-lyase activity. These results showed that Ls-MalY is a novel bifunctional amino acid racemase with multiple substrate specificity; both the amino acid racemase and β-lyase reactions of Ls-MalY were catalyzed at the same active site.

  3. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    Witz, Sandra

    2014-03-12

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz et al.

  6. Effects of substrate concentration, specific surface area and hydraulic loading on the treatment efficiency in a submerged biological filter. Sesshoku bakkiho no shori koritsu ni taisuru kishitsu nodo, hihyo menseki oyobi suiryo fuka no eikyo

    Iyo, T; Ono, S; Yoshino, T [Kitasato University, Kanagawa (Japan). School of Hygienic Science

    1991-06-10

    Effects of substrate concentration, specific surface area, and hydraulic loading, which are major factors influencing treatment efficiency in a submerged biological filter, were analyzed through the test with a special apparatus. In the test, the wall of the submerged biological filter was regarded as the contact material, and the specific surface area was changed by adjusting the sectional form of the filter. Using specimens from actual plant reservoirs, treatment efficiency for each case of three kinds of substrate concentration and hydraulic loading was measured. BOD removal rate was lower with smaller specific surface area. It was conspicuous particularly with higher BOD concentration in influent water. After the multiple regression analysis of the test results, the multiple regression equation to estimate BOD residual rate from three variates such as BOD concentration, specific surface area, and hydraulic loading was obtained. When 200mg l as BOD concentration and 50m{sup 2} m{sup {minus}3} as specific surface area were applied in this equation, the result almost agreed with the tendency obtained from data of actual plants. 6 refs., 4 figs., 1 tab.

  7. The management of carbon-14 and iodine-129 wastes - a site specific survey of current and future arisings, possible management options and potential impact with respect to the United Kingdom

    Briggs, A.

    1988-06-01

    Part 1 - A site-specific survey, by the Harwell Laboratory, of current and future gaseous, liquid and solid arisings of 14 C and 129 I at UK nuclear installations, is presented in the form of tables and maps. In the tables the arisings are characterised in terms of quantity, activity and accompanying radionuclides. Management options discussed are: dispersal in the environment; capture and retention of arisings from power stations, reprocessing plants, and industrial sites producing pharmaceuticals and research materials; direct disposal of unprocessed spent fuel elements in an underground repository. Comparative costings of the various options are given. Part 2 - The information in part 1 is used by the National Radiological Protection Board as the basis for an examination of the effects that various management options would have on the radiological impact of 14 C and 129 I on the public. Comparison is made between different types of discharge, and disposal as a solid waste to various kinds of repository, in terms of their health detriment costs. Emphasis is placed on illustrating the use of a decision analysis methodology for assessment of the different waste management strategies. (author)

  8. Site-specific forest-assembly of single-wall carbon nanotubes on electron-beam patterned SiOx/Si substrates

    Wei Haoyan; Kim, Sang Nyon; Kim, Sejong; Huey, Bryan D.; Papadimitrakopoulos, Fotios; Marcus, Harris L.

    2008-01-01

    Based on electron-beam direct writing on the SiO x /Si substrates, favorable absorption sites for ferric cations (Fe 3+ ions) were created on the surface oxide layer. This allowed Fe 3+ -assisted self-assembled arrays of single-wall carbon nanotube (SWNT) probes to be produced. Auger investigation indicated that the incident energetic electrons depleted oxygen, creating more dangling bonds around Si atoms at the surface of the SiO x layer. This resulted in a distinct difference in the friction forces from unexposed regions as measured by lateral force microscopy (LFM). Atomic force microscopy (AFM) affirmed that the irradiated domains absorbed considerably more Fe 3+ ions upon immersion into pH 2.2 aqueous FeCl 3 solution. This rendered a greater yield of FeO(OH)/FeOCl precipitates, primarily FeO(OH), upon subsequent washing with lightly basic dimethylformamide (DMF) solution. Such selective metal-functionalization established the basis for the subsequent patterned forest-assembly of SWNTs as demonstrated by resonance Raman spectroscopy

  9. Conversion of recombinant hirudin to the natural form by in vitro tyrosine sulfation. Differential substrate specificities of leech and bovine tyrosylprotein sulfotransferases.

    Niehrs, C; Huttner, W B; Carvallo, D; Degryse, E

    1990-06-05

    Hirudin, a tyrosine-sulfated protein secreted by the leech Hirudo medicinalis, is one of the most potent anticoagulants known. The hirudin cDNA has previously been cloned and has been expressed in yeast, but the resulting recombinant protein was found to be produced in the unsulfated form, which is known to have an at least 10 times lower affinity for thrombin than the naturally occurring tyrosine-sulfated hirudin. Here we describe the in vitro tyrosine sulfation of recombinant hirudin by leech and bovine tyrosylprotein sulfotransferase (TPST). With both enzymes, in vitro sulfation of recombinant hirudin occurred at the physiological site (Tyr-63) and rendered the protein biochemically and biologically indistinguishable from natural hirudin. However, leech TPST had an over 20-fold lower apparent Km value for recombinant hirudin than bovine TPST. Further differences in the catalytic properties of leech and bovine TPSTs were observed when synthetic peptides were tested as substrates. Moreover, a synthetic peptide corresponding to the 9 carboxyl-terminal residues of hirudin (which include Tyr-63) was sulfated by leech TPST with a similar apparent Km value as full length hirudin, indicating that structural determinants residing in the immediate vicinity of Tyr-63 are sufficient for sulfation to occur.

  10. Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1-A (SLC4A4, variant A) from humans and rabbits.

    Lee, Seong-Ki; Boron, Walter F; Parker, Mark D

    2013-04-01

    In the basolateral membrane of proximal-tubule cells, NBCe1-A (SLC4A4, variant A), operating with an apparent Na(+):HCO(3)(-) stoichiometry of 1:3, contributes to the reclamation of HCO(3)(-) from the glomerular filtrate, thereby preventing whole body acidosis. Others have reported that NBCe1-like activity in human, rabbit, and rat renal preparations is substantially influenced by lithium, sulfite, oxalate, and harmaline. These data were taken as evidence for the presence of distinct Na(+) and CO(3)(2-) binding sites in NBCe1-A, favoring a model of 1 Na(+):1 HCO(3)(-):1 CO(3)(2-). Here, we reexamine these findings by expressing human or rabbit NBCe1-A clones in Xenopus oocytes. In oocytes, NBCe1-A exhibits a 1:2 stoichiometry and could operate in one of five thermodynamically equivalent transport modes: 1) cotransport of Na(+) + 2 HCO(3)(-), 2) cotransport of Na(+) + CO(3)(2-), 3) transport of NaCO(3)(-), 4) exchange of Na(+) + HCO(3)(-) for H(+), or 5) HCO(3)(-)-activated exchange of Na(+) for 2 H(+). In contrast to the behavior of NBCe1-like activity in renal preparations, we find that cloned NBCe1-A is only slightly stimulated by Li(+), not at all influenced by sulfite or oxalate, and only weakly inhibited by harmaline. These negative data do not uniquely support any of the five models above. In addition, we find that NBCe1-A mediates a small amount of Na(+)-independent NO(3)(-) transport and that NBCe1-A is somewhat inhibited by extracellular benzamil. We suggest that the features of NBCe1-like activity in renal preparations are influenced by yet-to-be-identified renal factors. Thus the actual ionic substrates of NBCe1 remain to be identified.

  11. Teaching respect: a philosophical analysis

    L. van Rooyen

    2000-03-01

    Full Text Available According to a Zulu proverb a human being can only become truly human because of others. Each person can only become more human, more himself- regardless of his sex - through the co-involvement of others. It is the love for one’s neighbour and the respect one has for him/her as a person which makes one consider the other party's feelings, viewpoints and circumstances. In order to arrive at a situation of peaceful coexistence it is important to realize that human attitudes and a mature life style evolve through a process of learning and interaction with others. It is a timeconsuming and costly process which starts at infancy and continues throughout someone's life. Instruction concerning interpersonal relations and the teaching of respect cannot be confined to individual lessons or working sessions at home or in school. Discussions and conversations concerning interpersonal relations need to form an integral and natural part of a child’s life within the home environment and throughout the pupil's school career. It is senseless if educators talk about the importance of teaching respect only to reveal disrespectful behaviour themselves, or to talk about the importance of self-esteem in the paying of respect whilst causing children to feel negative about themselves. To be able to express respect to other human beings, one needs to be respected. A child needs to experience how it feels when homage is paid. The following rule of life applies in this regard: one can never give if one has never received respect.

  12. Wetting on structured substrates

    Dietrich, S; Popescu, M N; Rauscher, M

    2005-01-01

    Chemically patterned surfaces are of significant interest in the context of microfluidic applications, and miniaturization of such devices aims at generating structures on the nano-scale. Whereas on the micron scale purely macroscopic descriptions of liquid flow are valid, on the nanometre scale long-ranged inter-molecular interactions, thermal fluctuations such as capillary waves, and finally the molecular structure of the liquid become important. We discuss the most important conceptual differences between flow on chemically patterned substrates on the micron scale and on the nanometre scale, and formulate four design issues for nanofluidics related to channel width, channel separation, and channel bending radius. As a specific example of nano-scale transport we present a microscopic model for the dynamics of spreading of monolayers on homogeneous substrates. Kinetic Monte Carlo simulations of this model on a homogeneous substrate reveal a complex spatio-temporal structure of the extracted monolayer, which includes the emergence of interfaces and of scaling properties of density profiles. These features are discussed and rationalized within the corresponding continuum limit derived from the microscopic dynamics. The corresponding spreading behaviour on a patterned substrate is briefly addressed

  13. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.

  14. Characterization of Bile Salt Hydrolase from Lactobacillus gasseri FR4 and Demonstration of Its Substrate Specificity and Inhibitory Mechanism Using Molecular Docking Analysis

    Rizwana Parveen Rani

    2017-05-01

    Full Text Available Probiotic bacteria are beneficial to the health of poultry animals, thus are used as alternative candidates for antibiotics used as growth promoters (AGPs. However, they also reduce the body weight gain due to innate bile salt hydrolase (BSH activity. Hence, the addition of a suitable BSH inhibitor along with the probiotic feed can decrease the BSH activity. In this study, a BSH gene (981 bp encoding 326-amino acids was identified from the genome of Lactobacillus gasseri FR4 (LgBSH. The LgBSH-encoding gene was cloned and purified using an Escherichia coli BL21 (DE3 expression system, and its molecular weight (37 kDa was confirmed by SDS–PAGE and a Western blot analysis. LgBSH exhibited greater hydrolysis toward glyco-conjugated bile salts compared to tauro-conjugated bile salts. LgBSH displayed optimal activity at 52°C at a pH of 5.5, and activity was further increased by several reducing agents (DTT, surfactants (Triton X-100 and Tween 80, and organic solvents (isopropanol, butanol, and acetone. Riboflavin and penicillin V, respectively, inhibited LgBSH activity by 98.31 and 97.84%. A homology model of LgBSH was predicted using EfBSH (4WL3 as a template. Molecular docking analysis revealed that the glycocholic acid had lowest binding energy of -8.46 kcal/mol; on the other hand, inhibitors, i.e., riboflavin and penicillin V, had relatively higher binding energies of -6.25 and -7.38 kcal/mol, respectively. Our results suggest that L. gasseri FR4 along with riboflavin might be a potential alternative to AGPs for poultry animals.

  15. Renewing the Respect for Similarity

    Shimon eEdelman

    2012-07-01

    Full Text Available In psychology, the concept of similarity has traditionally evoked a mixture of respect, stemmingfrom its ubiquity and intuitive appeal, and concern, due to its dependence on the framing of the problemat hand and on its context. We argue for a renewed focus on similarity as an explanatory concept, bysurveying established results and new developments in the theory and methods of similarity-preservingassociative lookup and dimensionality reduction — critical components of many cognitive functions, aswell as of intelligent data management in computer vision. We focus in particular on the growing familyof algorithms that support associative memory by performing hashing that respects local similarity, andon the uses of similarity in representing structured objects and scenes. Insofar as these similarity-basedideas and methods are useful in cognitive modeling and in AI applications, they should be included inthe core conceptual toolkit of computational neuroscience.

  16. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  17. Structural and Catalytic Properties of S1 Nuclease from Aspergillus oryzae Responsible for Substrate Recognition, Cleavage, Non-Specificity, and Inhibition.

    Tomáš Kovaľ

    Full Text Available The single-strand-specific S1 nuclease from Aspergillus oryzae is an archetypal enzyme of the S1-P1 family of nucleases with a widespread use for biochemical analyses of nucleic acids. We present the first X-ray structure of this nuclease along with a thorough analysis of the reaction and inhibition mechanisms and of its properties responsible for identification and binding of ligands. Seven structures of S1 nuclease, six of which are complexes with products and inhibitors, and characterization of catalytic properties of a wild type and mutants reveal unknown attributes of the S1-P1 family. The active site can bind phosphate, nucleosides, and nucleotides in several distinguished ways. The nucleoside binding site accepts bases in two binding modes-shallow and deep. It can also undergo remodeling and so adapt to different ligands. The amino acid residue Asp65 is critical for activity while Asn154 secures interaction with the sugar moiety, and Lys68 is involved in interactions with the phosphate and sugar moieties of ligands. An additional nucleobase binding site was identified on the surface, which explains the absence of the Tyr site known from P1 nuclease. For the first time ternary complexes with ligands enable modeling of ssDNA binding in the active site cleft. Interpretation of the results in the context of the whole S1-P1 nuclease family significantly broadens our knowledge regarding ligand interaction modes and the strategies of adjustment of the enzyme surface and binding sites to achieve particular specificity.

  18. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA.

  19. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  20. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    system, is strongly modulated by mechanosensing on substrates of varying stiffness [21]. Mogilner and Rubinstein present a theoretical systems analysis for the shape of rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar assays, how force is distributed within a layer of epithelial cells [23]. For three-dimensional tissue models, new techniques have to be developed to characterize the complex mechanics of hydrogels. Levental et al [24] and Kotlarchyk et al [25] approach this challenge with mechanical and optical methods, respectively. Narayanan et al combine experiments and continuum models to explore how chemo-mechanical interactions influence tumor growth [26]. References [1] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Geometric control of cell life and death Science 276 1425 [2] Pelham R J Jr and Wang Y-L 1997 Cell locomotion and focal adhesions are regulated by substrate flexibility Proc. Natl. Acad. Sci. USA 94 13661 [3] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89 [4] Geiger B, Spatz J P and Bershadsky A D 2009 Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 10 21 [5] Boettiger D and Wehrle-Haller B 2010 Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy J. Phys.: Condens. Matter 22 194101 [6] Chirasatitsin S and Engler A J 2010 Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping J. Phys.: Condens. Matter 22 194102 [7] Scrimgeour J, Kodali V K, Kovari D T and Curtis J E 2010 Photobleaching-activated micropatterning on self-assembled monolayers J. Phys.: Condens. Matter 22 194103 [8] Stricker J, Sabass B, Schwarz U S and Gardel M L 2010 Optimization of traction force microscopy for micron-sized focal adhesions J. Phys.: Condens. Matter 22 194104 [9] Metzner C, Raupach C, Mierke C T and Fabry B 2010 Fluctuations of

  1. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction.

    Yunguang Wang

    Full Text Available The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes' expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.

  2. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  3. Power electronics substrate for direct substrate cooling

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  4. Ombud's Corner: Respect in the workplace

    Sudeshna Datta-Cockerill

    2014-01-01

    Launched in a previous issue of the Bulletin (see here), the 'Respect@CERN' campaign has triggered some rich and varied reactions, and contributions received from colleagues have covered a wide range of themes that extend from the basic “golden rule of treating others as you would have them treat you” to some very specific observations of respectful behaviour in the CERN context.   “To me, respect is the core of all relationships, all exchanges: we cannot work together and achieve results without it,” says one colleague, while another underlines the equally important dimension of projecting and preserving one’s own self-respect where “whether or not we sleep well at night depends on whether or not we feel that we have been true to ourselves that day”. Respect in the workplace is different from everyday respect in that it is based on an “earned privilege where each colleague has been selected for ...

  5. Understanding Mechanical Design with Respect to Manufacturability

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  6. Synthetic protease substrate n-benzoyl-L-argininyl-p-nitroanilide activates specific binding of [3H]estradiol to a protein in rat pancreas: relationship of structure to activity

    Grossman, A.

    1984-01-01

    N-benzoyl-L-argininyl-p-nitroanilide (BAN), a synthetic substrate for trypsin-like proteolytic enzymes, is a potent activator of [ 3 H]estradiol-binding to a protein present in rat pancreas. When partially purified, this protein is almost devoid of [ 3 H]estradiol-binding activity in the absence of an endogenous accessory factor. BAN can mimic the natural coligand in this steroid binding reaction. The effect of BAN is specific since a number of derivatives of this substance are inactive or may even inhibit steroid binding. It is unlikely that BAN exerts this stimulatory action indirectly, possibly by preventing proteolytic inactivation of the [ 3 H]estradiol-binding protein, since preincubation of the protein in the absence of BAN resulted neither in reduced rate, nor extent, of steroid binding following BAN addition. Also, a number of protease inhibitors had no effect on the binding reaction. Of those inhibitors tested, only antipain significantly enhanced binding of [ 3 H]estradiol, but only about 20 percent as effectively as BAN. 13 references, 1 figure, 2 tables

  7. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity.

    Matsuda, Makoto; Takeshita, Kohei; Kurokawa, Tatsuki; Sakata, Souhei; Suzuki, Mamoru; Yamashita, Eiki; Okamura, Yasushi; Nakagawa, Atsushi

    2011-07-01

    Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.

  8. [Substrate-inhibitory analysis of monoamine oxidase from hepatopancreas of the octopus Bathypolypus arcticus].

    Basova, I N; Iagodina, O V

    2012-01-01

    Study of the substrate-inhibitory specificity of mitochondrial monoamine oxidase (MAO) of hepatopancreas of the octopus Bathypolypus arcticus revealed distinctive peculiarities of catalytic properties of this enzyme. The studied enzyme, on one hand, like the classic MAO of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, beta-phenylethylamine, while, on the other hand, deaminates histamine and does not deaminate putrescine--classic substrates of diamine oxidase (DAO). Results of the substrate-inhibitory analysis with use of chlorgiline and deprenyl are indirect proofs of the existence in the octopus hepatopancreas of one molecular MAO form. Semicarbazide and pyronine G turned out to be weak irreversible inhibitors, four derivatives of acridine--irreversible inhibitors of the intermediate effectiveness with respect to the octopus hepatopancreas MAO; specificity of action of inhibitors at deamination of different substrates was equal.

  9. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  11. Structure formation in bis(terpyridine) derivative adlayers: molecule-substrate versus molecule-molecule interactions.

    Hoster, Harry E; Roos, Matthias; Breitruck, Achim; Meier, Christoph; Tonigold, Katrin; Waldmann, Thomas; Ziener, Ulrich; Landfester, Katharina; Behm, R Jürgen

    2007-11-06

    The influence of the substrate and the deposition conditions-vapor deposition versus deposition from solution-on the structures formed upon self-assembly of deposited bis(terpyridine) derivative (2,4'-BTP) monolayers on different hexagonal substrates, including highly oriented pyrolytic graphite (HOPG), Au(111), and (111)-oriented Ag thin films, was investigated by high-resolution scanning tunneling microscopy and by model calculations of the intermolecular energies and the lateral corrugation of the substrate-adsorbate interaction. Similar quasi-quadratic network structures with almost the same lattice constants obtained on all substrates are essentially identical to the optimum configuration expected from an optimization of the adlayer structure with C-H...N-type bridging bonds as a structure-determining factor, which underlines a key role of the intermolecular interactions in adlayer order. Slight distortions from the optimum values to form commensurate adlayer structures on the metal substrates and the preferential orientation of the adlayer with respect to the substrate are attributed to the substrate-adsorbate interactions, specifically, the lateral corrugation in the substrate-adsorbate interaction upon lateral displacement and rotation of the adsorbed BTP molecules. The fact that similar adlayer structures are obtained on HOPG under ultrahigh vacuum conditions (solid|gas interface) and on HOPG in trichlorobenzene (solid|liquid interface) indicates that the intermolecular interactions are not severely affected by the solvent.

  12. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways.

    Francesca eSacco

    2014-05-01

    Full Text Available Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI#K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26 respectively.

  13. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.

    Zaiat, M; Vieira, L G; Foresti, E

    1997-01-20

    This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.

  15. Specificity of transmembrane protein palmitoylation in yeast.

    Ayelén González Montoro

    Full Text Available Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs, characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD. There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as

  16. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation

    Wandall, Hans H; Irazoqui, Fernando; Tarp, Mads Agervig

    2007-01-01

    Initiation of mucin-type O-glycosylation is controlled by a large family of UDP GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). Most GalNAc-transferases contain a ricin-like lectin domain in the C-terminal end, which may confer GalNAc-glycopeptide substrate specificit...

  17. Substrate Discrimination by ClpB and Hsp104

    Danielle M. Johnston

    2017-05-01

    Full Text Available ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1.

  18. Sensor Substrate Development

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  19. Equality, self‐respect and voluntary separation

    Merry, M.S.

    2012-01-01

    This paper argues that self‐respect constitutes an important value, and further, an important basis for equality. It also argues that under conditions of inequality‐producing segregation, voluntary separation in schooling may be more likely to provide the resources necessary for self‐respect. A

  20. Decoding P4-ATPase substrate interactions.

    Roland, Bartholomew P; Graham, Todd R

    Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca 2+ , a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.

  1. Can we trust module-respect heuristics?

    Mo, Yuchang

    2013-01-01

    BDD (Binary Decision Diagrams) have proven to be a very efficient tool to assess Fault Trees. However, the size of BDD, and therefore the efficiency of the whole methodology, depends dramatically on the choice of variable ordering. The determination of the best variable ordering is intractable. Therefore, heuristics have been designed to select reasonably good variable orderings. One very important common feature for good static heuristics is to respect modules. In this paper, the notion of module-respect is studied in a systematic way. It is proved that under certain condition there always exists an optimal ordering that respects modules. This condition is that for each module there is always a smallest module BDD and each included module variable appears only once. On the other hand, it is shown that for the trees not satisfying the above sufficient condition the optimal orderings may not be able to be directly generated using module-respect heuristics, even when the shuffling strategy is used.

  2. Freedom of Expression, Deliberation, Autonomy and Respect

    Rostbøll, Christian F.

    2011-01-01

    This paper elaborates on the deliberative democracy argument for freedom of expression in terms of its relationship to different dimensions of autonomy. It engages the objection that Enlightenment theories pose a threat to cultures that reject autonomy and argues that autonomy-based democracy is not only compatible with but necessary for respect for cultural diversity. On the basis of an intersubjective epistemology, it argues that people cannot know how to live on mutually respectful terms w...

  3. Substrate curvature gradient drives rapid droplet motion.

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  4. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair.

    Corentin Claeys Bouuaert

    2017-05-01

    Full Text Available Mlh1-Mlh3 (MutLγ is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ and, surprisingly, single-stranded DNA (ssDNA, which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced

  5. Coating of substrates

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  6. Educating student midwives around dignity and respect.

    Hall, Jenny S; Mitchell, Mary

    2017-06-01

    There is currently limited information available on how midwifery students learn to provide care that promotes dignity and respect. In recent years the importance of dignity in healthcare and treating people with respect has received considerable emphasis in both a national and international context. The aim of this discussion paper is to describe an educational workshop that enables learning to promote dignity and respect in maternity care. An interactive workshop, using different creative methods as triggers for learning will be described. Provision of learning opportunities for students around dignity and respect is important to ensure appropriate care is provided in practice. The use of creative methods to inspire has contributed to deep learning within participants. An evaluation of the workshop illustrated how learning impacted on participants practice. Data to support this is presented in this paper. The use of creative teaching approaches in a workshop setting appears to provide an effective learning opportunity around dignified and respectful care. These workshops have evoked a deep emotional response for some participants, and facilitators must be prepared for this outcome to ensure a safe space for learning. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  7. Freedom of Expression, Deliberation, Autonomy and Respect

    Rostbøll, Christian F.

    2011-01-01

    This paper elaborates on the deliberative democracy argument for freedom of expression in terms of its relationship to different dimensions of autonomy. It engages the objection that Enlightenment theories pose a threat to cultures that reject autonomy and argues that autonomy-based democracy...... is not only compatible with but necessary for respect for cultural diversity. On the basis of an intersubjective epistemology, it argues that people cannot know how to live on mutually respectful terms without engaging in public deliberation and develop some degree of personal autonomy. While freedom...... of expression is indispensable for deliberation and autonomy, this does not mean that people have no obligations regarding how they speak to each other. The moral insights provided by deliberation depend on the participants in the process treating one another with respect. The argument is related to the Danish...

  8. Robust plasmonic substrates

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  9. Creating a culture of mutual respect.

    Kaplan, Kathryn; Mestel, Pamela; Feldman, David L

    2010-04-01

    The Joint Commission mandates that hospitals seeking accreditation have a process to define and address disruptive behavior. Leaders at Maimonides Medical Center, Brooklyn, New York, took the initiative to create a code of mutual respect that not only requires respectful behavior, but also encourages sensitivity and awareness to the causes of frustration that often lead to inappropriate behavior. Steps to implementing the code included selecting code advocates, setting up a system for mediating disputes, tracking and addressing operational system issues, providing training for personnel, developing a formal accountability process, and measuring the results. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  10. Quantitative framework for ordered degradation of APC/C substrates.

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  11. Respect for autonomy and technological risks

    Asveld, L.

    2008-01-01

    Technological developments can undermine the autonomy of the individual. Autonomy is one's ability to make and act upon decisions according to one's own moral framework. Respect for autonomy dictates that risks should not be imposed on the individual without her consent. Technological developments

  12. [Respect of patient's dignity in the hospital].

    Duguet, A-M

    2010-12-01

    Every code of ethics of health professionals in France considers the respect of dignity as a fundamental duty. The French 2002 Law on patient rights says that the person has the right to respect of dignity and of private life. After a presentation of the articles of ethics codes regarding dignity, this paper presents recommendations to deliver medical care in situations where dignity might be endangered such as for patients hospitalized in psychiatric services without consent, or for medical examination of prisoners or medical care to vulnerable patients unable to express their will, especially in palliative care or at the end of life. Respect of dignity after death is illustrated by the reflection conducted by the Espace Ethique de l'AP-HP (Paris area hospitals) and in the Chart of the mortuary yard. A survey of the patients' letters of complaint received by the emergency service of the Toulouse University Hospital showed that, in five years, there were 188 letters and 18 pointed out infringements to the dignity of the person. The health professional team is now aware of this obligation, and in the accreditation of the hospitals, the respect of dignity is one of the indicators of the quality of medical care.

  13. Nurturing the Respectful Community through Practical Life

    Bettmann, Joen

    2015-01-01

    Joen Bettmann's depiction of practical life exercises as character-building reveals how caring, careful, and independent work leads to higher self-esteem, more concern for others, better understanding for academic learning, and a self-nurturing, respectful classroom community. Particular aspects of movement and silence exercises bring out what…

  14. Substrate system for spray forming

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  15. Freedom of Expression, Deliberation, Autonomy, and Respect

    Rostbøll, Christian Fogh

    for freedom of expression in terms of its relationship to different dimensions of autonomy. In response to the objection that Enlightenment theories pose a threat to cultures that reject autonomy, it is argued that autonomy-based democracy is not only compatible with but necessary for respect for cultural......The strongest versions of the democracy argument for freedom of expression rely on the deliberative conception of democracy. Deliberative democracy entails both an ideal of political autonomy and of autonomous preference formation. This paper elaborates the deliberative democracy argument...... diversity. On the basis of an intersubjective epistemology, I argue that citizens cannot know how to live on mutually respectful terms without engaging in public deliberation. Moreover, to be successful deliberation must foster some degree of personal autonomy, at least the ability to distinguish what...

  16. Nurses’ commitment to respecting patient dignity

    Raee, Zahra; Abedi, Heidarali; Shahriari, Mohsen

    2017-01-01

    Background: Although respecting human dignity is a cornerstone of all nursing practices, industrialization has gradually decreased the attention paid to this subject in nursing care. Therefore, the present study aimed to investigate nurses’ commitment to respecting patient dignity in hospitals of Isfahan, Iran. Methods: This descriptive-analytical study was conducted in hospitals of Isfahan. Overall, 401 inpatients were selected by cluster sampling and then selected simple random sampling from different wards. Data were collected through a questionnaire containing the components of patient dignity, that is, patient-nurse relationships, privacy, and independence. All items were scored based on a five-point Likert scale. The collected data were analyzed using descriptive statistics and Chi-square tests. P < 0.05 were considered significant in all analyses. Findings: Most patients (91%) scored their relationships with nurses as good. Moreover, 91.8% of the participants described privacy protection as moderate/good. Only 6.5% of the subjects rated it as excellent. The majority of the patients (84.4%) believed their independence was maintained. These subjects also approved of taking part in decision-making. Conclusion: According to our findings, nurses respected patient dignity to an acceptable level. However, the conditions were less favorable in public hospitals and emergency departments. Nursing authorities and policy makers are thus required to introduce appropriate measures to improve the existing conditions. PMID:28546981

  17. Nurses' commitment to respecting patient dignity.

    Raee, Zahra; Abedi, Heidarali; Shahriari, Mohsen

    2017-01-01

    Although respecting human dignity is a cornerstone of all nursing practices, industrialization has gradually decreased the attention paid to this subject in nursing care. Therefore, the present study aimed to investigate nurses' commitment to respecting patient dignity in hospitals of Isfahan, Iran. This descriptive-analytical study was conducted in hospitals of Isfahan. Overall, 401 inpatients were selected by cluster sampling and then selected simple random sampling from different wards. Data were collected through a questionnaire containing the components of patient dignity, that is, patient-nurse relationships, privacy, and independence. All items were scored based on a five-point Likert scale. The collected data were analyzed using descriptive statistics and Chi-square tests. P < 0.05 were considered significant in all analyses. Most patients (91%) scored their relationships with nurses as good. Moreover, 91.8% of the participants described privacy protection as moderate/good. Only 6.5% of the subjects rated it as excellent. The majority of the patients (84.4%) believed their independence was maintained. These subjects also approved of taking part in decision-making. According to our findings, nurses respected patient dignity to an acceptable level. However, the conditions were less favorable in public hospitals and emergency departments. Nursing authorities and policy makers are thus required to introduce appropriate measures to improve the existing conditions.

  18. Characterization of the interdependency between residues that bind the substrate in a β-glycosidase

    M.H. Tomassi

    2010-01-01

    Full Text Available The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly, both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39 were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex of the double mutations (∆∆G‡xy is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y. This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

  19. Characterization of the interdependency between residues that bind the substrate in a beta-glycosidase.

    Tomassi, M H; Rozenfeld, J H K; Gonçalves, L M; Marana, S R

    2010-01-01

    The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the beta-glycosidase from Spodoptera frugiperda (Sfbetagly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfbetagly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl beta-galactoside and p-nitrophenyl beta-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfbetagly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ESdouble dagger (enzyme-transition state complex) of the double mutations (Gdouble daggerxy) is not the sum of the effects resulting from the single mutations (Gdouble daggerx and Gdouble daggery). This difference in Gdouble dagger indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in Gdouble daggerxy. Crystallographic data on beta-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

  20. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  1. Honour and respect in Danish prisons

    Laursen, Julie; Laws, Ben

    2017-01-01

    to create accountable and rational actors, who ‘self-manage’, the therapeutic ethos neglects participants’ life experiences and subcultural capital. Open expressions of moral values by prisoners (such as displays of honour and respect) are considered to be cognitive distortions which are dismissed......Using empirical data from prison-based cognitive-behavioural programmes, this article considers how prisoners’ subcultural capital shapes their responses to demands for ‘cognitive self-change’. We argue that accounts of ‘respect’ in the prior literature fail to capture how prisoners react...

  2. Chemometrics approach to substrate development, case: semisyntetic cheese

    Nielsen, Per Væggemose; Hansen, Birgitte Vedel

    1998-01-01

    from food production facilities.The Chemometrics approach to substrate development is illustrated by the development of a semisyntetic cheese substrate. Growth, colour formation and mycotoxin production of 6 cheese related fungi were studied on 9 types of natural cheeses and 24 synthetic cheese......, the most frequently occurring contaminant on semi-hard cheese. Growth experiments on the substrate were repeatable and reproducible. The substrate was also suitable for the starter P. camemberti. Mineral elements in cheese were shown to have strong effect on growth, mycotoxin production and colour...... formation of fungi. For P. roqueforti, P. discolor, P. verrucosum and Aspergillus versicolor the substrate was less suitable as a model cheese substrate, which indicates great variation in nutritional demands of the fungi. Substrates suitable for studies of specific cheese types was found for P. roqueforti...

  3. Respect distances. Rationale and means of computation

    Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hoekmark, Harald [Clay Technology, Lund (Sweden)

    2004-12-01

    Canisters with spent nuclear fuel can obviously not be located within deformation zones as this might jeopardise their long term mechanical stability and thereby constitute a potential hazard to the biosphere. Less apparent, but equally important, is the fact that earthquakes trigger reactivation, slip, of structures some distance from their hypocentres due to, among many other factors, stress redistribution. Fault slip across a deposition hole might damage the isolation capacity of the canister and thereby jeopardise the overall integrity of the barrier system. Therefore, the following question might be posed: What is the distance from a deformation zone beyond which a canister can be safely emplaced? This respect distance cannot be readily computed because, unknown future events aside, there are some complicated aspects that need to be addressed e.g. degree of conservatism, scale, our ability to model ice sheets and earthquakes, etc. In this report we discuss various aspects of the assignment of respect distances, propose a methodology for its assignment and apply the methodology to the Forsmark Site as a worked example. Our main concern, in the context discussed in this report, is the post glacial faults anticipated to occur after the next glaciations. To properly address conservativeness, analysis of risk, and its implementation in safety analysis, we provide an extensive compilation of our current knowledge on post glacial faults as an appendix.

  4. Respect distances. Rationale and means of computation

    Munier, Raymond; Hoekmark, Harald

    2004-12-01

    Canisters with spent nuclear fuel can obviously not be located within deformation zones as this might jeopardise their long term mechanical stability and thereby constitute a potential hazard to the biosphere. Less apparent, but equally important, is the fact that earthquakes trigger reactivation, slip, of structures some distance from their hypocentres due to, among many other factors, stress redistribution. Fault slip across a deposition hole might damage the isolation capacity of the canister and thereby jeopardise the overall integrity of the barrier system. Therefore, the following question might be posed: What is the distance from a deformation zone beyond which a canister can be safely emplaced? This respect distance cannot be readily computed because, unknown future events aside, there are some complicated aspects that need to be addressed e.g. degree of conservatism, scale, our ability to model ice sheets and earthquakes, etc. In this report we discuss various aspects of the assignment of respect distances, propose a methodology for its assignment and apply the methodology to the Forsmark Site as a worked example. Our main concern, in the context discussed in this report, is the post glacial faults anticipated to occur after the next glaciations. To properly address conservativeness, analysis of risk, and its implementation in safety analysis, we provide an extensive compilation of our current knowledge on post glacial faults as an appendix

  5. Promoting respect at home and abroad

    2015-01-01

    This week, I’d like to focus on respect, whether at home, at work or on the international scene. Last week, I had the opportunity to visit the SESAME laboratory in Jordan along with the new European Commissioner for Research, Carlos Moedas. Since taking up his post, Mr Moedas has attached great importance to the role science can play in diplomacy, and the visit was on his initiative.   Through the EU-funded CESSAMag project, CERN is coordinating the provision of magnets and power supplies for the SESAME main ring. The first are currently being tested at CERN by a team involving accelerator scientists from the SESAME members, and all are due to be delivered to SESAME in time for commissioning in the second half of 2016. SESAME, and CERN’s contribution to the project, are well documented in the pages of the Bulletin, but what really impresses when you visit the lab is the diversity of people working there and the degree of mutual respect they show to each other. SESAME will...

  6. Revisiting Respect for Persons in Genomic Research

    Debra J. H. Mathews

    2014-01-01

    Full Text Available The risks and benefits of research using large databases of personal information are evolving in an era of ubiquitous, internet-based data exchange. In addition, information technology has facilitated a shift in the relationship between individuals and their personal data, enabling increased individual control over how (and how much personal data are used in research, and by whom. This shift in control has created new opportunities to engage members of the public as partners in the research enterprise on more equal and transparent terms. Here, we consider how some of the technological advances driving and paralleling developments in genomics can also be used to supplement the practice of informed consent with other strategies to ensure that the research process as a whole honors the notion of respect for persons upon which human research subjects protections are premised. Further, we suggest that technological advances can help the research enterprise achieve a more thoroughgoing respect for persons than was possible when current policies governing human subject research were developed. Questions remain about the best way to revise policy to accommodate these changes.

  7. Biodegradation of hydrocarbons exploiting spent substrate from ...

    The aim of this study was to evaluate the mushroom substrate of P. ostreatus in a microcosm for the bioremediation of an agricultural soil contaminated with diesel. We evaluated the participation of microbial populations and specific enzymatic lacasses, manganese peroxidases, versatile peroxidases, veratryl alcohol ...

  8. Modification of chitin as substrates for chitinase

    sunny t

    2015-05-06

    May 6, 2015 ... Enzymes are able to bind to their substrates specifically at the active site. The proximity and ... the presence of chitin as a carbon source (Chernin et al.,. 1998). ... Possible rearrangement of chitin structure ... and form larger granules. .... Medium for Enumeration of Actinomycetes in Water and Soil. Appl.

  9. Different substrates and starter inocula govern microbial community structures in biogas reactors.

    Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert

    2016-01-01

    The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.

  10. Friction Anisotropy with Respect to Topographic Orientation

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  11. Manger hors norme, respecter les normes

    Régnier, Faustine

    2007-01-01

    Fondée sur un corpus de près de 10 000 recettes de cuisine de la presse féminine française et allemande (1930‑2000), cette contribution met en évidence la façon dont l’exotisme permet de manger hors norme tout en restant dans les normes. Les pratiques culinaires étrangères ne peuvent être adoptées qu’au terme d’un travail de normalisation. Elles sont modifiées de manière à ce que soient respectées les normes du pays d’accueil, par là même mises en œuvre. Elles sont donc conçues comme un ensem...

  12. Substrate mediated enzyme prodrug therapy.

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  13. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3

    Wandall, H H; Hassan, H; Mirgorodskaya, E

    1997-01-01

    Mucin-type O-glycosylation is initiated by UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). The role each GalNAc-transferase plays in O-glycosylation is unclear. In this report we characterized the specificity and kinetic properties of three purified...

  14. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV)

    Bohle, Harry; Lorenzen, Niels; Schyth, Brian Dall

    2011-01-01

    Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been...

  15. [Respect and tutelage of children in Christianity].

    Leone, Salvino; Lo Giudice, Milena

    2005-01-01

    Christian religion, since its beginning, has been strongly interested about infant world, in defending and promoting it. Evangelic stories show Jesus' attention for children even against his disciples and the current culture of that very time that didn't consider them in a special way. Some of healing miracles and most of reanimation ones have, as characters, just children or young people. This particular care has continued after in ecclesial life by the creation of many charitable institutions for children and, recently, also in an sort of re-arrangement of Christian thought about bioethical problems, most of which are really shared with not Christian world. Nevertheless some of them present several patterns (an-encephaly, neonatal care, assisted reproduction, etc.) involving some specific considerations discussed by Authors.

  16. A workplace marked by respect and understanding

    2010-01-01

    Integrity, commitment, professionalism, creativity and diversity: five words that each and every one of us at CERN can identify with, because they represent the core values of this Organization. That’s why they have been chosen as the starting point for our new Code of Conduct, which is being launched this week.  A Code of Conduct describes the basic standards and rules of behaviour that we can expect in the workplace, and it is a statement of the way we see our Organization’s values. CERN’s mission is fundamental research in physics: pushing back the frontiers of human knowledge. In support of that mission, we drive innovation, stimulate international collaboration and inspire a rising generation of scientists. We do all this while respecting the highest ethical standards, and it is this aspect of CERN life that the Code of Conduct describes. CERN’s Code of Conduct has been developed through a collaborative and transparent process to foster shared appre...

  17. Respectful doubts on the new ICRP recommendations

    Diaz de la Cruz, F.

    1992-01-01

    The admiration and deference an International Organization, as ICRP, deserves not only by its altruistic mission but also by the eminent and distinguished scientists who work for it, in some way 'dazzles' to simple students of its theories and, in some way 'force' us to accept, sometimes without any critical, serious and previous meditation, its recommendations. But it is not the bad thing this kind of 'blindness' we have before the almighty ...ICRP dixit..., the worst thing is that non-specialist and non-specialized persons believe as 'dogmas' and 'axioms' the ICRP recommednations and make of them legal dispositions through standards and regulations. Standards an regulations which can frustate an industrial or any other type of peaceful nuclear activity due to the economic or the social reasons derived from ICRP recommendations. The inflexibility (weakened in the arguments but strengthened in the recommendations) of this influent Organism on the 'linearity without threshold' in the dose-effect relationship and the compromises of the International Labor Organization (ILO) with respect ICRP recommedations provole irrational, ilogical and non desirable answers. (author)

  18. [Respecting minors' autonomy in child custody cases].

    Santa Rosa, Bárbara; Corte-Real, Francisco; Vieira, Duarte Nuno

    2013-01-01

    Child custody decisions are among the most difficult for judges to make. The possibility of child abuse allegations or parents' deviant/ psychopathologic behaviours within this context, make the decision further complicated. Based on jurisprudence the listening of children opinion is a way to protect their best interest. In fact children have the right to express an opinion in all matters affecting their life. It should be given proper consideration to children opinion according with his/her age and maturity. Nonetheless custody disputes are emotionally draining issues. Asking the child to express an opinion during a public hearing, most likely in the presence of both parents, its not recommended because this is a potential stressful experience. Child interviews should take place in a proper environment and be set to their age. Medicine and Psychology have an important role in assessing children cognitive, emotional and volitional abilities, which is essential to properly account their opinions according to autonomy degree. This essay analyses the contribution of medico-legal and/or psychological exams to respect the autonomy of the child in cases of regulation of parental responsibilities. The conclusion is the need to establish a symbiotic relationship between the medical and legal perspectives of the (open) concept of child's best interests.

  19. Plasma jet printing for flexible substrates

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Koehne, Jessica; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  20. Respect-Due and Respect-Earned: Negotiating Student-Teacher Relationships

    Goodman, Joan F.

    2009-01-01

    Respect is a cardinal virtue in schools and foundational to our common ethical beliefs, yet its meaning is muddled. For philosophers Kant, Mill, and Rawls, whose influential theories span three centuries, respect includes appreciation of universal human dignity, equality, and autonomy. In their view children, possessors of human dignity, but…

  1. "We Want Respect": Adults with Intellectual and Developmental Disabilities Address Respect in Research

    McDonald, Katherine Elizabeth

    2012-01-01

    Respect is central to ethical guidelines for research. The scientific community has long debated, and at times disagreed on, how to demonstrate respect in research with adults with intellectual and developmental disabilities. To illuminate the voices of those most affected, the author studies the views of adults with intellectual and developmental…

  2. Research as a Respectful Practice: An Exploration of the Practice of Respect in Qualitative Research

    O'Grady, Emmanuel

    2016-01-01

    This article explores the practice of respect within qualitative research methods. As interpersonal respect plays a significant role in the esteem felt within a relationship, it can also serve to cultivate trust between researchers and their participants in a research study. This article details the findings of a research study examining respect…

  3. Identification of secreted proteins of Aspergillus oryzae associated with growth on solid cereal substrates

    Biesebeke, R. te; Boussier, A.; Biezen, N. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2006-01-01

    Filamentous growth of Aspergillus oryzae on solid cereal substrates involves secretion of substrate converting enzymes and a solid substrate specific polarised hyphal growth phenotype. To identify proteins produced under these specific conditions, the extracts of A. oryzae grown on wheat-based media

  4. Substrate recognition by ribonucleoprotein ribonuclease MRP.

    Esakova, Olga; Perederina, Anna; Quan, Chao; Berezin, Igor; Krasilnikov, Andrey S

    2011-02-01

    The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.

  5. Printed electronic on flexible and glass substrates

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  6. Solid substrate fermentation

    Tengerdy, R P

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  7. Maintainable substrate carrier for electroplating

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  8. Medical Records and Correspondence Demand Respect

    M Benamer

    2007-01-01

    Full Text Available To The Editor: I was amazed recently to see a patient from Libya who came to the UK for treatment based on the advice of his Libyan physicians. The patient carried with him no referral letter whatsoever. Not one physician familiar with his case bothered to write a few lines for the poor patient, although each of those doctors saw the patient at least twice and prescribed one or more treatment. The patient carried with him different medications that had been prescribed, and a few empty containers of other medicines he had used. I mention the above short tale to bring to light what I feel is a major ethical problem with the way medicine is practiced in Libya [1]. The keeping of good medical records together with clear and concise correspondence between physicians is imperative for several reasons. Not only does it avoid duplication of services and unnecessary costs, it decreases the time invested by both the patient and physician, and it fosters a collegial relationship among healthcare providers. Many times, referring physicians may not know each other. It provides a channel for them to learn from each other as well as a method for them to form professional relationships. It occurred to me that colleagues in Libya may be shy of writing referral letters or may even be phobic about disclosing their practice habits. Patient information can best be written as referral letters which summaries the patient presentation, testing, response to treatment, possible consultation, and reason for referral. The referral may be because the physician(s initially treating the patient simply have tried all treatments known to them, or they may need to refer if they lack certain diagnostic equipment necessary to continue the care. To refer the patient to colleagues simply says “we think more can be done for this patient but we may not be able to do it here; please evaluate.” It shows respect for the patient and for the colleague. No physician knows everything

  9. A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry.

    Yun Liu

    Full Text Available An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7, a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1. The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0-6.0 and excellent stability at pH3.0-8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley β-glucan (2020 ± 9 U mg-1, moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 μg reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.

  10. Experimental analysis of green roof substrate detention characteristics.

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  11. Terminology report respect distance. The Use of the term respect distance in Posiva and SKB

    Lampinen, H.

    2007-09-01

    The term respect distance is used in some key publications of the Finnish Nuclear Waste Management Company, Posiva, and the Swedish Nuclear Waste Management Company, SKB (Svensk Kaernbrenslehantering). Posiva and SKB researchers use the same terms in their reports, and it is acknowledged that the terms used by both companies are not used in the same way, though the differences are often subtle. This report is a literature study of the term 'respect distance' and the terms immediately associated to it. Vital terms related to the respect distance and issues concerning the use of scale concepts in Posiva and SKB are gathered in the end of report. Posiva's respect distances consider the seismic, hydrological and mechanical properties of the deterministic deformation zones as important issues that constitute a risk for longterm safety. These requirements for respect distances are an interpretation of STUK's YVL 8.4 Guide. At present, Posiva's criteria regarding respect distances follow the instructions given in the Host Rock Classification system (HRC), whereas the size of a deformation zone to which respect distances are applied vary from the regional to local major and minor. This and other criteria that are given for respect distances may, however, change in the near future as Posiva's Rock Suitability Criteria (RSC) programme proceeds. SKB's considerations of respect distances acknowledge that the hydraulic and mechanical aspects of a deformation zone have an effect on the respect distance. However, the seismic risk is considered to overshadow the other effects on a regional scale. The respect distance defined for a deformation zone is coupled with the size of a fracture where secondary slip could occur. In the safety assessment it is assumed that this fracture cuts a deposition hole location. In SKB the respect distance is determined for regional and local major deformation zones. The trace length of such a zone is defined as being ≥ 3 km. For deformation zones

  12. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  13. Enzyme specific activity in functionalized nanoporous supports

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  14. PLZT capacitor on glass substrate

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  15. Sealed substrate carrier for electroplating

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  16. Light alloys as substrate material for bipolar plates; Leichtmetall-Legierungen als Substrat fuer Bipolarplatten

    Schicke, R. [PSFU GmbH, Wernigerode (Germany)

    2008-07-01

    Light alloys as substrate material for bipolar plates in fuel cells offer a number of advantages compared to stainless steel sheets. First, the specific weight is smaller, costs are lower, but also bulk properties like thermal and electric conductivities are much better than in the case of stainless steel. Regarding graphite polymer composite materials, the electric conductivity of light alloys again is much higher leading to a considerably lower internal resistance of the cells. Metal sheets, in general, are more attractive with respect to building up compact stacks with high power densities since metal sheets can be produced easily down to thicknesses of around 0.1 mm, whereby graphite composite materials most often have a thickness of at least around 2 mm. In addition, the economics of using light alloys as bipolar plate material is advantageous also for small and medium quantities of production (for instance making use of photochemical etching), but also for high volume production where both conventional techniques like stamping and also more advanced processes like hydroforming can be employed. A major challenge is the identification and technological control and improvement of surface modification / coating processes which lead to low ohmic contact resistances and a good corrosion protection under the electrochemical conditions within a fuel cell environment. Different coating technologies and the characteristics of several coatings will be discussed. (orig.)

  17. Buckling Behavior of Substrate Supported Graphene Sheets

    Kuijian Yang

    2016-01-01

    Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.

  18. Basing Science Ethics on Respect for Human Dignity.

    Aközer, Mehmet; Aközer, Emel

    2016-12-01

    A "no ethics" principle has long been prevalent in science and has demotivated deliberation on scientific ethics. This paper argues the following: (1) An understanding of a scientific "ethos" based on actual "value preferences" and "value repugnances" prevalent in the scientific community permits and demands critical accounts of the "no ethics" principle in science. (2) The roots of this principle may be traced to a repugnance of human dignity, which was instilled at a historical breaking point in the interrelation between science and ethics. This breaking point involved granting science the exclusive mandate to pass judgment on the life worth living. (3) By contrast, respect for human dignity, in its Kantian definition as "the absolute inner worth of being human," should be adopted as the basis to ground science ethics. (4) The pathway from this foundation to the articulation of an ethical duty specific to scientific practice, i.e., respect for objective truth, is charted by Karl Popper's discussion of the ethical principles that form the basis of science. This also permits an integrated account of the "external" and "internal" ethical problems in science. (5) Principles of the respect for human dignity and the respect for objective truth are also safeguards of epistemic integrity. Plain defiance of human dignity by genetic determinism has compromised integrity of claims to knowledge in behavioral genetics and other behavioral sciences. Disregard of the ethical principles that form the basis of science threatens epistemic integrity.

  19. Everywhere divergent Fourier series with respect to the Walsh system and with respect to multiplicative systems

    Bochkarev, S V

    2004-01-01

    In this paper a new construction of everywhere divergent Fourier-Walsh series is presented. This construction enables one to halve the gap in the Lebesgue-Orlicz classes between the Schipp-Moon lower bound established by using Kolmogorov's construction and the Sjoelin upper bound obtained by using Carleson's method. Fourier series which are everywhere divergent after a rearrangement are constructed with respect to the Walsh system (and to more general systems of characters) with the best lower bound for the Weyl factor. Some results related to an upper bound of the majorant for partial sums of series with respect to rearranged multiplicative systems are established. The results thus obtained show certain merits of harmonic analysis on the dyadic group in clarifying and overcoming fundamental difficulties in the solution of the main problems of Fourier analysis

  20. The Scope of the Obligation to Respect and to Ensure Respect for International Humanitarian Law

    Tomasz Zych

    2009-10-01

    Full Text Available This article disputes what seems to have become the dominant interpretation of the obligation to respect and to ensure respect for International Humanitarian Law, as codified in common Article 1 of the Geneva Conventions and in Article 1(1 of Additional Protocol I. According to this dominant interpretation, States are required to take all appropriate measures to ensure that IHL is observed universally, including by other States and by non-State actors operating in other States. It is argued that the intention of the High Contracting Parties, coupled with their subsequent practice, calls for a much more narrow interpretation of that obligation. Cet article conteste ce qui semble être devenue l’interprétation dominante de l’obligation de respecter et de faire respecter le Droit International Humanitaire, tel que codifiée à l’article 1 commun aux Conventions de Genève et à l’article 1(1 du Protocole additionnel I. Selon cette interprétation dominante, les États doivent prendre toutes les mesures appropriées pour assurer que le DIH soit observé de façon universelle, y compris par d’autres États ainsi que par des acteurs non étatiques qui opèrent à l’intérieur d’autres États. On soutient que l’intention des Hautes Parties contractantes, en conjonction avec leur pratique subséquentes, laisse entendre une interprétation beaucoup plus étroite de cette obligation.

  1. Hydrological performance of dual-substrate-layer green roofs using porous inert substrates with high sorption capacities.

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Chenrui

    2017-06-01

    Given that the common medium in existing green roofs is a single layer composed of organic and inorganic substrates, seven pilot-scale dual-substrate-layer extensive green roofs (G1-G7), which include nutrition and adsorption substrate layers, were constructed in this study. The effectiveness of porous inert substrates (activated charcoal, zeolite, pumice, lava, vermiculite and expanded perlite) used as the adsorption substrate for stormwater retention was investigated. A single-substrate-layer green roof (G8) was built for comparison with G1-G7. Despite the larger total rainfall depth (mm) of six types of simulated rains (43.2, 54.6, 76.2, 87.0, 85.2 and 86.4, respectively), the total percent retention of G1-G7 varied between 14% and 82% with an average of 43%, exhibiting better runoff-retaining capacity than G8 based on the maximum potential rainfall storage depth per unit height of adsorption substrate. Regression analysis showed that there was a logarithmic relationship between cumulative rainfall depth with non-zero runoff and stormwater retention for G1-G4 and a linear relationship for G5-G8. To enhance the water retention capacity and extend the service life of dual-substrate-layer extensive green roofs, the mixture of activated charcoal and/or pumice with expanded perlite and/or vermiculite is more suitable as the adsorption substrate than the mixture containing lava and/or zeolite.

  2. Method to evaluate window products with respect to a specific application

    Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    1997-01-01

    defined limit as a measure of the indoor thermal comfort level. WinSim is characterised by the limited amount of required input data. Guide-lines for calculation of the effective thermal capacity of the room is given, and results ob-tained with WinSim have been compared to results from an advanced...... it can be concluded that WinSim is well suited for a fast and realis-tic evaluation of thermal window performance....

  3. Biochemistry Students' Ideas about How an Enzyme Interacts with a Substrate

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an…

  4. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  5. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  6. Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.

    Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai

    2017-09-01

    To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.

  7. Integrated Plastic Substrates for OLED Lighting

    Gaynor, Whitney

    2015-08-01

    OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight the advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated

  8. Optical substrate materials for synchrotron radiation beamlines

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  9. Direct cooled power electronics substrate

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  10. Cell In Situ Zymography: Imaging Enzyme-Substrate Interactions.

    Chhabra, Aastha; Rani, Vibha

    2017-01-01

    Zymography has long been used for the detection of substrate-specific enzyme activity. In situ zymography (ISZ), an adaptation from the conventional substrate zymography, is a widely employed technique useful for the detection, localization, and estimation of enzyme-substrate interactions in tissues. Here, we describe a protocol to detect 'in position' matrix metalloproteinase (MMP) activity in cells utilizing H9c2 cardiomyoblasts as a model. This technique is primarily adopted from the method used for histological sections and is termed as 'Cell in situ Zymography'. It is a simple, sensitive, and quantifiable methodology to assess the functional activity of an enzyme 'on site/in position' in cell culture.

  11. Production of biogas from poultry litter mixed with the co-substrate cow dung

    Mohammad Roman Miah

    2016-07-01

    Full Text Available Poultry litter (a mixture of rice hulls, sawdust and chicken excreta of broilers mixed with the co-substrate cow dung and poultry droppings was evaluated under anaerobic conditions for the production of biogas (methane. Four laboratory scale reactors, R1, R2, R3 and R4, were set up with different proportions of waste poultry litter, cow dung and poultry droppings and had a 6% total solid concentration. Digestion was carried out for 50 days at room temperature, 32 ± 3 °C. Volatile solid degradation and specific gas production in the four reactors was 46%, 51.99%, 51.96%, 43% and 0.263, 0.469, 0.419, 0.221 l/g, respectively, based on the volatile solid (VS feed. The methane yields were 71%, 72.5%, 72.6% and 70%, respectively. The COD reductions were 46.1%, 50.76%, 48.23% and 45.12%, respectively. A kinetic analysis showed that the anaerobic digestion of poultry litter with a co-substrate followed first order kinetics. Among the experimental reactors, R2 (25% cow dung, 75% poultry litter gave the optimum results: a VS reduction of 51.99%, a specific gas yield of 0.469 l/g and a methane yield of 72.5%.

  12. Dielectric coatings on metal substrates

    Glaros, S.S.; Baker, P.; Milam, D.

    1976-01-01

    Large aperture, beryllium substrate-based mirrors have been used to focus high intensity pulsed laser beams. Finished surfaces have high reflectivity, low wavefront distortion, and high laser damage thresholds. This paper describes the development of a series of metallic coatings, surface finishing techniques, and dielectric overcoatings to meet specified performance requirements. Beryllium substrates were coated with copper, diamond-machined to within 5 micro-inches to final contour, nickel plated, and abrasively figured to final contour. Bond strengths for several bonding processes are presented. Dielectric overcoatings were deposited on finished multimetallic substrates to increase both reflectivity and the damage thresholds. Coatings were deposited using both high and low temperature processes which induce varying stresses in the finished coating substrate system. Data are presented to show the evolution of wavefront distortion, reflectivity, and damage thresholds throughout the many steps involved in fabrication

  13. Probing protein phosphatase substrate binding

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  14. How to Respect the Will of Mentally Ill Persons?

    Theda Rehbock

    2013-05-01

    Full Text Available In this article I oppose the current account of autonomy and informed consent in bioethics through criticising the four underlying prejudices of an objectivistic, dualistic, rationalistic and individualistic misunderstanding of the will. With special regard to the case of patients with dementia I argue for the thesis that the principle of autonomy, as moral principles in general, has unconditional and universal validity, but has to be applied differently in the face of specific situations and circumstances by means of the power of judgment (Urteilskraft. As the philosophical resp. anthropological basis of my argument I develop a broad understanding of the will in an Aristotelian and phenomenological sense. The practical consequences of my thesis consist in the ethical requirement of equal respect for the will of mentally ill patients.

  15. Graphene on insulating crystalline substrates

    Akcoeltekin, S; El Kharrazi, M; Koehler, B; Lorke, A; Schleberger, M

    2009-01-01

    We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO 3 , TiO 2 , Al 2 O 3 and CaF 2 by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO 2 substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO 2 ) and C = -8.8% (G/CaF 2 ). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d SLG = 0.34 nm and thus much smaller than on SiO 2 .

  16. [Re]considering Respect for Persons in a Globalizing World.

    Padela, Aasim I; Malik, Aisha Y; Curlin, Farr; De Vries, Raymond

    2015-08-01

    Contemporary clinical ethics was founded on principlism, and the four principles: respect for autonomy, nonmaleficence, beneficence and justice, remain dominant in medical ethics discourse and practice. These principles are held to be expansive enough to provide the basis for the ethical practice of medicine across cultures. Although principlism remains subject to critique and revision, the four-principle model continues to be taught and applied across the world. As the practice of medicine globalizes, it remains critical to examine the extent to which both the four-principle framework, and individual principles among the four, suffice patients and practitioners in different social and cultural contexts. Using the four-principle model we analyze two accounts of surrogate decision making - one from the developed and one from the developing world - in which the clinician undertakes medical decision-making with apparently little input from the patient and/or family. The purpose of this analysis is to highlight challenges in assessing ethical behaviour according to the principlist model. We next describe cultural expectations and mores that inform both patient and clinician behaviors in these scenarios in order to argue that the principle of respect for persons informed by culture-specific ideas of personhood may offer an improved ethical construct for analyzing and guiding medical practice in a globalized and plural world. © 2014 John Wiley & Sons Ltd.

  17. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  18. Methods of etching a substrate

    Cosmo, J J; Gambino, R J; Harper, J M.E.

    1979-05-16

    The invention relates to a method of etching a substrate. The substrate is located opposite a target electrode in a vacuum chamber, and the surface of the target electrode is bombarded with energetic particles of atomic dimensions. The target electrode is an intermetallic composition (compound, alloy or finely divided homogeneous mixture) of two metals A and B such that upon bombardment the electrode emits negative ions of metal B which have sufficient energy to produce etching of the substrate. Many target materials are exemplified. Typically the metal A has an electronegativity XA and metal B has an electronegativity XB such that Xb - Xa is greater than about 2.55 electron volts, with the exception of combinations of metals having a fractional ionicity Q less than about 0.314. The source of the energetic particles may be an ionised gas in the vacuum chamber. The apparatus and its mode of operation are described in detail.

  19. Methods of etching a substrate

    Cosmo, J.J.; Gambino, R.J.; Harper, J.M.E.

    1979-01-01

    The invention relates to a method of etching a substrate. The substrate is located opposite a target electrode in a vacuum chamber, and the surface of the target electrode is bombarded with energetic particles of atomic dimensions. The target electrode is an intermetallic composition (compound, alloy or finely divided homogeneous mixture) of two metals A and B such that upon bombardment the electrode emits negative ions of metal B which have sufficient energy to produce etching of the substrate. Many target materials are exemplified. Typically the metal A has an electronegativity XA and metal B has an electronegativity XB such that Xb - Xa is greater than about 2.55 electron volts, with the exception of combinations of metals having a fractional ionicity Q less than about 0.314. The source of the energetic particles may be an ionised gas in the vacuum chamber. The apparatus and its mode of operation are described in detail. (U.K.)

  20. Porous substrates filled with nanomaterials

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  1. Substrate Handbook for Biogas Production; Substrathandbok foer biogasproduktion

    Carlsson, My; Uldal, Martina (AnoxKaldnes AB, Lund (Sweden))

    2009-02-15

    Today, co-digestion plants in Sweden treat a broad range of different substrates, of which some have not previously been used for anaerobic digestion. The major part of this organic waste derives from households, restaurants, food industries and farms. When evaluating a new substrate as feed for anaerobic digestion, several different aspects need to be taken into consideration, such as anaerobic degradability, TS/VS content, nutrient composition and risk for mechanical problems. Consequently, there is a need for practical guidelines on how to evaluate new substrates as raw materials for biogas production, including not only gas yield but also what practical and microbiological problems that may arise when the specific substrate is treated together with other substrates in the plant. The aim with this handbook is to provide a basis on how to evaluate new substrates as feed for anaerobic digestion. The intention is that this material will save time and effort for the personnel at the plant when they come in contact with new types of waste. Also, the aim is to facilitate the process of identifying new substrates within the ABP-regulation (1774/2002) and what requirements are then demanded on handling. The work with the handbook has been divided in three different parts; (1) an extensive literature study and a compilation of the achieved results, (2) interviews with personnel at most of the Swedish co-digestion plants to identify substrates and problems of interest, and (3) lab tests of selected substrates. The lab tests included Bio Methane Potential (BMP) tests as well as a simple characterization of each substrate based on fat/protein/carbohydrate content. All data origins from anaerobic digestion within the mesophilic temperature range, but the results and discussion are applicable also for thermophilic anaerobic digestion. The result of this work is a written report together with an Excel file which are to be directly used by the biogas plants as a basis in the

  2. Substrate mediated enzyme prodrug therapy

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  3. Protein kinase substrate identification on functional protein arrays

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  4. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.

  5. Phonon scattering in graphene over substrate steps

    Sevincli, Haldun; Brandbyge, Mads

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...

  6. Transparent Substrates for Plasmonic Sensing by Lithography-Free Fabrication

    Thilsted, Anil Haraksingh

    This Ph.D. thesis presents fabrication and optimization of transparent plasmonic substrates that can be used for biological and chemical sensing by surface enhanced Raman spectroscopy (SERS) sensing and localized surface plasmon resonance refractive index (LSPR RI) sensing. These substrates are......-free fabrication methods, and resulted in large-area, high throughput and low cost production techniques. The fabrication techniques consisted of using aluminum patterned areas and reactive ion etching (RIE) to achieve nanopillars or nanocylinders in glass; using RIE to achieve nanopillars in silicon as a mould......, respectively. As the substrates were transparent, measurements from the backside were possible, showing a 44%, 1:7% and 71% Raman signal intensity in comparison to the measurements from the front, for the glass nanopillars, the polymer injected nanopillars and the transferred metal nanocaps, respectively...

  7. Advancing Respect for Labour Rights Globally through Public Procurement

    Olga Martin-Ortega

    2017-12-01

    Full Text Available Governments are mega-consumers of many manufactured products and services. As such they should in principle be able to influence workers’ rights abroad via the terms of purchase contracts. Yet to date little attention has been paid to the potential of public procurement to promote respect for labour rights globally besides the international trade law framework. Building on a limited emerging scholarship and policy developments, this article addresses this gap. Section 2 considers legal definitions of public procurement and distinguishes primary and secondary aims of procurement under key international and regional procurement regimes. This highlights that, although historically used to advance labour rights domestically, these regimes have restricted public buyers’ scope to advance labour rights beyond national borders. Section 3 explores new international policy frameworks on responsible global value chains and supply chains which by contrast appear to augur the greater use of public procurement to promote labour rights globally in future. Section 4 argues, supported by analysis of the limited examples available, that public buying has the potential to positively influence enjoyment of labour rights in practice. Concluding, Section 5 reflects on what the more specific impacts of public procurement in this context may be, and how public buying should complement other mechanisms for improving labour conditions across supply chains, such as social clauses in trade agreements. Finally, we outline issues for further research and the future policy agenda.

  8. Neurobiological Substrates of Tourette's Disorder

    Leckman, James F.; Bloch, Michael H.; Smith, Megan E.; Larabi, Daouia; Hampson, Michelle

    Objective: This article reviews the available scientific literature concerning the neurobiological substrates of Tourette's disorder (TD). Methods: The electronic databases of PubMed, ScienceDirect, and PsycINFO were searched for relevant studies using relevant search terms. Results:

  9. Sensor Technologies on Flexible Substrates

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  10. Imparting Icephobicity with Substrate Flexibility

    Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos

    2017-11-01

    Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.

  11. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  12. Influence of substrate on structural, morphological and optical ...

    Administrator

    differences in crystallite sizes, microstrain and texture coefficient with respect to the employed substrates. The morphology of ... perties of ZnO thin films, the real effect on the structural ... related to the piezoelectric property, which is an impor- tant issue on ..... ceramics (New York: Springer Berlin Heidelberg) 2nd edn. Bai S N ...

  13. Endo/exo-synergism of cellulases increases with substrate conversion

    Olsen, Johan Pelck; Borch, Kim; Westh, Peter

    2017-01-01

    Synergy between cellulolytic enzymes is important for their industrial utilization, and numerous studies have addressed the problem of how to optimize the composition of enzyme cocktails with respect to this. The degree of synergy (DS) may change with substrate conversion, and some studies have s...

  14. Metabolic adjustment upon repetitive substrate perturbations using dynamic

    Suarez Mendez, C.A.; Ras, C.; Wahl, S.A.

    2017-01-01

    Background: Natural and industrial environments are dynamic with respect to substrate availability and other conditions like temperature and pH. Especially, metabolism is strongly affected by changes in the extracellular space. Here we study the dynamic flux of central carbon metabolism and

  15. A novel approach using powder metallurgy for strengthened RABiTS composite substrates for coated superconductors

    Suo Hongli; Zhao Yue; Liu Min; Ye Shuai; Zhu YongHua; He Dong; Ma Lingji; Ji Yuan; Zhou Meiling

    2008-01-01

    We report on the development of mechanically strengthened, highly textured Ni-5 at.%W/Ni-12 at.%W composite materials prepared by a powder metallurgical approach as promising weakly magnetic substrates for coated superconductors. The key configuration of this composite substrate consists of a thin, sharp cubic textured Ni-5 at.%W layer on a Ni-12 at.%W alloy core, thus providing a mechanical reinforcement while decreasing the saturation magnetization of the whole substrate. The composite substrates have a sharp cubic texture at the top Ni-5 at.%W outer layer and their yield strength reaches 272 MPa, exceeding that of the commercially used Ni5W substrates by a factor of 1.6. The saturation magnetization of the composite substrate Ni5W/Ni12W/Ni5W is substantially reduced when compared to that of pure Ni and Ni-5 at.%W substrates, respectively

  16. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology.

    Kottom, Theodore J; Limper, Andrew H

    2011-10-01

    Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates. Copyright © 2011 John Wiley & Sons, Ltd.

  17. What Does ‘Respect for Difference’ Mean?

    Lægaard, Sune

    2013-01-01

    In his chapter, Laegaard (Chapter 2) focuses on liberal institutions. He questions the solidity of the distinction between ‘respect for difference’ and ‘respect for dignity’, by paying attention to what it means for institutions to respect difference. He concludes that from this perspective, the ...... how multiculturalism remains deeply connected to liberal values, even in its apparently more radical versions....

  18. Self-esteem and social respect within the high school.

    Yelsma, P; Yelsma, J

    1998-08-01

    A sample of 596 students in a Michigan high school completed 2 measures of self-esteem (S. Coopersmith, 1967; M. Rosenberg, 1979) and the English translation of the Social Behaviors Scale (M. Loranger, M. Poirier, D. Gauthier, & J. Talon, 1982). Factor analysis of the 36-item Social Behaviors Scale revealed 5 factors appropriate for assessing social respect. Regression analyses revealed that scores for total self-esteem and global self-esteem were significant predictors of total social respect. The scores for total self-esteem were also significantly associated with respect for teachers and for appropriate language. The females reported more respect for teachers, others, appropriate language, and physical property than the males did. The seniors reported more respect for appropriate language, teachers, and others than the freshmen did. Total self-esteem was significantly and negatively associated with respect for waiting and listening. Global self-esteem was significantly and negatively associated with respect for physical property.

  19. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds...

  20. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  1. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  2. Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate

    Wang, Yaqi; Alur, Siddharth; Sharma, Yogesh; Tong, Fei; Thapa, Resham; Gartland, Patrick; Issacs-Smith, Tamara; Ahyi, Claude; Williams, John; Park, Minseo; Johnson, Mark; Paskova, Tanya; Preble, Edward A; Evans, Keith R

    2011-01-01

    Vertical Schottky diodes were fabricated on the bulk GaN substrate with decreasing impurity concentration from N-face to Ga-face. An array of circular Pt Schottky contacts and a full backside Ti/Al/Ni/Au ohmic contact were prepared on the Ga-face and the N-face of the n-GaN substrate, respectively. The Schottky diode exhibits a minimum specific on-state resistance of 1.3 mΩ cm 2 and a maximum breakdown voltage of 600 V, resulting in a figure-of- merit of 275 MW cm −2 . An ultra-low reverse leakage current density of 3.7 × 10 −4 A cm −2 at reverse bias of 400 V was observed. Temperature-dependent I–V measurements were also carried out to study the forward and reverse transportation mechanisms. (fast track communication)

  3. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  4. Neural substrates of sublexical processing for spelling.

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Catalytic Efficiency of Basidiomycete Laccases: Redox Potential versus Substrate-Binding Pocket Structure

    Olga A. Glazunova

    2018-04-01

    Full Text Available Laccases are copper-containing oxidases that catalyze a one-electron abstraction from various phenolic and non-phenolic compounds with concomitant reduction of molecular oxygen to water. It is well-known that laccases from various sources have different substrate specificities, but it is not completely clear what exactly provides these differences. The purpose of this work was to study the features of the substrate specificity of four laccases from basidiomycete fungi Trametes hirsuta, Coriolopsis caperata, Antrodiella faginea, and Steccherinum murashkinskyi, which have different redox potentials of the T1 copper center and a different structure of substrate-binding pockets. Enzyme activity toward 20 monophenolic substances and 4 phenolic dyes was measured spectrophotometrically. The kinetic parameters of oxidation of four lignans and lignan-like substrates were determined by monitoring of the oxygen consumption. For the oxidation of the high redox potential (>700 mV monophenolic substrates and almost all large substrates, such as phenolic dyes and lignans, the redox potential difference between the enzyme and the substrate (ΔE played the defining role. For the low redox potential monophenolic substrates, ΔE did not directly influence the laccase activity. Also, in the special cases, the structure of the large substrates, such as dyes and lignans, as well as some structural features of the laccases (flexibility of the substrate-binding pocket loops and some amino acid residues in the key positions affected the resulting catalytic efficiency.

  6. Substrate-HTcS thin film interaction studies by (S)TEM

    Ramaekers, P.P.J.; Klepper, D.; Kitazawa, K.; Ishiguro, T.

    1989-01-01

    This paper concerns with compatibility aspects beween HTcS thin film either their substrates. The influence of substrate-thin film interaction and thin film microstructure on the superconducting properties is discussed. In this respect, data based on (S)TEM observations are presented. It is

  7. Polarimetric studies of polyethylene terephtalate flexible substrates

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  8. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures

    Muslim, Noormariah, E-mail: 14h8702@ubd.edu.bn [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Soon, Ying Woan [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Physical and Geological Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Lim, Chee Ming; Voo, Nyuk Yoong [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam)

    2016-08-01

    Pure nickel (Ni) thin films of thicknesses of 100 nm were deposited on glass substrates by radio frequency magnetron sputtering at a power of 100 W and at various substrate temperatures i.e., room temperature, 100, 200, and 300 °C. The crystalline structure, surface topography, surface morphology, electrical resistivity, and optical properties of the deposited films were studied. The properties of the Ni films could be controlled by altering the substrate temperature. Specifically, the films featured a face-centered cubic crystalline structure with predominant (111) crystallite orientation at all the substrate temperatures employed, as observed from the X-ray diffraction analysis. Films deposited at substrate temperatures greater than 200 °C additionally displayed crystalline (200) and (220) diffraction peaks. The surface morphology analysis revealed that the grain size of the Ni thin films increased with increasing substrate temperatures employed. This increase was accompanied with a decrease in the resistivity of the Ni films. The surface roughness of the films increased with increasing substrate temperatures employed, as observed from the atomic force microscopy analysis. - Highlights: • RF magnetron sputtering is a good alternative method to deposit Ni films. • Properties of Ni films could be controlled simply by tuning substrate temperatures. • Crystallite size and surface roughness increased with substrate temperatures. • Electrical resistivity reduced with increasing substrate temperatures. • Optical properties also changed with substrate temperatures.

  9. Contempt as the absence of appraisal, not recognition, respect.

    Mason, Michelle

    2017-01-01

    Gervais & Fessler's defense of a sentiment construct for contempt captures features distinguishing the phenomenon from basic emotions and highlights the fact that it comprises a coordinated syndrome of responses. However, their conceptualization of contempt as the absence of respect equivocates. Consequently, a "dignity" culture that prescribes respect does not thereby limit legitimate contempt in the manner the authors claim.

  10. Kant's Conception of Respect and African American Education Rights

    Bynum, Gregory Lewis

    2011-01-01

    Immanuel Kant envisioned a kind of respect in which one recognizes each human (1) as being not fully comprehensible by any human understanding, (2) as being an end in him- or herself, and (3) as being a potential source of moral law. In this essay, Gregory Lewis Bynum uses this conception of respect as a lens with which to examine African American…

  11. Quantum mechanics with respect to different reference frames

    Mangiarotti, L.; Sardanashvily, G.

    2007-01-01

    Geometric (Schroedinger) quantization of nonrelativistic mechanics with respect to different reference frames is considered. In classical nonrelativistic mechanics, a reference frame is represented by a connection on a configuration space fibered over a time axis R. Under quantization, it yields a connection on the quantum algebra of Schroedinger operators. The operators of energy with respect to different reference frames are examined

  12. Relocating Respect and Tolerance: A Practice Approach in Empirical Philosophy

    Anker, Trine; Afdal, Geir

    2018-01-01

    Respect and tolerance are key values in education. They are also among the aims of education and are brought to the foreground in educational policy. We argue that these values are neither philosophically nor politically given aims for which education is a means. Instead, respect and tolerance are enacted and negotiated through educational…

  13. The Problematic Promotion of Abstinence: An Overview of Sex Respect.

    Goodson, Patricia; Edmundson, Elizabeth

    1994-01-01

    Presents the results of a content evaluation of the abstinence-based sexuality education curriculum, "Sex Respect," focusing on the curriculum's message and presentation. Results indicate Sex Respect omits basic content and includes misinformation, especially in the areas of human sexual response and reproductive health, and needs revision.…

  14. A universal mammalian vaccine cell line substrate.

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  15. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-01-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  16. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  17. Verfahren zum Herstellen einer Beschichtung eines Substrats

    Wilke, Martin; Töpper, Michael

    2013-01-01

    The method involves applying coating material (7) on surface (2) of recess (3) formed in substrate (1). A liquid auxiliary agent (6) is applied on substrate surface, such that recess is filled with auxiliary agent. The coating material is subsequently applied to auxiliary agent on substrate. A coating material portion in auxiliary agent is transported by coating material diffusion. The agent is subsequently separated from coating material, such that coating material on substrate surface is le...

  18. Quality improvement of organic thin films deposited on vibrating substrates

    Paredes, Y.A.; Caldas, P.G.; Prioli, R.; Cremona, M., E-mail: cremona@fis.puc-rio.br

    2011-12-30

    } corresponding to an increase of about 250% in the luminance with respect to the same OLEDs fabricated in the same way and with the same conditions without substrate vibration.

  19. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-11-01

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.

  20. R-E-S-P-E-C-T: The Relationship Between Being Respected and Quality of Life of Disabled People

    Carli Friedman

    2018-05-01

    Full Text Available The United Nations exclaims "all human beings have the right to be treated with dignity and respect" (Annan, 2005, p. 34. Yet, disabled people have long been denied respect in the United States and have been subjected to disability oppression and ableism. For these reasons, the aim of this study was to explore the relationship between respect and disability, particularly respect's impact on the quality of life of disabled people. We had two research questions: (1. what factors predict disabled people being respected? and, (2. how does being respected impact the quality of life of disabled people? To explore these questions, we used secondary Personal Outcome Measures® data from approximately 1,500 disabled people; we analyzed this data to examine relationships between disabled people's interpretations of feeling and being respected, and their quality of life. Our findings revealed being respected had a significant impact on every area of ones' quality of life. Problematically, this also included areas which should be considered non-negotiable fundamental human and civil rights, that should not depend on if, and how, people respect disabled people. While the attitudes underlying the disrespect of disabled people are harmful and problematic, human and civil rights should be inalienable – ones' access to exercise their rights, to safety, to health, and to many other domains should not depend on others' attitudes about, and treatment toward, you.

  1. Effect of the Substrate on Phonon Properties of Graphene Estimated by Raman Spectroscopy

    Tivanov, M. S.; Kolesov, E. A.; Korolik, O. V.; Saad, A. M.; Komissarov, I. V.

    2018-01-01

    Low-temperature Raman studies of supported graphene are presented. A linear temperature dependence of 2D peak linewidths was observed with the coefficients of 0.036 and 0.033 cm^{-1}/K for graphene on copper and glass substrates, respectively, while G peak linewidths remained unchanged throughout the whole temperature range. The different values observed for graphene on glass and copper substrates were explained in terms of the substrate effect on phonon-phonon and electron-phonon interaction properties of the material. The results of the present study can be used to consider substrate effects on phonon transport in graphene for nanoelectronic device engineering.

  2. SUPPLEMENTARY INFORMATION Indicators for suicide substrate ...

    Jatinder

    The usual trend is to apply QSSA to a system with high substrate concentration. But, QSSA, i.e., steadiness in intermediate concentration, may even be achieved at high and even comparable enzyme-substrate ratio. Whether a system will attain a steady state depends not only on the high substrate concentration, but also on ...

  3. Method for coating substrates and mask holder

    Bijkerk, Frederik; Yakshin, Andrey; Louis, Eric; Kessels, M.J.H.; Maas, Edward Lambertus Gerardus; Bruineman, Caspar

    2004-01-01

    When coating substrates it is frequently desired that the layer thickness should be a certain function of the position on the substrate to be coated. To control the layer thickness a mask is conventionally arranged between the coating particle source and the substrate. This leads to undesirable

  4. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

    Gabriele Fisichella

    2013-04-01

    Full Text Available Chemical vapour deposition (CVD on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate, briefly PEN, suitable for microelectronics and flexible electronics applications, respectively. The electrical properties (sheet resistance, mobility, carrier density of the transferred graphene as well as the specific contact resistance of metal contacts onto graphene were investigated by using properly designed test patterns. While a sheet resistance Rsh ≈ 1.7 kΩ/sq and a specific contact resistance ρc ≈ 15 kΩ·μm have been measured for graphene transferred onto SiO2, about 2.3× higher Rsh and about 8× higher ρc values were obtained for graphene on PEN. High-resolution current mapping by torsion resonant conductive atomic force microscopy (TRCAFM provided an insight into the nanoscale mechanisms responsible for the very high ρc in the case of graphene on PEN, showing a ca. 10× smaller “effective” area for current injection than in the case of graphene on SiO2.

  5. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  6. The substrate matters in the Raman spectroscopy analysis of cells

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  7. Effect Of Various Substrates On Eudrilus eugeniae (Oligochaeta Production

    Mpoame, M.

    1994-01-01

    Full Text Available In order to assess the effects of substrate on Eudrilus eugeniae production, 360 worms were raised in plastic buckets containing manure either from cattle (BV, from sheep (CM, from rabbit (CL, and from chicken (FP. At the end of the experiment which lasted 4 months, worm productivity was estimated at 111.9 g/kg of substrate in CL, 86.3 g/kg in CM, and 33.0 g/kg in BV. Substrate FP was inadequate as worms escaped from it. In another trial aiming at determining some of E. Eugeniae's reproductive parameters, each of the 3 substrates BV, CL, and CM was distributed into 15 plastic half bottles and was inoculated with one cocoon. In the 3 substrates cocoon incubation time and growing period were estimated at 3 to 4 weeks and 6 to 7 weeks respectively. Cocoons were laid approximately a week after the pairing of worms. On the average, each worm laid 2 cocoons per week.

  8. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A.

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  9. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  10. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity

    Lundsgaard, Annemarie; Kiens, Bente

    2014-01-01

    higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism...

  11. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility

    Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, V.

    2015-01-01

    Roč. 16, JAN (2015), s. 28 ISSN 1471-2105 R&D Projects: GA ČR(CZ) GAP207/11/0629; GA ČR GP13-06818P Institutional support: RVO:67179843 ; RVO:61388971 Keywords : molecular docking * substrate specificity * unnatural substrates * phylogenetic analysis Subject RIV: EE - Microbiology, Virology Impact factor: 2.435, year: 2015

  12. "When Meeting 'Khun' Teacher, Each Time We Should Pay Respect": Standardizing Respect in a Northern Thai Classroom

    Howard, Kathryn M.

    2009-01-01

    This paper examines how Northern Thai (Muang) children are socialized into the discourses and practices of respect in school, a process that indexically links Standard Thai to images of polite and respectful Thai citizenship. Focusing on the socialization of politeness particles, the paper examines how cultural models of conduct are taken up,…

  13. What deserves our respect? Reexamination of respect for autonomy in the context of the management of chronic conditions.

    Enzo, Aya; Okita, Taketoshi; Asai, Atsushi

    2018-05-29

    The global increase in patients with chronic conditions has led to increased interest in ethical issues regarding such conditions. A basic biomedical principle-respect for autonomy-is being reexamined more critically in its clinical implications. New accounts of this basic principle are being proposed. While new accounts of respect for autonomy do underpin the design of many public programs and policies worldwide, addressing both chronic disease management and health promotion, the risk of applying such new accounts to clinical setting remain understudied. However, the application of new accounts of respect for autonomy to clinical settings could support disrespectful attitudes toward or undue interference with patients with chronic conditions. Reconsidering autonomy and respect using Kantian accounts, this paper proposes respect for persons as an alternative basic bioethical principle to respect for autonomy. Unlike the principle of respect for persons in the Belmont Report, our principle involves respecting any patient's decisions, behaviors, emotions, or life-style regardless of his or her "autonomous" capabilities. Thus, attitudes toward patients should be no different irrespective of the assessment of their decisional or executive capabilities.

  14. Lipschitz estimates for convex functions with respect to vector fields

    Valentino Magnani

    2012-12-01

    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  15. Volunteering for charity: pride, respect, and the commitment of volunteers.

    Boezeman, Edwin J; Ellemers, Naomi

    2007-05-01

    This study builds upon and extends the social-identity-based model of cooperation with the organization (T. R. Tyler, 1999; T. R. Tyler & S. L. Blader, 2000) to examine commitment and cooperative intent among fundraising volunteers. In Study 1, structural equation modeling indicated that pride and respect related to the intent to remain a volunteer with an organization, and that this relation was mediated primarily by normative organizational commitment. In Study 2, structural equation modeling indicated that the perceived importance of volunteer work was related to pride, that perceived organizational support related to the experience of respect, and that pride and respect mediated the relation between perceived importance and support on the one hand and organizational commitment on the other. Overall, the results suggest that volunteer organizations may do well to implement pride and respect in their volunteer policy, for instance to address the reliability problem (J. L. Pearce, 1993). 2007 APA, all rights reserved

  16. Do positrons and antiprotons respect the weak equivalence principle?

    Hughes, R.J.

    1990-01-01

    We resolve the difficulties which Morrison identified with energy conservation and the gravitational red-shift when particles of antimatter, such as the positron and antiproton, do not respect the weak equivalence principle. 13 refs

  17. Constrained multi-degree reduction with respect to Jacobi norms

    Ait-Haddou, Rachid; Barton, Michael

    2015-01-01

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  18. Constrained multi-degree reduction with respect to Jacobi norms

    Ait-Haddou, Rachid

    2015-12-31

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  19. Thickness Measurement of a Film on a Substrate by Low-Frequency Ultrasound

    LI Ming-Xuan; WANG Xiao-Min; MAO Jie

    2004-01-01

    @@ We describe a new simple technique for the low-frequency ultrasonic thickness measurement of an air-backed soft thin layer attached on a hard substrate of finite thickness through the frequency-shifts of the substrate resonances by the substrate-side insonification. A plane compressive wave impinging normally on the substrate surface from a liquid is studied. Low frequency here means an interrogating acoustical wave frequency of less than half of coating to the substrate. Equations for the frequency-shifts are derived and solved by the Newton iterative method and the Taylor expansion method, respectively, indicating satisfactory agreement within the range of interest of thickness ratio of the thin layer to the substrate for a polymer-aluminium structure. An experimental setup is constructed to verify the validity of the technique.

  20. Superhydrophobicity enhancement through substrate flexibility

    Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas; Poulikakos, Dimos

    2017-11-01

    Inspired by manifestations in nature, micro/nanoengineering superhydrophobic surfaces has been the focus of much work. Generally, hydrophobicity is increased through the combined effects of surface texturing and chemistry; being durable, rigid substrate materials are the norm. However, many natural and technical materials are flexible, and the resulting effect on hydrophobicity has been largely unexplored. Here, we show that the rational tuning of flexibility can work collaboratively with the surface micro/nanotexture to enhance liquid repellency performance, defined by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate stiffness and areal density imparts immediate acceleration and intrinsic responsiveness to impacting droplets, mitigating the collision and lowering the impalement probability by 60 % without the need for active actuation. We demonstrate the above discoveries with materials ranging from thin steel or polymer sheets to butterfly wings. Partial support of the Swiss National Science Foundation under Grant 162565 and the European Research Council under Advanced Grant 669908 (INTICE) is acknowledged.

  1. Quartz substrate infrared photonic crystal

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  2. Automated cassette-to-cassette substrate handling system

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  3. Method For Producing Mechanically Flexible Silicon Substrate

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  4. Phonon scattering in graphene over substrate steps

    Sevinçli, H.; Brandbyge, M.

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.

  5. Method For Producing Mechanically Flexible Silicon Substrate

    Hussain, Muhammad Mustafa; Rojas, Jhonathan Prieto

    2014-01-01

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  6. The influence of substrate material on ascidian larval settlement.

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Removal of pharmaceuticals in pre-denitrifying MBBR – Influence of organic substrate availability in single- and three-stage configurations

    Polesel, Fabio; Torresi, Elena; Loreggian, L.

    2017-01-01

    kinetics were observed, with highest and lowest rates/rate constants in the first (S1) and the last (S3) staged sub-reactors, respectively. These observations were confirmed by removal efficiency data obtained during continuous-flow operation, with limited removal (... and highest removal in S1 within the three-stage MBBR. Notably, biotransformation rate constants obtained for non-recalcitrant pharmaceuticals correlated with mean specific denitrification rates, maximum specific growth rates and observed growth yield values. Overall, these findings suggest that: (i) the long......-term exposure to tiered substrate accessibility in the three-stage configuration shaped the denitrification and biotransformation capacity of biofilms, with significant reduction under substrate limitation; (ii) biotransformation of pharmaceuticals may have occurred as a result of cometabolism by heterotrophic...

  8. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  9. Use of artificial substrate in pond culture of freshwater prawn (Macrobrachium rosenbergii: a new approach regarding growth performance and economic return

    Dilshad Milky Tuly

    2014-04-01

    Full Text Available An experiment was conducted for six months to evaluate the effects of artificial substrates on the survival, growth and production of Macrobrachium rosenbergii juveniles. The treatment T1 contained locally available bamboo-made substrate both vertical and horizontal and treatment T2 received no substrate. Juvenile prawns (0.40±0.13 g were stocked at the rate of 19,760 prawns ha-1. The water quality parameters range such as temperature, pH and DO were 22.06-33.45°C, 7.70-8.40 and 4.75-6.15 mgl-1 respectively which was no significant difference (P0.05 than T2 (56.87%. The specific growth rate, food conversion ratio and protein efficiency ratio were 1.19 % and 1.14 %, 3.15 and 4.39, 0.98 and 0.71 in T1 and T2 respectively which were not significantly different (P0.05 than T2. Thus growth and survival of prawn juveniles improved in presence of artificial substrate which could be economically viable technique for the freshwater prawn culture.

  10. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets.

    Bekhouche, Mourad; Leduc, Cedric; Dupont, Laura; Janssen, Lauriane; Delolme, Frederic; Vadon-Le Goff, Sandrine; Smargiasso, Nicolas; Baiwir, Dominique; Mazzucchelli, Gabriel; Zanella-Cleon, Isabelle; Dubail, Johanne; De Pauw, Edwin; Nusgens, Betty; Hulmes, David J S; Moali, Catherine; Colige, Alain

    2016-05-01

    A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2, 3, and 14 are collectively named procollagen N-proteinases (pNPs) because of their specific ability to cleave the aminopropeptide of fibrillar procollagens. Several reports also indicate that they could be involved in other biological processes, such as blood coagulation, development, and male fertility, but the potential substrates associated with these activities remain unknown. Using the recently described N-terminal amine isotopic labeling of substrate approach, we analyzed the secretomes of human fibroblasts and identified 8, 17, and 22 candidate substrates for ADAMTS2, 3, and 14, respectively. Among these newly identified substrates, many are components of the extracellular matrix and/or proteins related to cell signaling such as latent TGF-β binding protein 1, TGF-β RIII, and dickkopf-related protein 3. Candidate substrates for the 3 ADAMTS have been biochemically validated in different contexts, and the implication of ADAMTS2 in the control of TGF-β activity has been further demonstrated in human fibroblasts. Finally, the cleavage site specificity was assessed showing a clear and unique preference for nonpolar or slightly hydrophobic amino acids. This work shows that the activities of the pNPs extend far beyond the classically reported processing of the aminopropeptide of fibrillar collagens and that they should now be considered as multilevel regulators of matrix deposition and remodeling.-Bekhouche, M., Leduc, C., Dupont, L., Janssen, L., Delolme, F., Vadon-Le Goff, S., Smargiasso, N., Baiwir, D., Mazzucchelli, G., Zanella-Cleon, I., Dubail, J., De Pauw, E., Nusgens, B., Hulmes, D. J. S., Moali, C., Colige, A. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets. © FASEB.

  11. A Social Recognition Approach to Autonomy: The Role of Equality-Based Respect.

    Renger, Daniela; Renger, Sophus; Miché, Marcel; Simon, Bernd

    2017-04-01

    Inspired by philosophical reasoning about the connection between equality and freedom, we examined whether experiences of (equality-based) respect increase perceived autonomy. This link was tested with generalized experiences of respect and autonomy people make in their daily lives (Study 1) and with more specific experiences of employees at the workplace (Study 2). In both studies, respect strongly and independently contributed to perceived autonomy over and above other forms of social recognition (need-based care and achievement-based social esteem) and further affected (life/work) satisfaction. Study 3 experimentally confirmed the hypothesized causal influence of respect on perceived autonomy and demonstrated that this effect further translates into social cooperation. The respect-cooperation link was simultaneously mediated by perceived autonomy and superordinate collective identification. We discuss how the recognition approach, which differentiates between respect, care, and social esteem, can enrich research on autonomy.

  12. Forum | Accelerating respect @ CERN | 5 May | Council Chamber

    2015-01-01

    Forum for discussion: Accelerating respect @ CERN - What does this mean in our daily working lives?   Tuesday, 5 May at 2 p.m. Council Chamber Join our forum for discussion on the topic of “Respect in the workplace” where Alan Richter will be leading a discussion on the relationship between respect and trust, including some recent research on trust, and exploring the role of unconscious bias, how respect is differently interpreted across cultures, and the connection between respect, listening, and the appreciative inquiry process. Alan Richter is the president of QED Consulting, a 26-year-old company based in New York. He has consulted to organisations in the areas of leadership, values, culture and change and is a recognised pioneer in global diversity and international ethics. He has worked with CERN, NASA, the UN and many global companies and leading universities around the world. He has a Ph.D. in Philosophy from London University, and a Master’s degree fro...

  13. A Practical Test Method for Mode I Fracture Toughness of Adhesive Joints with Dissimilar Substrates

    Boeman, R.G.; Erdman, D.L.; Klett, L.B.; Lomax, R.D.

    1999-09-27

    A practical test method for determining the mode I fracture toughness of adhesive joints with dissimilar substrates will be discussed. The test method is based on the familiar Double Cantilever Beam (DCB) specimen geometry, but overcomes limitations in existing techniques that preclude their use when testing joints with dissimilar substrates. The test method is applicable to adhesive joints where the two bonded substrates have different flexural rigidities due to geometric and/or material considerations. Two specific features discussed are the use of backing beams to prevent substrate damage and a compliance matching scheme to achieve symmetric loading conditions. The procedure is demonstrated on a modified DCB specimen comprised of SRIM composite and thin-section, e-coat steel substrates bonded with an epoxy adhesive. Results indicate that the test method provides a practical means of characterizing the mode I fracture toughness of joints with dissimilar substrates.

  14. Bacterial protease uses distinct thermodynamic signatures for substrate recognition.

    Bezerra, Gustavo Arruda; Ohara-Nemoto, Yuko; Cornaciu, Irina; Fedosyuk, Sofiya; Hoffmann, Guillaume; Round, Adam; Márquez, José A; Nemoto, Takayuki K; Djinović-Carugo, Kristina

    2017-06-06

    Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.

  15. Properties of Commercial PVC Films with Respect to Electron Dosimetry

    Miller, Arne; Liqing, Xie

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respect to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat...

  16. Consumer Behavior in respect of milk in The Netherlands

    J.G. Termorshuizen (Koos); M.T.G. Meulenberg; B. Wierenga (Berend)

    1986-01-01

    textabstractIn this paper, consumer behaviour in the Netherlands in respect of milk is investigated using a model based on the EKB model, a so-called integrated model of consumer behaviour. The objectives of the study are: to gain insight into the factors that influence buying and consumption

  17. Working together to build a respectful workplace: transforming OR culture.

    Costello, Judy; Clarke, Cathy; Gravely, Gillian; D'Agostino-Rose, Dina; Puopolo, Rose

    2011-01-01

    Respect is important in the creation of a positive perioperative work environment and effective OR teams. Low scores for respect in the OR on an employee opinion survey and responses on a more customized survey that examined issues associated with respect prompted leaders at the University Health Network to undertake a multiyear organizational strategy to address respect and quality of worklife initiatives. An interprofessional quality of worklife task force convened to create an action plan to address the outcomes of the surveys. The work of the task force included developing and implementing a code of conduct team charter for the OR, empowering leaders to better manage conflict through education and coaching, creating a collaborative, consistent approach to conflict resolution, and designing an education strategy for staff members to enhance communication and conflict resolution. Results of recent employee opinion surveys have reflected positive outcomes. Efforts to sustain the effects of the project include quarterly recognition awards and ongoing education focused on wellness and communication skills. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. Administrative Jurisdiction in NMa decisions with respect to Energy Jurisdiction

    Algera, W.T.

    2011-01-01

    In 2010 decisions were made in 14 energy issues with respect to decisions of the Netherlands Competition Authority NMa. All the decisions were done by Court of Appeal for trade and industry. The decisions touch upon a broad spectrum of subjects and comprise several procedures. They are discussed and commented in this thematic annual analysis. [nl

  19. Availability and traditional practice with respect to fodder trees and ...

    The paper reports a study that provided important information from farmers of the floodplain area of Bangladesh for setting research and development priorities with respect to indigenous and exotic fodder trees. Indigenous knowledge of fodder trees from the floodplain area may be an important tool in planning nutrition for ...

  20. Respective effects of sodium and chloride ion on physiological ...

    Respective effects of sodium and chloride ion on growth, cell morphological changes, membrane disorganization, ion homeostasis, exoenzyme activities and fermentation performance in Zymomonas mobilis232B cultures were presented. In batch cultures containing 0.15 M NaCl, Z. mobilis232B developed filaments, and ...

  1. Respecting Preferences : Gender Justice and the Normative Hierarchy View

    J. Kloeg (Julien)

    2013-01-01

    textabstractTheorists of justice have to steer between two rocks. On the one hand, there is the intuition that an individual’s morally permitted preferences should be respected: it is not justifiable to intervene with them. On the other hand, such preferences are the result of formation processes,

  2. WWER 440 integrity assessment with respect to PTS events

    Hrazsky, M.; Mikua, M.; Hermansky, P.

    1997-01-01

    The present state of art in WWER 440 RPV integrity assessment with respect to PTS events utilized in Slovakia is reviewed briefly in this paper. Recent results of some PTS's (very severe) analyses, shortly described in our paper, have confirmed the necessity of elaboration of new more sophisticated procedures again. Such methodology should be based on prepared IAEA Guidance. (author). 13 refs, 1 fig

  3. Respectful maternity care in Ethiopian public health facilities

    Sheferaw, Ephrem D.; Bazant, Eva; Gibson, Hannah; Fenta, Hone B.; Ayalew, Firew; Belay, Tsigereda B.; Worku, Maria M.; Kebebu, Aelaf E.; Woldie, Sintayehu A.; Kim, Young-Mi; van den Akker, T.; Stekelenburg, Jelle

    2017-01-01

    Background: Disrespect and abuse of women during institutional childbirth services is one of the deterrents to utilization of maternity care services in Ethiopia and other low- and middle-income countries. This paper describes the prevalence of respectful maternity care (RMC) and mistreatment of

  4. On the harmonic starlike functions with respect to symmetric ...

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  5. Promoting Respect as a Human Value in a Public School

    Corzo, Josefina Quintero; Castañeda, Yeisson Soto

    2017-01-01

    This is a case study report arising from a series of daily observations of the students' behavior made in a primary public school located near to the capital city, Manizales-Colombia, where it was possible to notice the difficulties students had in order to coexist due to the lack of respect with their classmates, in group activities or actually…

  6. Integration with respect to the Euler characteristic and its applications

    Gusein-Zade, Sabir M [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2010-09-16

    The notion of integration with respect to the Euler characteristic and its generalizations are discussed: integration over the infinite-dimensional spaces of arcs and functions, motivic integration. The author describes applications of these notions to the computation of monodromy zeta functions, Poincare series of multi-index filtrations, generating series of classes of certain moduli spaces, and so on. Bibliography: 70 titles.

  7. Substrate-driven mapping of the degradome by comparison of sequence logos.

    Julian E Fuchs

    Full Text Available Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available.

  8. Crius: A Novel Fragment-Based Algorithm of De Novo Substrate Prediction for Enzymes.

    Yao, Zhiqiang; Jiang, Shuiqin; Zhang, Lujia; Gao, Bei; He, Xiao; Zhang, John Z H; Wei, Dongzhi

    2018-05-03

    The study of enzyme substrate specificity is vital for developing potential applications of enzymes. However, the routine experimental procedures require lot of resources in the discovery of novel substrates. This article reports an in silico structure-based algorithm called Crius, which predicts substrates for enzyme. The results of this fragment-based algorithm show good agreements between the simulated and experimental substrate specificities, using a lipase from Candida antarctica (CALB), a nitrilase from Cyanobacterium syechocystis sp. PCC6803 (Nit6803), and an aldo-keto reductase from Gluconobacter oxydans (Gox0644). This opens new prospects of developing computer algorithms that can effectively predict substrates for an enzyme. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  9. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes.

    Liu, Li; Helbling, Damian E; Kohler, Hans-Peter E; Smets, Barth F

    2014-11-18

    Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.

  10. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  11. Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate

    Arabi, Eyad A.

    2014-10-01

    In this paper, microstrip-based bandpass filters on polyethylene naphthalate (PEN) and liquid crystal polymers (LCP) are presented to investigate the performance of filters on ultra-thin substrates. PEN (with a thickness of 120 μm) has been characterized and used for a filter for the first time. In addition to being low cost and transparent, it demonstrates comparable RF performance to LCP. The conductor losses are compared by fabricating filters with inkjet printed lines as well as laser etched copper clad LCP sheets. With 5 layers of inkjet printing, and a curing temperature below 200°C, a final silver thickness of 2 μm and conductivity of 9.6 × 106 S/m are achieved. The designs are investigated at two frequencies, 24 GHz as well as 5 GHz to assess their performance at high and low frequencies respectively. The 24 GHz inkjet printed filter shows an insertion loss of 2 dB, while the 5 GHz design gives an insertion loss of 8 dB. We find that thin substrates have a strong effect on the insertion loss of filters especially as the frequency is reduced. The same design, realized on LCP (thickness of 100 μm) through laser etching, demonstrates a very similar performance, thus verifying this finding. © 2014 European Microwave Association.

  12. Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate

    Arabi, Eyad A.; McKerricher, Garret; Shamim, Atif

    2014-01-01

    In this paper, microstrip-based bandpass filters on polyethylene naphthalate (PEN) and liquid crystal polymers (LCP) are presented to investigate the performance of filters on ultra-thin substrates. PEN (with a thickness of 120 μm) has been characterized and used for a filter for the first time. In addition to being low cost and transparent, it demonstrates comparable RF performance to LCP. The conductor losses are compared by fabricating filters with inkjet printed lines as well as laser etched copper clad LCP sheets. With 5 layers of inkjet printing, and a curing temperature below 200°C, a final silver thickness of 2 μm and conductivity of 9.6 × 106 S/m are achieved. The designs are investigated at two frequencies, 24 GHz as well as 5 GHz to assess their performance at high and low frequencies respectively. The 24 GHz inkjet printed filter shows an insertion loss of 2 dB, while the 5 GHz design gives an insertion loss of 8 dB. We find that thin substrates have a strong effect on the insertion loss of filters especially as the frequency is reduced. The same design, realized on LCP (thickness of 100 μm) through laser etching, demonstrates a very similar performance, thus verifying this finding. © 2014 European Microwave Association.

  13. Trigger Warnings as Respect for Student Boundaries in University Classrooms

    Spencer, Leland G.; Kulbaga, Theresa A.

    2018-01-01

    The fierce public and scholarly debate over trigger warnings in university classrooms has often characterized the issue as one of academic freedom and ignored the social justice arguments for trigger warnings. In this essay, we argue that trigger warnings expand academic speech by engaging students more fully in their own learning. Specifically,…

  14. Non-permeable substrate carrier for electroplating

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  15. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  16. Optimization of substrate preparation for oyster mushroom (Pleurotus ostreatus) cultivation by studying different raw materials and substrate preparation conditions (composting: phases I and II).

    Vieira, Fabrício Rocha; de Andrade, Meire Cristina Nogueira

    2016-11-01

    In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.

  17. Autonomy, Respect, and Arrogance in the Danish Cartoon Controversy

    Rostbøll, Christian F.

    2009-01-01

    is understood as something we should presume everyone possesses, it provides a strong basis for equal respect among people from diverse cultures. A Kantian conception of autonomy can justify the right to freedom of expression while it at the same time requires that we in the exercise of freedom of expression......Autonomy is increasingly rejected as a fundamental principle by liberal political theorists, because it is regarded as incompatible with respect for diversity. This article seeks, via an analysis of the Danish cartoon controversy, to show that the relationship between autonomy and diversity is more...... complex than often posited. Particularly, it asks whether the autonomy defense of freedom of expression encourages disrespect for religious feelings. Autonomy leads to disrespect for diversity only when it is understood as a character ideal that must be promoted as an end in itself. If it by contrast...

  18. Autonomy and the principle of respect for autonomy.

    Gillon, R

    1985-06-15

    Autonomy is defined as the capacity to think, decide, and act freely and independently on the basis of such thought and decisions. Three types of autonomy are distinguished: autonomy of thought, which embraces the wide range of human intellectual activities called "thinking for oneself"; autonomy of will, or the capacity to decide to do things on the basis of one's deliberations; and autonomy of action, the absence of which is illustrated by the situation of a patient whose voluntary muscles are paralyzed by curariform drugs and who thus cannot tell the surgeon that the anesthetist has forgotten the nitrous oxide. Autonomy is viewed as a prerequisite for all the virtues, rather than as a virtue in its own right. The arguments of Immanuel Kant and John Stuart Mill concerning the principle of respect for autonomy are summarized as exemplars respectively of the deontological and utilitarian philosophical approaches.

  19. Teaching about Respect and Tolerance with Presentations on Cultural Values

    Hamdi Serin

    2017-06-01

    Full Text Available Teaching students from diverse backgrounds requires more than sufficient. Very often battles occur among students due to not understanding each other’s values. This study presents experience of a teacher who teaches students from diverse religious, ethnic, and cultural groups. As disrespect, misunderstanding and intolerance were common in the class, it was difficult for the teacher to advance respect among the students for diversity. In order to encourage the students to embrace diversity, the teacher made them introduce their cultures through presentations in the classroom. Although at the beginning the students continued to tease each other by making fun of each other’s cultural values, after some time it was discovered that they were entering the classroom with a real respect and tolerance for diversity.

  20. New forms of -compactness with respect to hereditary classes

    Abdo Mohammed Qahis

    2019-01-01

    Full Text Available A hereditary class on a set X is a nonempty collection of subsets closed under heredity. The aim of this paper is to introduce and study strong forms of u-compactness in generalized topological spaces with respect to a hereditary class, called  SuH-compactness and S- SuH-compactness. Also several of their properties are presented. Finally some eects of various kinds of functions on them are studied.